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Abstract  
 

The overall objective of the paper is to outline a methodological strategy for incorporating 

current period weather and long-term climate conditions into impact assessments. To do 

so, we use an IFAD project that invested in grain storage implemented in grain-growing 

regions in Chad as a case study. Noting that currently there are no agreed climate and 

weather metrics to use in crop production estimations, we first explore the explanatory 

power of a wide range of weather and climate variables from a number of different sources. 

Once we determine the best indicators of weather conditions and corresponding historical 

climate conditions, we evaluate the impact of including climatic variables in matching 

treatment and control households and subsequently their impact on household-level 

outcomes. During the crop season covered by the survey, rainfall and temperature patterns 

were remarkably favourable over the study area, with few significant weather shocks. 

However, households located in areas with lower and more variable rainfall and with a 

greater incidence of high temperature shocks suffered lower grain yields and lower dietary 

diversity in food consumption. Such households also stored a greater fraction of their grain, 

consistent with greater value of increasing resilience in these areas.  

 

 

1. Introduction 

Increasing the resilience of rural households is a key part of IFAD’s mandate and of its strategic 

objectives. The third strategic objective deals explicitly with climate resilience: “Strengthen the 

environmental sustainability and climate resilience of poor rural people’s economic activities” 

(IFAD, 2016). To reach that objective over the period 2016–2025, IFAD proposed to mainstream 

climate change throughout the entirety of its portfolio. This means that programming and project 

implementation needs to incorporate the best available evidence on climate change into their 

design. To do so, IFAD’s strategic framework document highlights the need to generate more and 

better analyses of climate risks and vulnerabilities, and their impacts on agricultural productivity, to 

determine which specific activities are best suited to increase farm production while also 

increasing resilience to the effects of climate change. 

In this paper, we focus on how weather and climate variables can be integrated into IFAD impact 

assessments and the methodological issues that arise in the construction and use of such 

variables. To highlight the steps involved and potential biases that may arise when not including 

climatic variables in an impact assessment analysis, we use data collected on the IFAD project 

“Programme d’Appui au Developpement Rural dans le Guera” (PADER-G). To address food 

insecurity prevalent in the region, the project was designed to manage risks of food shortages 

through the construction of cereal banks and by increasing capacity to manage community cereal 

banks by providing extensive training to cereal bank committee members. Household- and 

community-level data were collected in both project villages and villages where the project did not 

operate for an ex-post impact assessment (Cavatassi et al., 2018). We build on that work by 

incorporating weather shocks and climate conditions into the analysis. Because we refer to this 

work throughout the paper, we hereafter refer to Cavatassi et al. (2018) as CMAD. 

To start the analysis, we note that there is a wide range of different data sources that provide data 

on potentially relevant climate variables, including multiple sources that produce rainfall estimate 

data, temperature data, a range of vegetation indices such as the normalized difference 

vegetation index (NDVI) constructed using different data sources, the standardized precipitation 

index (SPI) and the standardized precipitation and evapotranspiration index (SPEI) constructed 

using different data sources. In addition, we look through a large number of variables that have 

been used in previous work to characterize both climate conditions and weather events affecting 

current period production, such as long-term mean and coefficient of variation of rainfall, season 

onset dates, current period rainfall covering the flowering period and rainfall covering the entire 

growing season. Thus, our first objective is to systematically assess the predictive power of 



 

 

alternative sets of climate and weather variables in estimating grain yields. From this analysis, we 

arrive at a reduced set of such predictors with which to continue the analysis. 

The next step is to include the climate variables into the propensity score matching procedure 

implemented by CMAD. Most impact assessments will use some type of matching procedure to 

ensure balance across treatment and control households, as the assessment design is generally 

based on quasi-experimental methods. In the final step, we introduce weather and climate 

variables into the regression analysis. We note here that it is important to include both long-term 

measures of climate conditions as well as the current period shocks into the regressions, to 

ensure that current period weather variables are conditionally exogenous. This is particularly 

important for cross-section analyses that cannot employ fixed effects specifications. 

The paper proceeds as follows. In section 2, we briefly provide details on key aspects of the 

PADER-G project and of the impact assessment design, we summarize results of the CMAD 

impact analysis. In section 3, we provide a brief literature review focusing on the impacts of 

weather and climate conditions on grain production using household datasets, drawing 

implications for the data sources and variables to create used in this analysis. In section 4, we 

present a systematic analysis of the impacts of climate and weather variables on grain production. 

From this analysis, we select two sets of weather and climate variables to use in matching and in 

the final regressions. Section 5 gives results of the matching exercise. Section 6 presents final 

results for grain production, as well as for household consumption outcomes. These are presented 

using specifications both with and without climatic variables to facilitate comparison. Finally, 

section 7 concludes. 

2. Background  

The PADER-G project began in 2011 and was completed in December 2016 (CMAD). Project 

activities were implemented in the Guera region of Chad, one of the poorest and most food-

insecure regions in the country, where over 87 per cent of the population rely on rain-fed 

smallholder farming (Boutna, 2016). The main objective of the PADER-G project was to address 

food insecurity through increasing access to safe drinking water, rural road construction, cereal 

bank operationalization to manage food shortage risks, access to financial services and 

strengthened farmers’ organizations. Following CMAD, we focus on one major project activity, 

cereal bank construction and operation. Sub-activities included the construction of community 

cereal banks, provision of cereals for the first operating year, provision of training and other 

assistance to ensure efficient management of the bank and effective maintenance of the 

infrastructure, and proactive training of women in the communities. The project’s Theory of 

Change argues that well-functioning cereal banks would lead to greater consumption in the lean 

season, and potentially to reduced use of money-lenders and lower migration of men leaving the 

community to seek wage labour in the lean season. The Theory of Change also posits that well-

functioning storage facilities would lead to greater grain production and productivity, although 

exactly how that would occur is not well-articulated. Interestingly, in the Theory of Change figure 

(CMAD, figure 1), a critical assumption is listed as: “there is no extreme weather shock (e.g. 

drought)”. This assumption is not discussed in the text and is somewhat odd given the project 

objectives. Perhaps this implicitly assumes that, although the project hopes to build resilience to 

weather stressors, the area is drought prone and drought is considered a chronic event, whereas 

extreme events (including extreme drought) are still expected to have negative impacts. 

Prior to data collection, the impact assessment team selected villages in the region where there 

were no PADER-G activities to serve as counterfactuals. The team used information on PADER-G 

targeting criteria along with a 2009 census of all villages in the region to implement a village-level 

propensity score. A list of candidate counterfactuals was then reduced in consultation with project 

implementers to minimize spillover and contamination effects. Data were collected from 2 198 

households in 72 villages. However, there were a number of counterfactual villages that had 

acquired a cereal bank since the 2009 census. We follow CMAD and use only counterfactuals in 

villages without a cereal bank; this ultimately gives us data from 1 104 treated households and 

337 control households. 



The CMAD impact assessment results show that PADER-G had significant and positive impacts 

on dietary diversity, grain production and storage, and may have helped to reduce distress sales 

of assets during the lean season. As will become apparent further down, there were no extreme 

weather shocks during the crop seasons covered by the survey, so that impacts of an extreme 

weather event cannot be tested. Nonetheless, long-term climate conditions also influence farmers’ 

decision-making and thus project outcomes, and this we can and do test. 

3. Literature review 

There is a growing literature on the impacts of extreme weather events on farm production and 

consumption outcomes using household-level data, although the evidence tends to be 

concentrated in relatively few countries and regions, and on grain crops.1 Most studies in areas 

where farming is rain-fed show that crop production is highly vulnerable to rainfall shocks, leading 

to production losses between 20 per cent and 50 per cent on average, depending on the severity 

of the shock (McCarthy et al., 2018a in Malawi; Amare et al., 2018 in Nigeria; Wineman et al., 

2017 in Kenya; Michler et al., 2019 in Zimbabwe; Arslan et al. in Zambia, 2015). Fewer studies 

using household survey data have generated evidence on the impacts of higher temperatures on 

crop production, although Asfaw et al. (2016) did find negative impacts of higher temperatures on 

maize yields in Malawi. 

While one certainly expects to find significant negative impacts of weather shocks on crop 

production – particularly under rainfed conditions – the literature documenting these impacts 

remained limited until the past decade or so. Until relatively recently, it was difficult to obtain 

rainfall station data and, when possible, stations were often so sparse they provided limited 

information on how much rainfall a particular plot received. Researchers would then need to rely 

on self-reported rainfall shocks, which was often both coarse and noisy data, especially when 

surveys covered wide geographic regions. Geographic information system (GIS)-based products 

that produce rainfall estimates and indicators of “greenness” then became more widely available, 

making it easier to control for climate and weather conditions on farm. But economic theory has 

nothing to say about which specific variables should be used in agriculture production analyses. 

Below, we summarize recent literature that includes econometric analyses using GIS-based 

weather shocks and climate conditions from a number of difference data sources. We focus on 

empirical results from studies in sub-Saharan Africa, and do not review studies that used either 

self-reported shocks or rainfall station data. 

Michler et al. (2019) estimate impacts of rainfall shocks on smallholders in Zimbabwe using UC 

Santa Barbara’s Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall 

estimate data, taking average daily rainfall aggregated to the ward level to match households at 

this level. Matching at ward level was necessitated as household locations were not geo-

referenced. In their analysis, they use a rainfall anomaly measure, defined as the difference 

between current period and mean rainfall divided by the standard deviation of rainfall over the total 

growing season. They also create two shock measures by dividing shocks between low and high 

rainfall anomalies. They also run robustness checks using dummy variables to capture more 

extreme shocks based on standard deviations. Results are consistent across the specifications, 

with low rainfall shocks having consistently negative impacts on crop outcomes. As the authors 

use a fixed effects specification, they do not include measures of long-term climate conditions. 

Wineman et al. (2017) use CHIRPS rainfall estimate data matched to village centres located in 

Kenya, using panel data fixed effects that preclude the need to control for historical climate 

conditions. Weather shocks are defined as the number of dekads during the total rainy season 

with rainfall greater than 75 mm to capture high rainfall shocks, and the number of dekads during 

                                                           
1 There is a large body of work looking at rainfall events and heat stress on grain production that uses 
on-trial data, or is based on crop modelling that tends to use aggregate secondary data, e.g. for the 
USA (c.f. Akter and Islam, 2017; Auffhammerl et al., 2013; Ortiz-Bobea et al., 2021 and references cited 
therein). In this literature review, we focus on household-level data analysis as we believe that is a 
better guide to the data sources and variables created to help explain household-level outcomes, which 
is our goal here. 



 

 

the rainy season with less than 15 mm of rainfall to capture low rainfall shocks. These thresholds 

are based on research done by Guerrero Compean (2013) in Mexico, and are meant to capture 

absolute thresholds. The authors do not report whether robustness checks using different 

thresholds, including relative thresholds, were performed. In general they find that high rainfall 

shocks have positive impacts when significant across a range of household welfare indicators, 

while low rainfall shocks have negative impacts when significant. 

Amare et al. (2018) examine the impacts of rainfall shocks on production and consumption 

outcomes in rural Nigeria using the National Oceanic and Atmospheric Administration’s Climate 

Prediction Center (NOAA-CPC) African Rainfall Climatology version 2 (ARC2) dekadal rainfall 

estimate data. They use the natural log of the rainfall anomaly (defined as the difference between 

mean rainfall minus previous period rainfall, divided by the standard deviation (SD)). Similar to 

Michler et al. (2019), they then create dummy variables to capture low and high rainfall shocks 

based on whether the rainfall anomaly was less or greater than 1 SD from the mean, respectively. 

They do not cite any sources to justify threshold choices nor report robustness checks to motivate 

those threshold choices. They find negative impacts of low rainfall shocks, but positive impacts of 

high rainfall shocks. 

Arslan et al. (2017) use the ARC2 dekadal data, and dekadal temperature data from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) in an analysis of the impacts of climatic 

variables on maize yields in Tanzania. For weather variables, the authors include the total season 

rainfall, a dummy variable capturing whether current period within-season rainfall variability 

exceeds long-term average within-season variability and a dummy variable capturing whether any 

temperatures exceeding 28°Celsius occurred during the season. In panel regressions not using 

fixed effects, the authors use either the coefficient of variation of total season rainfall or the 

average long-term total season rainfall shortfall covering years when rainfall is below its long-term 

average. The authors find that high intraseason variability and high temperature shocks both 

reduce maize yields by 16 per cent and 29 per cent, respectively. Arslan et al. (2015) also use the 

ARC2 dekadal rainfall data and the ECMWF dekadal temperature data to analyse maize yields in 

Zambia using a household panel dataset. The authors use total season rainfall, a dummy variable 

capturing late onset of the rains, average maximal daily temperatures through the season and, in 

correlated random effects models, the historical coefficient of variation of seasonal rainfall. The 

authors find a significant positive effect of total season rainfall, but also an unexpected positive 

effect of delayed rainfall onset on maize yields. Asfaw et al. (2016) use ARC2 and ECMWF 

variables similar to Arslan et al. (2015), although not a dummy for delayed onset. They find 

negative impacts of high temperature shocks on maize yields. Alfani et al. (2018) also use ARC2 

data to evaluate impacts of a drought on maize yields in Zambia, using a two-period panel dataset 

in which many households suffered from a severe drought shock in the second year, 2016. As 

household locations are not geo-referenced, they use ward-level averages to generate weather 

and climate variables. The authors run a correlated random effects model of maize yield, and 

include the absolute per cent deviation of total season rainfall, the coefficient of variation of total 

season rainfall and a dummy for a drought shock to capture non-linear impacts of large deviations 

from average. The drought shock takes a value of one if, during the total growing season, rainfall 

was below the minimum of rainfall received over the period 1983–2015. Results indicate that the 

drought reduced yields between 29 per cent and 41 per cent. The coefficient of variation is also 

negative and significant, consistent with both theoretical and empirical results that farmers in high 

rainfall variability environments are less likely to invest in crop productivity. 

Pape and Wollburg (2019) use the United States Geological Survey’s EROS Moderate Resolution 

Imaging Spectroradiometer (NDVI_E) data to generate percentage deviation of NDVI in two critical 

rainy seasons from mean NDVI in three “normal” years preceding the drought (Somalia drought in 

the second 2016/first 2017 seasons). They also include the average deviation from mean NDVI 

over the period 2002–2013 to control for propensity to experience a drought. Results show 

generally negative impacts, although it is difficult to interpret in terms of impacts of current period 

shocks as the authors use the preceding period NDVI values. Mejia-Mantilla and Hill (2017) use 

the crop Water Requirement Satisfaction Index (WRSI) matched to households, but it is unclear 

what time period is covered. The authors use a fixed effect models, so do not directly control for 



long-term probability of water stress. They find positive effects of higher water satisfaction on 

agricultural incomes.  

As noted, a number of papers included temperature shock variables, and not temperatures per se. 

In part, this is because agronomic evidence suggests that temperature thresholds best describe 

negative impacts on grains in particular (the subject of most of the research mentioned above) 

(Prasad and Djanaguiraman, 2014 for wheat; Prasad et al., 2015 for sorghum; Sánchez et al., 

2014 for maize and rice). 

In addition to the household survey-based evidence, there are also studies that attempt to 

compare the performance of different rainfall products, generally by comparing the different rainfall 

estimates to rainfall gauge measurements (Dinku et al., 2018; Joseph et al., 2020; Logah et al., 

2021). Many studies find that CHIRPS outperforms other products such as ARC2, while other 

studies find that CHIRPS performs more similarly to the Tropical Rainfall Measuring Mission 

(TRMM) and the Tropical Applications of Meteorology using Satellite data and ground-based 

observations TAMSAT (Dinku et al., 2018; Joseph et al., 2020; Macharia et al., 2020). However, 

the above results base performance against rain gauge data, which, by definition, cannot test how 

well such data sources (and variables created from them) perform for households located far away 

from such stations. A wide range of studies also determine that dekadal data is more closely 

correlated with rainfall gauge data than daily data (Ouma et al., 2012; Dembélé and Zwart; 2016; 

Zwart et al., 2018; Coz and van de Giesen, 2020; Logah et al., 2020). The agreement in the 

literature on the performance of dekadal versus daily measurements for a wide range of products 

motivated our decision to collect dekadal data. 

While not focusing on weather shocks specifically, a recent study using the World Bank’s Living 

Standards Measurement Study – Integrated Surveys for Africa (LSMS-ISA), used panel data from 

17 countries and evaluated a number of climatic variables created from different sources, and 

found little evidence of difference among products (Michler et al., 2021). It is unclear why the 

authors chose the actual variables tested, but they did not include variables identified in the 

agronomic literature (for instance, the flowering period and onset dates, which are critical for grain 

production), nor did they use economic theory to guide their choice (for instance, expected utility 

theory states that one should use expected weather metrics, measures of variability of those 

metrics and current period deviations from those metrics). 

In summary, the empirical evidence suggests that households subject to extreme weather events 

often suffer losses in crop yields and agricultural income. It is difficult to compare results, however, 

as the studies use a wide range of different definitions of weather shocks using different rainfall 

and temperature source data. Although the literature on the topic is gaining ground – especially 

the types of analysis found in Michler et al. (2019) that use household data combined with multiple 

GIS sources and weather variables – at present, there is not sufficient evidence to use a single 

data source and specific variables. Best practice would argue for collecting data from a range of 

sources, while choice of which specific variables to use should be guided by both agronomic 

evidence as well as economic theory, and using dekadal observations. 

4. Analysis of impacts of weather and climate variables 
on grain production 

For the purposes of this note, we will use the term “climate variables” to refer to measures of long-

term averages and variability in maximum temperatures and rainfall, while we use the term 

“weather variables” to refer to temperature and rainfall measures that occurred during the season 

in which agriculture production data were collected. We use “climatic variables” to describe both 

weather and climate variables. 

We run regressions on grain yield. Grain yields are defined as the combined harvest of sorghum 

and millet in kilograms, divided by the quantity of seeds used at planting in kilograms. While 

results are similar using the more standard construction of harvest quantity divided by hectares, 

explanatory power was much greater for seeds, and so we only report this yield measure in the 



 

 

following analysis. Recent evidence suggests that farmer error in estimating plot sizes can lead to 

biased results, which also favours reporting on output per quantity of seed (Carletto et al., 2017). 

Our sample size is 1 327 versus the full sample of 1 471, as 144 households did not grow either 

sorghum or millet. 

4.1. Climatic variable data sources and weather variable construction 

To begin the analysis, we must first determine which climate and weather variables to use in our 

regressions and also determine which climate data source provides the best predictive power in 

our analysis. For each of our climate datasets, we create a number of variables identified in the 

previous literature, and systematically test which variables, constructed from which climate 

dataset, perform best in predicting relevant agricultural production outcomes. Results of 

systematically testing both variables and data sources will contribute to a sparse literature on 

identifying the best climate and weather variables to include in production analyses, which should 

help in generating comparable empirical results across studies. 

For temperature, we use data from the ECMWF ERA INTERIM re-analysis model. There are many 

more data sources for rainfall estimates, and given resource limitations, we had to restrict the 

number of rainfall data sources used in the analysis. We decided to use NOAA’s ARC2 dekadal 

(10-day) dataset, covering the period 1983–present, and CHIRPS dekadal dataset, covering the 

period 1981–present. The choice was motivated by a number of considerations. First, many of the 

existant studies use either CHIRPS or ARC2, and so this choice facilitates comparison. Second, 

CHIRPS has been found to perform similarly to other products, such as TAMSAT and TRMM (now 

IMERG), in part because those products use similar inputs and processes for integrating gauge 

data versus ARC2, which uses fewer inputs and a simpler process for integrating gauge data 

(Dinku et al., 2018; Coz and van de Giesen, appendix B, 2020). We also use the United States 

Geological Survey’s EROS Moderate Resolution Imaging Spectroradiometer, NDVI-E and the 

National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very High Resolution 

Radiometer (NDVI-A). The NDVI measures are capture a wider range of factors affecting local 

“greenness”, just as crop yields are a function of many variables in addition to weather, so 

interpreting impacts is more difficult. However, there is significant interest in being able to use 

NDVI variables to predict crop production outcomes, so we include these variables in this step of 

the analysis. We also use the SPI and SPEI. These indices are not themselves a separate data 

source, but are rainfall estimate indices constructed using either ARC2 or CHIRPS for the SPI, 

and either ARC2 or CHIRPS combined with ECMWF temperature data for SPEI. Because SPI and 

SPEI were highly correlated across the ARC2- and CHIRPS-based variables, in what follows, we 

only present results for the ARC2-based variables. 

4.2. Descriptive statistics: weather shock variables 

Following the literature, we construct rainfall variables covering three different time periods. The 

first period is the total rainy season, which is constructed based on the onset and cessation of 

rainfall. In the Chad context, onset is defined as any dekad starting from the beginning of April 

when at least 25 mm of rain falls during a dekad, and then followed by a dekad with at least 

20 mm of rain (Tadross et al., 2009). Cessation occurs when three consecutive dekads 

experience less than 20 mm of rainfall after August (Tadross et al., 2009). The second period is 

the flowering period, which is defined as cumulative rainfall over the eighth to fourteenth dekads 

following the onset of rains. 

The total season and flowering period variables are obtained by matching GIS data to 99 village 

centroids as household GPS data are not available. It is unclear how well the village centroid 

values represent values experienced at farm household and plot locations. From previous work, 

we know that long-term average rainfall and rainfall variability measures are highly correlated 

within communities, as are both average and current period temperatures. However, the current 

rainfall shock variables in this analysis may be relatively noisy proxies of shocks experienced in 

the field, and we need to bear this in mind as we interpret results. 



In Table 1, we present select descriptive statistics for the per cent difference of current period 

rainfall from long-term mean rainfall, for six weather categories. The second column includes the 

per cent of households that experienced below-mean rainfall, while the third column includes the 

average per cent below-mean for those who received below-mean rainfall. Similarly, the fourth 

column lists the per cent of households that experienced above-mean rainfall, while the fifth 

column lists the average per cent of above-mean rainfall. 

 

Table 1. Per cent households experiencing below- and above-mean rainfall, and average per cent below- and 
above mean rainfall. 

Rainfall estimate 
variables 

% HH 
below 

|% Diff 
below, if 
below| 

% HH 
above 

|% Diff 
above, if 
above| 

ARC2     

Rainy season 8 6 92 13 

Flowering period 12 33 88 21 

CHIRPS     
Rainy season 54 10 46 7 

Flowering period 48 30 52 23 

SPI     
Rainy season 43 9 57 9 

Flowering period 23 21 77 13 

SPEI     
Rainy season 40 5 60 6 

Flowering period 19 16 81 17 

NDVI-E     
Rainy season 65 7 35 6 

Flowering period 53 7 47 9 

We first note that the ARC2, SPI and SPEI variables suggest that many more households were 

subject to above-average rainfall than do the CHIRPS, NDVIA-A and NDVI-E variables. In fact, the 

NDVI-A and -E variables suggest there were very limited per cent differences for either high or low 

realizations, given the per cent differences observed. ARC2, CHIRPS, SPI and SPEI also suggest 

more dramatic per cent differences observed in the flowering period versus the total season. 

We also look at the correlations among the variables, which we would hope to be fairly high as 

high correlations would suggest that different rainfall sources were picking up relatively similar 

prevailing conditions and, thus, reduce the necessity to evaluate a wide range of variables for 

each particular analysis. As shown in Table 2, the ARC2, CHIRPS, SPI and SPEI variables are 

fairly highly correlated with each other, but correlation is limited with NDVI-E. 

Table 2. Pairwise correlations, flowering period per cent differences. 

 ARC2 CHIRPS SPI SPEI NDVI-A NDVI-E 

ARC2 1.00 0.88 0.91 0.94 0.11 0.64 

CHIRPS 0.88 1.00 0.80 0.90 0.11 0.71 

SPI 0.91 0.80 1.00 0.93 0.11 0.52 

SPEI 0.94 0.90 0.93 1.00 0.04 0.63 

NDVI-E 0.64 0.71 0.52 0.63 0.24 1.00 

The ARC2 variables, and to a lesser extent CHIRPS, SPI and SPEI, are more in line with 

observations documented by two early warning systems during the growing season in question. 

Specifically, in August 2016, the FAO-based Global Information and Early Warning System 

(GIEWS) noted that “favourable” grain yields were expected due to sufficient rains at the start of 



 

 

the season, and subsequent normal to above-normal precipitation in most areas of the country.2 

Similarly, FEWSNET noted in the June and August 2016 bulletins that rains started early and 

continued, and that cumulative rainfall totals were above-average and with good spatiotemporal 

distribution throughout the region.3 

We have not yet discussed our temperature variable. Consistent with the steady and ample rains, 

there are no observations in the dataset where noon-time temperatures exceeded 35°C. The 

calculation of SPEI does incorporate temperatures, and so we can only explore current-period 

temperature impacts through this variable. 

4.3. Climate and weather variables used in the production analysis 

Before proceeding to the analysis, we make decisions on which sets of variables to use in the 

analysis. For weather shocks, we include the absolute per cent difference, which captures impacts 

of deviations both above and below the mean. Given that many observations are above the mean, 

we also include a specification that includes the per cent difference for high rainfall events, which 

takes a value of zero for low rainfall events. We run these specifications for variables created from 

all six weather sources, although we only report results for ARC2, CHIRPS and SPEI. SPI results 

are similar to those of SPEI, and the NDVI variables are difficult to motivate and, indeed, are never 

significant. We also evaluate using anomalies in addition to per cent differences. In our particular 

case, anomalies are highly correlated with per cent differences with similar results, and so are not 

reported here. 

The second decision relates to climate conditions. Including climate conditions is necessary to 

ensure that weather shocks are conditionally exogenous in our cross-section analysis (Nizalova 

and Murtazashvili, 2016). To capture expected weather, we constructed a number of climate 

indices. We ultimately chose to fully test two indices based on either ARC2 or CHIRPS data, and 

the temperature data. We ran principal component factor analysis on mean flowering period 

rainfall, the coefficient of variation (CoV) for rainfall when flowering period rainfall realizations were 

below the mean, the CoV when flowering period rainfall realizations were above the mean and the 

average number of days during the flowering period with noon-time temperatures exceeding 35°C. 

As shown in Table 3, the scoring coefficients on average rainfall are negative, while the CoV for 

both high and low realizations as well as number of days experiencing critically high temperatures 

are all positive. Additionally, the scoring coefficients are quite similar across the ARC2 and 

CHIRPS specifications. Both climate indices thus capture relatively poor underlying climate 

conditions, increasing with greater exposure to temperature shocks and decreasing in average 

rainfall. 

Table 3. Climate index, principal components factor scoring coefficients. 

Variable ARC2 CHIRPS 

 

Scoring 
coefficient 

Scoring 
coefficient 

Avg. rainfall −0.310 −0.294 

CoV-low 0.295 0.246 

CoV-high 0.271 0.277 

Avg. # high temps 0.273 0.281 

For the ARC2 and SPEI regressions, we use the ARC2-based climate index, while for the 

CHIRPS regressions, we use the CHIRPS-based climate index. 

                                                           
2 According to the GIEWS website, the GIEWS team use crop models and “ground-based” information 
from FAO and other local partners, as well as NDVI, and precipitation data for African countries are 
obtained from FEWSNET, which is likely CHIRPS. Information accessed at: 
https://www.fao.org/giews/earthobservation/asis/index_2.jsp?lang=en. 
3 According to the FEWSNET website, FEWSNET uses CHIRPS, ARC2, NDVI and SPI data to make 
assessments, although it is very difficult to know what exact data sources or variables are used, and at 
least one document seems to suggest these may change by country (c.f. 
https://fews.net/sites/default/files/documents/reports/Guidance_Document_Rainfall_2018.pdf). 



 

5. Results of production analysis 

In the next step, we estimate grain yields using climate and weather variables, as well as standard 

production function variables. Specifically, we include GIS-based measures of elevation and slope 

to control for topographical features; the proportion of grain-cropped land that is owned; the total 

area planted in grains (in natural logs); the quantity of seeds used (in natural logs), number of 

adults in the household to proxy labour availability (in natural logs); dummies for use of organic 

fertilizer, inorganic fertilizer, pesticide use, soil and water conservation measures, and whether 

residue is incorporated into the plot; dummies for whether any plots were managed by a man, a 

woman or jointly; age of the majority plot manager; a durable goods-based wealth index; an 

agricultural implements index, the maximum education achieved by any adult in the family; a 

dummy for whether there is a daily market operating in the village; a dummy for the number of 

external assistance projects operating in the village; and department (administrative unit) 

dummies. 

Table 4 contains results using variables created from ARC2, CHIRPS and SPEI, respectively. The 

second and third columns present rainy season results for the absolute per cent difference and the 

above-mean per cent differences, respectively; and the fourth and fifth columns present those 

results for the flowering period. 



 

 

Table 4. Grain yields, weather and climate coefficients. 

 Grain yields 

 Rainy season Flowering period 

ARC2     

|% Diff| 0.703  1.141***  

 (0.973)  (0.380)  

% Diff>0  0.320  0.362 

  (0.884)  (0.426) 

Climate index −0.179** −0.167** −0.192** −0.172** 

 (0.0754) (0.0722) (0.0751) (0.0686) 

Constant 4.922*** 4.985*** 4.505*** 4.914*** 

 (0.539) (0.545) (0.496) (0.522) 
     
# Obs. 1327 1327 1327 1327 
Adj. R2 0.222 0.226 0.234 0.222 

CHIRPS     

|% Diff| −0.631  0.269  

 (0.818)  (0.366)  

% Diff>0  −1.588  0.169 

  (1.127)  (0.330) 

Climate index −0.172** −0.198** −0.195** −0.168** 

 (0.0735) (0.0789) (0.0742) (0.0787) 

Constant 5.463*** 5.755*** 5.200*** 5.205*** 

 (0.573) (0.587) (0.598) (0.550) 
     
# Obs. 1327 1327 1327 1327 
Adj. R2 0.222 0.226 0.234 0.222 

SPEI     

|% Diff| 2.095  1.856***  

 (1.277)  (0.511)  

% Diff>0  2.659**  0.883 

  (1.114)  (0.547) 

Climate index −0.134* −0.173** −0.110 −0.145** 

 (0.0797) (0.0784) (0.0722) (0.0706) 

Constant 4.858*** 5.016*** 4.503*** 4.878*** 

 (0.534) (0.512) (0.483) (0.520) 
     
# Obs. 1327 1327 1327 1327 
Adj. R2 0.222 0.226 0.234 0.222 

Standard errors in parentheses. Asterisks denote significance;* p<0.1, **p<.05, ***p<.01. 

As seen in Table 4, very few of our shock variables are significant, and in fact, when significant, 

the sign of the coefficient is positive. For instance, the flowering period absolute per cent 

difference and the rainy season above-mean per cent difference variables are both positive and 

significant using SPEI. The latter indicates that higher than average rainfall conditions had positive 

impacts on grain yields. On the other hand, the climate index is negative and significant in almost 

regressions. This suggests that those located in areas subject to low average rainfall, highly 

variable rainfall and more frequent expected temperature shocks had lower yields, irrespective of 

current-period weather conditions. The dampening effect of expected rainfall conditions is 

consistent with both theory and empirical evidence in other settings (Fafchamps, 1999; Chavas & 

Holt, 1996; Fafchamps, 1992; Roe & Graham-Tomasi, 1986; Feder et al., 1985; Antle & Crissman, 

1990; Giné & Yang, 2009; Hurley, 2010). 

It is not unexpected that higher than average rainfall conditions would improve yields, especially 

when relatively few households faced extremely high rainfall. Thus, we next evaluate whether we 

can identify thresholds below and above which rainfall deviations have significant negative 

impacts on grain yields. McKee et al. (1993) defined a wet year as occurring at SPI values 

between 1 and 1.5, a very wet year as occurring between 1.5 and 1.99, and extremely wet years 



occurring at SPI values at or above 2. Similarly, severely dry years occur at SPI values between 

−1.5 and −1.99, and extremely dry years occur at or below −2. A similar set of ranges was also 

developed for the SPEI (Tong et al., 2017; Vincente-Serrano et al., 2105). Even though almost all 

SPI and SPEI values were above the mean in the 2016 growing season and flowering period, no 

observations fall into the extremely wet category. Thus, we do not pursue the threshold analysis 

for the SPI and SPEI indices. 

Table 5 includes results for a relevant range of ARC2 and CHIRPS flowering period threshold 

shocks. The top end of the ranges corresponds to the highest per cent difference observed for at 

least 5 per cent of households. For ARC2, the range is between 30 per cent and 34 per cent, and 

for CHIRPS, the range is between 36 per cent and 40 per cent. For ARC2, the only significant 

threshold is the negative impact at 32 per cent. For CHIRPS, only the highest threshold, 40 per 

cent, is negative and significant. The ARC2 absolute per cent difference is positive and significant 

as we expect, although it is not significant using CHIRPS variables. And the climate index 

coefficient remains consistently negative. 

Table 5. Above-mean weather thresholds. 

 Grain yields 

 ARC2  CHIRPS 

30% Threshold −0.0919   34% Threshold −0.0268   

 (0.179)    (0.173)   

32% Threshold  −0.293*  38% Threshold  −0.161  

  (0.175)    (0.165)  

34% Threshold   −0.155 40% Threshold   −0.375* 

   (0.175)    (0.222) 

|% Diff| 1.331** 1.716*** 1.396*** |%Dif| 0.289 0.427 0.417 

 (0.565) (0.535) (0.513)  (0.392) (0.402) (0.401) 

Climate index  −0.179** −0.160** −0.187** Climate index  −0.200*** −0.224*** −0.202*** 

 (0.0700) (0.0730) (0.0753)  (0.0740) (0.0753) (0.0744) 
Standard errors in parentheses. Asterisks denote significance;* p<0.1, **p<.05, ***p<.01. 

6. Impact assessment results 

In this section, we start by running regressions similar to those found in CMAD, which used an 

inverse probability weighted regression analysis. First-stage matching variables include gender 

and age of the household head, a dummy for whether the head ever attended school, a dummy 

equal to 1 if the marital status is “civil status”, the number of groups operating in the community 

and the number of external assistance projects operating in the community in the past five years. 

CMAD also included a parsimonious number of control variables in the second stage outcome 

regressions. These included household size, the total area of land owned by the household and 

the age of the cereal bank used by the household (noting that cereal banks exist in both treatment 

and control locations). Key outcome variables included grain yields defined over seeds used (kg 

grain/kg seed) in logs; total grain harvest (kg) in logs; the amount of grain stored (kg); FAO’s Food 

Insecurity Experience Score (FIES); and WFP’s Food Consumption Score (FCS), which is a 

measure of dietary diversity. In addition, we will also look at the proportion of grain stored. 

CMAD did not use any climate variables in the matching procedure used to generate their weights. 

The CHIRPS-based climate index is in fact well balanced across treatment and controls using 

either the unweighted or weighted regressions. However, the ARC2 climate index is significantly 

different under both unweighted and weighted regressions. Thus we create a new inverse 

probability weight using both climate indices as well as CMAD matching variables. 

We run the doubly robust inverse probability weighted regression adjustment (IPRWA) 

estimations, and results using CMAD explanatory variables are given in Table 6a. Results are 

quite similar to those in CMAD for production outcomes. For instance, our coefficient estimate for 



 

 

grain yields is .332, while it is .322 in CMAD. However, results for consumption outcomes differ – 

treatment is not significant in our regressions while they have expected signs in CMAD. 

Table 6a. IPWRA results, CMAD explanatory variables, updated weighting. 

 

Grain 
yields 

Grain 
harvested 

Grain 
stored 

Prop. of 
grain 

stored 

Food 
insecurity 

index 

Dietary 
diversity 

index 

Treat 0.333*** 0.467*** 0.970*** 4.750*** −0.392 0.157 

 (0.114) (0.156) (0.217) (1.496) (0.374) (0.241) 

HH size 0.0149 0.0706*** 0.0327 −0.0210 0.0295 0.0384 

 (0.0124) (0.0154) (0.0315) (0.236) (0.0452) (0.0290) 

Land size −0.0152 0.0390** 0.0556** 0.0536 0.00918 0.00963 

 (0.0114) (0.0168) (0.0222) (0.137) (0.0433) (0.0213) 
Cereal bank, 
age 0.0432*** 0.0246 0.0377 0.115 −0.0530 0.00222 

 (0.0153) (0.0178) (0.0382) (0.178) (0.0431) (0.0536) 

Constant 2.812*** 4.846*** 1.948*** 13.20*** 4.112*** 4.581*** 

 (0.132) (0.193) (0.267) (1.851) (0.428) (0.283) 

# Obs. 1327 1327 1327 1327 1327 1320 

Adj. R2 0.027 0.049 0.031 0.007 0.002 0.001 
Standard errors in parentheses. Asterisks denote significance;* p<0.1, **p<.05, ***p<.01. 

We next evaluate the impact of weather shocks and climate on production and consumption 

outcomes. Here, we only present results for the CHIRPS-based shocks, as the ARC2-based 

shock was never significant. Table 6b presents results for regressions using CMAD explanatory 

variables as well as the 40 per cent threshold high rainfall shock dummy, the absolute per cent 

difference in rainfall and the CHIRPS-based climate index. Treatment remains robust, but the 

climate variables are almost never significant. 

Table 6b. IPWRA results, CMAD and climatic explanatory variables, updated weighting. 

 Grain yields 
Grain 

harvested 
Grain stored 

Prop. of 
grain stored 

Food 
insecurity 

index 

Dietary 
diversity 

index 

Treat 0.344*** 0.483*** 0.968*** 4.559*** −0.389 0.186 

 (0.110) (0.151) (0.219) (1.388) (0.382) (0.238) 

|% Diff| 0.0294 0.117 −0.0523 6.376 1.592 0.866 

 (0.477) (0.580) (0.828) (7.896) (1.724) (1.052) 

40% Threshold 0.0874 0.272 0.423 0.201 −0.771* 0.0110 

 (0.227) (0.189) (0.337) (2.482) (0.451) (0.362) 

Climate index −0.0938 −0.131 0.0810 0.590 −0.399 −0.394*** 

 (0.0598) (0.0885) (0.104) (0.823) (0.251) (0.123) 

HH size 0.0114 0.0663*** 0.0363 0.0308 0.0192 0.0259 

 (0.0125) (0.0152) (0.0316) (0.249) (0.0418) (0.0244) 

Land size −0.0132 0.0417** 0.0542** 0.0264 0.0137 0.0158 

 (0.0116) (0.0171) (0.0220) (0.139) (0.0419) (0.0205) 
Cereal bank, 
age 0.0375*** 0.0170 0.0423 0.191 −0.0681 −0.0179 

 (0.0136) (0.0187) (0.0403) (0.164) (0.0477) (0.0492) 

Constant 2.827*** 4.832*** 1.904*** 11.13*** 3.838*** 4.457*** 

 (0.186) (0.243) (0.340) (2.869) (0.651) (0.349) 

# Obs. 1327 1327 1327 1327 1327 1320 

Adj. R2 0.033 0.059 0.031 0.011 0.014 0.038 
Standard errors in parentheses. Asterisks denote significance;* p<0.1, **p<.05, ***p<.01. 

 



We note that the adjusted R2 are quite low for all regressions in Tables 6a and 6b, indicating that 

omitted relevant variables may be biasing results on coefficients other than the treatment variable. 

In particular, we would expect agricultural inputs and practices to be influenced by climatic 

conditions. Thus, in our final set of regressions, we return to our production function specifications 

that use an expanded set of production-related variables as described in section 4.3. Results are 

presented in Table 7. 

Table 7. IPWRA results, production and climatic explanatory variables, updated weighting. 

 Grain 
yields 

Grain 
harvested 

Grain 
stored 

Prop. of 
grain 

stored 

Food 
insecurity 

index 

Dietary 
diversity 

index 

Treat 0.313*** 0.340*** 0.833*** 4.382*** −0.119 −0.0689 

 (0.097) (0.114) (0.186) (1.387) (0.299) (0.161) 

40% Threshold 0.312 0.276 0.59 11.15** 0.611 1.299* 

 (0.386) (0.436) (0.708) (5.439) (1.284) (0.763) 

|% Diff| −0.239 −0.233 −0.422 −2.981 −0.213 −0.902*** 

 (0.153) (0.167) (0.304) (1.906) (0.411) (0.224) 

Climate index −0.194** −0.202** 0.145 2.472* 0.437* −0.429** 

 (0.077) (0.095) (0.155) (1.269) (0.259) (0.164) 

Constant 5.046*** 5.358*** 2.180** 10.11 2.183 7.351*** 

 (0.515) (0.607) (1.047) (10.270) (2.116) (1.027) 

# Obs. 1327 1327 1327 1327 1327 1320 

Adj. R2 0.235 0.251 0.148 0.089 0.161 0.204 

Standard errors in parentheses. Asterisks denote significance;* p<0.1, **p<.05, ***p<.01. 

As seen in Table 7, the treatment impacts remain robustly positive for all of the production 

outcomes. However, more of our climatic variables are significant, and explanatory power has 

increased significantly, especially for the grain yields and harvest models. We observe a positive 

impact of a 40 per cent above-rainfall shock on the proportion of grain stored, indicating that 

storage was relatively more valuable in areas receiving extremely high rainfall and therefore at 

greater risk of post-harvest disease losses. The climate index also has a positive impact on the 

proportion of grain stored, indicating that those in areas subject to poorer and more variable 

climate conditions place additional value on grain storage. Furthermore, the climate index 

coefficient is negative and significant on grain yields, harvest, food insecurity and dietary diversity. 

Those living in relatively low expected rainfall areas and subject to rainfall and temperature shocks 

thus have worse production and consumption outcomes, even after controlling for treatment 

effects, updated weighting and a rich set of additional covariates. 

To summarize, by all measures, the impact assessment team did an excellent job selecting 

counterfactual villages and collecting necessary time-invariant or pre-project household data to 

ensure balance on covariates across treatment and control households. This is consistent with the 

robust impacts of project treatment across most outcome variables when comparing our results 

with those found in CMAD. However, the limited set of regressors used in the CMAD specification 

also suggests that omitted relevant variable bias may well affect the interpretation of coefficients 

on included regressors other than treatment, particularly given generally low explanatory power. 

While the emphasis of impact assessment is to uncover project impacts, in most cases, there are 

ample opportunities to exploit the data to learn about other relevant contextual factors affecting 

outcomes that are relevant to the design of future projects. This is particularly important with 

climatic variables, as evidenced in this analysis. Without a richly specified, theoretically grounded, 

regression specification, just including climatic variables generally leads to insignificant results. 

However, when including a wide range of regressors that are standard to agriculture production 

models, we see that poor underlying climate conditions have negative impacts on grain yields and 

harvest, increase food insecurity and reduce dietary diversity. There is a positive impact on the 

proportion of grains stored, however, indicating that storage is of relatively greater value in these 

environments. Consistent with most empirical evidence, poor climate conditions lead to lower 



 

 

(although possibly more stable) production and to lower livelihood outcomes even in “normal” 

rainfall years. Future projects need to directly address incentives to invest in agriculture under 

these circumstance, for example by considering opportunities to diversify on- and off-farm, and 

opportunities to increase access to risk-reducing inputs such as heat- and/or drought-tolerant 

varieties. 

7. Concluding comments 

We started by evaluating the performance of a wide range of weather and climate variables, from 

a number of different climatic data sources, in terms of predicting grain yields. Descriptive 

statistics suggest that the same variables constructed with different sources give different 

percentages of households estimated to have received either below- or above-mean rainfall. The 

contrast was particularly striking between NDVI-E versus ARC2, CHIRPS, SPI and SPEI, where 

the NDVI-E variables suggested that more households experienced relatively low rainfall instead 

of moderately high rainfall. Estimates of relatively low rainfall are also at odds with FAO and 

USAID famine early warning systems documentation, which reported relatively favourable 

conditions in the region in 2016, so we dropped variables based on this data source from further 

consideration. The descriptive statistics also suggest that only a few households experienced 

extremely high rainfall that could potentially damage crops. And there were very few observations 

of damagingly high temperatures. In this particular dataset covering this particular year, then, we 

were limited in the types of weather shocks that could be evaluated. 

Looking next at impacts of weather shocks and climate conditions on production outcomes, the 

analysis showed that using the absolute per cent or above-mean differences yielded limited 

significant results, but suggested that the ARC2 and SPEI are picking up positive impacts of 

above-mean differences for the rainy season. Next, we evaluated whether identifying threshold 

values may better pick up impacts of shocks on yields. The ARC2-based shock was negative and 

significant at 32 per cent, but not at 30 per cent or 34 per cent, casting some doubt on the 

robustness of this impact. The CHIRPS-based shock at 40 per cent was significant and negative. 

It was also at the very top of the range evaluated, and so we used this variable going forward in 

the analysis. 

We then ran regressions similar to those found in the CMAD impact assessment analysis. We 

added the ARC2 and CHIRPS climate indices to variables used by CMAD to match treatment and 

controls and generate an inverse probability weight. We then ran IPWRA analyses on grain 

production, storage and consumption outcomes, first using the CMAD explanatory variables and 

then using a richer production function specification. While the treatment coefficient is robust to 

alternative specifications as we would expect given the matching procedure, the climatic variables 

are not robust. In particular, the parsimonious set of explanatory variables used by CMAD did not 

sufficiently control for other variables expected to be correlated with climatic variables. Evaluating 

the impact of climatic variables requires a richer production specification. This specification 

generated three key results: 1) very high rainfall shocks – those exceeding 40 per cent of 

expected rainfall – had significant negative impacts on grain production and dietary diversity, 2) 

the climate index is robustly negative on grain production and consumption outcomes, strongly 

suggesting that households in this region are under-insured and thus quite vulnerable to 

increasingly high temperatures and more frequent weather shocks and 3) those living in 

unfavourable climatic environments store a greater fraction of their grain, indicating that storage 

facilities are of relatively more importance than those living in more favourable climatic 

environments. 

Overall, the analysis shows that including weather and climate variables into project impact 

assessments can provide information on how these variables affect the overall outcomes of 

interest, generating valuable insights into future project design. They may also be important in 

matching treatment and controls households, although the latter was not important in this case. 

Importantly, introducing a richer set of production-related covariates, which increased explanatory 

power of the regressions significantly, revealed significant negative impacts of weather shocks 

and climate conditions on production and consumption outcomes. The latter reflects potential 



missed opportunities in many impact assessments, which focus almost exclusively on estimating 

programme impacts. A lot more evidence can be generated about the conditioning factors that 

also affect outcomes, which can provide key insights for future project design. But uncovering 

important conditioning factors means explicitly developing a conceptual framework that outlines 

which variables must be included to avoid omitted relevant variable biases on the conditioning 

covariate coefficients. Luckily, data collection efforts almost always do collect data necessary to 

run well-specified production and consumption regressions. 

Our results also suggest that choosing what data sources to use and which exact variables to 

create will continue to be a difficult task confronting researchers. The same variables created from 

different sources generate quite different descriptive statistics on per cent of households 

experiencing either below- or above-mean weather conditions, as well as the average size of that 

difference. Our analysis also suggests that non-linear thresholds did a better job of explaining 

impacts on grain production rather than the simple per cent difference, either alone or split into 

below and above differences. But, much more work remains to be done to corroborate this result.  

We tentatively conclude that using dekadal data is likely to generate variables with greater 

predictive power, mainly because our analysis supports a relatively large body of evidence that 

suggests that dekadal data is more highly correlated with rain gauge data than daily data, as 

described above. Choice of rainfall estimate data sources remains difficult. At present, it makes 

sense to collect data from sources that fundamentally differ. Coz and van de Giesen (2020) give 

an excellent description of many products as well as summarize the literature on how variables 

created from different sources perform, both of which can help guide selection of data sources. 

And, in the future, it is likely that more studies like Michler et al. (2021) will provide evidence that 

will also help guide data source selection, at least by region and/or by major commodity group. For 

the choice of variables to create, these choices should be based on economic theory and on 

agronomic evidence. 
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