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Abstract  
 

Along with companion papers (McCarthy et al., 2022a,c,c), this paper applies a 

methodological framework for incorporating current period weather and long-term climate 

conditions into impact assessments. More specifically, the framework applies to non-

experimental impact assessments that rely on ex post data collected from both households 

that were beneficiaries of the project (treated households) and those that did not benefit 

(control households). Here, we apply the methodological framework to an IFAD project that 

aimed to increase high quality coffee and the performance of coffee cooperatives in 

Rwanda as a case study. Noting that currently there are no agreed climate and weather 

metrics to use in crop production estimations, we first explore the explanatory power of a 

wide range of weather and climate variables from a number of different sources. The 

exploratory search was delimited by variables consistent with economic theory and 

agronomic evidence, and by further evaluating statistical properties to ensure that variables 

were not significant by chance. Once we determine the best indicators of weather 

conditions and corresponding historical climate conditions, we include these variables in 

the first stage of the impact assessment, when a matching procedure is applied to 

treatment and control households; and then in the second stage regression, when the 

variables are included as regressors. Results show that there is some evidence of biased 

treatment impacts when climatic variables are not included, but more importantly, show that 

coffee producers are highly vulnerable to weather shocks. To generate more climate-

change relevant evidence more rapidly, there is ample opportunity to more fully exploit 

impact assessment datasets than is commonly done. 
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1. Introduction 

Increasing the resilience of rural households is a key part of IFAD’s overarching goals. IFAD’s 

third strategic objective deals explicitly with climate resilience: “Strengthen the environmental 

sustainability and climate resilience of poor rural people’s economic activities” (IFAD, 2016). To 

reach that objective over the period 2016–2025, IFAD proposed to mainstream climate change 

throughout the entirety of its portfolio. IFAD’s strategic framework document highlights the need to 

generate more evidence on climate risks and vulnerabilities to mainstream climate change by 

determining which specific activities are best suited to increase farm production while also 

increasing resilience to climate change. 

In this paper, we look at the impacts of weather shocks and longer-term climate conditions on 

coffee production in Rwanda, in the context of the IFAD-funded “Project for Rural Income through 

Exports (PRICE)”. Mabiso et al. (2018) (hereafter referred to as MAWB) present results for an ex 

post impact assessment of PRICE, and we build on this work by incorporating weather shocks and 

climate conditions into the analysis. The main objective of the PRICE project was to achieve 

sustainable increases in farmers’ net returns by increasing participation in, and revenue from, 

export-driven value chains.1 Project activities aimed at increasing the effective management of 

coffee cooperatives, increasing the availability of planting materials and providing training to 

farmers through farmer field schools. Results showed that PRICE had positive impacts on coffee 

production, led to higher prices received by farmers and to greater sales income. 

To start the analysis, we begin by outlining the theoretical framework that will guide the choice of 

climatic variables, which is based on expected utility theory. Second, we review the econometric 

and agronomic literature that identifies weather and climate variables that have impacts on crop 

production. Both of these steps are important to help us delimit our exploration of specific weather 

and climate variables in the production analysis. In the third step, we systematically assess the 

predictive power of alternative sets of climate and weather variables in estimating crop yields. 

From this step, we arrive at a reduced set of such predictors to introduce into the impact 

assessment analysis. 

In the fourth step, we include the climate variables into the propensity score matching procedure 

implemented by MAWB. In the final step, we introduce weather and climate variables into the 

regression analysis. We note here that it is important to include both long-term measures of 

climate conditions and current period shocks in the regressions, to ensure that current period 

weather variables are conditionally exogenous. This is particularly important for cross-section 

analyses that cannot employ household fixed effects. 

The paper proceeds as follows. In section 2, we briefly provide details on key aspects of the 

PRICE project including the impact assessment design, and summarize results of the MAWB 

analysis. In section 3, we present the expected utility framework used to guide selection of 

variables for inclusion in our exploratory analysis and in section 4, we provide a review of relevant 

econometric and agronomic studies that identify specific climate and weather variables. In section 

5, we present our systematic analysis of the impacts of climate and weather variables on coffee 

production and motivate the selection of two sets of variables to use in the remaining analysis. In 

section 6, we present results of the matching exercise and impact assessment. We conclude in 

section 7. 

2. Background on the PRICE project 

The PRICE project began operating in 2012 and covered a range of value chains. In this study, we 

focus on the project’s second-stage intervention in the coffee value chain, namely the Turnaround 

                                                           
1 Although the PRICE project focused on several crops in addition to coffee (tea, silk, horticulture), in 
this paper, we use the impact assessment data collected on household beneficiaries of the coffee 
production and marketing component. The PRICE coffee interventions occurred in two stages, and 
following reasons provided in MAWB, we focus on household data for those who benefited from the 
second stage activities, over the period 2016–2017. 
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Programme phase 2 (TAP2). An earlier phase, TAP1, was implemented from 2014 to 2015, while 

TAP2 was implemented from 2016 to 2017. The goal of the project was to strengthen the position 

of smallholder farmers in the coffee value chain. Activities mainly aimed at improving the 

performance of coffee cooperatives, increasing access to new coffee plants and training farmers 

in ensuring high-quality coffee production. 

The project initially selected coffee cooperatives according to specific criteria in terms of their 

governance structure, financial profile and technical potential. The goal was to help 

underperforming cooperatives that nonetheless had committed management and transparent 

governance structures as well as technical potential. Ultimately, 25 cooperatives were selected 

under TAP1 and TAP2 each, for 50 in total. To construct a counterfactual, the impact assessment 

team used data collected to select coffee cooperatives and performed an ex ante propensity score 

matching exercise to identify suitable control cooperatives. 

There are additional methodological issues to address when combining observations from TAP1 

and TAP2 into the same sample, and MAWB performed the impact assessment separately for 

each wave. To illustrate the incorporation of climatic variables into the assessment, we use the 

TAP2 sample, which includes survey data on 2 048 households. 

3. Theoretical framework 

We start by assuming that rural people are risk-averse, and use the mean-variance approximation 

to expected utility of income, where farm households obtain income from risky agricultural 

production. Although simple, the model generates two key hypotheses: 1) Farmers will choose to 

allocate assets and inputs as a function of expected weather and weather variability, and 2) 

Realized outcomes will be a function of deviations between actual and expected weather 

realizations. 

Consider the optimization problem below, where income is produced by only crop income. (We 

discuss extensions to off-farm labour and other types of rural project outcomes at the end of this 

section.) Income is equal to the value of output produced minus input costs, 

 ; ,i i iY pf X Z Cl c X  . We posit a composite output function,  ; ,iQ f X Z Cl , which is 

multiplied by a composite price, p . Outputs are a function of inputs chosen, iX , as well as 

exogenous household and location characteristics, Z , and expected weather conditions, Cl . 

Relevant expected weather conditions will depend on the specific context, and may include 

expected seasonal rainfall, expected rainfall in a critical growing period (e.g. flowering period), 

expected onset of rainfall and expected day- and night-time temperatures. 

Assuming that weather risk is modelled as multiplicative, we can write the expected utility 

maximization problem as follows: 

     1 2

2max ; , ; ,i i i i R WEU Y pf X Cl Z c X pf X Cl Z         (1) 

where R  is the coefficient of relative risk aversion and W  is the variance of expected weather. 

We can rewrite equation (1) as: 

    1 2

2max ; , 1i R W i iEU Y pf X Cl Z c X      
 (2) 

Maximization will lead to optimal input choices that are a function of expected weather, Cl , as 

well as relative risk aversion, weather variance, input costs and other relevant exogenous 

characteristics: 

 * 2, , , ,i W R iX g Cl c Z 
 (3) 
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However, actual outputs can differ from expected outputs, depending on the actual realization of 

weather during the relevant cropping season. Thus, we can write actual production as follows: 

 * 2, , , , ,
A

A

i i W R i

W
Q f X Cl c Z M

Cl
 

  
   

    (4) 

where the function 

AW
M

Cl

 
 
 

 captures metrics of the difference between actual weather realized 

and expected weather. In general, input use will be higher and more assets will be allocated to 

agricultural production when the underlying climate conditions are more favourable – such as 

higher average and less variable rainfall, and lower likelihood of receiving high temperature 

shocks. Production will be higher in more favourable climate regimes, and when actual weather is 

more favourable to crop production than expected weather. 

The above model results help determine the core variables on which data should be collected for 

use in the empirical analysis. First, we need to capture the impacts of expected weather on input 

choices and asset allocation. Next, we need to include some measure of weather variability. 

Finally, we need to include variables that capture how actual weather deviates from expected 

weather in the relevant production season. 

Not all rural-based projects aim to increase crop production alone. In the present case study, the 

project invested in infrastructure and management capacity at the cooperative level, as well as 

working with coffee producers to enhance product quality and build resilience to weather shocks. 

We would thus expect that the project had a positive impact on average production and lowered 

downside risks to production at the household level, but also increased incomes and reduced 

income variance through higher prices and greater quality realized at the cooperative level. To 

capture these potential impacts, we can rewrite equation (2) as follows: 

      1 2

2max ; , , 1i R Y i iEU Y p P f X P Cl Z c X      
 (5) 

where P  represents project activities that have a direct impact on prices received at the 

cooperative level and on household coffee production. Instead of 
2

W  found in equation (4) that 

captures only weather variance, we use 
2

Y  , which captures both weather risks and non-weather 

income risks. More specifically, we specify   2 2 2,Y W NWf P   , where non-weather risks, 

 2

NW P  such as price fluctuations are themselves a function of project activities. 

4. Literature review 

While one certainly expects to find significant negative impacts of weather shocks on crop 

production – particularly under rainfed conditions – the literature documenting these impacts 

remained limited until the past decade or so. Until relatively recently, it was difficult to obtain 

rainfall station data and when possible, stations were often so sparse they provided limited 

information on how much rainfall a particular plot received. Researchers had to rely on self-

reported rainfall shocks, which was often both coarse and noisy, especially when surveys covered 

wide geographic regions. Satellite-based products that produce rainfall estimates and indicators of 

“greenness” became more widely available, making it easier to control for climate and weather 

conditions on farm. Although economic theory does provide broad guidance on variables to use – 

expected weather, weather variability, current period deviations from expected weather – the 

theory does not cover which specific variables to use, and from which data sources, in agriculture 

production analyses. There is also relatively limited published agronomic research implemented 

specifically to determine the impacts of specific weather conditions for non-grain crops such as 

coffee. At the same time, the number of different data sources on which to construct weather 

shocks and climate conditions has proliferated. Below, we summarize recent literature that 
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includes econometric analyses using satellite-based weather shocks and climate conditions from a 

number of different data sources. We focus on empirical results from studies in sub-Saharan 

Africa, and do not review studies that used either self-reported shocks or rainfall station data. This 

is followed by a review of agronomic studies that evaluate the impacts of weather on coffee. 

Michler et al. (2019) use UC Santa Barbara’s Climate Hazards Group InfraRed Precipitation with 

Station (CHIRPS) daily rainfall estimate data, taking average daily rainfall aggregated to the ward 

level to match households at this level. Matching at ward level is necessary as household 

locations are not geo-referenced. In their analysis, they use a rainfall anomaly measure, defined 

as the difference between current period and mean rainfall divided by the standard deviation of 

rainfall over the total growing season. They also create two shock measures by dividing shocks 

between low and high rainfall anomalies. They also run robustness checks using dummy variables 

to capture more extreme shocks based on standard deviations. Results are consistent across the 

specifications, with low rainfall shocks having consistent negative impacts on crop outcomes. As 

the authors use a fixed effects specification, they do not include measures of long-term climate 

conditions. 

Wineman et al. (2017) use CHIRPS rainfall estimate data matched to village centres, using panel 

data fixed effects that preclude the need to control for historical climate conditions. Weather 

shocks are defined as the number of dekads during the total rainy season with rainfall greater than 

75 mm to capture high rainfall shocks, and the number of dekads during the rainy season with less 

than 15 mm of rainfall to capture low rainfall shocks. These thresholds are based on research 

done by Guerrero Compean (2013) in Mexico, and are designed to capture absolute thresholds. 

The authors do not report whether robustness checks using different thresholds, including relative 

thresholds, were performed. In general, they find that high rainfall shocks have positive impacts 

when significant across a range of household welfare indicators, while low rainfall shocks have 

negative impacts when significant. 

Amare et al. (2018) examine the impacts of rainfall shocks on production and consumption 

outcomes in rural Nigeria using the National Oceanic and Atmospheric Administration’s Climate 

Prediction Center (NOAA-CPC) African Rainfall Climatology version 2 (ARC2) dekadal rainfall 

estimate data. They use the natural log of the rainfall anomaly (defined as the difference between 

mean rainfall and previous period rainfall, divided by the standard deviation (SD)). Similar to 

Michler et al. (2019), they then create dummy variables to capture low and high rainfall shocks 

based on whether the rainfall anomaly was less or greater than 1 SD from the mean, respectively. 

They do not cite any sources to justify threshold choices nor report robustness checks to motivate 

those threshold choices. They find negative impacts of low rainfall shocks, but positive impacts of 

high rainfall shocks. 

Arslan et al. (2017) use the ARC2 dekadal data, and dekadal temperature data from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) in an analysis of the impacts of climatic 

variables on maize yields in Tanzania. For weather variables, the authors include the total season 

rainfall, a dummy variable capturing whether current period within-season rainfall variability 

exceeds long-term average within-season variability and a dummy variable capturing whether any 

temperatures exceeding 28°Celsius occurred during the season. In panel regressions not using 

fixed effects, the authors use either the coefficient of variation of total season rainfall or the 

average long-term total season rainfall shortfall covering years when rainfall is below its long-term 

average. The authors find that high intraseason variability and high temperature shocks both 

reduce maize yields by 16 per cent and 29 per cent, respectively. Arslan et al. (2015) also use the 

ARC2 dekadal rainfall data and the ECMWF dekadal temperature data to analyse maize yields in 

Zambia using a household panel dataset. The authors use total season rainfall, a dummy variable 

capturing late onset of the rains, average maximal daily temperatures through the season and, in 

correlated random effects models, the historical coefficient of variation of seasonal rainfall. The 

authors find a significant positive effect of total season rainfall, but also an unexpected positive 

effect of delayed rainfall onset on maize yields.  
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Asfaw et al. (2016) use ARC2 and ECMWF variables similar to Arslan et al. (2015), although not a 

dummy for delayed onset. They find negative impacts of high temperature shocks on maize yields, 

while the long-term coefficient of variation (CoV) of rainfall has positive impacts on the adoption of 

various sustainable land management practices. Alfani et al. (2021) also use ARC2 data to 

evaluate impacts of a drought on maize yields in Zambia, using a two-period panel dataset in 

which many households suffered from a severe drought shock in the second year, 2016. As 

household locations are not geo-referenced, they use ward-level averages to generate weather 

and climate variables. The authors run a correlated random effects model of maize yield, and 

include the absolute per cent deviation of total season rainfall, the CoV of total season rainfall and 

a dummy for a drought shock to capture non-linear impacts of large deviations from average. The 

drought shock takes a value of one if, during the total growing season, rainfall was below the 

minimum of rainfall received over the period 1983–2015. Results indicate that the drought reduced 

yields between 29 per cent and 41 per cent. The CoV is also negative and significant, consistent 

with both theoretical and empirical results that farmers in high rainfall variability environments are 

less likely to invest in crop productivity. 

Pape and Wollburg (2019) use the United States Geological Survey’s EROS Moderate Resolution 

Imaging Spectroradiometer (NDVI eMODIS) data to generate percentage deviation of NDVI in two 

critical rainy seasons from mean NDVI in three “normal” years preceding the drought (Somalia 

drought in the second 2016/first 2017 seasons). They also include the average deviation from 

mean NDVI over the period 2002–2013 to control for propensity to experience a drought. Results 

show generally negative impacts, although these are difficult to interpret in terms of impacts of 

current period shocks as the authors use the preceding period NDVI values. Mejia-Mantilla and 

Hill (2017) use the crop Water Requirement Satisfaction Index (WRSI) matched to households, 

but it is unclear what time period is covered. The authors use fixed effect models, so do not 

directly control for long-term probability of water stress. They find positive effects of higher water 

satisfaction on agricultural incomes. 

Most of the above studies look at impacts of GIS-based measures of weather shocks on grain 

production, although some include a wider range of crop and livestock outcomes (e.g. Michler et 

al. (2019) and Wineman et al. (2017)). There is much less evidence on the impacts of weather 

shocks on coffee production (Hakorimana and Akçaöz,, 2017). In Rwanda, there is one coffee 

crop per year, and the flowering period tends to start in September (NAEB, n.d.). Coffee begins to 

flower following the onset of rains, and then transitions to the fruiting period in which the coffee 

cherry rapidly develops and forms a coffee bean (Ashine, 2019; UCDA, 2019). About five weeks 

after beans are fully formed, the cherry will change colour and be ready to harvest (UCDA, 2019). 

Weather extremes during the fruiting period when cherries are expanding rapidly and beans form 

are particularly important for determining final yields (UCDA, 2019; DaMatta et al., 2007; Cannell, 

1974). Others have noted that it is important that the period preceding rainfall onset be relatively 

dry to stimulate flowering once rain does start (Haarer, 1958; DaMatta & Ramalho, 2006). Higher 

temperatures during the flowering period, and particularly in the fruiting period, also reduce coffee 

yields (DaMatta et al., 2007). 

In addition to the household survey-based results and agronomic evidence, there are also studies 

that attempt to compare the performance of different rainfall products, generally by comparing the 

different rainfall estimates with rainfall gauge measurements (Dinku et al., 2018; Joseph et al., 

2020; Logah et al., 2021). Many studies find that CHIRPS outperforms products such as ARC2, 

while other studies find that CHIRPS performs more similarly to the Tropical Rainfall Measuring 

Mission (TRMM) and the Tropical Applications of Meteorology using Satellite data and ground-

based observations TAMSAT (Dinku et al., 2018; Joseph et al., 2020; Macharia et al., 2020). 

However, the above results base performance against rain gauge data, which by definition cannot 

test how well such data sources (and variables created from them) perform for households located 

far away from such stations. A wide range of studies also determine that dekadal data is more 

closely correlated with rainfall gauge data than daily data (Ouma et al., 2012; Dembélé and Zwart; 

2016; Zwart et al., 2018; Coz and van de Giesen, 2020; Logah et al., 2020).  
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In summary, the empirical evidence suggests that households subject to extreme weather events 

often suffer losses in crop yields and agricultural income. However, it is difficult to compare results 

as the studies use a wide range of different definitions of weather shocks using different rainfall 

and temperature data sources. Although the literature on the topic is gaining ground – especially 

the types of analysis found in Michler et al. (2021) that use household data combined with multiple 

satellite data sources and weather variables – at present, there is not sufficient evidence to use a 

single data source and specific variables. Best practice would argue for collecting data from a 

range of sources, while choice of which specific variables to use should be guided by both 

agronomic evidence as well as economic theory, and using dekadal observations. 

5. Analysis of impacts of weather and climate variables 
on coffee production 

For the purposes of this paper, we will use the term “climate variables” to refer to measures of 

long-term averages and variability in rainfall and temperature, while we use the term “weather 

variables” to refer to rainfall and temperature variables that are measured during the season in 

which agriculture production data were collected. We use “climatic variables” to refer to both 

weather and climate variables. 

For coffee production, MAWB used two measures, harvested coffee per hectare and coffee per 

tree. The two perform similarly, although explanatory power is generally greater for coffee 

harvested per hectare, and so we run our tests of the impacts of climatic variables on coffee 

production using this variable. We start our iterative exploration by running regressions on coffee 

yields using observations on households involved in the second phase of the TAP programme 

(TAP2) and control households. 

5.1. Climatic data sources and climate and weather variable construction 

To begin the analysis, we must first determine which climate and weather variables to use in our 

regressions and also determine which climate data source provides the best predictive power in 

our analysis. For each of our climate datasets, we create a number of variables identified in the 

previous literature, and systematically test which variables, constructed from which climate 

dataset, perform best in predicting relevant agricultural production outcomes. Results of 

systematically testing both variables and data sources will contribute to a sparse literature on 

identifying the best climate and weather variables to include in production analyses, which should 

help in generating comparable empirical results across studies. 

For rainfall estimate data, we use the ARC2 and CHIRPS data sources. This choice to limit the 

analysis to these two data sources was motivated by the fact that many of the extant studies use 

either CHIRPS or ARC2, and so this choice facilitates comparison. Second, CHIRPS has been 

found to perform similarly to other products, such as TAMSAT and TRMM (now IMERG), in part 

because those products use similar inputs and processes for integrating gauge data versus ARC2, 

which uses fewer inputs and a simpler process for integrating gauge data (Dinku et al., 2018; Coz 

and van de Giesen, appendix B, 2020). Additionally, although fewer household-level econometric 

studies have used the NDVI, SPI and SPEI datasets, there is significant interest in being able to 

use these datasets to predict crop production outcomes and thus identify geographic locations 

suffering from specific weather shocks (Klisch and Atzberger, 2016; Sruthi and Aslam, 2015). 

NDVI is used as part of FEWSNET’s Early Warning eXplorer (EWX software) and FAO’s 

Agricultural Stress Index System (ASIS), the U.S. National Integrated Drought Information System 

(NIDIS) provides data on SPI as well as NDVI, FEWSNET regularly provides SPI data in its 

country-level food security outlooks and Vicente-Serrano et al. (2010) developed the SPEI Global 

Drought Monitor. 

More specifically, we use NOAA’s ARC2 dataset covering the period of 1983–present, and the 

CHIRPS dataset covering the period 1981–present. For CHIRPS, we have both daily and dekadal 

(10-day) observations, which we hereafter refer to as CHIRPS Day and CHIRPS Dek, 

respectively. For temperature, we use data from the European Centre for Medium-Range Weather 
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(ECMWF) ERA INTERIM reanalysis model data. The SPI and SPEI indices were created using 

ARC2 and CHIRPS dekadal data combined with the ECMWF temperature data. Because the SPI 

and SPEI created with ARC2 and with CHIRPS Dek were highly correlated, we proceeded with 

just SPI and SPEI created using ARC2 data. We also used two NDVI datasets, NOAA’s Climate 

Data Record of Advanced Very High Resolution Radiometer (AVHRR) Surface Reflectance and 

the United States Geological Survey’s EROS Moderate Resolution Imaging Spectroradiometer 

(hereafter referred to as NOAA-E. All GIS data were matched at the community level, as 

household coordinates were not available. 

5.2. Climate and weather variables used in the production analysis 

Although the econometric and agronomic evidence helps guide the variables to create, it does not 

provide us with definitive specific variables. For instance, there are different time periods over 

which cumulative rainfall can be defined; here, we consider three different periods. The first period 

is the total rainy season, which is constructed based on the onset and cessation of rainfall. Onset 

of rainfall for coffee production is defined as any dekad starting from the beginning of August for 

which at least 25 mm of rain falls during a dekad and is then followed by a dekad with at least 20 

mm of rain (Tadross et al., 2009). Cessation occurs when three consecutive dekads experience 

less than 20 mm of rainfall after February (Tadross et al., 2009). We refer to this as the rainy 

period. The second is the “fruiting” period, which is defined as the eighth to fourteenth dekads 

following the onset of rains. The fruiting period definition captures rainfall during that critical period, 

but does not capture potential negative impacts of delayed onset that accrue irrespective of the 

amount of rainfall during a specific time after onset. The third time period covers the third dekad of 

November through the first dekad of January; hereafter referred to as the NJ period. This period 

covers the expected fruiting period, and can thus capture negative impacts of delayed onset as 

well as deviations from expected rainfall. 

Next, we consider different measures of current period weather shocks. To facilitate comparability 

with extant studies, we evaluate three different deviation measures:2  

1. The absolute per cent difference of current period weather observations from mean 

weather. 

2. The absolute per cent difference for current period observations that are below the 

mean, and per cent difference for current period observations that are above the mean. 

This specification allows for different impacts of dry versus wet conditions. 

3. Threshold dummy variables for both low and high weather differences. Relatively small 

deviations from expected weather may have limited impacts on production, and the per 

cent difference measures may mask non-linear impacts. For ARC2, CHIRPS Dek, 

CHIRPS Day, NDVI-A and NDVI-E per cent difference variables, we start the thresholds 

at 16 per cent and increase the threshold, by 2 per cent, up to the highest observed per 

cent difference experienced by at least 5 per cent of locations. Because SPI and SPEI 

are expressed in SD, we start the threshold at a .1 SD, increasing by .2 SD up to the 

highest threshold experienced by at least 5 per cent of locations. 

To control for the preceding dry season conditions, we include a dummy variable for whether any 

dekad two months preceding the onset of the rainy season received rainfall greater than 25 mm. 

As noted in the literature review, coffee bushes are most productive when the period preceding 

the growing season is dry (DaMatta et al., 2007). As a fixed threshold is not provided in the 

literature, we use the threshold corresponding to the first-dekad minimum required for the onset of 

the rainy season. Even with this fairly high threshold, about 45 per cent experienced dry period 

rain. We did not systematically assess other dry season rainfall thresholds. With respect to 

                                                           
2 Given the relatively limited geographic coverage of the project, we note that the rainfall anomalies 
were highly correlated with per cent differences. However, as there is no theoretical reason to prefer 
anomalies (and theory better supports use of per cent differences), and because anomalies can be 
misleading in different applications (e.g. where households are experience very different rainfall 
regimes), here we present results for the per cent differences only. 
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temperatures, while the literature suggests that high temperature shocks can have negative 

impacts on coffee yields, we note that seasonal temperatures covering the relevant growing 

season never exceeded critical values. For instance, there were no observations of noon 

temperatures exceeding 35°C or midnight temperatures exceeding 28°C. Average temperatures 

do not vary substantially across the area covered, and were never significant as would be 

expected. We do not report further on temperature variables in any of the analyses reported 

below, although we note that temperature is used in creation of the SPI and SPEI variables. It is 

worth stressing that the ability of researchers to uncover the impacts of different weather shocks 

will be a function of the weather conditions prevailing during the production season observed in 

the dataset. In this particular case, we cannot uncover the impact of high temperature shocks 

because such shocks are not observed in the data. Of course, that does not mean that high 

temperature shocks do not have impacts on coffee production. 

We next consider variables that control for underlying climate conditions, including expected 

rainfall (mean rainfall) and the CoV of rainfall corresponding to the weather variables used (e.g. 

ARC2 mean flowering period rainfall when the weather variables were constructed using ARC2 

and covering the flowering period). However, we note that the correlation between expected 

rainfall and the CoV ranges from moderate to very high (and negative as we expect), from −.38 to 

above −.95. Correlation with temperature, and the SPI and SPEI were quite high as well. This led 

us to create a climate index. Similar to wealth and other indices, the climate index allows us to 

capture a wider range of underlying climate conditions than possible when using each component 

as a regressor. 

To create the index, we include the mean ARC2 and CHIRPS Dek rainfall covering the relevant 

time period and the probability of receiving moderately high levels for SPI and SPEI (values 

ranging between 0 and 1) over the relevant time period. Higher levels of these four variables 

captures favourable climatic conditions. To capture the potential for receiving damagingly low 

rainfall, we include the CoV for rainfall realizations below the mean using both ARC2 and CHIRPS 

Dek sources covering the relevant period. To capture the potential for receiving damagingly high 

rainfall, we include the CoV for rainfall realizations above the mean using both ARC2 and CHIRPS 

Dek sources covering the relevant time period. We run a principal component factor analysis using 

these eight variables. The scoring coefficients on the first factor for the different indices were quite 

similar, and lead us to interpret the index as capturing unfavourable climate conditions. In 

particular, ARC2 and CHIRPS mean rainfall and the SPI and SPEI dummies have negative 

scoring coefficients, while the low and high rainfall CoVs for both ARC2 and CHIRPS have 

positive coefficients. 

Although we ran the production analyses using all of the data described above, we do not present 

results for the NDVI-A, NDVI-E or CHIRPS Day. The two NDVI measures were never significant. 

This may be because NDVI captures a wider range of factors affecting local “greenness” – just as 

crop yields are a function of many variables in addition to weather. While NDVI may pick up 

important changes over time, given that non-weather factors can also explain NDVI, it may prove 

less useful for distinguishing spatial differences, as is the case in our cross-section data analyses. 

With respect to CHIRPS Day, we note that a number of studies have found that dekadal data 

performs better in terms of matching rain gauge data than daily data (Ouma et al., 2012; Dembele 

and Zwart; 2016; Zwart et al., 2018; Coz and van de Giesen, 2020; Logah et al., 2020). In our 

case, daily data variables were either not significant, or when significant, had larger standard 

errors than the dekadal variables, so these results are consistent with the extant literature. 

5.3. Climate and weather variables: descriptive statistics  

Table 1 lists descriptive statistics for the weather variables. The second column includes the per 

cent of households in which the weather variables are below the mean, and the third column 

includes the absolute average per cent difference from the mean for households that experience 

below-mean rainfall. The fourth column includes the per cent of households that experienced 

above-mean conditions and the fifth column includes the average per cent difference from the 

mean for households that experienced above-mean rain.  
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Table 1. Descriptive statistics, weather variables. 

 

HH 

Below, 

% 

|Diff 

Below|, 

% 

HH 

Above, 

% 

Diff 

Above, 

% 

ARC2     

Rainy season 32 32 68 54 

Fruiting period 63 14 37 9 

Nov 20−Jan 10 71 14 29 18 

CHIRPS Dek     

Rainy season 5 22 95 33 

Fruiting period 40 15 60 10 

Nov 20−Jan 10 87 10 13 5 

SPI     

Rainy season 0  100 70 

Fruiting period 12 24 88 49 

Nov 20−Jan 10 37 17 63 29 

SPEI     

Rainy season 1 13 99 69 

Fruiting period 7 60 93 40 

Nov 20−Jan 10 83 37 17 32 

While all perform somewhat similarly across the seasons, there are still marked differences in the 

percentage of households falling below-mean and above-mean across the weather categories. 

Looking at below-mean deviations, we note that most sources show increasing incidence of 

below-mean weather across the rainy, fruiting and NJ seasons, respectively. Most sources show 

relatively modest average deviations for those locations receiving below-mean rainfall, except for 

the SPEI fruiting period observations. Looking at above-mean observations, all variables suggest 

that potentially damaging high rainfall occurred over the rainy season. Finally, most variables 

show moderate above-mean deviations in the fruiting and NJ period. Moderate above-mean 

deviations in these seasons may actually have positive impacts on coffee production. 

5.4. Additional explanatory variables  

In addition to the weather and climate variables, we include a number of standard household and 

location characteristics in our production function. Production inputs include the hectares in coffee 

production (in natural logs), household labour (in natural logs) and the number of coffee bushes (in 

natural logs). We use dummy variables for organic and inorganic fertilizer use, pesticides and 

hired labour, and an index of productive assets.3 In terms of factors that may affect factor 

productivity, we include two GIS variables capturing topographic characteristics, elevation and 

slope. Household characteristics include the number of years the household has cultivated coffee 

(in natural logs), household heads’ years of schooling, a dummy for whether the household head 

is female, a dummy variable for whether the household had previously received training from the 

coffee cooperative to which they belong and a wealth index that captures consumer durables and 

housing characteristics.4 Following MAWB, we also include variables constructed from data 

collected from the coffee cooperatives to which farmers belong, specifically, the average tons of 

coffee cherries collected in logs and the coffee-washing station’s capacity utilization rate. 

                                                           
3 The productive asset index is created from the scores of the first principle factor from a principal 
components factor analysis, which includes the following productive assets: number of water cans, 
sickles/machetes, water pumps, hand carts/wheelbarrows, ox carts, ox ploughs, tractors, tractor 
ploughs, motorized pumps, mechanical dryers, solar dryers, grain mills, poultry houses, livestock 
enclosures, storage houses, livestock barns, pig sties and other agricultural assets.  
4 The housing index is constructed using multiple correspondence analysis on categorical variables that 
capture the building materials used in the dwelling walls, roof and floor, as well as a categorical variable 
for the type of toilet facility the household uses, the number of rooms occupied in the dwelling and a 
dummy for dwelling electrification. 
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5.5. Results of production analysis 

We start by running our coffee yield regressions using the absolute per cent difference of current 

period rainfall weather from long-term average. Table 2 lists results for our 15 weather season 

categories, controlling for long-term climate with the climate index. The second and third columns 

of Table 2 include results for variables created using rainy season data for two specifications: the 

first using the absolute difference and the second using low and high absolute differences. The 

fourth and fifth columns include results for the two specifications in the fruit period, and the sixth 

and seventh columns results for the NJ period. 

Table 2. Impacts of weather difference on coffee yield over three periods. 

 
Coffee yield (kg/ha) 

 Rainy Fruit NJ 

 I II I II I II 

ARC2             
|% Diff| −0.474    −0.261   − 0.604    
|% Diff| if < 0   −0.316    −1.667    0.01  
|% Diff| if > 0   −0.683 **   1.466    1.434  
Climate 

index −0.029  −0.038  −0.105  −0.086  −0.127  −0.116  
Constant 0.383  0.368  0.34  0.342  0.165  −0.247  

# Obs. 2048  2048  2048  2048  2048  2048  
Adj. R2 0.517  0.518  0.517  0.519  0.517  0.517  
CHIRPS Dek             

|% Diff| −0.868    −1.108    −0.124    
|% Diff| if < 0   −0.003    −0.965    0.199  
|% Diff| if > 0   −0.697    −1.173    −3.331  
Climate 

index −0.019  −0.056  −0.052  −0.047  −0.047  0.01  
Constant 0.505  0.313  0.56  0.567  0.18  0.323  

# Obs. 2048  2048  2048  2048  2048  2048  
Adj. R2 0.517  0.517  0.517  0.517  0.517  0.517  
SPI3             

|% Diff| 1.834 ***   1.197 ***   0.511    
|% Diff| if < 0   0.000    1.034    −1.033  
|% Diff| if > 0   1.834 ***   1.194 ***   1.125 ** 

Climate 

index −0.187  −0.187  −0.025  −0.003  −0.221  −0.097  
Constant −0.789  −0.789  −0.908  −0.924  0.167  −0.597  

# Obs. 2048  2048  2048  2048  2048  2048  
Adj. R2 0.522  0.522  0.521  0.521  0.517  0.519  
SPEI3             

|% Diff| 0.682 **   0.483 *   −0.271    
|% Diff| if < 0   2.014    −0.189    −0.351  
|% Diff| if > 0   0.691 **   0.744 **   0.677  
Climate 

index −0.067  −0.085  0.019  0.161  −0.086  −0.114  
Constant 0.036  0.047  −0.323  −0.536  0.485  −0.184  

# Obs. 2048  2048  2048  2048  2048  2048  
Adj. R2 0.519  0.519  0.518  0.519  0.517  0.517  

Asterisks denote significance; * p<0.10, ** p<0.05, *** p<0.01. 

 

The results in Table 2 show that the weather and climate variables have limited impacts on coffee 

yields. However, there is a significant negative impact of above-mean rain using the ARC2 rainy 

season variable. The SPI and SPEI variables perform similarly, and appear to be picking up a 

positive impact of above-mean rainfall on coffee yields.  
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As highlighted in the descriptive statistics, there is a wide range of realizations for many variables, 

and so we next evaluate whether we can identify thresholds below and above which rainfall 

deviations have significant negative impacts on grain yields. Table 3a presents a subset of results 

generated at different thresholds for below-mean deviations, using the climate index to control for 

climate conditions. Results in Table 3a are given for ARC2 fruit and NJ and for SPIE NJ. All other 

weather season variables either gave insignificant results across the board or did not have 

realizations above the minimum threshold. 

The first, third and fifth columns of Table 3a list the deviation (per cent difference or SD) used in 

the regression, while the second, fourth and sixth columns list the estimated coefficient. The 

evidence suggests that there are negative impacts of rain shortfalls using the ARC2 and SPEI 

variables. Impacts are consistent across specifications, although the range of negative impacts is 

greater for the ARC2 NJ and SPEI NJ specifications.  

Table 3a. Below-mean threshold effects. 

% below ARC2 fruit % below ARC2 NJ SD below 

SPEI 

NJ  

20 −0.272 * 20 −0.319 ** 0.60 −0.281 * 

22 −0.234 ** 22 −0.243  0.65 −0.321 ** 

   24 −0.340 *** 0.70 −0.340  

   26 −0.341 *** 0.75 −0.485 ** 

Asterisks denote significance; * p<0.10, ** p<0.05, *** p<0.01. 

Table 3b presents a subset of results generated at different above-mean per cent differences. For 

the most part very high rainfall realizations are observed only over the entire rainy period. Both 

ARC2 rainy and CHIRPS Dek rainy show a wide range of negative impacts for rainfall realizations 

above 60 per cent for ARC2 rainy and above 50 per cent for CHIRP Dek rainy. None of the 

deviation thresholds for SPI or SPEI picked up negative impacts of high rainfall shocks, either 

because high deviations were not observed or were not significant. 

Table 3b. Above-mean threshold effects. 

% above ARC2 RS % above CHIRPS Dek RS 

62 −0.434 *** 54 −0.487 ***  

66 −0.388 *** 56 −0.493 ***  

70 −0.377 ** 58 −0.493 ***  

74 −0.993 *** 60 −0.544 ***  

78 −0.660 ** 62 −0.643 ***  

Asterisks denote significance; * p<0.10, ** p<0.05, *** p<0.01. 

Our sixth specification was to evaluate using both the per cent difference below-mean and above-

mean with thresholds. This specification allows for both linear and non-linear impacts of weather 

shocks on coffee production. We ran regressions for the subset of negative and significant 

impacts reported in Tables 3a and 3b. The linear impacts largely remain insignificant while 

threshold effects remain significant, so we do not report results here. 

From the above analysis, we select two sets of weather variables to use in the full impact 

assessment analysis. The first set includes: 1a) a dummy variable for the ARC2 NJ 24 per cent 

below-mean threshold, to capture negative impacts of rainfall deficits in a critical part of the 

growing season, 1b) a dummy variable for the ARC2 rainy season 62 per cent above-mean rainfall 

threshold, to capture a negative shock associated with damagingly high above-mean rainfall and 

1c) a dummy variable for SPI NJ values falling in the range [.55, 1], to capture positive impacts of 

moderately high rainfall shocks. The second set includes: 2a) a dummy variable for the CHIRPS 

rainy season 60 per cent threshold, and 2b) a dummy variable for SPI NJ values falling in the 

range [.55, 1]. In all cases, we use the climate index to control for climate conditions. 
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5.6. Summary and discussion of weather and climate variable impacts 

Looking first at Table 1, we note that all variables suggested that a significant portion of locations 

experienced high rainfall shocks during the rainy season. However, only ARC2 and SPEI suggest 

that some locations received very low rainfall realizations. Looking at the results in Tables 2 and 3, 

we draw six lessons. First, linear shocks, captured by absolute per cent differences, are generally 

not significant predictors of negative weather shocks. Instead, only non-linear thresholds of low 

and high rainfall realizations were significant predictors. About half of the studies cited in the 

literature review find significant linear impacts, while more than half find negative non-linear 

threshold effects. One major difference is that all econometric studies reviewed focused on annual 

grain crops, and none focused on a perennial crop such as coffee. Perennial crops are often less 

vulnerable to modest weather shocks than annuals (Snapp et al., 2018 and references contained 

therein), and our results are consistent with that empirical observation. 

Second, the time period covered by the weather variables matters. For instance, we find no 

impacts of low weather shocks when thresholds are measured over the entire rainy season, but do 

find negative threshold impacts for ARC2 and SPEI over the NJ period. The opposite is true for 

high rainfall shocks; no high rainfall shock thresholds are significant when constructed over the 

fruit or NJ periods, but ARC2 and CHIRPS Dek thresholds are significantly negative over a range 

of threshold values covering the entire rainy season. In most of the published studies, it is unclear 

over what time period the weather variables were constructed. 

Third, while the ARC2 and CHIRPS Dek rainy variables are significant negative predictors of high 

rainfall shocks, the SPI and SPEI variables did not pick up negative high rainfall shocks. Fourth, 

while SPI and SPEI did not pick up the damagingly high rainfall shock, they did pick up positive 

impacts of moderately high rainfall. Fifth, although ARC2 and CHIRPS Dek variables exhibit fairly 

low correlations, threshold variables from both sources were able to pick up negative impacts of 

high rainfall shocks. 

Overall, our evidence suggests that threshold dummies performed best at capturing negative 

weather shocks. SPI and SPEI, on the other hand, only captured positive impacts of moderately 

high rainfall. Combined with results from previous empirical studies, the evidence presented here 

suggests that researchers still require to systematically evaluate different variables from different 

sources to determine which weather variables best capture weather shocks for specific crops. 

Presenting results from systematic evaluations would increase our understanding of the 

performance of climatic different variables across different crops and agro-ecological contexts. 

6. Impact assessment results  

In this section, we start by largely reproducing the results found in MAWB, which starts by 

matching households using the following variables: length of membership in a coffee cooperative; 

length of time as a coffee producer; number of rooms in home, time taken to collect water and 

whether or not had electricity, all five years ago; age of household head; household size; distance 

from home to cooperative and from the cooperative to the capital, Kigali; average level of 

schooling of household adults; and number of agricultural activities undertaken by household 

members. The authors then analyse the impacts of the TAP2 programme on various outcomes, 

although here we focus exclusively on coffee production outcomes. MAWB report results on total 

coffee production in kg and net coffee income. Here, we also evaluate TAP2 impacts on coffee 

yields (kg/ha). 

We did make some changes to the original specification and thus there are slight differences 

between reported results for MAWB and our results. These changes facilitate comparison across 

our additional specifications. First, we control for standard errors clustered at the village level. We 

also drop observations that were missing any production data rather than imputing those values, 

which leads to a sample size of 2 052 versus the sample size of 2 094 used in the MAWB 

analysis. 
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Explanatory variables used in the MAWB regression analysis included: the cost to join the 

cooperative (in logs); total landholdings (in logs); gender, age and years of schooling, age of the 

household head; number of household members engaged in wage work; dummies for receipt of 

extension advice on five agricultural activities; a dummy equal to 1 if any household member 

belongs to a non-TAP2 coffee cooperative; number of shocks households’ experienced in the 

previous year; and a dummy for whether any household member had received any training from 

the coffee cooperatives. They also included information collected from the coffee cooperatives to 

which farmers belong, specifically, the average tons of coffee cherries collected in logs and the 

coffee-washing station’s capacity utilization rate. 

As shown in Table 4, there are significant positive impacts of the TAP2 project on coffee harvest 

and coffee income, consistent with the estimates reported in table 1.1 in MAWB. 

Table 4. Coffee outcomes, impact of TAP following MAWB specification. 

 

Coffee yield 

(kg/ha) 

Coffee 

harvest (kg) 

Net coffee 

income 

TAP2 0.379 * 0.611 *** 0.347 *** 

Constant 7.851 *** 3.11 *** 10.374 *** 

# Obs. 2052  2052  2052  

Adj. R2 0.212  0.198  0.068  
Asterisks denote significance; * p<0.10, ** p<0.05, *** p<0.01. 

 

6.1. MAWB matching and regression specification, but including weather and 
climate 

In the next specification, we use the same matching and production variables as above but include 

our two sets of weather variables and the climate index. A priori, we expect that the TAP2 

coefficient on coffee yields would be biased downward in the absence of controlling for climate 

conditions, as TAP2 households are located in less favourable climate environments. The bias on 

total coffee harvested is more difficult to sign, however. Under certain economic conditions, we 

would expect greater inputs and investments per unit land under more favourable climate 

conditions, while land size cultivated may be larger under less favourable conditions. From the 

descriptive statistics found in the Appendix, Table A2, we know that TAP2 households indeed 

have more land in coffee production. 

From Table 5a which provides results using the first weather set variables, we note that TAP2 only 

remains significant on net coffee income, while the weather shock coefficients are generally 

insignificant. From Table 5b, we note that the TAP2 impacts regain significance and are more in 

line with what we expect, particularly for coffee yields. Project impacts on coffee yields in Table 5b 

are greater than in Table 4 and coffee harvest is lower; additionally, the climate index is positive 

and significant in coffee harvest, consistent with more extensive coffee production in areas with 

less favourable climate conditions. Of the weather variables, only the high rainfall shock has a 

significant negative impact and only on coffee yields. 

Results suggest that simply adding the weather and climate variables as regressors may not 

adequately capture the impacts of these variables where they differ across treatment and control 

households. Additionally, while the matching and regression procedure may adequately control for 

confounders related to treatment, they may not adequately control for confounders that affect the 

weather and climate variables. For instance, the R2 are relatively low, at around .2 for production 

and .07 for income. While the primary goal of impact assessments is to recover project impacts, 

without a theoretically grounded and rich set of regressors, the impacts of other contextual 

variables – such as weather shocks – are likely to be biased. In many cases, the dominant focus 

on project impacts means that these expensive datasets are not exploited to their fullest, and miss 

opportunities for generating evidence on climate resilience. 
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Table 5a. Coffee outcomes, MAWB specification; S1 weather and climate variables. 

 Coffee yield 

(kg/ha) 

Coffee 

harvest (kg) 

Net coffee 

income 

TAP2 0.357  0.404  0.341 ** 

Dummy, ARC2 low NJ 0.489 * −0.046  −0.12  

Dummy, SPI high NJ  −0.091  0.299  −0.138  

Dummy, ARC2 high rainy −0.042  0.016  0.047  

Climate index 0.04  0.218  0.117  

Constant 7.718 *** 3.698 *** 10.479 *** 

# Obs. 2048  2048  2048  

Adj. R2 0.216  0.212  0.071  
Asterisks denote significance; * p<0.10, ** p<0.05, *** p<0.01. 

Table 5b. Coffee outcomes, MAWB specification; S2 weather and climate variables 

 

Coffee yield 

(kg/ha) 

Coffee 

harvest (kg) 

Net coffee 

income 

TAP2 0.512 ** 0.462 * 0.316 ** 

Dummy, SPI high NJ  −0.249  0.248  −0.108  

Dummy, CHIRPS high rainy −0.482 ** −0.245  0.082  

Climate index 0.111  0.243 * 0.11  

Constant 7.622 *** 3.588 *** 10.501 *** 

# Obs. 2048  2048  2048  

Adj. R2 0.216  0.214  0.071  
Asterisks denote significance; * p<0.10, ** p<0.05, *** p<0.01. 

6.2. Updated matching and regressions to include climatic variables 

In this section, we first include the climate index in the matching exercise, and then include a 

richer set of regressors into the regression analysis. Table 6 gives the pre- and post-match 

summary statistics for the climate index, first using the MAWB matching variables, and then using 

the MAWB variables and the climate index. When using just the MAWB matching variables, the 

climate index is significantly different, so that matched controls are still located in areas with more 

favourable climate conditions. However, when matching on the MAWB variables and the climate 

index, the difference between treatment and controls after the match is not significant. 

Table 6. MAWB matching versus MAWB+climate index matching. 
 Treated Control p-value Treated Control p-value 

MAWB matching       

Climate index 0.349 −0.203 0.000 0.349 0.019 0.000 

MAWB+climate index matching       
Climate index 0.349 −0.203 0.000 0.349 0.315 0.423 

It is instructive to also look at how well the component variables of the climate index are matched 

using the climate index in the matching. In many empirical applications, researchers will need to 

choose which climate variables to use in matching before knowing which climate variables will be 

the most important to control for specific project outcomes. Although one can always match ex 

post as we are doing here, being able to match on the “right” climate variables should increase the 

ability to choose locations to select well-matched control households. Given the weather-related 

descriptive statistics in Table 1, one might suspect that matching on variables covering one 

seasonal time period from one data source may not help to match climate variables covering 

different seasonal time periods and from different sources. Using the climate index, however, may 

improve matching on a wider range of variables. To facilitate comparison between pre- and post-

matching results, in Table 7, we present results for standardized differences in the variables 

between treatment and controls, with unmatched differences and corresponding p-values in the 
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second and third columns, and differences and p-values after matching on the climate index in the 

fourth and fifth columns. As shown in Table 7, most of the climate variables remain significantly 

different after matching, although most differences are smaller than pre-match differences. 

Table 7. Standardized differences of climate variables, pre- and post-matching on the climate index. 

 

Pre-match 

treat-control 

std. dif. 

Difference, 

p-value 

Post-match 

treat-control 

std. dif. 

Difference, 

p-value 

Climate index 0.409 0.000 0.025 0.423 

ARC2 mean rain NJ −0.474 0.000 −0.075 0.007 

ARC2 CoV low rain NJ 0.589 0.000 0.288 0.000 

ARC2 CoV high rain RS 0.520 0.000 0.197 0.000 

CHIRPS mean rain NJ −0.124 0.001 0.208 0.000 

CHIRPS CoV low rain NJ 0.494 0.000 0.204 0.000 

CHIRPS CoV high rain 

RS 
0.329 0.000 −0.004 0.889 

SPI moderate high −0.045 0.176 0.129 0.001 

SPEI moderate high 0.315 0.000 0.589 0.000 

Overall, our matching results suggest that while it may be difficult to determine the optimal climate 

variables on which to match ex ante, an index of variables may be the best – if imperfect – option, 

particularly if the goal is to control for exposure to damaging weather shocks. 

6.3. Updated matching and updated regression specification  

Results for the updated matching and regression specifications are shown in Tables 8a and 8b. 

The tables show that adjusted R2 are more than double those using the original regression 

variables, now ranging from .46 to .5 for production and .18 for net coffee income. 

The TAP2 coefficients are positive and significant across coffee outcomes and weather 

specifications, similar to results in Table 4. While TAP2 impacts in Tables 8a and 8b are similar for 

coffee yields and for net coffee income, the impacts are much lower for coffee harvest. The latter 

suggests that omitting climatic variables leads to an upward bias in net harvest consistent with 

more extensive coffee production captured in Tables 5a and 5b. 

With respect to the climatic variables, Tables 8a and 8b show that modest positive rainfall shocks 

have positive impacts on coffee yields and harvest, but no significant impact on incomes. High 

rainfall shocks have significant negative impacts on yields and harvest, although only the ARC2 

high rainfall shock has a significant impact on net coffee income. The magnitude of the impact of 

these high rainfall shocks is quite high. For instance, ARC2 high rainfall shock leads to a 35 per 

cent reduction in coffee yields (confidence interval [30,39], a 32 per cent reduction in coffee 

harvested (CI [28,35]) and an 18 per cent reduction in coffee income (CI [15,22]). The CHIRPS 

high rainfall shock leads to a 37% reduction in coffee yields (CI[34,40]) and a 29 per cent 

reduction in coffee harvest (CI [26,32]). The climate index only has a significant impact on net 

coffee income, which is negative. The more unfavourable the climate conditions, the lower the net 

coffee income. The latter would be consistent with greater costs and with lower prices, and lower 

prices may reflect lower quality beans in such less favourable areas.  
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Table 8a. Coffee outcomes, updated matching and production variables; S1 weather and climate variables. 

 

Coffee yield 

(kg/ha) 

Coffee harvest 

(kg) 

Net coffee 

income 

TAP2 0.374 * 0.293 * 0.367 ** 

Dummy, ARC2 Low Rain NJ −0.211  −0.185 * 0.022  

Dummy, High SPI NJ 0.555 *** 0.573 *** −0.135  

Dummy, ARC2 High Rain RS −0.442 *** −0.382 *** −0.216 ** 

Climate Index −0.446  −0.405  −0.425 * 

Constant 0.124  0.428  9.164 *** 

# Obs. 2 048  2 048  2 048  
Adj. R2 0.495  0.461  0.181  

Asterisks denote significance; * p<0.10, ** p<0.05, *** p<0.01. 

Table 8b. Coffee outcomes, updated matching and production variables; S2 weather and climate variables 

 

Coffee yield 

(kg/ha) 

Coffee harvest 

(kg) 

Net coffee 

income 

TAP2 0.401 * 0.316 * 0.365 ** 

Dummy, high SPI NJ 0.340 ** 0.404 *** −0.163  

Dummy, CHIRPS high rain RS −0.412 ** −0.326 ** −0.050  

Climate index −0.530  −0.475  −0.434 ** 

Constant 0.341  0.594  9.192 *** 

# Obs. 2 048  2 048  2 048  

Adj. R2 0.499  0.464  0.180  
Asterisks denote significance; * p<0.10, ** p<0.05, *** p<0.01. 

To summarize, results suggest that including weather and climate shocks without matching on 

underlying climate variables can lead to biased treatment coefficients, although in the above case, 

this is observed only for net coffee harvest. More importantly, the impacts of weather shocks are 

sensitive to the control variables included. The most robust result is the negative impact of 

extremely high rainfall shock on coffee production over the growing season. Positive impacts of 

moderately high rainfall in the critical period are also fairly robust across specifications, while the 

impacts of low rainfall shocks are the most sensitive to the production function specification. 

The results also suggest that coffee farmers in Rwanda are vulnerable to weather shocks, with 

large negative impacts on yields and coffee harvested. It is also interesting to note that the 

impacts on total coffee harvested are less than the impacts on coffee yields, which suggests that 

the land extensification strategy can ameliorate some of the damage due to high rainfall shocks. 

Without this richer analysis, however, these important insights would be lost. 

6.4. Resilience 

The above regressions capture the impact of TAP2 treatment on average coffee production 

outcomes. To investigate whether TAP2 also reduced the likelihood of experiencing very poor 

production outcomes, we created a dummy variable equal to 1 if the households’ coffee yields 

were less than or equal to 20 per cent of district-level average yields. First, we note that the 

marginal effects of TAP2 on coffee yields at observed values and at means are negative and 

significant using both of the weather sets, which means that TAP2 was effective at reducing the 

probability of realizing very low coffee production outcomes. To highlight the impacts of TAP2 

under weather shocks, in Table 9, we show the predicted probabilities of very low yields at 

observed values for TAP2 and control households, and under the different rainfall shocks. The first 

two rows contain results for those who did and did not experience a low rain shock, respectively; 

while the columns indicate the predicted probabilities of low yield outcomes and respective 

standard errors for TAP2 and controls, respectively. The third row contains the p-value 

corresponding to a test of differences between those who did and did not experience a shock, 
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while the final column contains p-values corresponding to a test of differences between TAP2 and 

controls.  

Looking first at the low rainfall shock outcomes, we see that the difference between TAP2 and 

controls under a low rainfall shock is significantly lower, while the difference for those not 

experiencing a shock is not significant. For those facing a high rainfall shock using Weather Set 1, 

TAP2 households faced significantly lower probabilities than control households under both shock 

and no shock. If instead we compare TAP2 under low and high rainfall shocks, we note that there 

is no statistical difference in predicted probabilities, while control households under both low and 

high shocks have higher probabilities of low yields versus controls not experiencing shocks. 

Turning next to the high rainfall shocks from Weather Set 2, we note again that TAP2 households 

have better outcomes under both shocks and no shocks vis-à-vis the controls. However, TAP2 

households experiencing a high rainfall shock have higher probabilities of low yields than those 

who do not experience a shock. 

Table 9. Predicted probabilities of low yields, TAP2 and controls, under shock and no shock. 

 
  Treated Control  

 
  Prob. SE Prob. SE p-value 

W
e

a
th

e
r 

 

S
e

t 
1
 

Low rain 
Shock 0.229 0.047 0.369 0.065 0.000 

No shock 0.164 0.014 0.213 0.023 0.120 

p-value  0.234  0.036   

High rain 
Shock 0.202 0.037 0.291 0.036 0.030 

No shock 0.166 0.018 0.222 0.021 0.089 

p-value   0.463  0.074   

W
e

a
th

e
r 

S
e

t 
2
 

High rain 
Shock 0.325 0.052 0.483 0.084 0.045 

No shock 0.159 0.011 0.228 0.021 0.014 

p-value  0.002  0.002   

 

To summarize, TAP2 households are less likely than controls to suffer low yields due to weather 

extremes, and results are robust across both weather sets. Using the Weather Set 1 specification, 

results indicate that TAP2 has an additional resilience benefit as predicted probabilities are not 

statistically different between those experiencing or not experiencing a high rainfall shock. 

However, using the Weather Set 2 specification, we do not see this additional benefit. Overall, 

evidence suggests that TAP2 has positive impacts on this dimension of resilience, with some 

evidence that TAP2-enabled households suffering shocks do as well as those that do not suffer 

shocks. 

7. Summary and concluding comments 

Guided by economic theory and agronomic evidence, we started by evaluating the performance of 

a wide range of weather and climate variables from a number of different climatic data sources in 

terms of predicting coffee production. Descriptive statistics suggest that the same variables 

constructed with different sources give different percentages of households estimated to have 

received either below-mean or above-mean rainfall. While ARC2 and CHIRPS variables 

suggested that some locations received damagingly high rainfall, and ARC2 variables suggested 

that some locations received damagingly low rainfall, the SPI and SPEI variables did not suggest 

either damagingly low or high rainfall. SPI and SPEI variables did suggest that some locations 

received moderately high rainfall that can increase production. 

Looking next at impacts of weather shocks and climate conditions on coffee yields, the analysis 

showed that variables capturing linear impacts of weather shocks generally were not significant 

predictors of coffee yields. Separating per cent differences for below-mean and above-mean 

differences also yielded limited significant results, but suggested that the SPI in particular was 

picking up positive impacts of above-mean differences across all three time periods. Next, we 

evaluated whether identifying threshold values may better pick up non-linear impacts of shocks on 
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yields. We found negative impacts of ARC2 in the critical growth months of November to the first 

dekad of January, while both ARC2- and CHIRPS-based thresholds captured negative impacts of 

high rainfall events accumulated through the entire growing season. Altogether, results suggest 

that drier than expected conditions can have significant negative effects when such conditions 

characterize the critical growth months. However, high rainfall shocks only have negative impacts 

when looking at rainfall totals through the full growing season. Overall, the results are sensitive to 

the data source used to construct variables, the time period covered and linear versus non-linear 

impacts. 

We then re-ran the MAWB impact assessment analysis, employing inverse probability weighted 

regression analyses for four coffee production outcomes, largely reproducing the MAWB results 

that show positive impacts of treatment on coffee production and net coffee incomes. We then 

included two sets of weather and climate variables into the MAWB specifications, and found that 

treatment effects disappeared, while weather and climate variables also had no significant impact. 

The MAWB matching procedure did not include climate variables, while the descriptive statistics in 

Table A2 and the matching analysis in Table 6 suggest that treatment households were located in 

areas with less favourable climate conditions but also had a larger area of land in coffee 

production. Theoretically, one would expect that failure to match on the climate variables would 

bias the TAP2 impact on yields downward, with ambiguous impacts on total coffee harvested. 

When we instead matched on the climate index, the treatment variables re-gained positive and 

significant coefficients, although results suggest that only the TAP2 coefficient on coffee harvested 

was biased upward when climatic variables were not included. 

Results also show that weather shocks had significant and large impacts on coffee production, 

and the probability of experiencing very low yields, a measure of resilience. Results show that 

TAP2 had significant impacts on lowering that probability vis-à-vis controls. 

Overall, the analysis shows that including weather and climate variables into project impact 

assessments can provide information on how these variables affect the overall outcomes of 

interest, generating valuable insights into future project design. TAP2 beneficiaries were able to 

better withstand weather shocks than control households, but those shocks still had negative 

impacts. The latter indicates the need to continue refining the project approach (and future project 

designs) to handle the increasing frequency of weather shocks. 

Our results also suggest that choosing what data sources to use and which exact variables to 

create will continue to be a difficult task confronting researchers. While economic theory and 

agronomic evidence can provide guidance, there remain many choices on constructing specific 

variables from specific sources. In this case study, the same variables created from different 

sources generate quite different descriptive statistics on per cent of households experiencing 

either below-mean or above-mean weather conditions, as well as the average size of that 

difference. Our analysis also suggests that non-linear thresholds did a better job of explaining 

impacts on coffee production rather than the simple per cent difference, either alone or split into 

below and above differences. But, much more work remains to be done to corroborate this result. 

Finally, where the variables are more consistent across data sources, impacts on coffee 

production are also more robust across specifications, for example the negative impacts of above-

mean rainfall differences across the total rainy season. To gain a wider understanding of the 

predictive power of different climatic variables constructed using different data sources, 

researchers should report results from systematically testing the GIS-based data they collect and 

analyse. 
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Data appendix.  
 

Table A1. Sample size 
 Treated Control 

Observations 691 1 361 

 

Table A2. Descriptive statistics (1 of 2) 
 Treated Control 

 Mean SD Mean SD 

Selected dependent variables    

Coffee yield (kg/tree) 1.411 2.221 1.799 2.008 

Coffee yield (kg/ha) 4 484 7 052 4 735 8 524 

Coffee harvest (kg) 1 082 2 058 1 013 1 272 

Coffee income 273 854 261 420 291 873 239 980 

Dummy, low yield (kg/tree) 0.213 0.410 0.193 0.395 

Dummy, low yield (kg/ha) 0.191 0.393 0.194 0.396 

IA matching vars     

Years of co-op membership 9.848 4.914 9.814 5.520 

Years cultivating coffee 27.9 14.9 29.3 14.5 

# rooms occupied 5 yrs ago 3.443 1.202 3.525 1.254 

Time to reach water 5 yrs ago 22.6 20.5 17.3 15.2 

Dummy, electricity 5 yrs ago 0.093 0.290 0.133 0.340 

HH head age 55.7 13.1 54.8 13.5 

HH members 5.064 2.199 4.864 2.081 

Farmer distance to co-op 4.477 3.995 3.115 3.014 

Co-op distance to Kigali 65.2 27.3 71.9 38.9 

Avg years education 5.875 2.506 6.089 2.376 

HH members in agriculture 2.488 1.184 2.619 1.333 

IA control vars     

HH fee to join co-op 19 233 33 836 21 658 41 095 

Cherries processed by co-op 233.2 291.3 552.0 406.9 

Co-op washing station utilization 62.6 53.1 80.9 33.5 

HH total agricultural land area 8.3 31.2 20.1 49.8 

Dummy, HH head female 0.200 0.400 0.198 0.399 

HH head age 55.7 13.1 54.8 13.5 

HH head years of schooling 4.562 3.342 4.744 3.299 

# HH members wage employed 0.094 0.329 0.122 0.383 

Dummy, crop advice 0.505 0.500 0.491 0.500 

Dummy, ag inputs advice 0.469 0.499 0.438 0.496 

Dummy, harvest advice 0.274 0.446 0.271 0.445 

Dummy, post-harvest advice 0.211 0.409 0.171 0.377 

Dummy, sales advice 0.013 0.113 0.032 0.175 

Dummy, member of other co-op 1.818 0.386 1.936 0.245 
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Table A2. Descriptive statistics (2 of 2) 
 Treated Control 

 Mean SD Mean SD 

IA control vars (continued)     

# HH shocks experienced 1.349 1.471 1.159 1.368 

# HH income sources 1.654 0.810 1.855 0.930 

TAP_OTHER 0.208 0.406 0.159 0.366 

Dummy, training from co-op in 5  0.537 0.499 0.494 0.500 

Climate Set 1     

Mean rainfall NJ 141 23 160 34 

CoV rainfall NJ 0.377 0.042 0.362 0.038 

Climate Set 2     

Climate index† 0.349 0.868 −0.203 1.033 

Weather Set 1     

Dummy, ARC2 low rain NJ 0.171 0.377 0.076 0.265 

Dummy, High SPI NJ 0.245 0.430 0.016 0.126 

Dummy, ARC2 high rain RS 0.398 0.490 0.137 0.344 

Dummy, ARC2 dry pd rain 0.304 0.460 0.517 0.500 

Weather Set 2     

Dummy, high SPI NJ 0.245 0.430 0.016 0.126 

Dummy, CHIRPS high rain RS† 0.142 0.349 0.052 0.223 

Dummy, ARC2 dry pd rain 0.304 0.460 0.517 0.500 

New production function     

Elevation (km) 1.705 0.179 1.722 0.177 

Slope 12.1 8.4 15.0 7.9 

Average age of coffee trees 23.8 15.1 24.1 13.9 

Any labour hired on coffee plot 0.605 0.489 0.620 0.486 

Hectares under coffee 0.965 3.934 5.422 52.113 

# coffee trees owned 1034 1231 683 716 

Value of labour 19000 40881 29311 79092 

Dummy, organic fertilizer 0.048 0.213 0.050 0.218 

Dummy, inorganic fertilizer 0.151 0.358 0.112 0.316 

Dummy, pesticide 0.130 0.337 0.100 0.300 

Years cultivating coffee 27.909 14.871 29.345 14.533 

Dummy, HH head female 0.200 0.400 0.198 0.399 

HH head years of schooling 4.562 3.342 4.744 3.299 

Housing index 0.361 0.179 0.379 0.180 

Productive assets index 0.986 0.782 1.171 0.936 

Dummy, training from co-op in 5  0.537 0.499 0.494 0.500 

HH fee to join co-op 19233 33836 21658 41095 

Cherries processed by co-op 233.2 291.3 552.0 406.9 

Co-op washing station utilization 62.6 53.1 80.9 33.5 

Distance to road (km) 4.173 3.346 3.816 2.850 

† indicates four missing observations due to limitations of the climate dataset. 
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