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1. Introduction

Economic growth, inequality reduction and environmental preservation are three of the main
pillars of the Sustainable Development Goals (SDGs), an ambitious and transformative agenda
launched in 2016 by the United Nations to address the major challenges of our societies. The SDGs
set several targets on different environmental issues (climate change, clean water, biodiversity and
sustainable consumption) and put a strong emphasis on goals such as eradication of poverty, hunger
reduction and economic and political inclusion. Despite the wide political consensus on the
importance of reconciling environmental preservation and economic growth and, at the same time,
mitigating inequality, there is no clear understanding of possible trade-offs or win—win approaches to
achieving these goals, particularly with respect to economic inequality and environmental
preservation.

This paper contributes to improving our understanding of these issues by looking at the
relationship between GHG emission reductions (and thus climate change) and income inequality at
the macro level. The main hypothesis that motivates our research is that environmental quality is (or
may be perceived) as a “luxury good” in our increasingly unequal and polarized societies.
Empirically, this leads to a straightforward modification of the empirical specification commonly
used to study the relationship between growth, inequality and the environment, where the inclusion
of the interaction between income per capita and inequality is essential. Using a very long (1960-
2013) and comprehensive panel of countries (approximately 158 in the estimation sample) for three
main pollutants (CO2, SOz, N2O), the aforementioned modified empirical specification allows us to
highlight a new and neglected facet of this relationship: namely, that reducing inequality may be
extremely beneficial for curbing emissions and may thus mitigate climate change, but only for rich
countries. This finding corroborates the widespread political concern that the increasing polarization
of societies represents a key obstacle to achieving political support for ambitious climate policies in
developed countries.

The starting point of our research is the inverted-U shape relationship between economic growth
and emissions, which has been intensively scrutinized by the voluminous empirical literature on the
environmental Kuznets curve (EKC) (Grossman and Krueger, 1991, 1995; Carson, 2009). At the
onset of a country’s economic growth trajectory, the shift from an agriculture-based to an industry-
based economy increases environmental damage. After a certain income threshold is reached,

however, economic growth becomes cleaner as the emergence of demand for environmental quality
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causes emissions to decrease or at least stabilize (e.g., Shafik and Bandyopadhyay, 1992; Panayotou,
1997; List and Gallet, 1999). However, recent empirical tests have found scant support for such a U-
shaped relationship, especially in regard to CO; emissions (Stern, 2017, 2004; Kaika and Zervas,
2013).

Subsequent works have extended this research strand to further account for the role of income
inequality. Theoretically, two contrasting mechanisms make the predicted effect of inequality unclear
(for a survey, see Berthe and Elie, 2015). According to a political economy argument, lowering
inequality may have a beneficial impact on the environment because for a given level of income per
capita, a more equal society implies a richer median voter and thus—if environmental quality is a
normal good—more support for stringent environmental policies (Torras and Boyce, 1998; Magnani
2000). On the other hand, because individuals shift to consumption of cleaner goods, the emissions
embodied in a unit of consumption decrease with income. Thus, the mere aggregation of individual
preferences implies that higher income inequality should have a positive impact on the environment
(this is known as the aggregation argument; see Scruggs, 1998; Heerink et al., 2001). As the two
effects tend to offset each other, it is not surprising that the empirical literature has not reached a firm
conclusion on the relationship between inequality and emissions (Torras and Boyce, 1998; Ravallion
et al., 2000; Heerink et al., 2001; Hubler, 2017; Grunewald et al., 2017).

In this paper, we show that the main reason for these inconclusive results rests upon a failure of
previous empirical analyses to account for the possibility that environmental quality has low priority
in the hierarchy of needs. Our modified specification adds the interaction between inequality and
income per capita to a standard specification in which an indicator of environmental pressure is
regressed against an index of inequality, a third-order polynomial in income and country and year
fixed effects. Note that the EKC hypothesis requires that green preferences emerge above a certain
income threshold and thus relaxes the homotheticity assumption used in the standard Solow—Ramsey
growth model. Practically, this implies that aggregated statistical proxies of a country’s preferences
for emission reduction (expressed through either voting or consumption) depend on the first and
higher moments of the income distribution as well as their interactions.

The theoretical mechanism behind this modified empirical specification is described in detail in
the endogenous growth model of Vona and Patriarca (2011). To understand it, assume for simplicity
that environmental quality is a good whose demand appears only after basic needs are satistied—that
is, above a certain income threshold. The aggregation of individual preferences implies that the share
of individuals with positive demand for environmental quality differs depending on the level of
average income per capita. In rich economies, where average income per capita is high and thus a

large share of the population is potentially above the threshold, the more unequal the distribution of
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income, the higher is the share of individuals with income under the threshold. Redistribution would
have, in this case, a positive impact on the demand for environmental protection, especially through
the probability of voting for environmentally friendly legislation (reflecting the prediction of the
political economy argument). In poorer countries, where average income per capita is low and thus a
small share of the population is potentially above the threshold, higher income dispersion enables a
few rich individuals to pass the threshold and thus increases the demand for environmental protection.
Overall, the effect of inequality on the demand for environmental quality depends on the interaction
between income per capita (the potential demand for a better environment) and inequality (the share
of the potential demand that translates into effective demand).

By including this interaction, our empirical specification allows us to reveal a new and clear
pattern in the relation between growth, inequality and emissions for both local (SO2) and global (N2O
and CO») pollutants. More specifically, we find that the marginal effect of an increase in inequality
on emissions levels is negative (i.e., it reduces emissions) in low-income countries but reverses and
becomes positive for high-income countries (i.e., it increases emissions). When we exploit the full
sample, the results are statically significant only in the case of SO> and N>O emissions. However, in
line with our theoretical explanation discussed above, when we restrict the analysis to a subsample
of rich OECD countries only, an increase in inequality is associated with a significant increase in per
capita emissions. Our finding indicates that the political economy argument prevails over the
aggregation argument because greener goods are lower in the hierarchy of needs. This conclusion is
reinforced by an additional empirical exercise where we show that lower inequality is associated with
growing demand for environmental policies in OECD countries.

Our paper contributes to the literature on the inequality—environment nexus in four ways. First
and foremost, our modified empirical specification allows us to reveal a new pattern in the
relationship between inequality, growth and the environment. Indeed, the inconclusiveness of the
evidence in previous works is due to their use of an empirical model that does not account for the fact
that the effect of inequality on emissions depends on the level of income per capita (see the next
section). Importantly, the model with the interaction term not only is theoretically sound but also is
selected by standard statistical tests of specification (see Section 3 and Appendix B).

Second, our contribution uncovers the need to go beyond the representative agent framework
used in integrated assessment models (Nordhaus, 2014; Golosov et al., 2014; Gillingham et al., 2018),
political economy models (Fredriksson, 1997; Aidt, 1998) and endogenous growth models (Romer
1990; Peretto, 1998). Our empirical results suggest that to understand aggregated preferences for

green policies, both the first and the second moment of the income distribution matter. A promising



avenue to explore is full-fledged climate models with nonhomothetic preferences a la Bertola et al.
(2006).

Third, our result implies that reducing inequality is of paramount importance for rich countries
to meet the target of the SDGs or to strengthen the nationally determined contributions as defined by
the Paris Agreement. This issue is even more relevant if we consider that the Gini index, our favoured
measure of inequality, has been increasing significantly over the last 30 years,! making inequality
one of the major constraints on decarbonisation.

Finally, we indirectly contribute to the environmental justice literature using micro data (Mohai
et al., 2009; Banzhaf and Spencer, 2012; Boyce et al., 2016). One of the main findings of this literature
and of the literature at the intersection of environmental and development economics (Greenstone
and Jack, 2015) is that the willingness to pay for improvement in environmental quality increases
with income. Using a similar assumption about individual preferences, we highlight an important
political economy channel through which environmental injustice might emerge. Segregation
amplifies the preference divide between the rich and the poor on local public goods such as pollution
because it reduces the income of the median voter and thus her willingness to pay for a clean
environment (see also Drupp et al., 2018). We show that this mechanism is also at work at the macro
level, reaching a similar conclusion to that of Banzhaf et al. (2019), i.e., that reducing inequality is
essential to increasing the willingness to pay for a clean environment.

The remainder of the paper is organized as follows. Section 2 discusses the theoretical arguments
upon which our empirical framework is built and reviews the related literature. Section 3 discusses
the empirical strategy and presents the data together with stylized facts of the growth—inequality—
environment relation. Section 4 presents the baseline results and then focus on rich countries, and
Section 5 presents additional empirical exercises to evaluate the robustness of our results. Finally,

Section 6 concludes.

2. Conceptual framework and related literature

The academic literature identifies two contrasting channels through which income inequality
affects the environment: via aggregation of preferences and via the forces of political economy.
The aggregation argument posits that the impact of a reduction in inequality on the environment

depends on the shape of the household income—emissions relationship. If households’ contribution to

"'In our OECD sample, the average Gini index increased from a value of approximately 0.26 in 1980 to a value of
approximately 0.32 in 2015, reversing the previous trend of decreasing inequality registered in the 1960s and 1970s. In
the UK and US, the increase was even more evident (21.35% and 15.29%, respectively), while in other countries such as
Spain, the increase was 2 or 3 times lower (+7.18% in 2014 with respect to 1980). In northern EU countries, the variation
was smaller: the Netherlands, for example, showed an increase of approximately 4%. In the full sample, the average
increase between 1980 and 2014 was 8.4%.
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a country’s emissions is concave in household income, redistribution is expected to increase the level
of pollution because income is shifted from households with a low marginal propensity to emit to
households with a high marginal propensity to emit. In contrast, if households’ emission impacts are
convex in household income, then redistribution should have a positive effect on the environment
(Heerink and Folmer, 1994; Scruggs, 1998; Heerink et al. 2001).

The political economy argument postulates that voting is the main channel through which
environmental preferences are expressed and aggregated. Environmental quality is seen as a public
good whose demand depends on the preference of the median voter. Consequently, for a given level
of per capita income, a poorer median voter—and thus higher inequality—implies less weight on
environmental quality relative to that on the private good. This translates into lower approval for
ambitious environmental policies than in a country with a similar level of income per capita but lower
inequality (Torras and Boyce, 1998; Magnani, 2000; Pfaff et al., 2004).

Although they start from opposite hypotheses, both arguments justify the inclusion of income
inequality in the standard EKC framework used to estimate the relationship between economic growth
and the environment.

Due to data limitations, early studies either explore the cross-sectional relationship between
inequality and various measures of environmental quality without including country fixed effects
(Scruggs, 1998; Heerink and Folmer, 1994; Torras and Boyce, 1998; Heerink et al. 2001) or exploit
short panels with only a limited number of rich countries (Magnani, 2000). As anticipated in Section
1, their results are generally mixed, reflecting the authors’ discretion in the choice of empirical
specification and focus on different time spans, pollutants and proxies of environmental degradation.?
For instance, the empirical analyses of Torras and Boyce (1998) and Magnani (2000) lend support to
the political economy argument, indicating that a more equitable distribution of income results in
better environmental quality or in the approval of more ambitious environmental policies.® In
contrast, Scruggs (1998) and Heerink et al. (2001) find only weak evidence in support of the
aggregation channel in cross-country regressions, while the microeconomic literature finds more

convincing evidence of a concave-shaped relationship between income and environmental impacts.*

2 Torras and Boyce (1994) and Scruggs (1998) use a set of local air and water pollutants; Heerink (2001) combines
different indices of environmental degradation ranging from air pollution to deforestation and water quality and Magnani
(2000) uses data on public R&D expenditure for environmental protection.

3 This result is also confirmed by the more recent single-country case studies of Baek and Gweisah (2013) — for the US —
and Kasuga and Takaya (2017) — for Japan.

4 Bvidence of concave preferences for the environment are found by Liu et al. (2013) and Biichs and Schnepf (2013) for
energy consumption in China and the United Kingdom, respectively. In contrast, Cox et al. (2012) finds that rich
households, on average, own bigger and newer cars, but are not interested in owning less polluting vehicles. More
recently, Levinson and O’Brien (2019) study environmental Engel curves at the household level by exploiting a rich
dataset on US consumer expenditure and on national pollution and find that the elasticity of pollution to income is smaller
than one so pollution is a necessity.
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An additional criticism of the early literature is that it fails to consider income as a mediating
factor in the relationship between inequality and the environment and consequently cannot reconcile
the contrasting effects of the aggregation and political economy channels. Using a theoretical
framework where demand is a driver of economic growth (Murphy et al., 1989; Bertola et al., 2006),
Vona and Patriarca (2011) build a model that contributes to rationalizing these inconclusive results.
Key to their model is the introduction of a hierarchy between a “luxury” green good and a “necessity”
nongreen good. Because consumption of the green good begins only after a certain income threshold
is reached, the effect of inequality on the adoption of the green product is highly nonlinear. Indeed,
for rich countries, where the median consumer (or voter) is rich enough to afford the green good (or
vote for stringent climate policies), reducing inequality is beneficial for the environment, while in
poor countries, an increase in inequality allows a few rich consumers to buy the green good.® The key
mechanism is that aggregation of preferences depends on the share of consumers (or voters) who are
above the thresholds. This share decreases (increases) with inequality if average income is high (low).
To see this, imagine a society with an average income below the threshold. In such a society,
increasing inequality allows some consumers to afford consumption of the green good. In turn, if
average income is above the threshold, everybody can afford the green good in a perfectly equal
society, but increased inequality excludes some groups from consuming it. Overall, the model of
Vona and Patriarca (2011) provides theoretical support for our empirical specification, where we
augment the standard EKC model with inequality and its interaction with income per capita.

A few contributions, closely related to ours, account for the possible nonlinear effect of inequality
on emissions by interacting the Gini coefficient with GDP per capita. Ravallion et al. (2000) are the
first to account for the interplay between inequality and income and find that the income elasticity of
carbon emissions is an increasing function of the Gini index while higher inequality exerts a negative
and significant direct impact on emission levels. However, their empirical framework is limited by
the low quality of the Gini data, which, at the time of their study, were not strictly comparable across
countries and had several missing values, forcing the authors to use a time-invariant measure of
inequality. Grunewald et al. (2017) use the time-varying Gini coefficient in the interaction and a
group fixed effects estimator (Bonhomme and Manresa, 2015). Similarly, they find that at a low level
of GDP per capita, there is a negative relationship between income inequality and per capita carbon
emissions, while in high-income countries, reductions in income inequality cause emissions to
decrease. Finally, Hubler (2017) indirectly accounts for the heterogeneous effect of inequality across

emission levels by using conditional quantile regressions. He finds that higher inequality reduces per

5 Notably, this result holds under fairly general conditions even if there are learning-by-using spillovers from the rich to
the poor in the consumption of green goods.
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capita CO, emissions and that the effect is larger in the highest percentiles of the CO; distribution.
We argue that a quantile-regression framework is not the best available tool to address our research
question. Indeed, conditional quantile regression techniques estimate the effect of inequality (and
GDP per capita) along the residualized distribution of emissions, while our theoretical framework
predicts that the effect varies depending on GDP per capita. Moreover, there is no clear way to control
for time-invariant unobserved heterogeneity in conditional quantile regressions (Koenker and
Hallock, 2001).

Our study extends the literature in three ways. First and foremost, we find a clear and robust
pattern in the effect of inequality on the environment, while the results presented in recent works are
highly sensitive to the inclusion of country fixed effects to control for time-invariant unobserved
heterogeneity.® This is a crucial point for the credibility of our empirical framework: the inclusion of
fixed effects allows us to control for time-invariant institutional, geographical and cultural factors
that have a large influence on the country’s propensity to reduce emissions. Unlike previous authors,
we use the theoretical model of Vona and Patriarca (2011) to provide theoretical foundations for the
inclusion of inequality and its interaction with income per capita within a standard EKC framework.

Second, we provide substantial evidence of the importance of the political economy channel by
focusing on rich countries only and on the determinants of environmental policy stringency. We show
that as theoretically expected, the political economy channel drives the negative conditional
correlation between inequality and emissions for rich countries.

Finally, we enrich the recent literature on inequality and emissions—which generally focuses on
per capita CO, emissions only—by considering more pollutants, a longer time span and a larger
sample of countries. In particular, the inclusion of a wider set of pollutants, both local and global,
allows us to have a broader view of the inequality-environment nexus and helps us to reconcile our
results with the literature. As we know from the EKC debate (Lopez, 1994; Stern, 2017, 2004), local
pollutants (e.g., SO») exhibit the expected inverted-U shaped relationship with income, but the same
cannot be said for global pollutants, such as carbon dioxide (CO3), due to possible free-riding
behaviour in contributions to emission reductions (Carson, 2009). The same argument applies in our
case: when we consider the political economy mechanism, we expect the effect of inequality to be
stronger for local pollutants. Indeed, reductions in local pollutants have more direct benefits on the
population in terms of improved health, while reductions in global pollutants have only cobenefits.

Moreover, regional and national authorities are more likely to enact policies to correct local

¢ The results in Grunewald et al. (2017) and Hubler (2017), for instance, are statistically significant only when authors
employ their preferred estimator (respectively, a group fixed effect model and a quintile regression) but become
insignificant once they include country fixed effects.
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environmental externalities—the success of which depends only on their effort—than global ones—
whose success often depends on a large host of factors beyond the control of local governments (e.g.,
international agreements, intercountry negotiations and the overall commitment of other

governments).

3. Empirical framework

This section presents our empirical strategy and the data. More specifically, Section 3.1
introduces the data and some preliminary statistics, Section 3.2 discusses our estimating equation,

and Section 3.3 discusses key extensions.
3.1 Data

The data sources used in this paper are quite standard. We consider three different types of air
pollutants as dependent variables: two global pollutants, i.e., carbon dioxide emissions (CO2) and
nitrous oxide emissions (N20), and a local pollutant, i.e., sulfur dioxide emissions (SO-). These three
pollutants cover 82% of world greenhouse gas emissions (IPCC, 2014).”

Gross domestic product and population data are retrieved from the Penn World Tables (Feenstra,
Inklaar, and Timmer 2015). For inequality data, the gap between median and average income would
be the ideal statistic to account for the aggregation effects described in, e.g., Magnani (2000) and
Vona and Patriarca (2011). However, because data on median incomes are available for OECD
countries only, we rely on a second-best measure of inequality, i.e., the Gini coefficient. We use the
net Gini coefficient (after taxes and transfers) because the level of inequality can differ substantially
after redistributive taxation.

Data on inequality are from the Standardized World Income Inequality Database (SWIID; Solt,
2016), which has the advantage over other well-established sources such as the “All the Ginis”
database from the World Bank of offering the highest geographic and temporal coverage and is
generally considered to be highly reliable (Atkinson and Brandolini 2001, 2009). To corroborate our
results, in the empirical analysis, we test the robustness of this choice by using World Bank data (see
Table C.2 in Appendix C).

Table 1 presents all summary statistics of our main variables. As shown, the number of
observations and the year availability differ according to the variable considered. For example, while
CO2 and N>O emissions are available for years until 2012, SO> was collected only until 2005.
Similarly, data for N>O are not available for years before 1970, while the CO; and SO; series start in

1960. Their country coverage also differs: the CO; and N>O emissions samples cover 170 countries,

7 The other main GHGs are methane (16%) and fluorinated gases (2%).



while the SO, sample covers only 119. Among the independent variables, the lowest country coverage
is generally found for the Gini indicators, with SWIID containing 153 countries and “All the Ginis”
133. This restricts the observations available for our estimation: the CO, model is based on a sample
of 4218 observations (158 countries), the SO2 model on 3021 (119 countries) and the N>O model on
3964 (159 countries).® The last two columns of the table allow us to observe the long-term growth of
the variables of interest. We note, for example, the well-known increase in inequality, especially from
the 1980s, as well as an increase in both GDP per capita and CO; emissions. Conversely, both SO,

and N>O decreased during the period of observation.

8 The available data present several missing values, which proportion depend on the variable and country considered. We
imputed the moving average of the two adjacent years to fill internal missing observation, but we never extended a time
series before (resp. after) the first (resp. last) available year. See the Appendix A for details.
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Table 1 — Descriptive statistics of the variables used in the baseline model

1980— 1990-
D iption & unit of Y Countri Std 2014 2014
Variable escription & umto Source Obs. year ountries  Mean : Min Max Vvariation variation
measure availability availability dev (2005 for (2005 for
S0,;2012  S0O,;2012
for N,0) for N,0)
CO; emissions in tons Oak Ridge National
CO, per capita Laboratory (USA) 6,679 54 141 3.74 4.84 0.00 41.04 0.51 0.66
SO, SOz emissions in NASA (USA) 3,040 45 115 003 004 000 035 -0.03 -0.02
thousand tons per capita
N>O emissions in tons
N2O per capita World Bank 5,641 42 142 0.80 1.56 0.00 41.10 -0.34 -0.18
Gini coefficient (net) Standardized World
Ineq Income Inequality 4,681 54 144 0.37 0.09 0.14  0.67 -0.03 -0.01
Database (SWIID)
Gross domestic product
GDPpc per capita in purchasing - Penn World Tables ;5 54 144 9,900 11,400 400 95200 966.05  796.58
power parity (ppp) (9.0)
Aln(Pop) ~ Yearly variationoflog  Penn World Tables ¢ 9 54 144 002 001 020 013  -0.01 -0.02

population (9.0)

Note: Country data availability differs by year. We refer to the maximum number of countries available. The countries included in the analysis are Angola, Albania, Algeria, Argentina, Armenia®,
Australia, Austria, Azerbaijan®, Burundi, Belgium, Burkina Faso, Bangladesh, Bulgaria, Bahrain, Bosnia and Herzegovina®, Belarus®, Belize, Bolivia, Brazil, Barbados, Bhutan, Botswana, Central
African Republic, Cambodia, Canada, Switzerland, Chile, China, Céte d'Ivoire, Cameroon, Colombia, Cape Verde, Costa Rica, Croatia, Cyprus, Czech Republic®, Germany, Djibouti, Denmark,
Dominican Republic, Ecuador, Egypt, El Salvador, Estonia®, Ethiopia, Finland, Fiji, France, Gabon, Georgia®, Germany*, Ghana, Guinea, Gambia, Guinea-Bissau, Greece, Guatemala, Guyana, Hong
Kong, Honduras, Haiti, Hungary, Indonesia, India, Ireland, Iran, Iceland, Israel, Italy, Jamaica, Jordan, Japan, Kazakhstan®, Kenya, Kyrgyzstan®, South Korea, Lao, Lebanon, Saint Lucia, Sri Lanka,
Lesotho, Lithuania, Luxembourg, Latvia®, Morocco, Moldova®, Madagascar, Maldives, Mexico, Macedonia®, Mali, Malta, Montenegro, Mongolia, Mozambique, Mauritania, Mauritius, Malawi,
Malaysia, Namibia, Niger, Nigeria, Nicaragua, Netherlands, Norway, Nepal, New Zealand, Pakistan, Panama, Peru, Philippines, Poland, Portugal, Paraguay, Puerto Rico, Papua New Guinea, Romania,
Russia®, Rwanda, Serbia, Senegal, Singapore, Sierra Leone, Slovakia®, Slovenia, Spain, South Africa, Sweden, Swaziland, Seychelles, Syrian Arab Republic, Thailand, Tajikistan®, Turkmenistan®,
Trinidad and Tobago, Tunisia, Turkey, Tanzania, Taiwan, Uganda, Ukraine, Uruguay, United Kingdom, United States, Uzbekistan®, Venezuela, Vietnam, Yemen*, Zambia, and Zimbabwe. *These
are countries in which emissions have been added together. °These are countries in which CO2 emissions have been split.

The last two columns of the table report the absolute variation in all variables between 1980 and 2014 and 1990 and 2014. Both show that the variation in our sample is higher for the interval starting
in 1990 than for the interval starting in 1980. We note that the SO2 data are available only for years until 2005; thus, for this pollutant, the absolute variations are computed for different time ranges:
1980 to 2005 and 1990 to 2005. Similarly, the N2O data are available only for years until 2012; thus, the variations are computed for the time spans 1980 to 2012 and 1990 to 2012.
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3.2 Econometric Specification

The main idea of this paper is to modify the standard empirical model used to estimate the
relationship between inequality, growth and emissions to account for the fact that environmental
quality is lower in the hierarchy of needs. Our favoured specification is the following augmented

environmental Kuznets curve:

In(e;) = B1GDPpcye + B,(GDPpcy)* + B3(GDPpcy)® + Bylneq;, (1)
+ Bs(GDPpc; X Ineq;) + B¢ Aln(Pop;) + p; + pe + €i¢

where €;;1s the error term; y; are country fixed effects that absorb time-invariant unobservable country
characteristics, such as geography, culture and institutions; and p, are time dummies capturing
common shocks to all countries in a given year, such as global recessions or oil price shocks.!'> The
growth rate of the population Alog(Pop;;) is included to capture the demographic transition, namely,
compositional changes in the population age induced by economic development, which has been
shown to have a significant effect on GHG emissions (Galeotti et al., 2011; Casey and Galor, 2017).
Other controls, such as trade and institutional quality, capture mechanisms explaining the relationship
between inequality and emissions and thus are included in a further extension (see the next section).

The dependent variable is the log of per capita emissions (e;;) of one of the three GHGs
considered (CO2, SO or N20O) in country i at period ¢. In line with the literature on the EKC (e.g.,
Stern, 2004), we take the logarithm of the emissions variables for two reasons: first, it is a simple
monotonic transformation that allows us to smooth the series, and second, we can interpret the
coefficients as semielasticities. The main variables of interest are /neq;, measured with the Gini
coefficient—our preferred measure of inequality—and the interaction of inequality with GDP per
capita, GDPpc;; X Ineq;;, which captures the nonhomotheticity of green preferences.

The influence of per capita GDP (GDPpc;;) is captured by a standard third-order polynomial as
in most research papers (on this point, see the literature reviews by Dinda, 2004, and Kaika and
Zervas, 2013). However, there are other functional forms that capture nonlinearity in the income—
emission relationship, and the EKC literature has not reached a consensus on which is the best choice.
List and Gallet (1999) and Lau et al. (2014), for instance, use a log—log quadratic specification, while
Panayotou (1997) uses a cubic specification in levels. Our preference for a log-linear cubic

specification rests on the fact that the cubic specification allows us to capture nonlinearity beyond the

15 We estimate Model (1) by clustering standard errors at the country level, thus allowing for a general form of
autocorrelation in the residuals.
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inflection point of the EKC without imposing additional concavity through the log-transformation of
GDP per capita. Indeed, a so-called N-shaped Kuznets curve can emerge because for high levels of
GDP per capita, an increase in the scale of the economy may offset the effect of green technological
change and of the transition to a service-based society—the two main factors behind the downwards-
sloping part of the EKC (e.g., Shafik 1994).!°

Importantly, our choice to model GDP as a third-degree polynomial function is also supported
by standard measures of goodness of fit, which are discussed extensively in Appendix B. In Table 2,
we compare three log-linear cubic models (Equations 1, 2 and 3, which are, respectively: our preferred
specification, a traditional Kuznets model, and an EKC augmented with inequality), with a log-log
quadratic specification (Equation 4) and a log-log cubic specification (Equation 5).!” As shown there,
all measures of goodness of fit are superior for the log-linear cubic model augmented with inequality
and its interaction with GDP per capita (Equation 1), for SO> and N>O (see Columns 2 and 3,
respectively). In particular, the adjusted R squared is always higher for Equation 2, and the AIC and
BIC are always lower. The same does not hold for CO; (see Column 1), where the quadratic model
shows a better fit. We also decide to use the specification of Equation 1 for CO; for the sake of
coherence. As will be clear in the results’ section, CO; merits further analyses in section 4.2 to
improve the interpretation of the results.

With a similar intent, we also provide some empirical evidence to justify the theoretically driven
choice of the preferred model of Equation (1), which includes both inequality and its interaction with
income. First, we present in Figure 1 the scatterplot of the log of per capita emissions for each
available country—year combination (on the Y axis) by per capita GDP level (on the X axis) in three
different terciles of the inequality distribution (low, medium and high levels of inequality). Although
there is some heterogeneity across pollutants, a visual inspection of Figure 1 highlights that the
downwards-sloping branch of the EKC pattern between income per capita and emissions is more
evident in countries with low inequality.

Second, in Table 3, we perform a specification test to compare our favoured model, which
includes inequality and its interaction with income (Equation 1), with a cubic EKC model (Equation
2), and a cubic EKC augmented with inequality only (Equation 3). The comparison of the three
models allows us to understand i.) whether it is worth adding inequality in general and ii.) whether it
is worth adding inequality interacted with GDP per capita. Because the three models are nested, we

use a log-likelihood ratio specification (LR) test as in Ravaillon et al. (2000). The LR test compares

16 With a few exceptions (e.g., Fosten et al., 2012), a log-log cubic specification is generally not considered in the
literature, as the nonlinearity of per capita GDP is already taken into account through the inclusion of the cubic term, with
no need for additional log transformations.
17 The detailed results for these two models are reported in Tables 1 to 4 of Appendix B.
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the fit of two nested models by juxtaposing their log-likelihoods: failure to reject the null hypothesis
implies that the model with fewer variables (the nested model) is preferred. The clear advantage of
the LR test over measures of goodness of fit is that it provides the best model with a precise level of
statistical confidence.

Overall, when comparing Equations 1, 2 and 3, the LR tests presented in Table 3 always reject
the null hypothesis that the nested model is preferred to the most comprehensive one, statistically
supporting our choice to adopt Equation 1 as the benchmark specification in the main analysis. In
other words, for all three pollutants, a specification that also includes inequality fits the data better
than a standard EKC model (as shown by comparing Eq. 2 to Eq. 1), but the best fit is obtained when

we also include the interaction between inequality and income per capita (as shown by the comparison

of Eq. 3 to Eq. 1).8

Table 2 — Statistics for model selection

, (0] 2 €))
Equation CO; SO, N:0
Log-Linear Models
(D Log(e;) = B,GDPpc;, + Bo(GDPpc;)? + Bs(GDPpc;;)®  Adj. R% 042  Adj.R% 042  Adj.R%:0.21
+ Bilneq; + Ps(GDPpc;, X Ineq;,) AIC: 590.61 AIC: 3286.83  AIC: -1066.55
+ Bo APopic + i + pe + &ic BIC: 97082  BIC: 359334  BIC: -765.43
Obs: 4171 Obs: 3015 Obs: 3917
@) Log(e;) = B.GDPpc;, + Bo(GDPpc;)? + Bs(GDPpc;)®  Adj.R: 042  Adj.R%029  Adj.R%:0.18
+ By APop; + p; + pe + &3¢ AIC: 621.94  AIC:3915.58  AIC: -943.22
BIC: 989.36  BIC:4210.14  BIC: -654.67
Obs: 4171 Obs: 3015 Obs: 3917
() Log(e;) = B.GDPpc;, + Bo(GDPpc;)? + Bs(GDPpc;)®  Adj.R: 041  Adj.R%029  Adj.R%:0.17
+ Balneq; + Bs APopy + u; + pe AIC: 620.23 AIC: 3917.58  AIC: -941.22
t i BIC: 994.15 BIC: 4218.15  BIC: -646.44
Obs: 4171 Obs: 3015 Obs: 3917
Log-Log Models
) Log(ey) = B1Log(GDPpc;,) + PLog(GDPpc;,)? Adj.R% 049  Adj.R%025  Adj.R%0.19
+ B3 APop; + 1y + ue + & AIC: -4.46 AIC: 4065.327 AIC: -980.88
BIC: 356.76  BIC: 4353.87  BIC: -698.53
Obs: 4171 Obs: 3015 Obs: 3917
() Log(e;) = BLog(GDPpcy,) + B,Log(GDPpc;,)? Adj.R%0.51  Adj.R%032  Adj.R%0.18
+ BsLog(GDPpc;t)® + By APop; + 1y AIC: -198.26  AIC: 373937  AIC: -1003.54
T e T i BIC: 169.33  BIC:4033.92  BIC: -714. 96
Obs: 4171 Obs: 3015 Obs: 3917

Note: The column “Equation” reports the equations of the five specifications that we tested in our model selection process. The columns
“C0O2”, “S0O2” and “N20” report the statistics of each specification run with the three pollutants as dependent variables. Statistics
include the adjusted R2 (4dj. R2), Akaike information criterion (4/C), Bayesian information criterion (BIC), and number of

13 In the case of SO, and NO, this result is also confirmed by the adjusted R-squared, AIC and BIC results (Table 2).
However, again, the same does not hold for CO,, where Equation 1—despite being preferred over the other log-linear
models—shows a lower fit than Equations 4 and 5.
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observations in each regression (Obs.).

Figure 1 — Relation between polluting emissions and GDP per capita by inequality level
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Note: The nine scatter plots are organized as follows: each row corresponds to a pollutant (CO2, SO2 and N20); each column corresponds
to an inequality group. Specifically, the first one includes high-inequality countries, defined as all countries between the 66 and the
99 percentiles of the Gini coefficient distribution; the second one presents medium-inequality countries, including those between the
33" and the 66" percentiles of the Gini distribution; and finally, the third column displays low-inequality counties, i.e., those falling
between the 1% and the 33™ percentiles on the Gini. Per capita GDP is always in thousands of dollars of PPP.

Table 3 — Likelihood ratio test for model selection (p values in brackets)

1 2 3
LR test Log (of)C02 Log(of)802 Log (of)NZO
Eq. 3 (EKC augmented with Ineq) vs. 31.57 632.82 127.31
Eq. 1 (EKC augmented with Ineq and Ineq x GDP) (0.000) (0.000) (0.000)
Eq. 2 (Standard EKC) vs. 35.26 632.82 127.37
Eq. 1 (EKC augmented with Ineq and Ineq x GDP) (0.000) (0.000) (0.000)

Note: p-values in brackets. The LR test compares the fit of two nested models by comparing their log-likelihoods under the null
hypothesis that the restricted model fits the data as well as the unrestricted one.

3.3 Extensions

Next, we conduct a series of complementary analyses to understand the mechanisms through
which inequality affects emissions. To address this point, we restrict the analysis to a smaller sample
of rich and democratic OECD countries for which we can also observe reliable measures of
environmental policy stringency. According to our conceptual framework, these countries are those
in which reducing inequality should be beneficial for the environment, especially through the
approval of stringent environmental policies, i.e., the political economy channel is expected to be

prevalent.
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First, we estimate a slightly modified version of Equation (1) by removing the interaction
between inequality and income per capita for OECD countries only. The choice of a different
specification is motivated by the fact that in the sample of OECD countries, income per capita levels
are much more homogenous than in the larger sample and thus the inequality term already captures
the effect on rich countries. As is evident in the results section, this choice is also supported by the
results for the whole sample of countries: we observe that the slope of the inequality—emission
relationship changes in rich countries. Second, to directly explore the political economy mechanism,
we fit the same model without the interaction term, using as dependent variables seven different
indices of environmental policy stringency (EPS) developed at the OECD (Botta and Kozluk, 2014).
We differentiate across different policy instruments (standards, taxes, subsidies, emission trading,
etc.) because both political acceptability and the effect on emissions are likely to vary across
instruments (Goulder and Parry, 2008). In this specification, including country fixed effects would
leave us with too little data variation to obtain consistent estimates, as the EPS indices move slowly.
We replace country fixed effects with the presample levels of three GHG emissions per capita, which

proxy the component of green preferences unrelated to the levels of GDP per capita and inequality.

3.4 Robustness

In this section, we present several robustness tests based on the benchmark specification of
Equation 1. In particular, we consider additional covariates that may capture time-varying
characteristics correlated with both inequality and emissions (e.g., political institutions), alternative
measures of inequality, and the possible effect of our choice to impute missing data.

As our first robustness exercise, we account for the concern raised by Grunewald et al. (2017)
that unobserved heterogeneity is mainly time varying by running a model in which we control for
country-specific time trends instead of including country fixed effects.

Second, we acknowledge that other important intervening factors, such as (time-varying) proxies
of institutional quality and openness to trade, may capture part of the effect of inequality. Thus, we
present a set of estimates that include other variables that may act as confounders in the relationship
between inequality and emissions, such as incoming foreign direct investment (FDI), trade openness
(Hubler, 2017) and democracy (Kashwan, 2017). FDI captures the effect of foreign-induced capital
accumulation, one of the factors behind the EKC. Moreover, FDI may create technological spillovers
that are likely to reduce emissions, as noted in Perkins and Neumayer (2012). International trade has
a less clear effect: on the one hand, it can induce positive technology spillovers and increase

productivity (Melitz, 2003); on the other hand, it can serve as a tool to displace a country’s polluting
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emissions abroad (Cole, 2004). Finally, the effect of a richer median voter predicted by the political
economy argument is more likely to emerge in majoritarian democracies, where the electorate can
influence environmental policy formation. To control for the effect of different political regimes, we
include in the estimates a factor variable that ranges from 1 (most autocratic) to 8 (most democratic).
The democracy data are taken from the Polity IV Project, while the data for FDI and trade openness
are retrieved from the World Development Indicator database of the World Bank. However, all these
additional covariates are potentially endogenous, and for this reason, we include them only in this
robustness exercise.

Finally, we conduct three additional robustness checks. First, we are aware that persistency in
time series can become an issue in a long panel such as ours (see Stern 2010 and Wagner 2008), but
due to the highly unbalanced nature of the dataset, which prevents us from conducting most panel
stationarity tests (especially the so-called second-generation tests, strongly suggested in Wagner
2008), we address this issue by simply taking the five-year average of both the dependent and
independent variables and run our main specification in Equation 1 with the transformed dataset.
Second, we control for the sensitivity of the regression results to the measure of inequality adopted
by substituting the Gini coefficient from the SWIID with the one from the “All the Ginis™ database
(Milanovic, 2013). Third, we check the sensitivity of our results to the process of interpolation
adopted to deal with missing values. We control for this potential bias by augmenting Equation 1 with

a set of dummy variables that correspond to each interpolated observation.

4. Results

4.1 Main estimation results

Table 4 displays the results of the model in Equation 1. Our dependent variables are CO> (Column
1), SOz (Column 2) and N>O (Column 3). Note first that our results confirm that including the third-
order polynomial in GDP per capita yields an N-shaped environmental Kuznets curve for all three
pollutants (Panayotou 1997; Friedl and Getzner, 2003; Churchill et al., 2018). Conversely, population
growth has no statistically significant effect on emissions, consistent with the recent work by
Churchill et al. (2018) but in contrast to the results of Gerlagh et al. (2022) and Galeotti et al. (2011),
which, however, are obtained using a different analytical framework and thus are not strictly
comparable with ours.

Turning to our main results, for all pollutants, the /neq coefficient and its interaction with GDP
per capita show the signs predicted under the theoretical framework laid out in Section 2. First, the
fact that the baseline effect of inequality is negative implies that higher inequality is associated with

lower GHG emissions, at least among the poorest countries. Second, the coefficient of the interaction
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between the Ineq coefficient and GDP per capita is positive, implying that among rich countries, a
more equal distribution of income may be associated with lower GHG emissions. This novel result
in comparison to the findings in previous literature (see Berthe and Elie, 2015) lends support to our
hypothesis that as environmental quality is a good with low priority in the hierarchy of needs, demand
for it appears only above a certain income level after basic needs are satisfied. Indeed, the larger the
share of consumers (or voters) above this income threshold is, the greater the demand for green goods
and stringent climate policies. In rich countries (i.e., those with average income above the threshold),
this share can be increased by reducing inequality, as everybody may potentially be above the
threshold. In poor countries (i.e., those with average income below the threshold), the opposite occurs,
and the share can be increased only by allowing to a few people to pass the threshold.

Next, it is important to determine the switching point where the effect of inequality changes sign
and to detect whether, for some countries in our sample, this switch actually occurs. To this end,
Figures 2, 3 and 4 provide a visual representation of the marginal effects of inequality estimated in
Table 4 for each pollutant. For each of the three panels, the horizontal axis represents percentiles of
the cross-country distribution of GDP per capita, while the bars report the marginal effects along
with the 95% confidence intervals. These figures also reveal the difference in the slope of the
relationship across pollutants.

In the case of CO» (Figure 2), the marginal effect of inequality grows with income per capita but
always remains statistically insignificant. Inequality is only nearly significant at the 90™ percentile of
GDP per capita (p-value=0.15). We further dig into this inconclusive finding for CO» in the next
section. Conversely, the marginal effects are estimated more precisely for the other two GHGs. An
increase in inequality is associated with a reduction in SO, emissions until the 52" percentile of the
GDP per capita distribution and with an increase in emissions afterwards; the effect is significantly
different from zero until the 38" percentile of GDP per capita and after the 61 percentile (Figure 2).
The switching point in the effect of inequality for N>O is the 49™ percentile, but the effect is
statistically significant at the conventional level only after the 71 percentile.

To quantify the results presented in Table 4, we calculate the effect of a drop in the Gini index
from the value observed in the last year of our panel to its level in 1985, when inequalities were, on

average, at the lowest level in our estimation sample.!” For SO», such a hypothetical reduction in

9 We quantify the result according to the following formula: Aln(é)l = B,(Ineq, — Ineq,ogs) + (ﬁs (Ineq, —
Ineq,9g5) X GDPpc, ), where 7 is the last available year for each type of emissions, i.e., 2014 for CO,, 2005 for SO, and

2014 for N>O. The formula allows us to obtain the absolute variation in year n, expressed in log points, had average
inequality remained at the 1985 level. To obtain the values presented in the text, we transform the log points in levels by

taking the exp(Aln(e)) and calculate the percentage change by dividing the absolute variation by the level of emissions
in year n.
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inequality would be associated with an approximately 44% decrease in per capita emissions when
income is at its median level and a 54% or 76% decrease when income is, respectively, at the 75 or
90" percentile. This effect is large, but we note that Gini increased from 0.328 in 1985 to 0.383 in
2005, which is similar to the difference in inequality between Canada and Syria in the last year of the
dataset. The effect on N>O is much smaller: a Gini at the mid-1980s level would imply a reduction of
emissions by only 1.45% and 1.48% for countries with a level of income at the 50™ and 75
percentiles, respectively, while the effect increases to 1.56% when GDP is at the 90™ percentile. In
the case of CO», where the effect of inequality became barely significant only at the 90" percentile
of GDP per capita, a reduction in the Gini to its lowest level is associated with a 2.5% reduction in
emissions.

The main takeaway from these results is that our modified specification allows us to reconcile
the inconclusive results on the relationship between inequality and emissions found in previous
studies (e.g., Grunewald et al. 2017; Hubler, 2017; Ravallion et al. 2000). From a global policy
perspective, this result suggests that only rich countries with a sufficient level of socioeconomic
cohesion will be willing to take the lead in international negotiations on climate change. The contrast
between the steady commitment of EU countries, especially Nordic and central European countries,
and the inconsistent commitment of the US obviously points in this direction. Overall, the rapidly
increasing inequality (along with the associated political polarization) in all developed countries risks
becoming a serious obstacle to ensuring internal political support for ambitious climate policies, both
domestically and internationally.

Our results also highlight notable differences across pollutants that seem consistent with the
political economy explanation of the inequality—emissions relationship. When emissions have
stronger local cobenefits, i.e., on health, as in the case of SO, the preferences of the median voter are
more likely to be translated into ambitious environmental policies. Indeed, health benefits are
detectable and mostly depend on domestic environmental policies. In contrast, for purely global
GHGs such as CO», the success of the policy also depends on other countries’ efforts; thus, local
environmental preferences are less likely to translate into direct policy support, as citizens may
internalize the fact that their choices have little effect globally. The history of environmental
regulation resonates with this interpretation. While regulations for the reduction of SO> emissions
have a long historical record (in the US, for instance, sulfur dioxide quality standards were introduced
at the beginning of the 1970s with the Clean Air Act), policies to curb CO2 emissions took much
longer to take off, and their stringency is very substantially far from that suggested by climate models

(Nordhaus, 2018; Kalkuhl et al., 2020). The next part of the paper provides further empirical analyses
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to provide some evidence for the political economy explanation of the inequality—emissions

relationship.

Table 4 — Inequality-augmented EKC models for three main pollutants: Carbon dioxide

(CQO2), sulfur dioxide (SO2) and nitrogen oxide (N20)

e) () 3)
Log of CO, Log of SO, Log of N,O
GDP per capita 0.897" -0.407 0.171
(0.214) (0.352) (0.163)
GDP per capita (squared) -0.282™" -0.513™ -0.113™
(0.047) (0.101) (0.029)
GDP per capita (cube) 0.021* 0.045™" 0.008™"
(0.003) (0.009) (0.002)
Ineq -0.084 -3.854™ -0.619
(0.530) (0.952) (0.458)
Ineq x GDP per capita 0.465 4,788 0.848"™"
(0.345) (0.561) (0.260)
Population growth -3.423" -2.129 -1.429
(1.912) (5.193) (1.575)
Constant -0.256 -3.261% -0.541**
(0.262) (0.405) (0.199)
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 4171 3015 3917
Number of countries 141 115 142
Adjusted R? 0.414 0.417 0.201

Notes: This table presents the results of a panel fixed effect estimator based on Equation 1. All regressions include country fixed effects
and year-specific dummies. The time span is 1960 to 2013 for COz, 1960 to 2005 for SOz, and 1970 to 2012 for N2O. GDP per capita
is divided by 10000 to enhance coefficient readability; Ineq is measured by the net Gini coefficient. Standard errors clustered by country
in parentheses; * p <0.1, ™ p <0.05, ™ p <0.01.

Figure 2 — Marginal effect on CO:2 emissions of an increase in inequality by deciles of the GDP
per capita distribution, based on the estimates in Table 4
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Notes: The x axis represents percentiles of the cross-country distribution of GDP per capita; the y axis reports the marginal effect of
inequality for each corresponding level of GDP per capita (derived from Table 4); the vertical bars are the confidence interval of the
marginal effect of inequality in correspondence to each income decile.
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Figure 3 — Marginal effect on SO2 emissions of an increase in inequality by deciles of the GDP
per capita distribution, based on the estimates in Table 4
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Notes: The x axis represents percentiles of the cross-country distribution of GDP per capita; the y axis reports the marginal effect of
inequality for each corresponding level of GDP per capita (derived from Table 4); the vertical bars are the confidence interval of the
marginal effect of inequality in correspondence to each income decile.

Figure 4 — Marginal effect on N20 emissions of an increase in inequality by deciles of the GDP
per capita distribution, based on the estimates in Table 4
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Notes: The x axis represents percentiles of the cross-country distribution of GDP per capita; the y axis reports the marginal effect of
inequality for each corresponding level of GDP per capita (derived from Table 4); the vertical bars are the confidence interval of the
marginal effect of inequality in correspondence to each income decile.
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4.2 Focus on rich countries

The empirical evidence presented in Table 4 corroborates our theoretical prediction that the effect
of inequality on emissions depends on the level of income per capita and turns positive and
statistically significant only for countries that are sufficiently rich. However, the results are not clear
cut for CO, and which of the underlying mechanisms prevails, i.e., political economy or aggregation
of preferences, remains unclear.

We examine these issues using a subsample of rich countries, which include the OECD founders
plus Japan, Finland, Australia and New Zealand, which joined the organization just 12 years after its
foundation, and excluding Turkey, which has a level of GDP per capita consistently below the 9™
decile.?’ The focus on rich and democratic countries is justified by three facts. First, our theoretical
framework and the results of the previous section show that the positive effect of reducing inequality
on emissions emerges for rich countries only. Second, in rich countries, we are able to observe
environmental policies over a long time span; thus, we can test whether reducing inequality has a
positive effect on the political support for these policies. Third, political institutions are stable and
similar in OECD countries, thereby reducing possible confounding factors to facilitate a correct
interpretation of our results.?! Recall that for this extension, we use a modified version of Equation
1, which does not include the interaction between GDP per capita and Ineq. Conceptually, as this
group of countries is homogenous in terms of income levels and institutions, there is no reason to let
the effect of /neq vary with income.

The estimated coefficients are reported in Table 5, as usual for the three different pollutants. For
brevity, we focus our comments on the inequality coefficient.?? As predicted by our conceptual
framework, reduced inequality is always associated with a reduction in GHG emissions when we
restrict the sample to rich countries only. Importantly, we also observe a substantial increase in the
precision (and the statistical significance) of the estimated coefficient of inequality for CO, emissions,
which are those with the largest effect on global warming. This result explains why rich countries
with low levels of inequality are those more willing to take the lead in climate change negotiations

(e.g., Denmark) or enact ambitious carbon taxation (e.g., Sweden).

20 The full list of country includes Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy,
Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Great Britain, United States, Japan, Australia,
Finland, and New Zealand.

21 We also focus on a balanced panel of countries rather than on countries at the 9 and the 10" deciles of the GDP per
capita distribution in order to avoid compositional change related to the entry and exit of countries in the top deciles.

22 Regarding the other coefficients, those associated with the polynomial in GDP per capita are comparable with the ones
in Table 3 for CO, and N>O, while they are never statistically significant for sulfur dioxide. Once again, population growth
has no significant effect on emissions.
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Table 5 — Inequality-augmented EKC models for the restricted sample of OECD founders’
countries

(1 2 A3)
Log of CO» Log of SO, Log of N,O
Per capita GDP 1.164™ 0.827 0.448™
(0.210) (1.099) (0.165)
Per capita GDP (squared) -0.212™ -0.275 -0.110™
(0.051) (0.283) (0.0416)
Per capita GDP (cube) 0.012™ 0.019 0.007™
(0.003) (0.022) (0.002)
Ineq 2.034™ 6.044™ 0.880"
(0.858) (1.482) (0.476)
Population growth -5.189 -7.151 -4.145
(4.877) (13.04) (3.640)
Constant 0.327 -4.849™ -0.488™
(0.380) (0.860) (0.223)
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 898 751 817
Number of countries 21 21 21
Adjusted R? 0.456 0.693 0.710

Notes: This table presents the results of a panel fixed effect estimator. All regressions include country fixed effects and year-specific
dummies. The time span is 1960 to 2014 for CO2, 1960 to 2005 for SO2, and 1970 to 2012 for N20. Per capita GDP is divided by
10000 to enhance coefficient readability. Inequality is measured with the Gini coefficient. Standard errors clustered by country in
parentheses; “ p < 0.1, ™ p <0.05, " p <0.01.

To quantify the effect of /neg in the subsample of OECD countries, we observe that on average,
inequality increased from a value of 0.273 in 1985, when it was at its lowest level, to a value of 0.308
in 2014. However, it remained much lower in the Scandinavian countries (namely, Finland, Denmark,
Sweden, and Norway), where the Gini coefficient was 0.201 in 1985 and 0.250 in 2014, than in other
OECD founders. Our alternative scenario for quantification computes the average level of emission
in OECD founder countries if they had experienced the average variation in the Gini coefficient
experienced by Scandinavian countries over the period 1960 up to the year of the last available

observation for each pollutant, that is, Bineq, .., X AiN€qscanginavia->

The result of this simple exercise shows that if the OECD founder countries had experienced the
same variation in inequality over the analysed period as the Scandinavian group,?* their CO
emissions and N>O emissions would have been 4% and 2% lower, respectively. Similarly, if in the
20 years between 1985 and 2005 the growth in inequality in the OECD founder countries had been
comparable to the growth in the Scandinavian area, their SO, emissions would have been 9% lower.

To summarize, when we focus on rich countries only, a rise in inequality is associated with an

increase in emissions for all pollutants, including CO; (and not only SO2 and N;O, as in the case of

3 With ﬁineqoec ,We refer to the coefficient of inequality obtained in the restricted sample of OECD founders’ countries
(Table 5), which is equal to 1.939 for Log CO,, 6.044 for Log SO» and 0.822 for Log N,O.
24 The yearly variation in the Gini coefficient is different across the pollutant samples and depends on the different time
spans. We recall that CO is available for 1960-2013 (53 years), SO, for 1960-2005 (45 years) and N,O for 1970-2012
(42 years).
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the full sample). This supports our claim that the effect of inequality on emissions operates via the

political economy channel. The next section further scrutinizes this claim.

4.3 Focus on environmental policies

The results obtained thus far support the claim that at least in rich countries, the political economy
argument prevails over the aggregation argument. Thus, a decrease in inequality, by increasing the
income of the median voter, fosters demand for environmental policies. To further investigate this
claim, we conduct an additional empirical exercise on the sample of OECD founder countries where
we regress seven indices of environmental policies (data available from 1990 onwards) on the usual

covariates used in the previous estimates and summarized in Equation 6:

Log(EnvPolicy;) = B1GDPpcy + B2(GDPpcy)? + B3 (GDPpci)® + Bylneqy, (6)
+ fs APop;c + Po e + U + €t

where the dependent variable is one of the policy indices developed by the OECD: environmental
policy stringency (EPS), market EPS, nonmarket EPS, environmental standards, environmental taxes,
environmental tax revenue and tradable permits (see Botta and Kozluk, 2014). GDPpc, Ineq and Pop
are—as before—GDP per capita, the Gini index of inequality and population growth. Unlike in the
previous estimates, here we employ an OLS regression including among the covariates the presample
mean of the emissions indicators, built as the average emissions level from 1975 to 1980 (e;). This
strategy is employed because the indices of environmental policies are very persistent over time and,
in cases such as this, a fixed effect estimator is typically inconsistent (Blundell et al. 2002). Using the
presample mean of the dependent variable allows us to account for unobserved country heterogeneity
in a more satisfactory way.

The results are shown in Table 6. In all estimates, the negative and statistically significant sign
of the Gini coefficient supports the median voter theorem: an increase in inequality, by widening the
distance between the median voter’s income and the average income, decreases demand for
environmental policies. To quantify this effect, we calculate that an increase of one standard deviation
in inequality decreases total EPS by 0.380 standard deviations. This is equal to the difference in policy
stringency between Japan and Korea in 2014. Comparing market versus nonmarket instruments (the
second and third columns), we note that the aggregate figure hides a certain degree of heterogeneity,
as the effect of increasing I/neq by one standard deviation decreases the stringency of the two
indicators by 0.214 and 0.4 standard deviations, respectively. Finally, the fourth to the seventh

columns disaggregate the results across the four main policy instruments. When computing the
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standardized effect, we found that the size of the coefficient of /neq is aligned with the average value
for the first three indicators (0.380 std. dev.), while in the case of tradable permits, the standardized
effect has a smaller size (-0.194 std. dev.). This empirical test reinforces the idea that the main results
of Table 4 are driven by the joint effect that the level and the distribution of income exert through the

political economy channel.

Table 6 —Inequality and environmental policies, OECD policy indicators

(1) (2) 3) “) (%) (6) (7
EPS Market Nonmarket Standards Taxes Tax Tradable
EPS EPS (stringency)  (stringency) revenues permits
(% of GDP)  (stringency)
Per capita GDP -0.259* 0.335* -0.863%** -0.964%** 0.424%* 0.644*** -1.386%**
(0.140) (0.179) (0.169) (0.224) (0.178) (0.157) (0.248)
Per capita GDP (squared) 0.216%** 0.007 0.438%** 0.488%** -0.143** -0.151%%* 0.516%**
(0.051) (0.065) (0.063) (0.076) (0.066) (0.041) (0.105)
Per capita GDP (cube) -0.024%%*%* -0.005 -0.044%%* -0.051%%* 0.016** 0.01 1*** -0.0571%%%*
(0.005) (0.006) (0.007) (0.007) (0.007) (0.003) (0.012)
Ineq -3.748%**  _].855%** 5 58%** -5.838%** -2.507%** -4.684%** -2.067%**
(0.393) (0.454) (0.500) (0.686) (0.480) (0.532) (0.579)
Population growth -1.867 -8.034 1.490 0.174 -6.274 =24 45%** -13.98%*
(4.995) (6.206) (5.737) (8.120) (5.468) (5.449) (6.838)
N20 (presample mean) -0.302%**  .0.272%%*  (.297%** -0.390%*** -0.434%%* 0.008 0.066
(0.039) (0.049) (0.047) (0.061) (0.047) (0.036) (0.051)
SOz (presample mean) 0.246*** 0.336*** 0.166*** 0.442%** 0.148*** 0.171%*** 0.224***
(0.033) (0.041) (0.045) (0.056) (0.043) (0.029) (0.048)
COz (presample mean) -0.125%* -0.319%** 0.015 -0.191** 0.228*** -0.262%** -0.074
(0.059) (0.069) (0.072) (0.096) (0.072) (0.078) (0.083)
Constant 2.700%** 2.007%** 3.422%** 4.454%** 1.372%** 4.308%** 2.575%**
(0.249) (0.308) (0.346) (0.421) (0.363) (0.337) (0.351)
Country FE No No No No No No No
Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 676 676 683 683 676 875 683
Adjusted R? 0.778 0.569 0.755 0.787 0.426 0.441 0.521

Notes: This table presents the results of an OLS regression. All regressions include country fixed effects and the presample mean of
the dependent variable computed as the average emissions level from 1975 to 1980. The time span is from 1990 onwards because of
the availability of EPS data. Year fixed effects are included. Per capita GDP is divided by 10000 to enhance coefficient readability.
Inequality is measured with the Gini coefficient. Standard errors clustered by country in parentheses; * p < 0.1, ™ p <0.05, ™" p <0.01.

5. Robustness

This last section presents a series of robustness exercises that address the potential limitations of
our empirical setting.

The work by Grunewald et al. (2017), which exploits an empirical framework similar to ours,
claims that for the study of the inequality—environment nexus, a group fixed effects (GFE) estimator?
has to be preferred with respect to individual fixed effects because, in this context, the main sources

of unobserved heterogeneity—which are, according to the authors, the rate of adoption of clean

25 The group fixed effect estimator allows us to control, in linear panel data models, for time-varying and group-specific
patterns of unobserved heterogeneity. Group membership and time patterns are not arbitrarily chosen by the analyst but
estimated alongside the other parameters of the model. For more details, see Bonhomme and Manresa (2015).
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technologies and the structural challenges faced by societies—vary through time and across different
regions of the world. To account for this concern, we run an additional set of estimates that include,
in addition to the individual fixed effects, a full set of interactions between a time trend and income
dummies (one for each decile of the per capita GDP distribution). The results, reported in Table 7,
remain qualitatively unchanged with respect to those of our preferred specification in Table 4:
inequality exerts the expected effect on emissions per capita and is statistically significant only in the
case of SOz and N2O emissions.

Furthermore, we take stock of the previous literature by adding several possible confounding
factors. First, in line with the work by Hubler (2017), we control for the impact of FDI-induced capital
accumulation and international technological spillovers (proxied here by FDI and trade openness),
which are two of the main factors behind the transition from an agriculture-based society towards an
industry-based society, that is, the inflection point of the EKC. Second, we control for the type of
political regime, considered since the work by Magnani (2000) and Boyce (1994) as one of the main
mediating factors behind the inequality—environment nexus. In majoritarian democracies, in fact, the
growing demand for environmental protection stemming from a reduction in inequality and/or an
increase in per capita income is more likely to translate into strict environmental policies through the
legislative process than in autocratic regimes, where policy formation may be in the hands of small
oligarchies that benefit from polluting activities (Boyce, 1994). To do so, we include in the analysis
an ordinal variable that ranges from 1 (most autocratic) to 8 (most democratic).

Due to limited data availability, including these regressors implies losing many observations.
Specifically, Trade Openness registers the most missing values for years before the 1990s for African
countries, East European countries and Russia and Taiwan. Many countries are completely removed
from the analysis because of a lack of observations for both DI and Trade Openness (e.g., Guinea,
Haiti, and Lesotho), while for Luxembourg, FDI data are available only for years from 2002.

The regression results for these additional estimates are presented in the first three columns of
Table 8. Overall, the results show that the inclusion of additional covariates does not alter our main
evidence: the effects of Ineq, GDP per capita and their interaction are qualitatively unchanged, and
their significance level is very similar to that in Table 4. FDI investment and trade openness are never
statistically significant, a result in line with the finding of Hubler (2017). Similarly, the democracy
dummies are never statistically significant. For comparison, the last three columns of Table 8 replicate
the results of Table 4 in the smaller sample used for this robustness exercise. Compared to the results
in Table 4, those in Table 8 show no significant differences.

A final series of robustness checks are presented in Appendix C.

26



First, we address the potential issue of integrated time series within the panel. As mentioned in
Section 3.3, the EKC literature suggests either running panel unit root tests (as in Moon and Perron,
2004, or Bai and Ng, 2004) to assess whether CO2, SO, or GDP per capita are integrated variables
(for more details on this topic, see Wagner 2008) or, alternatively, using models that account for the
presence of integrated time series by first taking the average of original data over time or by using a
between estimator (Stern, 2010). Following this last approach, in Table C.1, we present a robustness
exercise obtained by computing the 5-year average of both the dependent and independent variables
and replicate the analysis from Table 4, our benchmark estimates. The regression results show that
the potential presence of integrated time series does not alter the main evidence found in Section 4.1.
The only relevant difference is the coefficient for population growth, which here exhibits a negative
and statistically significant effect in the case of CO2 emissions. Similar results, available upon request,
are obtained when we first-difference the data.

In Table C.2, we run the model of Equation 1 using the “All the Ginis” (Milanovic, 2013)
indicator of inequality instead of the SWIID index to test the sensitivity of our results to the use of a
different proxy of inequality. Unlike the SWIID, this dataset draws information on nine different
sources of Gini coefficients to offer a unique measure of inequality. To do so, the authors follow an
approach called the rule of precedence, which establishes a hierarchy among the nine data sources
according to the principle that individual long-term country studies based on household survey
microdata are preferred over wider datasets (i.e., those including more than one country) based on
microdata or grouped data. As a result, the least preferred sources are used to compile the “All the
Ginis” index only when data from better sources are not available. When we employ this indicator
instead of the preferred SWIID index (see Table C.2), the results of our baseline specification are
mostly confirmed, with the only difference being for N>O, for which the coefficient of Gini is
statically significant and has the expected negative sign.

Table C.3 addresses the potential impact on the estimation results of the process of interpolation
adopted to impute the missing values on both the dependent and independent variables (see Section
3.1 and Appendix A). To do so, we run the main estimates of Table 4 and introduce, among the
regressors, a set of dummies—one for each variable included in Equation 1—which assumes a value
equal to 1 in correspondence to each imputed missing value in the original dataset. These dummy
variables control for the potential measurement error introduced by the interpolation procedure in the
regression framework. This empirical test confirms the main evidence of Table 4, supporting the

strategy that we adopted to deal with missing data.
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Table 7 — Baseline specification with a time trend

e) () 3)
Log of CO» Log of SO, Log of N,O
Per capita GDP 1.058™ 0.285 0.243
(0.206) (0.374) (0.174)
Per capita GDP (squared) -0.278™" -0.492™ -0.126™"
(0.049) (0.126) (0.029)
Per capita GDP (cube) 0.018™ 0.037* 0.008"™*
(0.003) (0.011) (0.001)
Ineq 0.145 -3.305™ -0.593
(0.505) (0.836) (0.389)
Ineq x Per capita GDP 0.383 4.160™ 0.820™
(0.341) (0.533) (0.258)
Population growth -3.526" -2.502 -2.026
(1.881) (4.004) (1.539)
Constant -6.835 3111 23.23"™
(5.579) (9.611) (5.863)
Year*decile of GDP per capita Yes Yes Yes
Country FE Yes Yes Yes
Year FE No No No
Observations 4171 3015 3917
Number of countries 141 115 142
Adjusted R? 0.432 0.460 0.197

Note: This table presents the results of a panel fixed effect estimator. All regressions include country fixed effects and a time trend by
deciles of per capita income, computed based on the mean per capita income by country over the period. Per capita GDP is divided by
10000 to enhance coefficient readability. Inequality is measured with the Gini coefficient. Standard errors clustered by country in
parentheses; “ p < 0.10, ™ p < 0.05, ™ p < 0.01.
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Table 8 —Baseline specification including trade openness, incoming FDI and Polity2 levels as

control variables

Baseline specification (Eq. 1)

(1 () 3) (7) (®) 9)
Log of CO,  Log of SO, Log of Log of CO, Log of Log of N,O
N>,O SO,

Per capita GDP 0.896™" -0.0430 0.144 0.925%** -0.051 0.163
(0.208) 0.471) (0.183) (0.209) (0.486) (0.187)

Per capita GDP (squared) -0.252™ -0.613™ -0.099™* -0.256%** -0.621%**  -0.105%**
(0.045) (0.160) (0.030) (0.047) (0.162) (0.031)

Per capita GDP (cube) 0.018™" 0.064™" 0.006™" 0.018*** 0.066***  0.00751%***
(0.004) (0.019) (0.002) (0.004) (0.021) (0.002)

Ineq 0.123 -2.997" -0.404 0.203 -3.022%%* -0.372
(0.494) (0.874) (0.437) (0.519) (0.907) (0.440)

Ineq x Per capita GDP 0.0368 3.992"* 0.669 0.014 3.995%** 0.654
(0.396) (0.698) (0.411) (0.375) (0.744) (0.430)

Population growth -4.337" -3.389 -1.076 -3.846%* -3.812 -0.915
(1.910) (4.928) (1.500) (1.725) (4.738) (1.482)

Trade Openness 0.001 0.0015 0.001 - - -
(0.001) (0.001) (0.001)

FDI (incoming) 0.0127" -0.016 0.004 - - -
(0.007) (0.014) (0.006)

Polity lev. 1 0.105 -0.008 -0.010 - - -
(0.118) (0.154) (0.063)

Polity lev. 2 0.015 -0.078 -0.064 - - -
0.077) (0.158) (0.051)

Polity lev. 3 0.022 0.138 -0.043 - - -
(0.065) (0.125) (0.049)

Polity lev. 4 -0.068 0.0536 -0.028 - - -
(0.068) 0.114) (0.058)

Polity lev. 5 0.003 0.0131 0.016 - - -
(0.066) (0.101) (0.054)

Polity lev. 6 0.0915 0.138 0.009 - - -
(0.056) (0.092) (0.050)

Polity lev. 7 0.020 0.008 -0.013 - - -
(0.054) (0.084) (0.052)

Constant -0.238 32117 -0.649™" 0.018 -3.344%xx  _(.55]%#*
(0.274) (0.526) (0.206) (0.245) (0.440) (0.169)

Country FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Observations 3321 2306 3293 3321 2306 3293

Number of countries 132 111 134 132 111 134

Adjusted R? 0.401 0.489 0.188 0.381 0.476 0.183

Notes: This table presents the results of a panel fixed effect estimator. All regressions include country fixed effects and year-specific
dummies. The time span is 1960 to 2013 for CO2, 1960 to 2005 for SO2, and 1970 to 2012 for N2O. Polity level 1 includes Polity
indicators from -10 to -8; Polity level 2 includes the Polity indicator with a value of -7; Polity level 3 includes Polity indicators from -
6 to -5; Polity level 4 includes Polity indicators from -4 to 0; Polity level 5 includes Polity indicators from 1 to 5; Polity level 6 includes
Polity indicators from 6 to 7; Polity level 7 includes the Polity indicator with a value of 8; Polity level 8 includes Polity indicators from
9 to 10. Per capita GDP is divided by 10000 to enhance coefficient readability. Inequality is measured with the Gini coefficient.
Columns 7 to 9 of the table show the regression results using the baseline specification of Equation 1 and the restricted sample. Standard
errors clustered by country in parentheses; “ p <0.1, ™ p < 0.05, ™ p < 0.01.
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6. Concluding remarks

The aim of this paper is to offer a novel and more comprehensive perspective on the relation
between environmental quality, inequality and economic growth. To do so, we augment a standard
EKC model with an inequality term and its interaction with per capita income. Our preliminary results
present new evidence on the inequality—environment nexus. First, we show that this relationship
depends on the level of income. For countries below the 6™ decile of income distribution, a decrease
in inequality is on average associated with higher SO, and N>O emissions. After this threshold, a
reduction in inequality is good for the environment. For CO», the effect of a reduction in inequality
on emissions emerges only in rich countries. Second, our analysis supports the hypothesis that the
political economy argument prevails over the aggregation argument. In other words, inequality—by
increasing the wealth of the median voter—influences emissions by supporting demand for stringent

environmental policies.
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Appendix A: Data

Dealing with different pollutants’ sample sizes as well as with missing values, has been two
majors challenges for our analysis. As presented in Table 2, the length of the data set varies across
pollutants: 1960-2014 for CO2; 1960-2005 for SO, and 1970-2012 for N>O. Also, country coverage
depends on the pollutant considered, ranging from 115 countries for SO to 141 and 142 for CO, and
N>O respectively. Despite the differences in terms of years and countries coverage, which depend on
data availability, we have chosen to keep all the available series to maximize the number of
observations for each emission.

We detected a large share of missing values, precisely 34% for CO,, 60% for SO> and 29% for
N20. Missing observations for the Gini coefficient and GDP were 67% and 34%, respectively, while
population is missing for 35% of the observations. We notice that OECD countries did show a
significantly lower percentage of missing values compared to non-OECD ones; for example, for COx,
the share of missing values was barely 7% for OECD countries and 39% for non-OECD ones and
GDP values were missing for 5% of the former group and 50% of the latter. Population did show
similar shares while N>O was missing for the 37% of OECD countries and 51% of non-OECD;
finally, SO» did present the highest shares: 56% for OECD and 88% for non-OECD.

If either the Gini or the GDP or the population was completely missing for a country, we dropped
that country from the estimation sample. We try to impute some missing observation only when they
were internal values in a time series by imputing the moving average of the two adjacent years, and
never filled missing observation at the beginning or at the end of a time series. With our simple
imputation method, we could recover 18% of the observations for CO2 and SO2 and 20% of N2O
ones. Moreover, we recovered the 22% of observations for our key explanatory variable, the SWIID
Gini index, as well as the 20% of GDP and population data. To provide further robustness to our
results, we also run the main regression model for each pollutant including a dummy variable which

takes value 1 if the observation is imputed and 0 otherwise. Those results are available in Table C3.
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Appendix B — Specification tests

We use the following standard goodness of fit measures to compare the five different model
specifications presented in Table 2:

- the Adjusted R-squared, is a modified version of the standard R-squared that accounts for the
number of predictors in the model,?® and represents the proportion of variance of the
dependent variable which can be predicted by the regressors (i.e., the higher is the Adjusted
R-squared value, the higher is the expected predictive power of the independent variables).

- The Akaike information criteria (AIC) and the Bayes information criteria (BIC), which
estimate how distant the likelihood function of the fitted model is from the real likelihood
function of the data. When comparing two models using the same set of data, AIC and BIC
can be used for model selection, and the model with the lower values of these criteria is the
preferred one.?’” Note that, as for the adjusted R-squared, the AIC and BIC information
criteria adds a penalty for the number of predictors.

For the sake of completeness, the Tables B.1 to B.4 report the estimated results of equations

2to0 5.

Table B.1 — Log-lin cubic EKC (equation 2 of table 2)

)] ) 3)
Log of CO, Log of SO, Log of N,O
Per capita GDP 1.090™" 1.602™* 0.516™"
(6.411) (0.418) (3.611)
Per capita GDP (squared) -0.290™ -0.625™" -0.126™
(-6.203) (0.125) (-4.262)
Per capita GDP (cube) 0.021** 0.053**" 0.009"
(5.262) (0.013) (4.161)
Population growth -3.850" -4.417 -2.242
(-1.95) (7.671) (-1.24)
Constant -0.297" -4.831"" -0.806™"
(-1.87) (0.272) (-8.81)
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 4171 3015 3917
Number of countries 141 115 142
Adjusted R? 10.38 0.282 9.583

Note: This table presents the results of a panel fixed effect estimator based on Eq. 2 of table 2. All regressions include country fixed
effects and year-specific dummies. The time span is: 1960 to 2013 for CO2; 1960 to 2005 for SO2; 1970 — 2012 for N20O. Per capita
GDP has been divided by 10000 to enhance coefficients readability. Inequality is measured using the Gini coefficient. Standard errors
clustered by country in parentheses; “ p < 0.1, ™" p < 0.05, ™ p < 0.01.

26 The main drawback of the R squared is that it never decreases when a new independent variable is added to a regression
equation. In contrast, when adding a new regressor, the adjusted R-squared — being adjusted for the degrees of freedom —
can go up or down, and it increases only if the ¢ statistic on the new variable is greater than one in absolute value
(Woolridge 2015, p. 202).

27 See Akaike (1974); Raftery (1995) and Schwarz (1978).
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Table B.2 - Log-lin cubic inequality augmented EKC (equation 3 of table 2)

(1) () 3)
Log of CO, Log of SO, Log of N,O
Per capita GDP 1.089™" 1.602™* 0.516™"
(6.392) (0.418) (3.601)
Per capita GDP (squared) -0.291™ -0.625™ -0.126™
(-6.141) (0.125) (-4.201)
Per capita GDP (cube) 0.021" 0.0533"*" 0.009™"
(5.213) (0.0131) (4.101)
Ineq. 0.226 -0.0227 -0.023
(0.481) (0.810) (-0.061)
Population growth -3.833" -4.422 -2.246
(-1.981) (7.620) (-1.241)
Constant -0.478" -4.822™ -0.762™"
(0.239) (0.371) (0.174)
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 4171 3015 3917
Number of countries 141 115 142
Adjusted R? 10.43 0.281 9.380

Note: This table presents the results of a panel fixed effect estimator based on Eq. 3 of table 2. All regressions include country fixed
effects and year-specific dummies. The time span is: 1960 to 2013 for CO2; 1960 to 2005 for SO2; 1970 — 2012 for N2O. Per capita
GDP has been divided by 10000 to enhance coefficients readability. Inequality is measured using the Gini coefficient. Standard errors
clustered by country in parentheses; “ p < 0.1, ™" p < 0.05, ™ p < 0.01.

Table B.3 - Log-log squared EKC (equation 4 of table 2)

(1) (2) 3)
Log of CO» Log of SO, Log of N,O
Log of Per capita GDP 0.392" -0.0697 0.206™
(5.160) (0.266) (2.131)
Log of Per capita GDP (squared) -0.113* -0.300™ -0.0194
(-4.101) (0.0932) (-0.690)
Population growth -4.223™ -11.07 -2.631
(-2.190) (7.422) (-1.401)
Constant 0.900"" -3.499™* -0.334™"
(5.981) (0.338) (-4.420)
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 4171 3015 3917
Number of countries 141 115 142
Adjusted R? 12.11 0.245 9.025

Note: This table presents the results of a panel fixed effect estimator based on Eq. 4 of table 2. All regressions include country fixed
effects and year-specific dummies. The time span is: 1960 to 2013 for CO2; 1960 to 2005 for SO2; 1970 — 2012 for N20O. Per capita
GDP has been divided by 10000 to enhance coefficients readability. Inequality is measured using the Gini coefficient. Standard errors
clustered by country in parentheses; “ p < 0.1, ™" p < 0.05, ™ p < 0.01.
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Table B.4 - Log-log squared EKC (equation 5 of table 2)

)] ) 3)
Log of CO, Log of SO, Log of N,O
Log of Per capita GDP 0.522™* 0.323 0.249™
(5.962) (0.261) (2.590)
Log of Per capita GDP (squared) -0.172™ -0.550™" -0.039
(-6.341) (0.106) (-1.130)
Log of Per capita GDP (cube) -0.046™ -0.165™ -0.015
(-3.420) (0.031) (-1.521)
Population growth -2.728" -5.079 -2.135
(-1.680) (7.751) (-1.201)
Constant 0.915™" -3.441* -0.318™
(6.430) (0.334) (-4.291)
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 4171 3015 3917
Number of countries 141 115 142
Adjusted R? 12.06 0.322 9.045

Note: This table presents the results of a panel fixed effect estimator based on Eq. 5 of table 2. All regressions include country fixed
effects and year-specific dummies. The time span is: 1960 to 2013 for CO2; 1960 to 2005 for SO2; 1970 — 2012 for N20O. Per capita
GDP has been divided by 10000 to enhance coefficients readability. Inequality is measured using the Gini coefficient. Standard errors
clustered by country in parentheses; “ p < 0.1, ™" p < 0.05, ™ p <0.01.
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Appendix C — Robustness

Table C.1 - Baseline model with dependent and independent variables

collapsed in 5 years

averages.
® @) 3)
Log of CO» Log of SO, Log of N,O
Per capita GDP 0.980%** -0.820%* 0.153
(0.217) (0.354) (0.173)
Per capita GDP (squared) -0.297%** -0.371%%* -0.116%**
(0.047) (0.092) (0.029)
Per capita GDP (cube) 0.021%** 0.031%** 0.008%**
(0.003) (0.008) (0.002)
Ineq 0.196 -2.978*** -0.482
(0.561) (1.042) (0.470)
Ineq x Per capita GDP 0.396 4 .883%** 0.871%**
(0.340) (0.660) (0.278)
Population growth -1.398** -0.537 -0.127
(0.562) (1.522) (0.555)
Constant -0.338 -3.525%** -0.664%**
(0.254) (0.413) (0.199)
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 924 717 894
Number of countries 141 115 142
Adjusted R? 0.467 0.409 0.232

Notes: This table presents the results of a panel fixed effect estimator based on Eq. 1, where we collapsed both dependent and
independent variables in 5-year averages to exclude stationarity issues. All regressions include country fixed effects and year-specific
dummies. The time span is: 1960 to 2013 for CO2; 1960 to 2005 for SO2; 1970 to 2012 for N2O. Per capita GDP has been divided by
10000 to enhance coefficients readability. Inequality is measured using the Gini coefficient. Standard errors clustered by country in

parentheses; “ p < 0.1, ™ p <0.05, " p <0.01.
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Table C.2 - Regression results of Table 4 with “All the Ginis” Gini coefficient

Baseline specification (eq.1)

1) 2) A3) (N (®) ©)
Logof CO, LogofSO, LogofN,O LogofCO, LogofSO, LogofN,O
Per capita GDP 1.156%** -0.013 0.333** 0.983%* -0.552 0.215
(0.198) (0.302) (0.142) (-0.219) (-0.354) (-0.161)
Per capita GDP (squared) -0.335%*%*  _0.469%*F*  -0.126%** -0.3071%%* -0.444%%* -0.122%%*
(0.054) (0.096) (0.029) (-0.053) (-0.099) (-0.030)
Per capita GDP (cube) 0.024*** 0.039%** 0.009%** 0.022°%** 0.040%** 0.009%**
(0.004) (0.009) (0.002) (-0.004) (-0.010) (-0.002)
Gini (All) 0.003 -2.795%%* -0.671%* - - -
(0.409) (0.737) (0.329)
Gini (All) x Per capita GDP 0.134 2.986%** 0.517** - - -
(0.251) (0.611) (0.225)
Gini (Swiid) - - - 0.173 -3.500%*** -0.783
(-0.528) (-0.908) (-0.51)
Gini (Swiid) x Per capita - - -
GDP 0.235 4.364%** 0.785%**
(-0.371) (-0.587) (-0.29)
Population growth -1.806 -6.065 -2.993 -3.099 -4.683 -1.891
(2.221) (6.401) (1.983) -1.9 -6.302 -1.735
Constant -0.598** -3.506%**  -0.483%** -0.502%* -3.33]#%* -0.457%*
(0.256) (0.446) (0.171) (-0.27) (-0.433) (-0.226)
Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 4110 2814 3897 3643 2814 3507
Number of countries 137 112 138 137 112 138
Adjusted R? 0.416 0.398 0.198 0.41 0.421 0.193

Notes: This table presents the results of a panel fixed effect estimator based on Eq. 1, where we use the Gini coefficient variable from
“All the Ginis” (World Bank). All regressions include country fixed effects and year-specific dummies. The time span is: 1960 to 2013
for CO2; 1960 to 2005 for SO2; 1970 — 2012 for N20. Per capita GDP has been divided by 10000 to enhance coefficients readability.
Inequality is measured using the Gini coefficient. The last three column of the table show the regression results using the baseline
specification of eq. 1 on the restricted sample. Standard errors clustered by country in parentheses; * p < 0.1, ™ p <0.05, ™ p < 0.01
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Table C.3 — Specification augmented with a set of missing-observations dummy variables

e) (2) 3)
Log of CO» Log of SO, Log of N,O
Per capita GDP 0.897" -0.417 0.170
(0.214) (0.352) (0.163)
Per capita GDP (squared) -0.282™" -0.509™" -0.113™
(0.047) (0.100) (0.029)
Per capita GDP (cube) 0.021™ 0.044™ 0.008™
(0.003) (0.009) (0.002)
Ineq -0.085 -3.812™ -0.619
(0.530) (0.944) (0.458)
Ineq x Per capita GDP 0.465 4.796™" 0.849™"
(0.345) (0.560) (0.260)
Population growth -3.441° -2.047 -1.442
(1.915) (5.156) (1.578)
Constant -0.254 -3.268™ -0.539"
(0.263) (0.402) (0.199)
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Dummy missing values Yes Yes Yes
Observations 4171 3015 3917
Number of countries 141 115 142
Adjusted R? 0.414 0.419 0.201

Note: This table presents the results of a panel fixed effect estimator based on equation 1. All regressions include country fixed effects
and year-specific dummies. The time span is: 1960 to 2013 for COz; 1960 to 2005 for SO2; 1970 — 2012 for N2O. Dummy variables
assumes value 0 if the observation is not missing and 1 if the observation is missing. Per capita GDP has been divided by 10000 to
enhance coefficients readability. Inequality is measured using the Gini coefficient. Standard errors clustered by country in parentheses;
*p<0.10," p<0.05,"" p<0.01
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