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FOREWORD FROM THE EDITOR

In March of 1938 Dr. Shewhart, through the courtesy of the Bell Tele-

phone Laboratories, delivered a series of four lectures under the title of this

book at the Graduate School of the Department of Agriculture. Of late

years there has been a tremendous interest among agricultural research

workers in distribution theory and in statistical testing of hypotheses, as a

consequence of which there has grown up a corresponding thirst for knowl-

edge and new methods in inference. The Graduate School has persistently

endeavoured to supply the requisite academic courses, and to supplement

them wherever possible by lecturers from other fields and other lands.

Such is a brief description of the circumstances under which Dr. Shewhart

came to Washington.

We found that though his experience had been in manufacturing, we in

agriculture are faced with the same problems, but not with the same penalties

for misuses and abuses of the theories that we apply. When machines are

turning out pieceparts by the thousands or even millions monthly, the

industrial statistician does not have to wait long to see his predictions

tested out. In agriculture, years are often required—a crop must be sowed

and harvested again and again until the evidence is definitely for or against

the prediction that one treatment is actually better than another, and by

the time the question is settled, not only the statistician who made the

prediction, but the prediction itself may be forgotten. With time in our

favor it is easy to become careless about fundamentals.

An inference, if it is to have scientific value, must constitute a prediction

concerning future data. If the inference is to be made purely with the help

of the distribution theories of statistics, the experiments that constitute

the evidence for the inference must arise from a state of statistical control;

until that state is reached, there is no universe, normal or otherwise, and

the statistician’s calculations by themselves are an illusion if not a delusion.

The fact is that when distribution theory is not applicable for lack of control,

any inference, statistical or otherwise, is little better than conjecture. The
state of statistical control is therefore the goal of all experimentation.

Dr. Shewhart is in a position to speak with authority on some aspects of

these questions. In his experience he has found that it is exceedingly more
difficult than is commonly supposed to weed out the causes of larger varia-

tion, but that it can usually be done through careful attention to the control

chart and to the physical mechanism of the experiment or production process.

Unfortunately not one but many experiments seem to be required.

iii



IV FOREWORD

The scientific viewpoint is that every statement must be capable of

being tested. If a statement can not be put to a test, it has no value in

practice. Dr. Shewhart kept this viewpoint throughout his lectures. Here
for the first time we see operationally verifiable meanings for well-known

statistical terms such as random variable, accuracy, precision, true value,

probability, degree of rational belief, and the like, all of which are necessary

if statistics is to take its rightful place as a tool of science. Here also we
see a criterion of meaning that has been found useful in guiding the applica-

tion of statistical technique in industry.

Most of us have thought of the statistician’s work as that of measuring

and predicting and planning, but few of us have thought it the statistician’s

duty to try to bring about changes in the things that he measures. It is

evident, however, from the first chapter that this viewpoint is absolutely

essential if the statistician and the manufacturer or research worker are to

make the most of each other’s accomplishments. What they are capable

of turning out jointly is the sum of their independent efforts augmented by
a strong positive interaction term. Likewise the value of a book is not

just the sum of the values of the chapters separately; each chapter, even

each paragraph, has a meaning that is conditioned by all the others. The
subject of quality control is not fully expressed by any single idea, and the

first chapter must be interpreted in the light of the last.

It has been the duty of the editor to promote clarity by altering the

manuscript where it has seemed desirable to do so in order that the ideas

expressed in the book will be understood, operationally, in the sense in

which Dr. Shewhart understands them himself. Most of the cross-

referencing, and many of the footnotes, signed and unsigned, are from the

editor. It has been of particular satisfaction to work so closely with Dr.

Shewhart on the production of this book, because it was he who introduced

me to some of the modern statistical literature back in 1928.

It is a pleasure to record the generous assistance of Lee Garby (Mrs.

C. D. G.) for checking the references and for making a number of suggestions

in proof. The expert help of the accommodating printer, the Lancaster Press,

Inc., has been a delight to the author and editor. In conclusion, it is fitting

that attention should be drawn to the fact that this book is one more

contribution to science from the staff of the Bell Telephone Laboratories.

If the world were deprived of the contributions to science that have origi-

nated from that great organization, it would be a different one indeed.

W. E. D.
Washington

February 1939



PREFACE

Statistical methods of research have been highly developed in the field

of agriculture. Similarly, statistical methods of control have been developed

by industry for the purpose of attaining economic control of quality of

product in mass production. It is reasonable to expect that much is to be

gained by correlating so far as possible the development of these two kinds

of statistical techniques. In the hope of helping to effect this correlation,

it was with pleasure that I accepted the invitation to give a series of four

lectures on statistical method from the viewpoint of quality control

before the Graduate School of the Department of Agriculture. The subject

matter of these lectures is limited to an exposition of some of the elementary

but fundamental principles and techniques basic to the efficient use of the

statistical method in the attainment of a state of statistical control, the

establishment of tolerance limits, the presentation of data, and the specifica-

tion of accuracy and precision. I am indebted to many, and in particular

to Dr. W. Edwards Deming, for the helpful criticisms and stimulating

questions brought out in the discussion periods following the lectures and

in private conferences.

In preparing these lectures for publication, it has been a pleasure and

a privilege to have the wholehearted cooperation of the editor, Dr. Deming,

who has contributed many helpful suggestions and has done much to help

clarify the text. My colleague, Mr. H. F. Dodge, has given continuing

help and advice over the past several years in the development of the

material here presented. Miss Miriam Harold has contributed many help-

ful suggestions at all stages of the work and has for the most part borne the

task of accumulating and analyzing the data, of drawing the figures, and

putting the manuscript in final form. To each of these, I am deeply in-

debted. For many courtesies extended to me at the time the lectures were

given, I am indebted to Dr. A. F. Woods, Director of the Graduate School.

W. A. Shewhart
Bell Telephone Laboratories, Inc.

New York
August 1939



The application of statistical methods in mass pro-

duction makes possible the most efficient use of raw

materials and manufacturing processes, effects econ-

omies in production, and makes possible the highest

economic standards of quality for the manufactured

goods used by all of us. The story of the application,

however, is of much broader interest. The economic

control of quality of manufactured goods is perhaps

the simplest type of scientific control. Recent studies

in this field throw light on such broad questions as:

What is the fundamental role of statistical method in

such control? How far can Man go in controlling his

physical environment? How does this depend upon

the human factor of intelligence and how upon the

element of chance?

vi
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CHAPTER I

STATISTICAL CONTROL

The possibility of improving the economy of steel to the

consumer is therefore largely a matter of improving its uni-

formity of quality, of fitting steels better for each of the multi-

farious uses, rather than of any direct lessening of its cost of

production.1

John Johnston, Director of Research
United States Steel Corporation

Introduction. Three steps in quality control. Three senses of statis-

tical control. Broadly speaking, there are three steps in a quality control

process: the specification of what is wanted, the production of things to

satisfy the specification, and the inspection of the things produced to see

if they satisfy the specification. Corresponding to these three steps there

are three senses in which statistical control may play an important part in

attaining uniformity in the quality of a manufactured product: (a) as a

concept of a statistical state constituting a limit to which one may hope to

go in improving the uniformity of quality; (b) as an operation or technique

of attaining uniformity; and (c) as a judgment. Here we shall be con-

cerned with an exposition of the meaning of statistical control in these

three senses and of the role that each sense plays in the theory and technique

of economic control. But first we should consider briefly the history of

the control of quality up to the time when engineers introduced the statistical

control chart technique, which is in itself an operation of control.

Some Important Historical Stages in the Control of Quality

To attain a perspective from which to view recent developments, let us

look at fig. 1. That which to a large extent differentiates man from animals

is his control of his surroundings and particularly his pro-
&tted

duction and use of tools. Apparently the human race began
10,000 years ago .... r f i

the fashioning and use of stone tools about a million years

ago, as may be inferred from the recent discovery just north of London 2

1 “ The applications of science to the making and finishing of steel,” Mechanical Engineer-

ing
,
vol. 57, pp. 79-86, 1935.
2 This discovery is reported in Man Rises to Parnassus by H. F. Osborn (Princeton

University Press, 1928). The photograph of the stone implements (fig. 1) of a million

years ago has been reproduced by permission from this most interesting book. Those of

the implements of 150,000 and 10,000 years ago have been reproduced by permission from
the fascinating story told in Early Steps in Human Progress by H. J. Peake (J. B. Lippin-
cott, Philadelphia, 1933).

1



2 STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CONTROL

of the crude stone implements shown at the left in fig. 1. Little progress

in control seems to have been made, however, until about 10,000 years ago
when man began to fit parts together in the fashion evidenced by the holes

in the instruments of that day.

Fig. 1

Throughout this long period, apparently each man made his own tools,

such as they were. As far back as 5000 years ago the Egyptians are sup-

posed to have made and used interchangeable bows

SaTt
Ch

n87
eat>le parts~ and arrows to a limited extent, but it was not until

about 1787, or about a hundred and fifty years ago,

that we had the first real introduction of the concept of interchangeable

parts. Only yesterday, as it were, did man first begin to study the tech-

nique of mass production!

From the viewpoint of ideology, it is significant that this first step was

taken under the sway of the concept of an exact science, according to which

an attempt was made to produce pieceparts to
“Go” tolerance limits, 1840; exact dimensions. How strange such a proce-
“ go, no-go,” 1870

, , ,
./* , ,

dure appears to us today, accustomed as we are to

the use of tolerances. But as shown in fig. 2, it was not until about 1840

that the concept of a “go” tolerance limit was introduced and not until

about 1870 that we find the “go, no-go” tolerance limits. 3

Why these three steps: “exact,” “go,” “go, no-go”? The answer is

quite simple. Manufacturers soon found that they could not make things

3 It will be noted that the first six dates shown in fig. 2 are given with a question mark
—authorities are not in unanimous agreement as to the exact dates. I think, however,

that the dates here shown will be admitted by all to be sufficiently close approximations.



STATISTICAL CONTROL 3

exactly alike in respect to a given quality; moreover, it was not necessary

that they be exactly alike, and it was too costly to try to mak^ them so.

Hence by about 1840 they had eased away from the requirement of exact-

LITTLE
,
IF ANY, CONTROL

1,000,000 BC
?

BEGINNING
OF CONTROL

300,000 BC
7

PARTS INTERCHANGE-
FIRST FITTED ABILITY
TOGETHER^ INTRODUCED

1 p.937

8000 BC 1787

7 ?

EXACT

1787

QUALITY
CONTROL

GO
1

GO NO-GO
1

CHART
I

1

1840
1

1870
1

1924
7 7

Fig. 2

ness to the “go” tolerance. Let us see how this worked. If we take, for

example, a design involving the use of a cylindrical shaft in a bearing, one

might insure interchangeability by simply using a suitable “go” plug gauge

on the bearing and a suitable “go” ring gauge on the shaft. In this case,

the difference between the dimensions of the two “go” gauges gave the

minimum clearance. Such a method of gauging, however, did not fix the

maximum clearance. The production man soon realized that a slack fit

between a part and its “go” gauge might result in enough play between the

shaft and its bearing to cause rejection, and for this reason he tried to keep

the fit between the part and its “go” gauge as close as possible, thus involv-

ing some of the same kind of difficulties that had been experienced in trying

to make the parts exactly alike. The introduction of the “go, no-go”

gauge in 1870 was therefore a big forward step in that it fixed the upper and

lower tolerance limits on each fitting part, thus giving the production man
more freedom with a resultant reduction in cost. All he had to do was

stay within the tolerance limits—he didn’t have to waste time trying to be

unnecessarily exact.

Though this step was of great importance, something else remained to

be done. The way the limits are necessarily set is such that every now and

then pieces of product are produced with values of the

inspection

PaItS
’ Quality characteristic falling outside its specified range or,

in other words, defective. To junk or modify such pieces

adds to the cost of production. But to find the unknown or chance causes

of defectives and to try to remove them also costs money. Hence after the

introduction of the go, no-go tolerance limits, there remained the problem

of trying to reduce the fraction p of defectives to a point where the rate of

increase in the cost of control equals the rate of increase in the savings

brought about through the decrease in the number of rejected parts.



4 STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CONTROL

For example, in the production of the apparatus going into the telephone

plant, raw materials are gathered literally from the four corners of the earth.

More than 110,000 different kinds of pieceparts are produced. At the

various stages of production, inspections are instituted to catch defective

parts before they reach the place of final assembly and are thrown out. At
each stage, one must determine the economic minima for the sizes of the

piles of defectives thrown out.

This problem of minimizing the percent defective, however, was not

the only one that remained to be solved. Tests for many quality character-

istics—strength, chemical composition, blowing time
Destructive tests; 0f a fuse anj g0 on—are destructive. Hence not
necessity for sampling. . „ . , . , ,

. .

How large a sample? every piece ol product can be tested, and engineers

must appeal to the use of a sample. But how large a

sample should be taken in a given case in order to gain adequate assurance of

quality?

The attempt to solve these two problems gave rise to the introduction

of the operation of statistical control involving the use of the quality control

chart in 1924, and may therefore be taken as the starting

^iurt
l1

W24
C°ntro1

point of the application of statistical technique in the

control of the quality of a manufactured product in

the sense here considered.

Why, you may ask, do we find, some one hundred and fifty years after

the start of mass production, this sudden quickening of interest in the

application of statistical methods in this field? There are
Why after 1900? ^ jeag ^. ^wo imp0rtant reasons. First, there was the rapid

growth in standardization. Fig. 3 shows the rate of growth in the number
of industrial standardization organizations both here and abroad. The
first one was organized in Great Britain in 1901. Then beginning in 1917

the realization of the importance of national and even international stand-

ards spread rapidly. The fundamental job of these standardizing organiza-

tions is to turn out specifications of the aimed-at quality characteristics.

But when one comes to write such a specification, he runs into two kinds of

problems: (1) minimizing the number of rejections, and (2) minimizing the

cost of inspection required to give adequate assurance of quality in the sense dis-

cussed above. Hence the growth in standardization spread the realization

of the importance of such problems in industry.

Second, there was a more or less radical change in ideology about 1900.

We passed from the concept of the exactness of science in 1787, when in-

terchangeability was introduced, to probability and statistical concepts

which came into their own in almost every field of science after 1900.

Whereas the concept of mass production of 1787 was born of an exact

science, the concept underlying the quality control chart technique of 1924

was born of a probable science.
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We may for simplicity think of the manufacturer trying to produce a

piece of product with a quality characteristic falling within a given tolerance

range as being analogous to shooting at a mark. If one of us were shooting

at a mark and failed to hit the bull's-eye, and some one asked us why, we

o
<z

2
D
Z

5

GREAT BRITAIN

0 L -*

1900 1910

CHINA
GREECE
SPAIN
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FRANCE
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NETHERLANDS

1920
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Fig. 3

should likely give as our excuse, CHANCE. Had some one asked the same

question of one of our earliest known ancestors, he might have attributed

his lack of success to the dictates of fate or to the will of the gods. I am
inclined to think that in many ways one of these excuses is just about as

good as another. Perhaps we are not much wiser in blaming our failures

on chance than our ancestors were in blaming theirs on fate or the gods.

But since 1900, the engineer has proved his unwillingness to attribute all

such failures to chance. This represents a remarkable change in the

ideology that characterizes the developments in the application of statistics

in the control of quality.

Developments since 1870. With the introduction of the go, no-go

tolerance limits of 1870, it became the more or less generally accepted

practice to specify that each important quality characteristic X of a given

piece of product should lie within stated limits L\ and L 2 ,
represented

schematically in fig. 4. Such a specification is of the nature of an end

requirement on the specified quality characteristic X of a finished piece of

product. It provides a basis on which the quality of a given product may
be gauged to determine whether or not it meets the specification. From
this viewpoint, the process of specification is very simple indeed. Knowing
the limits L\ and L 2 within which it is desirable that a given quality charac-
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teristic X should lie, all we need to do is to put these limits in writing as a

requirement on the quality of a finished product. With such a specification

at hand, the next step is to make the measurements necessary to classify a

piece of product as conforming or nonconforming to specification.

QUALITY X
j

,

L
l

L2

Fig. 4

At this point, however, two problems arise. Suppose that the quality

under consideration, the blowing time of a fuse for example, is one that can

be determined only by destructive tests. How can

nc>

m
^>^ tolersmce limits

g°* 0ne ^ve assurance that the quality of a fuse will

often* unsTttsf^tory
S

meet its specification without destroying the fuse in

the process? Or again, even where the quality

characteristic can be measured without destruction, there is always a

certain fraction p falling outside the tolerance limits. How can we reduce

this nonconforming fraction to an economic minimum? A little reflection

shows that the simple specification of the go, no-go tolerance limits (p. 3)

is not sufficient in such instances from the viewpoint of economy and
assurance of quality.

As was mentioned at the beginning of this chapter, we shall consider con-

trol from the viewpoints of specification, production, and inspection of

quality, as is necessary if we are to understand clearly the role played by
statistical theory in the economic control of the quality of a manufactured

product. To illustrate, suppose we fix our attention on some kind of

material, piecepart, or physical object that we wish to produce in large

quantities, and let us symbolize the pieces of this product by the letters

0\, O 2 ,
*

*
•

, Ot, • •
•

,
On, On+ 1,

• *
*

,
On+j, *

*
* (1)

presuming that a given process of production may be employed to turn out

an indefinitely large number of pieces. We shall soon see that correspond-

ing to the three steps in control there are at least three senses in which the

phrase “ statistical control” may be used in respect to such an infinite

sequence of product.

In the first place, prior to the production of any of the O’ s, the engineer

may purpose to attain a sequence of 0’s that have the property of having-

been produced under a state of statistical control.

of'stafetical control

State
In the second Place >

the engineer, before he starts

the production of any specific sequence of objects, is

pretty sure to focus his attention on the acts or operations that he wishes

to be carried out in the production of the pieces of product. Often, when
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the aim is to produce a sequence of objects having a specified quality

characteristic within some specified limits, the engineer will refer to the

process of production as an operation of control . The available scientific

and engineering literature, for example, contains many articles discussing

“the control of quality” by means of gauges, measuring instruments, and

different forms of mechanical technique: much of this

The operation of control, literature makes no reference to the use of statistics,

Jtatist^cdcontrol though in recent years the actual operations of con-

trol have often involved the use of statistical tech-

niques such as, for example, the control chart. In order to distinguish the

operation of control in the more general sense from that in which statistical

techniques are used for the purpose of attaining a state of statistical control,

it is customary to think of the latter as an operation of statistical control.

That which transforms an operation of control into an operation of statistical

control is not simply the use of statistical techniques, but the use of statis-

tical techniques that constitute a means of attaining the end characterized

here as a state of statistical control. It should be noted that the end desired

may be conceived of prior to the production of any sequence of objects

symbolized in (1) that have the desired characteristics, and independently

of whether any such sequence can be produced. For example, we may con-

ceive of a state of statistical control although we know of no way of attaining

such a state in practice. In contrast, before we can describe an operation

of statistical control, except to say that it is a means to an end, we must find

by experiment such an operation.

A requirement regarding control. Let us consider the following specified

end requirement:

A. The quality of the 0’s shall be statistically controlled in

respect to the quality characteristic X.

As an example, the product might be condensers and the quality character-

istic X the capacity; the product might be pieces of steel and X the carbon

content; or the product might be any other kind of object with an associated

quality characteristic. The natural thing to do is to think of this require-

ment (A) as expressing a condition that the qualities of a sequence of pieces

of product represented by the 0’s in (1) shall be found to have when made.

For example, we might, as we shall soon see, interpret this requirement as

meaning that the sequence of values of the quality characteristic X belong-

ing to the sequence of objects of (1) shall be random. On the other hand,

we might interpret the requirement (A) as implying that the cause system

underlying the operation of producing the objects satisfies certain physical

requirements. In any case, the requirement itself may be, and usually is,

stated prior to the production of any of the 0’s in (1).
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A probable inference regarding control. Now let us contrast the re-

quirement (A) with the following statement regarding control:

B. The quality of the O’s is statistically controlled in respect

to the quality characteristic X.

This is a judgment or probable inference that the quality of the product actu-

ally meets the requirement expressed by (A). Since we are here assuming

that the process of manufacture is capable of turning out an indefinitely

large number of pieces of product, it follows in practice that the statement

(B) implies a prediction about O’s not yet made: as a probable inference it

is based on past evidence obtained in the process of making some pieces of

product and in testing them. In other words, it is an inference carried from
the product already made to that which is to be made in the future. The full

meaning of statement (B), as we shall see later, must depend upon a con-

sideration not only of the sense of control implied as a requirement but also

as an inference based upon specific evidence that this requirement has been

met.

It is therefore essential that we examine carefully the three senses of

statistical control: 1st, as a characterization of the state of control; 2d, as

an operation; 3d, as a judgment. This is necessary if we are to see how the

attainment of the economic control of the quality of a manufactured product

involves the coordination of effort in the three steps: specification, produc-

tion, and inspection, as is depicted graphically in fig. 10, page 45.

The State of Statistical Control

Two views

of control

The idea of control involves action for the purpose of achieving a desired

end. Control in this sense involves both action and a specified end. For

example, in the quotation at the head of this chapter, we
have an expression of the need for controlling the quality of

steel to attain the end of greater uniformity. The man who
is to do the controlling is likely to focus his attention on what he is supposed

to do or on what action he is supposed to take in the process of making the

steel, whereas the man who uses the steel may be primarily interested in the

end result as determined by the quantitative measurements of the quality

of the finished product. Hence there are two ways of viewing control in

general and statistical control in particular; namely from the viewpoint of

the physical act of production, and from that of the end results as mani-

fested in the uniformity of quality. Correspondingly, there are two ways

of conceiving of the state of statistical control, namely, as a physical state

describable in physical terms, and as a mathematical state characterized

by the quantitative aspects of the end results and describable in mathe-

matical terms and an operation of drawing at random.
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Some may prefer to say that there is no mathematical state of control,

but instead that there is simply a mathematical description of a physical

state. This is perfectly satisfactory so far as I see if we think of the mathe-

matical description as including an explanation of what the mathematical

statistician means by the operation of drawing a sample at random and not

simply the description of the results that he obtains mathematically. How-
ever, in much the same sense, there is no observable physical state of control

except in descriptive terms characterizing some operation such as drawing

a sample with replacement from a bowl, repeating an observation under the

same essential conditions, or going as far as one can go in the process of con-

trolling quality by finding and removing causes of variability. To be more

exact, therefore, we should perhaps speak of the physical and mathematical

descriptions of the state of control, but it will simplify matters to speak only

of the ‘‘physical and mathematical states” in our attempt to relate the

physical and mathematical operations.

As a background for our consideration of the two states of statistical

control, we shall start with the aim of the engineer to manufacture a product

of uniform quality. We shall take this to imply that the quality should be

reproducible within limits
,

4 or that the engineer should be able to predict

with minimum error the percentage of the future product that will be turned

out by a given process with a quality within specified limits. The engineer

desires to reduce the variability in quality to an economic minimum. In

other words, he wants

(a) a rational method of prediction that is subject to mini-

mum error, and

( b) a means of minimizing the variability in the quality of a

given product at a given cost of production.

Is it possible to control the production process so that these two wants
may be satisfied? If so, how shall the engineer know when the production

process is in such a state of control? How can this state be characterized?

Shall it be by describing the physical operations that the engineer goes

through in producing the product; shall it be in terms of quantitative data

obtainable from the product in such a state of control; or shall it be by
means of a combination of the two? As a basis for answering such ques-

tions, we must consider on the one hand the physical aspects of the state of

control, and on the other hand the mathematical aspects of the quantitative

data obtainable under a given state of control.

The physical state of statistical control. The ideal bowl experiment.
Let us consider first an idealized experiment. Let us assume that we have

4 Sometimes the term homogeneous is used instead of the more descriptive phrase
“reproducible within limits.”
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N physically similar chips on each of which is written a number. We place

these in a bowl and draw successive samples of n chips one at a time with

replacement and thorough mixing .

5 Experience shows that the differences

between samples drawn under such conditions are predictable in a probabil-

ity sense and that there is nothing that we can do to reduce the variability

in the complexion of the samples. Hence the physical operation involved in

getting such a series of samples constitutes an empirical means of describing

a physical state of statistical control.

However, the engineer does not deal with drawings from a bowl. In-

stead he deals with measurements of one kind or another. Let us assume
that it is possible to attain a physical state of statistical control of such

measurements. How does the engineer set about attaining such a state?

The answer is that in making a series of repetitive measurements of a

physical constant or in producing units of the same kind of product, he

tries to control all of the causes of variability until he has attained a state

where the conditions remain, as he says
,

6 “essentially the same.”

It may be helpful to note that the concept of a physical state of statistical

control as illustrated by the example of drawings from a bowl appears to be

much the same as the concept of doing something “physically at random.”

For example, Neyman 7 says: “There are experiments which, even if carried

out repeatedly with utmost care to keep the conditions constant, yield

varying results. They are ‘random.’” Does this mean that we can rely

upon our ability to perceive when conditions are being controlled with the

utmost care, and that we shall not go astray by calling such experiments

random and acting as though they were random? It seems to me that it is

far safer to take some one physical operation such as drawing from a bowl

as a physical model for an act that may be repeated at random, and then to

require that any other repetitive operation believed to be random shall in

addition produce results similar in certain respects to the results of drawing

from a bowl before we act as though the operation in question were random.

This seems particularly advisable in the light of my own experience which

5 See my Economic Control of Quality (Van Nostrand, New York, 1931); on p. 164 is a

description of a normal bowl, and in Appendix II is a record of 4000 drawings therefrom,

together with various calculations on them.
6 Such a characterization of a physical state of statistical control is subjective, and

usually all authorities will not agree in a given case that such a state has been attained.

It is true that a subjective judgment is involved in setting up the ideal bowl experiment

of the previous paragraph. Experience shows, however, that in the case of the bowl,

probability theory is usually applicable, and fluctuations in the complexion of the samples

are usually accepted as being at a minimum. My own experience indicates that this situa-

tion does not hold, in general, for fluctuations in measurements arising under conditions

merely judged to remain essentially the same.
7 J. Neyman, Lectures and Conferences in Mathematical Statistics (The Graduate School,

The Department of Agriculture, Washington, 1938), p. 21.
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indicates that almost all sets of data taken under “presumably the same

essential conditions” fail to satisfy the additional requirement that they be

in certain ways like those drawn from a bowl (see chapters II and III).

The concept of a state of statistical control must define in an abstract

way the physical state of statistical control, and hence something supposedly

common to all specific instances. Thus even if we agree that sampling

from a bowl constitutes a physical state of statistical control, what is there

common about such a physical state and any physical state of statistical

control of some production process? The answer appears to be: By their

results we shall know them. The only way in which we may hope to define

objectively a common characteristic of such states is in terms of certain

quantitative aspects of their observable characteristics. But in order to get

such a basis of comparison, we must go to mathematics and try to find some

abstract way of describing a state of statistical control in terms of character-

istics of sequences of numbers that we expect to get by repeating an opera-

tion arbitrarily chosen as a random one.

In trying to formulate some of the important characteristics of a useful

concept of a mathematical state of statistical control we should keep in

mind that the state of statistical control is something presumably to be de-

sired, something to which one may hope to attain; in other words it is an

ideal goal. We may conceive of this state prior to the act of attaining it in

a given instance and irrespective of whether it can be attained in practice.

The delineation of such a concept is a priori and definitive whereas the ap-

plication of the concept to a particular given physical state of control is hypo-

thetical. The concept of a state of control is used in this definitive sense

in the requirement A (p. 7) that the quality of the product shall be statis-

tically controlled in respect to the quality characteristic X, whereas it ap-

pears in the hypothetical sense in the corresponding judgment B (p. 8).

In order to be of practical use, the state of statistical control should not be

defined solely in terms of either the physical cause system or the results

produced by the cause system. Instead, it should be defined in terms of

both the perceivable characteristics of a cause system that is capable of

producing an infinite sequence, and the quantitative characteristics of the

infinite sequence produced by such a cause system.

The mathematical state of statistical control. Let us think of the

chance cause system as controlling the variation in quality of a given

product in such a way that the expected frequency dp of producing a piece

of product with a quality characteristic X lying within the range X ± \ dX
is given by an expression of the form

dp = f(X) dX

where / is a mathematical function.

(2)
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The mathematician may be inclined to accept equation (2) as defining

mathematically a statistical universe representing a statistical state of

control in respect to the quality X. However, let us see why equation (2)

can not be taken as the complete description of what is here meant by
statistical state. Let us consider, for example, a production process turning

out an indefinitely large sequence (1) of objects having a certain quality X.

Let

Xl
}
X2) * ; Xi }

*
)
Xn

)
Xn-\-l)

) (3 )

represent single measurements on the qualities of such a sequence of objects

taken in the order of their production. Can we use equation (2) as a basis

for determining whether the sequence (3) arose under statistically controlled

conditions? There are, as we shall now see, three reasons why this can

not be done.

First, even for the infinite sequence, there is no unique function / to

be used as a basis for comparison. Second, equation (2) describes a prop-

erty of an infinite sequence that is approached as a statistical limit and not

a property of a finite portion thereof such as we always have in practice.

Third, there is nothing in such a definition that explicitly places any restric-

tion on the order in the sequence (3) even though it is essential that this

order should be what the mathematician refers to as random.

Let us consider in more detail each of these three limitations. Some
of the earliest attempts to characterize a state of statistical control were

inspired by the belief that there existed a special

Need for differentiating form of frequency function / and it was early argued

Statistical State of control
that the normaI law characterized such a state.

When the normal law was found to be inadequate,

then generalized functional forms were tried. Today, however, all hopes

of finding a unique functional form / are blasted. Even if there did exist

such a unique function /, we should still be faced with a second difficulty,

namely, that such a function would be descriptive of a property of the

whole of the infinite sequence and not of a part of it. In consequence, we

should have to take a comparatively large sample before we should be

justified in judging whether the degree of fit between a theoretical curve

and the observed distribution in a finite portion of the sequence warranted

the belief that the sequence was statistically controlled. Worse than that,

however, is the fact that the functional form of a distribution is independent

of the order of occurrence of the observed values in a sequence and hence is

not a criterion of randomness.

In this connection, it will have been noted that in stating equation (2)

we have spoken of dp as an expected frequency, and not as a probability
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as is often done. In general, we may say that a variable X has the fre-

quency function /(X) if the frequency of occurrence of X in any arbitrarily

chosen range a < X < jS is measured by f /(X) dX, the frequency func-
Ja

tion being so defined that the integral between + oo and — <» is equal to

unity. We may take the concept of frequency as primary and essentially

undefined. Often it is said that this integral expresses the probability

that X lies between a and /3. It should be noted, however, that the fre-

quency expressed by this integral is a property of the infinite sequence as

a whole and does not necessarily fix the order in the sequence. On the

other hand, to state that the probability that X will fall within the interval

a < X < (3 is equal to the integralPm dX implies that the variable

exhibits what we usually speak of as a random order. The concept of a

mathematical state of statistical control must involve some operationally definite

meaning for random order.

An attempt at defining random order for infinite sequences. What the

engineer would like to have, therefore, is an infinite sequence of. numbers

that would characterize once and for all the order that a statistically con-

trolled state of causes may be expected to give. Let us assume for a

moment that the numbers

®1, S 2 ,
*

*
*

,
Sn ,

Sn-|_i, *
,
Sn -|-j, •

•
• (4)

constitute such a sequence. How then should we compare sequences (3)

and (4)? Particularly, how should this be done when we have observed

only a finite number n of terms of the infinite sequence (3)? These are

questions calling for the cooperation of the mathematical statistician.

First, let us consider briefly the problem of characterizing once and for

all a random comparison sequence symbolized by (4). We may start with

a consideration of the method proposed by von
Requirements devised by Mises 8 and others. In accord with this proposal,

encountered two requirements are placed on an infinite sequence

in order that it may be called random. Let p be the

fraction of the first n numbers in the infinite sequence (3) lying within any
arbitrarily chosen interval a < X < (3. Then the first requirement is that

the limit

Lim p = p' (5)
n—><x>

8 For a statement of the requirements here attributed to von Mises, see H. Cramer,
Random Variables and Probability Distributions (Cambridge, 1937), p. 4. See also S. S.

Wilks, Statistical Inference (Princeton Mathematical Notes, 1937), pp. 1, 2.
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shall exist where p' is a constant. The second requirement is that the anal-

ogous limit shall exist and have the same value p' for every subsequence

that can be formed from (3) according to a specified operation A such that

it can always be decided whether the fth observation of (3) should belong

to a given subsequence without knowing the magnitude of this particular

observation .

9 It may be helpful to symbolize this procedure as follows:

The original 1

infinite \

sequence

\xlf xt ,
• •.Xi, X., Xn+lj •

•
,
Xn+j, (3)

An infinite All, Ai2, • Xu, ••'

*
, Xin, Xl, 71+1 ,

*
'

)
Xl, 71+/)

number of

infinite se-

quences each

derived by re-

X2i ,
X22 ,

• •
•

,
x»,

j
X211 )

X2 , »+1,
• *

*
)
X2> 71+ 7 ,

(3a)

arranging (3)

according to

some specified

operation A

X kl) Xfc2 ,

*
•

J Xki, *
y Xkn

)

Xk, 71+1)
’ •

•
,
Xk, n+j,

It is to be understood that every number Xu in the infinite set

of sequences (3a) is a member of (3), and that every member
of (3) is to be used once and only once in any one sequence

of (fla).

In general, then, the test for randomness of an infinite sequence (3) becomes

one of determining whether or not the original sequence belongs to the class

created by the operation A, as fixed by the two requirements just stated.

At least three difficulties arise in trying to use this concept of random-

ness in quality control work. In the first place, it is recognized 10 that

ignorance of the magnitude of X is not a good criterion of independence in

selection. For example, Kendall and Smith argue that there is no such

thing as a random selection from a universe considered apart from the

universe whose members are being selected. In the second place, there is

no available practical means of comparing sets of infinite sequences in the

way proposed. In the third place, we never have an observed infinite

sequence (3) to start with. What the practical man wants is a method

for determining whether or not a finite sequence consisting, let us say, of the

first n terms of (3) is random.

9
Cf. H. Cramer, Random V ariables and Probability Distributions (Cambridge Univ.

Press, 1937), p. 4.

10 For an interesting discussion of randomness from a viewpoint much the same as

here presented, see the article by M. G. Kendall and B. Babington Smith, “Randomness
and random sampling numbers,” Jour. Roy. Stat. Soc., vol. ci, pp. 147-166, 1938.
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An attempt at defining random order for finite sequences. Let us under-

take to determine in what way it is meaningful in an operationally verifiable

sense to ask whether an observed sequence of n terms is random. If we

choose, as I have done above, to consider the operation of drawing from a

bowl random, we may theoretically obtain an infinite class of finite sequences

composed of these same n numbers in the following simple way. Let us

write the n numbers on as many symmetrical chips, put the chips in a bowl

and mix them thoroughly. Then let us draw the numbers out one at a

time without replacement and record them in the sequence drawn. By
repeating this process indefinitely, we get an infinite set (3 5) of finite

sequences of n numbers each with which to compare the original sequence.

Infinite set of finite sequences,

each being one of the n\ possible

orders in which the n chips can

be drawn from the bowl

Xn, Xu, Xu, •• *
, Xin

x21 ,
x22 ,

x23 ,

••
•, x2n

x31 ,
X32 ,

X33, •
•

j
X^3n

xkl ,
x fc2 ,

x*3 ,

• • X,n

(35)

It is to be understood that any number Xij in this infinite set of

sequences is some one of the n numbers drawn from the bowl.

Now since only n \ different sequences are possible with n chips, by the time

we have drawn n\ + 1 sequences, some one of the possible n\ orders must

have been repeated at least once. It is usual to assume that in the infinite

set of sequences, all orders occur with equal frequency. On this basis the

order of the original observed sequence is one of the n\ possible orders and
it is neither more nor less likely to occur in the infinite set of comparison

sequences than any other order. For some such reason it has long been

argued cogently by many that we can not hope to define a random sequence

in terms of the properties of that sequence.

Suppose, however, that a scientist or an engineer were to observe a se-

quence of n values of X in which, let us say, each succeeding value of X is

either equal to or greater than the preceding one, as for example, in the

monotonic sequence

X1
< X2 < X3

< • • • < Xi < Xi+1 . . . < xn . (3c)

In the sense that this sequence is a member of the infinite set (35), it is just
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as random as any other. However, I believe that most scientists would
never think of it as a random sequence, particularly if n is reasonably large,

let us say 10 or more. There are also many orders other than that indicated

in (3c) that would likewise not be called random under normal circumstances

if observed in the course of actual experimental work as contrasted with

drawing from a bowl. For example, sequences suggesting functional rela-

tionship or marked trends of the variable X with the order would not likely

be classed as random; e.g. see fig. 32 (p. 147) and accompanying text.

In other words, given any finite sequence of n terms, it is theoretically

possible to write down each of the n ! different orders that might be expected

to occur with equal frequency in the set (3b). The scientist or engineer

looking at these n! orders would distinguish several that, if they had occurred

in his everyday experience, he would not call random. Pushed for an

explanation, he would likely say that the sequences he would pick out of

(3b) and not call random would be those that, if they occurred in the course

of his work, he would attribute to some nonrandom instead of random causal

process. Pushed a little further, he would say that if in practical experi-

mental work he gets one of these orders that he would choose upon the basis

of past experience as being nonrandom, and that if he repeats again and

again the same physical operation, the new sequences thus obtained will

not often be much like the ones he would expect to get if the original finite

sequence had been drawn from a bowd. For example, if he were to obtain

in practical work a trend such as indicated by (3c), he would be more likely

to expect the next m observations to suggest the presence of a trend than

if the original sequence that showed a trend had been obtained by the

random operation of drawing from a bowl. The importance of being able

to get clues from the characteristics of a sequence will be seen later (p. 27).

Now we are in position to make three observations that are of funda-

mental importance in quality control work. First, it appears hopeless to

define random order in a useful way for a specific sequence. Instead it

appears that the only operationally verifiable way to define random order is in

terms of some chosen random operation. A random sequence in this sense

is then simply a member of an infinite class of sequences obtainable through

repetitions of the chosen random operation. Second, what the experi-

mentalist, at least the quality control engineer, implies by saying that a

sequence is not random is something that can be checked only by making

further experiments. For example, the implication may be that further

study of the cause system that produced the original finite sequence called

nonrandom by the experimentalist will reveal ways by which this cause

system may be modified through the process of eliminating assignable causes

;

or the implication may be something operationally verifiable about future

observed values of X given by this cause system that will be character-
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istically different from that produced by the random operation of drawing

from a bowl.

There is of course, on reflection, nothing mysterious about this situation

wherein a sequence is called random if it is known to have been produced by

a random operation, but is assumed to be non-
Randomness not verifiable by

ranc[om if occurring in experience and not known
comparison with other orders

,
.

to have been given by a random operation. 1 he

fact simply is that such an observed sequence may or may not have been

given by a random operation, and past experience has shown that such

sequences occurring in practice are more likely to have arisen as a result of

a nonrandom than of a random operation. In any case, the implication of

the statement that an observed sequence is or is not random can be verified

only in the future and is not one that can be verified by comparing the order

in the observed sequence with any or all of the n\ orders of the same set of

numbers. Third, the experimentalist usually considers the order in any

sequence of observed results to be one of the most helpful clues to the physical

interpretation of his results as a basis for future predictions. He is forever

on the lookout for orders of special importance. When he can no longer

distinguish anything significant in an observed order, he is likely to take it

for granted that the observed data have been taken under the same essential

conditions.

The operation of statistical control to be described shortly is a successful

attempt to extend the usefulness of order in an observed sequence as a

clue to the making of valid predictions in operationally verifiable terms

beyond the place where the experimentalist fails without the aid of a cri-

terion of control to attribute significance to order. To extend the usefulness

of observed order in a sequence in this way is a basic objective of the theory

of statistical control of quality and constitutes an extension of the signifi-

cance attached to order so well established in the history of science.

There are an indefinitely large number of ways in which the order in the

original sequence may be expressed in terms of the order of subsamples of

the original sequence by using an indefinitely large number of different

statistics such as average, standard deviation, and all moment functions, to

mention only a portion of those that are possible. There is also an in-

definitely large number of ways of breaking up the sequence into subsamples.

In other words, we might include all of the results of what is generally termed

the mathematical theory of distribution, to which contributions are being

added daily, as a basis for characterizing the order in such a sequence.

Personally, I like to look upon the theory of distribution as providing an

indefinitely large reservoir of criteria by which one may describe the order

in a sequence characterizing the physical state of statistical control.
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There is no unique description of a state of control. In the last few
paragraphs, we have briefly indicated the many difficulties confronting any-

one searching for a unique description of the characteristics that a sequence

arising from a state of statistical control must have. Evidence has been

given for believing that such a unique description can not be found. Atten-

tion has been directed to the significance of the order in which the numbers
appear in the sequence as constituting a part of the requirement of any
definition of a mathematical state of statistical control; yet here again there

is no definite unique test that is necessary and sufficient to define the order

that the mathematician refers to as random. What then may we conclude

about specifying the state of control in mathematical terms?

It is obvious that we can not hope to specify the mathematical state of

statistical control in a complete manner. All that we can hope to do is to

make some arbitrary choice of criteria and some arbitrary choice of random
operation such as drawing from a bowl to be taken as characterizing such a

state, being careful that each criterion chosen takes into account the order

in the sequence. The definition of random in terms of a physical operation

is notoriously without effect on the mathematical operations of statistical

theory because so far as these mathematical operations are concerned

random is purely and simply an undefined term .
11 The formal and abstract

mathematical theory has an independent and sometimes lonely existence of

its own. But when an undefined mathematical term such as random is

given a definite operational meaning in physical terms, it takes on empirical

and practical significance. Every mathematical theorem involving this

mathematically undefined concept can then be given the following predic-

tive form: If you do so and so, then such and such will happen. Hence the

process of making a physical application of the mathematical theory consists

in specifying the human operations by which physical meaning is given to the

mathematically undefined terms. We can then proceed to determine if

the resultant predictions of physically observable events suggested by carry-

ing out the associated mathematical operations are valid. For the empirical

verification of the usefulness of mathematical statistics, the validity of the as-

sumptions involved in giving a specific physically operational meaning to the

term random is offundamental importance. Hence it is that for the successful

application of statistical theory great care needs to be given to the method

of defining the state of statistical control in terms of the physical operations

and the associated mathematical operations based upon the mathematically

undefined concept of random.

11
Cf. H. Cramer, loc. cit., p. 5; J. Neyman, “Outline of a theory of statistical estimation

based on the classical theory of probability,” Phil. Trans, of the Roy. Soc. of London, vol.

A236, pp. 333-380, 1937; in particular, pp. 338-9.
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How to build a model of a state of statistical control. Postulate I.

Thus far an attempt has been made to indicate some of the important

characteristics of the a priori and definitive concept of a state of statistical

control in terms of the characteristics of an infinite set of infinite sequences

(3a) in one case and an infinite set of finite sequences (36) in another, where

each set is generated by a physical operation characterized as random. It

has been implied that, in quality control work, whenever the system of chance

causes producing variations in an observed sequence (3) of some quality

characteristic X is such as to produce a sequence that is a member of the

class (3a), the chance cause system is to be considered as being in a mathe-

matical state of statistical control or in a state where one can build a mathe-

matical model to represent certain characteristics of that particular state.

The two functions desired of such a model are:

(1) It shall serve as a computing device in making predictions.

(2) It shall suggest new physical experiments to be made in

trying to attain a state of statistical control.

So far as a model can be constructed upon the basis of knowledge of a finite

number n of terms of the sequence (3) to provide valid predictions about the

remainder of the sequence (3), such a model will obviously be of great use

in many engineering applications. In fact the attainment of such a model

is the ideal goal in many instances in establishing economic tolerances in

the sense to be discussed in chapter II.

For reasons already considered, no model can ever be theoretically at-

tainable that will completely and uniquely characterize the indefinitely ex-

pansible concept of a state of statistical control. What is perhaps even

more important, on the basis of a finite portion of the sequence (3)—and

we can never have more than a finite portion—we can not reasonably hope

to construct a model that will represent exactly any specific characteristic

of a particular state of control even though such a state actually exists.

Here the situation is much like that in physical science where we find a

model of a molecule; any model is always an incomplete though useful picture

of the conceived physical thing called a molecule.

In this section, we shall consider the simplest case of building a mathe-

matical model in which the observed sequence (3) is drawn one at a time with

replacement and thorough mixing by some one that is blindfolded or, as we
shall say for short, drawn from a bowl containing an unknown population.

We have already chosen to characterize this operation of drawing as random,

so we can begin at once to construct our model without first testing for

randomness as we shall have to do in the next section when we take up the

problem of attaining a state of statistical control for a manufacturing process.
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All that we shall attempt to do here is to examine briefly but critically

the principles underlying the practical procedure in constructing a model.

First, let us note just what it is that we are to

^“mafSematics cal1 the modeL
.

An imPortant element is the

concept of a universe or more accurately a fre-

quency function

V
' = r ax,

Ja
d'u 0's e' s) dX (2a)

where the indicated integral from a to /3 gives the relative frequency p' of

occurrence of X for the infinite sequence (3) within the interval a, (3, the

integral from — oo to + oo being unity. The other important element of

the model is the formal mathematical theory of distribution that gives the

rules for deriving other distribution functions. We call these derived

functions frequency distributions of statistics of samples of n drawn from

the parent universe, but here again the mathematical operations are, from

the viewpoint of meaning, independent of what the results are called. The
essential fact is that the theory of distribution is purely formal mathematics.

Now let us consider how we are to go from an infinite sequence such as

(3) or, more particularly, from a finite portion thereof, to the universe. As

already noted above, the mathematician postulates that the observed fraction

p of values of X within any arbitrary range a<X</3fora sample of

size n approaches p’ as a limit as n —> oo
,
as indicated in (5) . Likewise, the

mathematician picks out certain functions 0,- (i = 1, 2,
• •

•
,
m) of any finite

portion consisting of n terms (let us say the first n terms) of the infinite

sequence, and postulates that the limits

Lims di = 6' i i = 1, 2,
• •

•
,
m (5a)

n= oo

exist. The same limits are usually postulated for all sequences drawn at

random from the same bowl. As is well known, of course, there is no ac-

cepted way of proving the physical existence of these limits and for that

reason I like to indicate this fact 12 by using the symbol Lim s instead of

Lim. For our present purpose, however, we are interested in the physical

operation associated with the limit (5a) by which we go from a 0* to 0',-,

and the significance thereof from the viewpoint of probable inference.

12 It should perhaps be noted, however, that formal mathematical concepts of limits,

continuity, and the like are introduced in much the same way in many physical theories

where our concept of the physical condition described does not rigorously satisfy the con-

ditions implied by the concepts. For example continuity is a fiction so far as its use in

physical theory is concerned, yet the use of such a concept is often justified by the results

obtained.
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Physically, perhaps the nearest that one can approach the nature of a

statistical limit is by drawing with replacement from an experimental uni-

win fr m a bowl-
verse written on a series of “ physically similar”

does X approach a
’ chips, 13 the ideal bowl experiment previously men-

limit, statistically? tioned (p. 9). Fig. 5 is one such observed approach.
There is no answer The distribution of the numbers written on the chips

in the bowl was approximately normal 14 and symmetrical about zero as an

arithmetic mean. The ordinate of each point is the observed average X for

the sample of size n corresponding to the abscissa of that point; as n varies,
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the average X varies. It is of interest to note how the observed average

swings back and forth about zero, which is sometimes spoken of as the

theoretical limit. Do we know that with increasing sample size the average

X in this particular case approaches any particular value X in the sense of a

statistical limit? No matter how many observations we might take, I

should still not know how we could answer this question with certainty. 16

13 See the reference to one such bowl experiment cited in a footnote on page 10.

14 Any actual distribution must of course be discrete and have definite cut-offs in the

tails. An exactly normal distribution is unrealizable, but is a mathematical artifice to

facilitate calculations. In this problem, the actual distribution of the numbers on the

chips is of no consequence, for we are concerned only whether X approaches a limit statis-

tically, the actual value of the limit, if it exists, being of no importance at present. Editor.
16 On this point see further discussion in chapter IV.
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One might ask whether this approach satisfies that symbolized formally

by equation (5a). I know of no way of answering this question in an

operationally definite way any more than I know of any way of checking

once and for all a sequence in an operationally definite way to see if it

represents a statistical state of control. If we assume that the dotted curve

in fig. 5 approaches a limit, the practical significance of this conclusion is

that we are tacitly adopting the empirical rule of inference that an average

of n observations is to be taken in preference to an average of n — 1.

Likewise, in the practical operation of setting up the model, we assume

that we can approach the functional form of / and the parameters therein by
acting as though the limits (5) and (5a) exist, or more accurately, by the

rule of taking a p or a 0; calculated from n + 1 terms of an infinite sequence

such as (3) in preference to a p or 0; calculated from n such terms. Stated

more generally, this amounts to basing action on the following fundamental

Postulate I. A model of a statistical state based upon n + 1

terms of a sequence defined as random is to be chosen instead

of a corresponding model based upon n terms.

Of course, it should be kept in mind that the process of setting up a

model of a state of control in the way just described is up to this point 16

limited to the case where the sequence (3) is drawn from a bowl and hence

is given by what we have chosen to define as a random operation. Such

an operation characterizes a physical state of statistical control representing

the limit to which one may hope to go in attaining valid predictability and

a state where the one making the drawings as prescribed can not do anything

to control the limits of observed variability. It must, however, be kept in

mind that logically there is no necessary connection between such a physical

statistical state and the indefinitely expansible concept of a statistical state

in terms of mathematical distribution theory. There is, of course, abundant

evidence of close similarity if we do not question too critically 17 what we
mean by close. What is still more important in our present discussion is

that if this similarity did not exist in general, and if we were forced to choose

between the formal mathematical description and the physical description,

I think we should need to look for a new mathematical description instead

of for a new physical description because the latter is apparently what we

have to live with. It is the practical man’s good fortune that mathematical

distribution theory seems to agree so closely with what he gets in drawings

from an ideal experimental universe. As an indirect result, distribution

16 In the next section we shall see how through the operation of control, sequences can

be attained that may also be treated as random from the viewpoint of constructing a model.
17 See J. Neyman, Lectures and Conferences on Mathematical Statistics (The Graduate

School, The Department of Agriculture, Washington, 1938), pp. 19-32.



STATISTICAL CONTROL 23

theory (mathematical statistics) must become the stock in trade of the

control engineer.

Statistical Control as an Operation 18

Let us first see what the operation of control is designed to do. The

statistician looking at the function or purpose of the operation of control

will likely see it as a procedure for attaining a state of statistical control of

some variable whereas the engineer will see it as a means of effecting certain

economies and attaining the highest degree of quality assurance at a given

cost. Presumably both the statistician and the engineer are interested in

understanding the operation of control as a scientific procedure. In what

follows, an attempt is made to present the important characteristics of the

operation from each of these viewpoints.

In the beginning of this chapter, we noted the steps that had been taken

in going from the concept of an exact fit of interchangeable parts based upon

the concept of an exact science, to the concept of tolerances, fig. 4, p. 6.

Statistical theory then stepped in (1924) with the
The aimed-at value C;

concept 0f two action or control limits A and B that

lie, in general, within L i and L 2 ,
as shown m fig. 6

(next page). These limits are to be set so that when the observed quality

of a piece of product falls outside of them, even though the observation

be still within the limits Li and L 2 ,
it is desirable to look at the manufactur-

ing process in order to discover and remove, if possible, one or more causes of

variation that need not be left to chance. In other words, whereas the limits

Li and L2 provide a means of gauging the product already made, the action

limits A and B provide a means of directing action toward the process with a

view to the elimination of assignable causes of variation so that the quality

of the product not yet made may be less variable on the average.

Furthermore, the statistical theory of quality control introduces the

concept of the expected value C lying somewhere between the action limits

A and B. This point C serves in a certain sense as an aimed-at value of

quality in an economically controlled state. We might pause a moment to

note the importance of the point C from the viewpoint of design or the use of

material that has already been made. Let us take, for example, a very

simple problem of setting overall tolerance limits. Suppose that we start

with the concept of the go, no-go tolerances of 1870 (fig. 4, p. 6) and that

18 This subject is discussed at length in my book, Economic Control of Quality of Manu-
factured Product (Van Nostrand, New York, 1931). It is also discussed in a most helpful

way in The Application of Statistical Methods to Industrial Standardization and Quality

Control by E. S. Pearson (British Standards Institution, London, 1935) and in the Manual
on Presentation of Data (American Society for Testing Materials, 260 S. Broad St., Phila-

delphia, 1933).
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we wish to fix the overall tolerance limits for n pieceparts assembled in such
a way that the resultant quality of the n parts is the arithmetic sum of the

qualities of the component parts. An extremely simple example would be
the establishment of tolerance limits on the thickness of a pile of n washers
or, in general, any n laminated pieceparts in terms of the tolerance limits on
one. The older method of fixing such limits was to take the sum of the

tolerance limits on the individual pieceparts, but the tolerance range result-

ing from such practice is usually many times larger than it needs to be.

The economical way of setting such tolerance limits for a product in a

state of statistical control is in terms of the concept of the expected value C
of the quality, and the expected standard deviation about this value. The
concept of the expected value is of fundamental importance in all design

work in which an attempt is made to fix overall tolerances in terms of those

of pieceparts.

Thus we see that for reasons of economy and quality assurance it is

necessary to go beyond the simple concept of the go, no-go tolerance limits

of the customary specification and to include two action limits A and B and
an expected value C, as shown schematically in fig. 6. Statistical theory

alone is responsible for the introduction of the concept of the action limits A
and B and the expected value C.

QUALITY X
1 1

1 1

1 • 1

1 C 1

1 1

A B
L, L 2

Fig. 6

It should be noted that if there were no reason connected with economy
or quality assurance for going beyond the concept of the go, no-go tolerance

limits, statistical theory would have nothing to add. Likewise, it should be

noted that, although the action limits A and B may lie within the tolerance

limits Li and L2 ,
the product already produced and found by inspection to

be within the limits Li and L2 is still considered to conform, even if outside A
and B. In other words, the action limits A and B do not apply as a gauge

for product already made: their function is to call attention to evidence for

believing that the manufacturing process includes assignable causes of

variation in the quality that may give trouble in the future if they are not

found and removed.

The operation of statistical control. The use of statistical techniques

in the way just described introduces a modification in the customary opera-

tion of control and in this sense constitutes an “operation of statistical con-

trol^ directed toward the attainment of a state of statistical control.
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The specification of an operation of statistical control consists of the

following steps:

1. Specify in a general way how an observed sequence of n

data is to be examined for clues as to the existence of assign-

able causes of variability.

2. Specify how the original data are to be taken and how
they are to be broken up into subsamples upon the basis of

human judgments about whether the conditions under
which the data were taken were essentially the same or not.

3. Specify the criterion of control that is to be used, indicating

what statistics are to be computed for each subsample and how
these are to be used in computing action or control limits for

each statistic for which the control criterion is to be con-

structed.

4. Specify the action that is to be taken when an observed
statistic falls outside its control limits.

5. Specify the quantity of data that must be available and
found to satisfy the criterion of control before the engineer
is to act as though he had attained a state of statistical control.

In the next few paragraphs I shall consider briefly each of these steps and

indicate the nature of the available evidence to show that the operation

as a whole successfully accomplishes its objective in practice.

Let us think of a particular manufacturing process as an operation of

making a given kind of object, and let us assume as above that this operation

can be repeated again and again at will. Let us assume that we want to

attain a state of statistical control of some quality characteristic X
;
that n

pieces of the product have been made; and that the qualities of these n

pieces in respect to the characteristic X are available in the order that the

pieces were produced. These n values of X may be thought of as constitut-

ing the first n terms of an infinite sequence (3) corresponding to what we
should get under similar conditions by repeating again and again the opera-

tion of production.

It is essential for an understanding of the operation of control that we
distinguish three kinds of acts that are involved. These are (a) mental

operations or judgments typical of which is the judgment that two or more
observations are made under the same or different conditions, ( b) mathe-

matical operations such as are involved in constructing a criterion of control,

and (c) physical operations such as looking for an assignable cause when an

observed point fails to satisfy a criterion of control.

Some comments on the first step in the operation of control. The
importance of order. In order to take this step, we must decide how the

original set of n data is to be used as a clue to the existence of assignable
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causes of variability. We start with the assumption that when the opera-

tion of production is random, that is, when it is in a state of statistical

control, there are no assignable causes present in the production process.

Hence our clue to the existence of assignable causes is anything that indi-

cates nonrandomness. However, as already pointed out above, any set of

n values of X considered as a sample or as a sequence might have been ob-

tained by some random operation. Likewise it might have been obtained

by a nonrandom operation. We must therefore take into account the pre-

viously observed fact that there is no unique test for randomness of the

cause system producing the data in terms of the n observed data.

If a set of n data is to serve as a clue to the state of control, two con-

clusions are obvious. First, we must depend on past experience to suggest

what, if any, characteristics of a given set of n values of X are more likely

to occur in nature as a result of a nonrandom than as a result of a random
operation. For example, if you were told that nine successive determina-

tions of the density of oxygen gave in proper units 1.42891, 1.42892, 1.42892,

1.42894, 1.42894, 1.42895, 1.42895, 1.42896, 1.42900 you would likely sus-

pect a nonrandom condition. It should be kept in mind that from the

viewpoint of the operation of control, nonrandom is a category for a tem-

porary pigeon-hole for those states of control that we are to look at further

in an attempt to find assignable causes of variability. If, however, you

were given the following order in which they actually did occur, 19 1.42900,

1.42894, 1.42896, 1.42892, 1.42895, 1.42891, 1.42892, 1.42894, 1.42895, you

would likely conclude that the sequence represented a random condition.

Second, the acceptance of any specific characteristic such as order in any

given set of n observed values of X as an indication of the state of control

can only be confirmed in the light of future experience. Hence the only

operationally verifiable way in which the set of n observed data may serve

as a clue to the state of control is by serving as a link between past and

future experience.

Keeping in mind that our principal object is to detect the presence of

assignable causes of variability, it is natural to try to make use of the fact

that there are certain identifiable orders observed in experience that are

not equally likely to be associated in future experience with every other

possible order. This is the more reasonable since every scientist and en-

gineer well knows that some observed orders are much more likely to be

produced by nonrandom than by random operations. In fact it is only

when he has difficulty in distinguishing orders of this kind—trends, cyclic

movements, functional relationships, and erratic effects—that he appeals to

the statistician.

19 See the Journal of the American Chemical Society
,
vol. 61, pp. 223-228, 1939.
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Some comments on the test

of a hypothetical universe

There are, however, other reasons for examining the observed order for

clues of nonrandomness. For example, the identifiable order of three or

more numbers, whence comes our concept of the ordinal numbers, is based

on the property of “betweenness” and not on the absolute values of the

numbers
;
so likewise the significance of observed order is independent of the

frequency distribution of the observed set of numbers as well as that of the

potentially infinite sequence of which the n observed numbers constitute

but a finite part.

Of course, if we neglect the significance of observed order, we may still

ask whether the set of n observed values is a likely random sample from

some assumed universe, and if it is not a likely

sample in this sense, we may reject the hypothesis

that it came from such a universe. However, in

applying such a test, we must first introduce an assumption that the ob-

served order is given by a random operation so that we may arrive at the

functional form of the universe and at estimates of the parameters. Abun-
dant evidence will be presented in the following chapters to show that such

an assumption is almost never justified in practice; hence we are confronted

with the necessity of assuring ourselves that we are dealing with a sequence

given by a random operation before we can justify the customary interpre-

tation of a test of this character. Under such conditions, it appears that

certain requirements on the order of happening are 'primitive. Moreover,

such a test to determine whether an observed set of n data is a likely random
sample from some assumed universe does not in itself indicate whether the

observed sample is likely to have arisen from some nonrandom operation.

Finally, such a test neglects the significance of the observed order as a clue

to nonrandomness.

Considerations of the character indicated in the last few paragraphs have

indicated the need, in quality control work, of stressing the significance of

certain characteristics of the observed order as clues to nonrandom opera-

tions in the production process. The fact that the successful choice of the

observed orders most likely to indicate nonrandomness (or the presence of

assignable causes) must be based on experience simply emphasizes the im-

portance of a broad experience in the subject matter of any given field as a

background for establishing efficient tests for assignable causes.

Some comments on the second step in the operation of control. Let us

start by rewriting the infinite sequence (3) in the form

Xu X2 ,

I I I

Cj C2 c»

j
Xn ,

Xn+1,

Cn Cn+1

,Xr
I

(3d)

n+j

where the symbol C%(i = 1,2, • •
• ) stands for the condition under which the
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associated X»* was obtained and where the term condition is used as it is in

the phrase “same essential conditions.” We may symbolize the judgment
that the conditions are essentially the same by the expression

C t =0= C,. (6)

In the initial stages of the operation of any production process, it is

likely that the engineer will not be willing to assume that Ci =c= Cj. Instead,

he will likely point out what he considers may be important differences in

the conditions, as for example, differences in source of raw materials,

variations in humidity, wear of tools, and the like. True enough, upon
extended study some or all of these differences in conditions may not be

found to be assignable causes of variability in the X’s. However, to begin

with, these differences in conditions constitute our best clues to what on

further study may prove to be assignable causes. Hence it is desirable that

the engineer or scientist provide a means of grouping the X’s upon the basis

of observed differences in conditions that may later prove to be assignable

causes. It is important to note that from the viewpoint of interpretation,

the grouping of the X’s in this manner is independent of their magnitudes.

Every scientist and engineer follows such a procedure as a part of his

daily work; if the measurements broken up into subgroups in this way are

radically different from one group to another, the conclusion is usually

drawn that the corresponding differences in conditions constitute assignable

causes of variation in the quality characteristic X, and this conclusion is

reached without ever calling on the statistician for advice. If, on the

other hand, the subgroups of X’s are not “clearly” different and show some

overlapping, two alternative courses are open to the scientist or engineer.

One of these is to conclude that the conditions are essentially the same and

the other is to call in the statistician to advise whether the observed

differences between the groups of X’s are likely to have arisen as sampling

fluctuations under a state of statistical control. Thus we come upon the

problem, long familiar to the statistician, of trying to devise a statistical

test for determining whether two or more samples are significantly different.

The statistician may feel that he is now on familiar ground and make use of

some statistical test for significance. However, in doing so, he usually

introduces the assumption that the values of X in any particular subgroup

proposed by the experimentalist constitute a random sample from some

universe, and he usually assumes that the functional form of this universe

is normal. Of course, the mathematical statistician can then make certain

statements that follow rigorously from the assumptions. Obviously, how-

ever, the practical importance of any deductions of this character depends

upon whether the assumptions are representative of the actual conditions.
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To illustrate, let us consider the significance of the assumption that each

subgroup constitutes a random sample from some universe. Obviously any

finite set of numbers might be given by a random operation, and would con-

stitute a random sample from some universe. In fact, any finite set of

numbers might be a sample from a normal universe. Statistical theory

enables us to say rigorously some things of interest about how certain

characteristics of successive samples from the same normal universe may be

expected to vary even though we do not know the average X and standard

deviation </ of the universe.

At this point one of the distinguishing characteristics of the control

statistician shows up. Irrespective of the result of applying any statistical

test for significant differences between subgroups selected by the experi-

mentalist solely upon the basis of his knowledge of the conditions under

which the values of X were obtained, the control statistician knows that past

experience does not justify him in believing that any such subgroup is a

random sample of the production process if the only evidence for this belief

is that the experimentalist considers the observations in each subgroup to

have been taken under the same essential conditions. That is to say, ex-

perience has shown that the judgment represented by expression (6), that

the conditions underlying a set of n values of quality are essentially the

same, is not by itself a satisfactory criterion of randomness. If we could

rely on such a judgment as a sufficient condition for believing that a state

of statistical control had been reached, there would be no story to tell about

the operation of statistical control with which we are concerned in this

section.

On the other hand, no scientist or engineer would think for a moment of

ignoring the importance of the human judgment that the conditions under

which a set of n measurements were made did or did not remain the same.

In the successful development of any operation of statistical control, we
can not do without the human judgments about the conditions C, but we
can not get along solely with them, either. We must seek in addition some
criterion of control that makes use of the numerical magnitudes of the

observed qualities.

Some comments on the third and fourth steps in the operation of control.

Practical requirements imposed on the criterion of control. Criterion I.

We shall consider these two steps together because they are so closely interre-

lated. In fact, what is to be done in step three depends to a large extent upon
the action that is to be taken in step four. For example, step four consists of

looking for an assignable cause of variability whenever the observed statistic

chosen in step three falls outside its control limits. Hence the criterion of

control should be as nearly as possible such that when and only when a

statistic falls outside its control limits it will be possible to find an assignable
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cause of variation. And it is to be remembered that if an assignable cause

is found and removed, a change (narrowing) of the control limits is required

(note paragraph iii on p. 35). Thus the third and fourth steps are closely

dependent on each other.

We are now in a position to set down some of the important practical

requirements imposed upon the criterion of control, and this we shall do

before passing on to comments regarding the fifth step in control.

1. Our criterion of control should indicate the presence of

assignable causes of variation.

2. It should not only indicate the presence of assignable

causes but also should do this in a way to facilitate the dis-

covery of these causes.

3. It should be as simple as possible and adaptable in a con-

tinuing and self-corrective operation of control.

4. It should be such that the chance of looking for assignable

causes when they are not present does not exceed some pre-

scribed value.

I have discussed elsewhere what has been termed Criterion I of control. 20

There is no intention of repeating here what was said at that time but in

the next few paragraphs an attempt will be made to explain in more detail

some of the reasons why this criterion was chosen. Let us see how it meets

the four practical requirements just noted.

(i) The principal function of the chart is to detect the presence of

assignable causes (1st requirement). Let us try to get clear on just what

this means from a practical and experimental viewpoint. We shall start

with the phrase “assignable causes.” An assignable cause of variation as

this term is used in quality control work is one that can be found by experi-

ment without costing more than it is worth to find it. As thus defined, an

assignable cause today might not be one tomorrow, because of a change in

the economic factors of cost and value of finding the cause. Likewise, a

criterion that would indicate an assignable cause when used for one produc-

tion process is not necessarily a satisfactory criterion for some other process.

Obviously there is no a priori, formal, and mathematical method of setting

up a criterion that will indicate an assignable cause in any given case.

Instead, the only way one can justify the use of any criterion is through

extensive experience. The fact that the use of a given criterion must be

justified on empirical grounds is emphasized here in order to avoid the

confusion of such a criterion with a test of statistical significance. We shall

return to this point in some of the paragraphs below. Here it must suffice

to recall that any test of statistical significance is a deductive inference upon

20 W. A. Shewhart, Economic Control of Quality of Manufactured Product (Van Nostrand,

New York, 1931), ch. XX.
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the basis of certain fundamental assumptions, and theoretically can be

made with any desired degree of exactness. In general, any such test con-

sists in defining some statistic 0 of a random sample of n from some assumed

universe and computing the probability of getting an observed value of d

outside any chosen range d1
< Q ^ 02 . Then some arbitrary choice of

probability is made and the associated values of 61 and 02 are computed.

An observed value of d is then defined as significant if it falls outside the

corresponding range 0i ^ 0 ^ 02 . Such a process is deductive. In con-

trast, when an observed statistic falls outside its control limits, the inductive

inference is implied that an assignable cause is present. To check this in-

ductive inference, we must appeal to empirical evidence.

The next point to note is that in developing a control criterion we should

make the most efficient use of the order of occurrence as a clue to the presence

of assignable causes. The importance of order as such a clue has already

been considered (pp. 25-27 ff). As an example, let us consider a case where

we have a sequence of n numbers taken under presumably the same condi-

tions. One such set of 204 observations of insulation resistance 21 may be

used here to illustrate some of the characteristics of a control chart criterion

as a tool for detecting the presence of assignable causes. Grouping these

204 observations into subgroups of four taken in the order in which the

observations were made, and applying the control chart Criterion I to the

51 subgroup averages, we get the results shown in the upper half of fig. 7.

Here we see indications of the presence of assignable causes of variability,

which further research revealed and removed (see pp. 114-5).

Now let us see what would have happened if we had not known the order

in which the 204 pieces of insulating material were made. For example,

suppose that these pieces had been thoroughly mixed together in a box or

tray before the measurements of resistance had been made,

as is a very common practice. The 204 measurements of

resistance on the 204 pieces of material after they had

been thoroughly mixed would have been the same, but we should then know
nothing about the order in which the pieces were made. Of the 204!

different orders that might be obtained by such a random operation, the

order of manufacture, which is the basis of the control chart in the upper

half of fig. 7, is no more unlikely than any other. Instead of mixing the

pieces of insulating material in a tray or box, and measuring one piece at a

time upon drawing it, we may write the 204 original measurements on as

many physically similar chips, mix the chips in a bowl, and draw them one

at a time without replacement. Suppose we apply the same Criterion I to

one sequence of 204 numbers obtained in this way. The results are shown
in the lower half of fig. 7. There is no indication of the presence of assign-

21 The 204 observations constitute table 7, given in chap. Ill, p. 90.

More on the im-

portance of order
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able causes. If in this case the original order had not been given and we
had taken instead the order actually given by the random operation of

drawing the 204 numbers one at a time from a bowl, the application of
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Criterion I would have failed to detect the presence of assignable causes.

And it may be shown theoretically that if we were to apply Criterion I in

the same way to all of the 204! possible different sequences, most of them

would give no indication of the presence of assignable causes in the sense

of showing averages of four outside of control limits. On the other hand,

we must remember that the original sequence is one of the 204! possible
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sequences generated by such a random operation. Hence the failure to meet

the criterion does not serve to pick any one of the 204 ! sequences drawn from

a bowl as being nonrandom, because in fact they all are obtained by means

of a random operation.

Why then may we place faith in Criterion I as a good indicator of assign-

able causes, or of those that can be found? As already suggested earlier in

this chapter in the discussion of the meaning of random, extensive experience

has shown that one almost never finds in practical work an observed se-

quence even when obtained under presumably the same essential conditions

that will satisfy Criterion I, and if assignable causes are looked for when an

observed statistic goes outside its control limits such causes are almost al-

ways found. If the process of finding and removing assignable causes is

continued, we gradually approach a condition where an observed statistic

only seldom goes outside of its limits, and if one looks for assignable causes

in these rare instances, such causes are not usually found.

It is important to note that in the use of Criterion I to detect the pres-

ence of assignable causes, emphasis always has been and must be laid

upon breaking up the original sequence into sub-

in^riterion

r

i

UPS required
groups of comparatively small size. If this is not

done, the presence of assignable causes will very

often be overlooked. Incidentally the necessity of using small subgroups

is not imposed by the particular choice of the criterion used. It would be

equally necessary, for example, if we were to use the analysis of variance

test instead of Criterion I. Thus if the 51 samples of 4 are analyzed

by the analysis of variance, using a probability level of .01 as a test for

assignable causes, we get indications of the presence of such causes. If

instead of 51 subgroups of 4, we take 4 subgroups of 51, both Criterion I

and the analysis of variance test happen to give positive indications in this

particular instance, although this is exceptional for subgroups of this

size. If, however, we go to 2 subgroups of 102 each, both tests fail. Need-
less to say, this one example is not introduced to prove the importance of

using small subgroups in the criterion of control but simply to illustrate

what is usually found in practice.

It is reasonable to expect that one may detect more readily the presence

of the customary kinds of assignable causes by breaking up the total number
of available observations into small subgroups than by breaking them up
into larger subgroups. One of the principal reasons is that assignable

causes are for the most part those that come and go in an erratic fashion.

For example, let us think of an infinite sequence:

Ni, A2, *
? A"i+lj *

>
*

>
Xn ,

*
, Xn+ic, •

•
• (3d)

Cl, C2, Ci, Ci+1, Ci+j, Cn, Cn+1 , Cn+k,
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Importance of the method of feeding

the data into the criterion. Criterion

I uncovers not only assignable causes,

but also trends and periodic

fluctuations

An assignable cause may, for example, come into the condition C t and remain
present in the nexty — 1 conditions. The same assignable cause may come
in again and again at other places in the sequence. Generally there are

several assignable causes of this character present in any production process

or physical experiment even when it is judged that the conditions are being

maintained essentially the same. By using large subgroups we tend to get

overlappings of the effects of different assignable causes, and the effects of a

single cause are thus masked. Experience and theory both indicate that a

subsample size of four is effective in the

majority of instances that have come to

my attention. Enough has been said to

indicate that an important factor in choos-

ing a criterion of control to indicate the

presence of assignable causes is the method of feeding the data into the

criterion.

In practice, Criterion I is useful in detecting the presence of assignable

causes not only when a statistic falls outside its control limits, but also when
the graphical record suggests the presence of either a trend or a periodic

effect, even though the observed valqes of the statistics for the available

subsamples do not fall outside the control limits. For example, a sequence

of averages of subsamples of four sometimes reveals such effects that would

not be suggested by the original sequence. However, it is obviously not

feasible to give any definite rule for the use of such apparent trends and

periodic fluctuations with the same assurance that one applies the rule of

looking for an assignable cause whenever an observed statistic in a subsample

falls outside its control limits.

(ii) Next let us consider the second requirement of a criterion of control,

namely, that it shall not only indicate the presence of an assignable cause

but also that it shall do this in a way to facilitate the discovery of the cause.

Obviously if an assignable cause is indicated, we must be able to put our

finger on the conditions existing at the time the cause is present if we are

to find and remove the cause. Again with regard to the infinite sequence

(3d), if an assignable cause is present in the conditions C» to the control

criterion should indicate its presence in this set of conditions. Criterion I

in the form of a control chart is designed to meet this requirement.

We are now in a position to see another practical advantage of using

small subgroups. Assume for the moment that in analyzing the set of 204

values of insulation resistance we make use of 4 sub-

groups of 51 each instead of the 51 subgroups of 4 each

shown in fig. 7. Obviously it is much more indefinite

to know only that an assignable cause entered during the time that a

subgroup of 51 pieces of material was being made than to know that it

entered during the time that a subgroup of 4 pieces was being made.

Another reason for

small subgroups
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(iii) We next come to the third mentioned requirement, namely, that the

criterion shall be as simple as possible and adaptable to a continuing and

self-corrective operation of control. Experience shows that the process of

detecting and eliminating assignable causes of variability so as to attain a

state of statistical control is a long one. From time to time the control

chart limits must be revised as assignable causes are found and eliminated.

The continuing control chart record showing a succession of modifications

presents a complete and up-to-date history of the available evidence for

indicating the progress that has been made up to the present in the process

of attaining control.

A simple procedure is used for establishing the limits without the use

of probability tables, because it does not seem that much is to be gained
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during the process of weeding out assignable causes in order to attain a state

of statistical control by trying to set up exact probability limits upon the

basis of assumptions that we know from experience do not hold until the

state of statistical control has been reached. This is particularly true since

such probabilities do not indicate the probability of detecting assignable

causes but simply the probability of looking for such causes when they do

not exist, which is of secondary importance until a state of statistical control

has been reached. Then too, as already indicated, the design of an efficient

criterion for the important job of indicating the presence of assignable causes
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depends more upon the method of breaking the sequence up into subgroups

of a given size taken in a certain order than it does upon the use of any
exact mathematical distribution theory.

(iv) True enough, as we approach closer and closer to a state of statistical

control it becomes important to have a criterion that does not indicate

trouble too often when such trouble is not present. This is the fourth re-

quirement as listed above. The control limits as most often used in my
own work have been set so that after a state of statistical control has been

reached, one will look for assignable causes when they are not present not

more than approximately three times in 1000 subsamples, when the distri-

bution of the statistic used in the criterion is normal. For example, fig. 8

shows Criterion I applied to a sequence of 100 averages of four corre-

sponding to a sequence of 400 drawings with replacement from a normal

universe. Not one of the 100 averages falls outside the limits although in

the long run we should expect about three in 1000 to fall outside.

Even in trying to keep the probability of looking for assignable causes

when they are not present below some limiting value, it is necessary to make
some considered choice depending largely upon the costliness of thus looking

unnecessarily for trouble. Since there is no a priori exact basis for making

this choice it is felt that the simple rules of setting control limits as described

in the literature are satisfactory.

Some comments on the fifth step in the operation of control. Even
after we have found a suitable criterion of control there remains an exceed-

ingly important practical question to be answered: how long a run of observa-

tions satisfying the criterion of control must we have before we can rest

assured for practical purposes that a state of statistical control has been

attained? Suppose we applied such a criterion to a short sequence of ob-

served values, let us say a sequence of eight, and got no evidence of the

presence of assignable causes
;
should we conclude solely upon this evidence

that the process or operation giving rise to the observed values is in a state

of statistical control? The answer given by experience in quality control

work is definitely No. For example, I have never found an instance where,

if it had been concluded that a state of statistical control had been reached

solely on the basis of evidence provided by a small sample, such a conclusion

would not later have been shown to be false. Thus if we apply Criterion I

to the first two samples of four of the sequence of 204 observed values of

resistance discussed above, we get no indication of the presence of assignable

causes. Nevertheless the process of making the pieces of insulating material

was not in a state of statistical control, as later work revealed, although it

may have been that no assignable cause was present during the time these

first eight pieces were being made.
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Before going further, we should note the fundamental and very important

difference between an inference that a criterion of control when applied to a

sequence of data does not indicate the presence of assignable causes, and an

inference that a state of statistical control has been reached upon the evidence

that a criterion of control when applied to a given finite sequence does not

indicate the presence of assignable causes. As previously noted (p. 33) it is

found that assignable causes may again and again come into and go out of a

production process or any physical operation repeated an indefinitely large

number of times under presumably the same essential conditions. It is

therefore possible that no assignable cause
Assignable causes of variation are -

g presen^ during the time that a finite se-
almost always present in the early ^ ° ....
stages. They may come and go, and quence is being taken, but this in itself does

the attainment of statistical control is not necessarily mean that a state of statis-
a gradual process. A long sequence ^caj contro i pas been reached or, in other

words, that all assignable causes have been

eliminated from the process considered as an operation that can be re-

peated at will an indefinitely large number of times. My own experience

has been that in the early stages of any attempt at control of a quality

characteristic, assignable causes are always present even though the pro-

duction operation has been repeated under presumably the same essential

conditions. As these assignable causes are found and eliminated, the

variation in quality gradually approaches a state of statistical control

as indicated by the statistics of successive samples falling within their

control limits, except in rare instances, and by the fact that when as-

signable causes are looked for in these rare instances they are seldom dis-

covered. It has also been observed that a person would seldom if ever be

justified in concluding that a state of statistical control of a given repetitive

operation or production process had been reached until he had obtained,

under presumably the same essential conditions, a sequence of not less than

twenty-five samples of four that satisfied Criterion I. In certain instances,

where it is for some economic or other kind of reason essential that we be

practically certain that we have attained a state of statistical control, it may
be desirable to have a longer sequence of samples of four. For example, if

one wants to attain economic minimum tolerances for a given quality

characteristic based upon the assumption that the production process is in

a state of statistical control, it may be necessary, as we shall see in the next

chapter, that a total sample size of not less than one thousand give no

indication of the presence of assignable causes.

The operation of statistical control as a whole. We are now in a position

to view at better advantage the operation of statistical control as a whole.

As has already been noted, this operation is a continuing, self-corrective one
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designed for the purpose of attaining a state of statistical control. The
operation itself must not be confused with the

The operation of statistical criterion of control: the operation of control

the criterion of control not only indicates how the data are to be

broken up and fed into the criterion of control
and what action is to be taken when an observed statistic falls outside its

control limits, but also indicates how many data must be fed into the control

criterion without getting any evidence of assignable causes before the control

engineer is to act as though he had attained a state of statistical control.

The operation of control is in this sense a dynamic process involving a chain

of actions, whereas the criterion of control is simply a tool used in this

dynamic process. The successful quality control engineer, like the success-

ful research worker, is not a pure reason machine but instead is a biological

unit reacting to and acting upon an ever changing environment.

Example of what can be done in practice. It may be helpful to look at

a typical example illustrating how the operation of control works in practice.

Fig. 9 shows a control chart for averages of 136 successive samples.
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The quality characteristic is the blowing time of a certain kind of fuse. In

the preliminary survey which took place prior to the taking of these data,

assignable causes were indicated and removed, and the manufacturing

process brought into a state of control. This chart is a typical illustration

of the fact that once we attain a condition of control, in which a com-

paratively long sequence of averages of small subsamples, taken under

presumably the same conditions, remains within the limits of Criterion I,

this condition. usually continues. The averages of the subsamples remain

within the control limits almost as well as if the samples had been obtained

from a normal bowl universe! That such a state of control can be attained

under commercial conditions is all the more impressive when in the next

chapter we find that some of the most precise measurements of physical

science do not meet this stringent control chart test.
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Two kinds of errors in the operation of control. Since a scientific

inference about experience can never be more than probable, it is always

subject to two general kinds of errors which we may write as follows:

e\ Sometimes when a scientific hypothesis H is rejected, the

hypothesis H is nevertheless true.

62 Sometimes when a scientific hypothesis H is accepted, the

hypothesis H is nevertheless false.

Neyman and Pearson have considered specific instances of these two general

kinds in testing certain statistical hypotheses. 22 They consider the problem

of having been given a sample consisting of the first n terms of an infinite

sequence considered without respect to order, to determine whether it came

from a universe 7r (hypothesis’ A) . Representing the set of n values as a

point 2 in hyperspace, they say

—

Setting aside the 'possibility that the sampling has not been

random or that the population has changed during its course,

2 must either have been drawn randomly from x or from x',

where the latter is some other population which may have any
one of an infinite variety of forms differing only slightly or

very greatly from x. The nature of the problem is such that

it is impossible to find criteria which will distinguish exactly

between these alternatives, and whatever method we adopt
two sources of error must arise

:

Cii Sometimes when Hypothesis A is rejected, 2 will in fact

have been drawn from x.

C21 More often, in accepting Hypothesis A, 2 will have been
drawn from x'.

These two kinds of errors are called by Neyman and Pearson “ errors of the

first and second kinds,” and are obviously somewhat like two different pairs

of errors encountered in using the operation of statistical control.

The first of the two pairs of errors (e\ and e2) is encountered in interpret-

ing a criterion of control applied to a given finite sequence of observations,

and may be written in the following form

—

612 We may reject the hypothesis that there existed, at the
time the finite sequence was obtained, one or more as-

signable causes in the process giving rise to that finite

sequence, when this hypothesis is nevertheless true.

e22 We may accept the hypothesis that there existed, at the
time the finite sequence was obtained, one or more assign-

22 J. Neyman and E. S. Pearson, “On the use and interpretation of certain test criteria

for purposes of statistical inference,” BiometriJca, vol. 28A, pp. 175-240, 1928; and in

particular, p. 177. The italicizing in the quotation is mine. I have also introduced
the symbols en and eu instead of their numerals 1 and 2.
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able causes in the process giving rise to that finite se-

quence, when this hypothesis is nevertheless false.

It should be noted that the hypothesis in this instance pertains to the

existence of assignable causes during the time the finite sequence was being

obtained.

The pair of errors e\ and e 2 ,
so far as they are encountered in interpreting

the operation of control as a whole, may be stated similarly

—

ei3 We may reject the hypothesis that the production process
or repetitive operation is in a state of statistical control
when this hypothesis is nevertheless true.

e23 We may accept the hypothesis that the production process
or repetitive operation is in a state of statistical control

when this hypothesis is nevertheless false.

In this instance, we should note that the hypothesis pertains to the condi-

tions existing within a repetitive operation throughout the time required to

produce an infinite sequence.

These three pairs of errors are alike in general form, but they differ in

the hypotheses involved. They also differ in that Neyman and Pearson’s

errors en and e 2 i of the first and second kinds are essentially formal, whereas

the other two pairs are expressed in empirical terms. For example, Ney-

man and Pearson can theoretically build an exact mathematical model

that enables them to compute with any desired degree of exactness the

probabilities of occurrence of theii; two kinds of errors. It will be noted

that their hypothesis involves the assumption that the observed data

constitute a random sample, and we have already considered some of

the difficulties involved in trying to give this term an empirical and opera-

tionally verifiable meaning. In fact, we may think of the whole operation

of statistical control as an attempt to give such meaning to the term random.

But just as soon as we pass from the concept of the errors en and e21 of

Neyman and Pearson, which may be defined in terms of a mathematical

model, to errors of the general form ei and e2 expressed in terms of scientific

hypotheses about observable phenomena, we can no longer compute with

mathematical exactness the probabilities associated with any pair of errors

for a given hypothesis. As a background for the development of the

operation of statistical control, the formal mathematical theory of testing a

statistical hypothesis is of outstanding importance, but it would seem that

we must continually keep in mind the fundamental difference between the

formal theory of testing a statistical hypothesis and the empirical testing of

hypotheses employed in the operation of statistical control. In the latter, one

must also test the hypothesis that the sample of data was obtained under

conditions that may be considered random.
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The Judgment of Statistical Control

To form a background against which to view the problem of judging the

condition of statistical control, let us summarize some of the points previ-

ously made. The engineer wants a product of uniform or homogeneous

quality. As a basis for a quantitative characterization of such a product

he conceives of one arising under a state of statistical control that assures

(a) predictability in the probability sense and (6) minimum variability in

quality. To attain this state, the engineer finds that he must go through

certain operations of statistical control in which he uses a technique involv-

ing the use of statistical criteria for finding and weeding out assignable \
causes. The concept of a state of statistical control is a basis for describing

the engineering goal of uniform quality, and the operation of statistical

control is a means of approaching this goal. In any specific instance there

remains the problem of judging how close one has approached the goal,

and this is the problem now to be considered.

As a beginning, let us again consider the statement: “The quality of this

product is in a state of statistical control” (see statement B on page 8).

For our present purpose, we shall assume that this is equivalent to the

statement that the quality of the product being turned out by the production

process is uniform. Confining our attention to a single quality character-

istic X, we may represent the quality of such a product by the infinite

sequence

where the order in the sequence corresponds to the serial order in which the

pieces of product are produced. 23 Let us consider the meaning of the state-

ment that the quality X of this product is statistically controlled, remember-
ing that at the time such a statement is made we have at our disposal only

a finite number n of terms of the sequence.

We can draw three important conclusions. First, any such statement

to be definite must be definite in respect to the meaning of the state of

statistical control implied. Second, any such statement is a probable in-

ference implying a prediction P about an unobserved portion of the sequence.

Third, what we know about the n observed values of X and about the results

obtained in applying the technique of statistical control to the production

process constitutes the evidence E for the prediction P.

Let us refer to the time at which such a statement is made as the present,

and let us assume that n terms of the potentially infinite sequence have

23 For practical purposes of simplification, it is here tacitly assumed that the process or
machine makes but one object at a time. In practice, of course, there is likely to be a
whole battery of machines which may turn out more than one piece of product at a time.
The treatment here given can be extended to cover this case, but would be unnecessarily
involved for illustrating the fundamental points here considered.

(3 )
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been observed. Any such statement will be assumed to involve some kind

of prediction about some portion or the whole of the unobserved part of

the infinite sequence beginning with the term Xn+i as indicated schemati-

cally below:

ra+l> ’
>
Xn+j}

Past Present Future

For a prediction to have an operationally definite meaning, it is necessary

that there be given or implied a perfectly definite way of determining

whether it is true or false. Hence it is necessary that there be implied an

operationally definite meaning of the statistical state of control in terms of

characteristics of the sequence (3). There are two senses in which we may
have such a meaning

:
(a) one is the theoretical sense in which we include all

possible criteria that the mathematical statistician may impose upon the

infinite sequence (3) as a characterization of what he means by a mathe-

matical state of control, (b) The other is the practical sense in which one

chooses a limited group of criteria to be applied in some specified way to a

finite portion of the sequence consisting of n + j terms, j of which have

not been observed at the time the prediction is made.

Postulate II. In what follows we need to keep clearly in mind that the

statement that the quality of product is in a state of statistical control

involves a prediction P which may or may not be true, and it involves the

evidence E for believing in the prediction. The statement itself is a probable

inference. I shall assume the basic

Xlt X2 ,
Xi, •••; Xn,| X

Postulate II. The objective degree of rational belief pb

'
in an

inference involving a prediction P based upon evidence E is

not an intrinsic property like truth but inheres in the inference

through some relation of the prediction P to the evidence E.

We can not here go into a discussion of all the reasons why it seems

desirable to adopt this postulate, any more than earlier in this chapter we

could go into a discussion of all the reasons for adopting postulate I. It

must suffice here to recall that in our discussion we have tried to show that

in order to make successful use of probability

we must consider a chain of three kinds of

operations, viz., mental, physical, and mathe-

matical. The fact that we must depend upon

a human individual to choose successfully from his experience those condi-

tions that he believes will lead to valid conclusions through the use of

probability theory indicates what appears to be a necessary human act of

rational believing and this act is always an attempt to relate past evidence

E with a prediction P.

Three kinds of operations neces-

sary in the successful use of

probability—mental, physical,

and mathematical
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Starting with this postulate, we should note that the process of verifying

an inference involving a prediction P based on evidence E must be different

from that of verifying the prediction P. To verify the prediction, we do

not need to have in mind any evidence, whereas to verify the inference we

must determine whether or not the prediction P is reasonable upon evidence

E. Thus it is obvious that an inference based upon specified evidence E may
be reasonable or valid upon the basis of that evidence even after one has learned

that the prediction is false. 2* These things will be discussed more in detail

in chapter III.

Now, we are in a position to appreciate more fully the three concepts of

statistical control (p. 1), namely, as a state, as an operation, and as & judg-

ment. The state of statistical control is an ideal goal; statistical control

as an operation is a means of attaining the goal; and concerning control

. , , ... , , there must be a judgment in the nature of a
The judge of quality must be

.

J °

familiar with the rules of prob- probable inference as to whether the state has

able inference and rules of been attained. The judge of quality must be
evidence

familiar not only with the statistical means of

specifying the state of statistical control in terms of which he makes his

predictions but he also must be familiar with the rules of probable inference

and rules of evidence. His job is in this sense closely analogous to that of

the judge in the theory of Anglo-American jurisprudence; the legal judge

has his rules of evidence and principles of judicial proof, and the judge of

quality must have corresponding rules and principles, including those

underlying statistical inference.

The Significance of Statistical Control

Let us first consider the significance of the operation for attaining and

maintaining statistical control of quality upon statistical methodology.

As we have tried to show in the discussion about the state of statistical

control, there is a purely formal and mathematical theory of distribution

which may be taken as characterizing our concept of a purely formal state

of statistical control which, so far as the formal theory is concerned, may
or may not be descriptive of any state attained or attainable in practice.

Then there is the concept of the physical state of statistical control (drawings

from the bowl universe), which represents the limit to which we can go in

attaining valid predictability and minimum variability. Quality control

studies have shown that there is good reason to believe that such a physical

state can be attained in mass production, and that, when attained, the

observables of this state satisfy the criteria that are used in describing the

formal (mathematical) state.

24 For a further and lucid discussion of this conclusion and related matters, see C. I.

Lewis, Mind and the World Order (Scribners, New York, 1929), pp. 309-344.
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In the customary application of statistical theory, one assumes that he

is dealing with a physical state that gives samples showing the characteris-

Formal distribution theory
ranc^omness - Control studies have shown

will give valid predictions fhaf such physical states of statistical control are

only in a state of statisti- indeed rare natural occurrences, at least in physics
cal control and engineering (cf, later chapters), and further-

more that they can not usually be brought about without the operation of

statistical control, wherein comparatively large numbers of preliminary data

are taken in the process of detecting and removing assignable causes of

variability. In this chapter, we have considered the problem of control

only from the viewpoint of attaining valid predictability and minimum
variability in a measured quality X. In other words, we have neglected the

matter of accuracy, which will be considered later, especially in chapter IV.

We shall then find still more evidence to indicate the need for going through

a definite operation to attain a state of statistical control before applying

statistical theory that is based on the assumption that such a state exists.

Next let us consider the significance of the study of statistical control

from the viewpoint of the control of quality. Let us recall the three steps

of control: specification, production, and judgment of quality (page 1).

On the older concept of an exact science these three steps (call them I, II,

and III) would be independent. One could specify what he wanted, some
one else could take this specification as a guide and make the thing, and an

inspector or quality judge could measure the thing to see if it met specifi-

cations. A beautifully simple picture!

The whole picture, however, is radically different just as soon as we
admit that we have only a probable science. Even when we limit ourselves

to trying to stay within tolerance limits, it is necessary for economic reasons

and for attaining maximum quality assurance in

Specification, production, all kinds of work, including that where tests are

independent*
1 ^ n<>t

destructive, to introduce the concept of action

limits A and B and the aimed-at value C, fig. 6.

But in order to specify C we must first apply the operation of statistical

control. In fact the C must really come from Step III and after suitable

action limits A and B have been established in Step II. But these action

limits can not be set without some knowledge of the tolerance limits that

are specified in Step I. I think it is particularly important to note that the

third step can not be taken by simply inspecting the quality of the objects

as objects, but instead must be taken by inspecting the objects in a sequence

ordered in relation to the production process. In fact these three steps must

go in a circle instead of in a straight line, as shown schematically in fig. 10.

It may be helpful to think of the three steps in the mass production process

as steps in the scientific method. In this sense, specification, production,
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and inspection correspond respectively to making a hypothesis, carrying

out an experiment, and testing the hypothesis-
The three steps in fig. 10 corre-

,

*
'

.
°

. . . n
spond to the three steps in a The three steps constitute a dynamic scientific

dynamic scientific process of process of acquiring knowledge. From this
acquiring knowledge

viewpoint, it might be better to show them as

forming a sort of spiral gradually approaching a circular path which would

represent the idealized case where no evidence is found in Step III to indicate

a need for changing the specification (or scientific hypothesis) no matter

how many times we repeat the three steps. Mass production viewed in this

way constitutes a continuing and self-corrective method for making the

most efficient use of raw and fabricated materials.

From the viewpoint of specification, it is of interest to note that for the

meaning of control to be operationally definite, not only certain criteria of

control, but also the operation of selecting the objects whose qualities are to

be tested must be specified. The choice of criteria to be used as a method

STEP I . STEP II . STEP HI

SPECIFICATION
* PRODUCTION " INSPECTION

~

OLD

NEW

Fig. 10

of verifying the state of control can be made without reference to a given
kind of product, but the method of specifying the sequence to be used in the
chosen criteria can not in general be set down without reference to empirical

information obtained in production. What is still more important, the
intent of any such specification implies a certain degree of assurance that
the quality of the product will be found to satisfy this set of criteria, par-
ticularly when not every piece of the product can be tested. Here again,
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without a knowledge of the results of prior attempts to control quality, one

can not specify in a perfectly definite way just how many data are required

and in what sequence these data shall be used in applying control criteria to

give the quality assurance intended by the design specification. For these

reasons it seems that operationally verifiable control requirements, and
requirements as to how many data shall be obtained to provide adequate

quality assurance, can only be set down in Step III, and then only by one

having his eye both on the intent of design requirements and upon the ac-

cumulated inspection results to date, indicating the degree to which a state

of statistical control has been approached. Hence the design specification

must be supplemented in Step III by inspection practices providing adequate

data and satisfactory criteria of control for each type of product.

Furthermore, since the running record of past results must play such an

important part in judging the degree to which control has been attained, it

is necessary that Step III provide such a continuing record or quality report.

The graphical control chart (Criterion I) is admirably adapted to this end.

The mathematical theory of distribution characterizing the formal and

mathematical concept of a state of statistical control constitutes an un-

limited storehouse of helpful suggestions from which practical criteria of

control must be chosen, and the general theory of testing statistical hy-

potheses must serve as a background to guide the choice of methods of

making a running quality report that will give the maximum service as time

goes on.

To attain economic control and maximum quality assurance, statistical

theory and techniques must enter every one of the three steps in the control

of quality. In this way, they make possible a

Statistical theory and techniques very important potential contribution of mass

of fig 1Q
* production to scientific industrial progress.

Incidentally, we have seen that this potential

state of economic control can be approached only as a statistical limit even

after the assignable causes of variability have been detected and removed.

Control of this kind can not he reached in a day. It can not he reached in the

production of a product in which only a few pieces are manufactured. It can,

however, he approached scientifically in a continuing mass production

.

The Future of Statistics in Mass Production 25

Much has been written about the application of statistical theory and

technique in studying, discovering, and measuring the effects of an existing

system of unknown or chance causes. Much remains to be written about

the application of statistical theory and technique in finding out how to

25 Extracted from a paper by this title delivered at the Detroit meeting of the American

Institute of Mathematical Statistics, December 1938.
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tinker with and modify an existing chance cause system until it behaves as

we want it to. The statistician knows that his predictions will be valid if

certain assumptions about the cause system are justified, perhaps the most

important assumption being that the particular effects of his chance cause

system are random. In mass production the statistician has learned by

experience that random effects do not just happen, even by careful planning.

If the industrial statistician ignores this fact and makes predictions as if he

were dealing with randomness, he may expect many of his predictions to go

wild; what is more he knows that this fact will be discovered and his work

discredited. For this reason the industrial statistician in mass production

must commence by developing techniques for determining when we are

justified in assuming that the effects of the underlying cause system are

random, and when the usual distribution theory is applicable.

Experience in the control of quality has provided a practical technique

for detecting and eliminating assignable causes of variability in the produc-

tion process until a state of statistical control is reached wherein predictions

based upon the assumption of randomness will prove valid. By the elimina-

tion of assignable causes of variability, we make the most efficient use of

raw materials, maximize the assurance of the quality of the manufactured

product, minimize the cost of inspection, and minimize loss from rejections.

Statistics in mass production can be made to pay good dividends, and has a

bright future. What does this future depend on?

The answer to this question is contained in the three fundamental steps

in quality control (p. 1; also fig. 10, p. 45)

:

I. The specification of the quality of the thing wanted.

II. The production of things designed to meet the specifi-

cation.

III. The inspection of the things produced to see whether

they meet the specification.

We have seen that the outstanding characteristic of the first step is the

necessity of setting up and putting into effect a tolerance range for each

specified quality characteristic. If a producer contracts to deliver goods

within some specified range and upon applying Steps II and III finds that

some of his product falls outside the tolerance limits, he loses money. He
must not contract to meet tolerance limits that are too narrow, yet if he is

to make the most efficient use of materials, he must, in most instances, close

up the tolerance limits as much as he dares.

Obviously one can not specify a practically attainable tolerance range

out of thin air
;
one must recognize what is possible under commercial condi-

tions of production in Step II, which in turn is revealed by inspection in
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Step III. He must also take into account the fact previously noted, and on
which much more will be said later, that the manufacturing process to begin

with is almost certain not to be in a state of statistical control. This state

can be approached only through the application of certain statistical tech-

niques involving the use of the control chart. The point to be stressed is

that the three steps, specification, production, and inspection, can not be

taken independently in mass production : instead they must be coordinated,

each step being of assistance toward the attainment of the other two, as is

suggested in fig. 10 (p. 45). In fact, the three steps may be thought of as a

scientific experiment in which the objective is the attainment of the most
efficient use of the available materials.

Broadly speaking, the statistician of the future has before him the op-

portunity of helping to develop this fundamental type of experiment. As
has been stated, he must start by designing statistical control techniques

for the elimination of assignable causes of variability, whereupon he can use

modern statistical theories as described in the literature with reasonable

assurance that his predictions will be found valid. He must, however, go

further than is customarily recognized in the current literature in that he

must provide operationally verifiable meanings for his statistical terms such

as random variable, accuracy, precision, true value, probability, degree of

rational belief, and the like. The chapters that follow will be an initial

step in this direction.

In one sense the statistician’s problem in mass production is more compli-

cated than the design of experiments that is usually considered in the litera-

ture of statistics. Whereas the customary statistical theory is concerned

with comparatively small scale experiments carried out under laboratory

conditions by a few people, the corresponding development of the mass

production process must be carried out under commercial conditions on a

large scale, involving large numbers of people. To illustrate, the three steps

in the mass production process are usually carried out either by different

companies or by different departments of the same company. The steps

may involve the coordinated effort of literally hundreds and even thousands

of employees, including physicists, chemists, engineers, sales agents, purchas-

ing agents, lawyers, and economists. Very few of these people have ever

had any training in statistics or probability, and yet they must be brought

to appreciate them if the statistician is to develop the opportunity of making

his full contribution. This situation constitutes a problem not only for

those now in industry but also for those responsible for the training of the

industrial leaders of tomorrow so that they will have sufficient knowledge of

statistics to be able to recognize the potential contributions that statistical

theory and technique have to offer.
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In the future the statistician in mass production must do more than

simply study, discover, and measure the effects of existing chance cause

systems: he must devise means for modifying these cause
An additional duty systems to bring about the results that are desirable in

in^a^productbn most efficient use of materials. He must not be

satisfied simply to measure the demand for goods; he

must help to change that demand by showing, among other things, how to

close up the tolerance range and to improve the quality of goods. He must

not be content simply to measure production costs; he must help to decrease

them.

The future contribution of statistics in mass production lies not so much
in solving the problems that are usual to the statistician today as in taking

a hand in helping to coordinate the steps of specification, production, and
inspection . The long range_contribution of statistics depends not so much
upon getting a lot of highly trained statisticians into industry as it does in

creating a statistically minded generation of physicists, chemists, engineers,

and others who will in any way have a hand in developing and directing the

production processes of tomorrow.



CHAPTER II

HOW ESTABLISH LIMITS OF VARIABILITY?

Thus in many directions the engineer of the future, in my
judgment, must of necessity deal with a much more certain and
more intimate knowledge of the materials with which he works
than we have been wont to deal with in the past. As a result

of this more intimate knowledge his structures will be more
refined and his factors of safety in many directions are bound
to be less because the old elements of uncertainty will have in

large measure disappeared. 1

Frank B. Jewett, President
Bell Telephone Laboratories

,
Inc.

What is Involved in the Problem?

In the previous chapter we saw how the engineer first tried to make
things exactly alike in the process of mass production; how, for economic

reasons, he was forced to adopt the use of the go tolerance limit and then

the go, no-go tolerance limits; and finally how he was forced to adopt the

use of the go, no-go tolerance limits plus two action or control limits and a

statistical limit in order to effect additional economies and to attain maxi-

mum quality assurance. Attainment of the state of statistical control

considered in the previous chapter involves the establishment of the control

and statistical limits. The problem considered in this chapter is that of

establishing the tolerance limits .

2 That is, we shall consider the question,

how is the engineer of the future going to provide himself with a knowledge

of the properties of materials that is adequate for setting tolerances in a

way to make the most efficient use of these materials?

Note on the meaning of tolerance limits. Probabilities involved. We
may think of the use of the go, no-go tolerance limits as constituting a

means of screening a given product in respect to some quality characteristic.

In this sense, tolerance limits on a quality characteristic X fix the range

within which the quality X of a piece of product must lie in order to conform

to specification and to fit into some mechanism that the engineer wants to

make. From this viewpoint, the choice of limits depends upon a particular

design. However, it is not only what the engineer wants but what he can get,

or at least what he can get economically, that must be taken into account in

1 “Problems of the engineer,” Science, vol. 75, pp. 251-256, 1932.
2 The relation between the five limits, two tolerance limits L 3 and L2 ,

two action or

control limits A and B
,
and the statistical limit C, is illustrated in fig. 6, p. 24.

50
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commercial conditions necessary

when thinking of tolerance limits

the setting of tolerance limits. So soon as an engineer undertakes to set

tolerances that make efficient use of materials, he must think not only of the

tolerance range itself but also of the 'percentage of the product made under com-

mercial conditions that may he expected to have

Knowledge of the product under a quality falling within this range. Hence the

establishment of economic tolerance limits

necessitates the acquisition of knowledge

concerning the probability that the product made under commercial condi-

tions will have a quality falling within these limits.

There is another reason why the engineer under certain conditions must

be concerned not only with the tolerance range but also with the probability

associated with that range. For example, if the in-

With tolerance limits spection lest to determine whether the quality of a

associated probability Piece of product lies within the specified tolerance

range is destructive, then it is only through a knowl-

edge of the expected variability of quality that an engineer can determine

what assurance he has that the quality lies within its tolerance limits.

Whereas tolerance is sometimes defined either as the difference between

two limiting sizes as a means of specifying the degree of accuracy or as a

specified allowance for variations from a standard, the concept of tolerance

as used in this monograph implies not only the concept of tolerance limits

hut also that of the percentage of the commercial product that may he expected

to have a quality falling within this tolerance range. So long as we think

of a tolerance range simply as go, no-go limits, our attention is centered

primarily on the limits themselves. However, just as soon as we begin

to consider the establishment of tolerance limits from the viewpoint either

of making efficient use of available materials or of maintaining an ade-

quate degree of quality assurance, especially when the inspection test is

destructive, we must think not only of the tolerance limits but also of the

probability associated with these limits.

Three typical tolerance ranges. Let us confine our attention to a single

quality characteristic X. Three typical kinds of tolerances that arise in

practice are illustrated schematically in fig. 1 1 . If p represents the probabil-

ity 3 of a value of X falling outside the tolerance range Lh L2 ,
the problem

may be thought of as that of setting tolerance limits in such a way that

V < V (7 )

where p' represents the largest fraction nonconforming that is allowable

from an economic viewpoint. Associated with any such requirement there

3 Some difficulty is involved in interpreting the meaning of this probability when the
quality of the product is not in a state of statistical control because there is no constant
probability p under these conditions: the probability p itself then varies with time.
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is some tolerance range Li, L2 ,
and it is desirable in most instances that this

range be reduced to an economic minimum through the process of eliminat-

ing assignable causes of variability.

Very often in practice only the tolerance range is specified. As an
example of a tolerance range in which both limits are specified we have the

requirement that the diameter of a shaft must lie within the range Li, L2

i
1 - V 1

u U

1

1 - V 1

OII•4 u

1

1 - V i

Li 8T
Fig. 11

(top of fig. 11). As an example of a tolerance range in which only the upper

limit is specified, we have the requirement that the blowing time of a fuse

shall not be greater than L2 seconds (middle of fig. 11). By implication the

lower limit is Li = 0. As an example of a tolerance range in which only the

lower limit is specified, we have the requirement that the tensile strength of

a steel strand shall not be less than L\ pounds per square inch (bottom of

fig. 11). By implication the upper limit is L2 = go. Even though no re-

quirement such as (7) is explicitly stated in any one of these three illustra-

tions typifying practice, some such requirement is implied, because it is

essential that the fraction p of nonconforming pieces shall not exceed some

value that is usually less than 1 percent and often less than 0.1 percent.

Our object in this chaptermay now be more definitely stated

chapter°

f^ as ^at of trying to determine some of the potential contribu-

tions and inherent limitations of the application of statistical

theory in the establishment of the economic tolerance limits Iq and L2 in

each of the three cases.

The Problem From the Viewpoint of Statistical Theory

In order to see clearly the role that statistical theory may be expected to

play in making possible the most efficient use of engineering materials, it is

necessary to consider two fundamentally different conditions under which

we are called upon to establish economic tolerances, namely, in setting

tolerances on the quality characteristics of raw and fabricated materials

and pieceparts, and on the quality characteristics of the completed unit,

physical system, or engineering structure. For the sake of simplicity, let

us think of some quality characteristic X of some fabricated material such as

the tensile strength of steel, or that of malleable iron, the thickness of con-
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denser paper, or the like. First of all there is the problem of discovering

the way the given property X varies under commercial conditions of produc-

tion and then comes the problem of making the best use of material with

this kind of variation when used in the design of complicated structures.

It is helpful to think of these two problems as being characteristically

inductive and deductive respectively. The first has the earmarks of the so-

called statistical problems of estimation and the second has the earmarks of

the statistical problems of distribution .
4

From an engineering viewpoint, these two problems, broadly speaking,

may be considered as belonging in the field of research on the quality of

materials on the one hand, and in that of design on the other. It is sig-

nificant for both the engineer and the statistician that statistical theory can

be made to play an important role in these two fields. For the engineer

it makes certain economies possible and provides a rational basis for estab-

lishing interrelated tolerances in a complicated structure so as to make the

most efficient use of materials. For the statistician it opens up a new field

for the application of statistical theory and techniques not only in the in-

ductive process of adding to our present knowledge of physical properties of

materials and physical laws but also in the deductive process of designing

structures that make the most efficient use of our present knowledge of

available raw and fabricated materials.

If it were possible to attain a state of statistical control for each and

every quality characteristic of fabricated materials and if the frequency

distributions of these characteristics were known, it is obvious that the

efficient use of such knowledge in designing new structures would involve,

among other things, the direct application of mathematical distribution

theory. Even before the engineer has attained the state of statistical con-

trol for all important quality characteristics of the fabricated materials and
pieceparts entering into a given design, it is possible under certain conditions

to effect a reduction in overall tolerance limits and to decrease the number
of rejections by randomizing the assembly process so as to distribute the

effects of assignable causes. The applications of statistical theory in the

processes of design and assembly are particularly attractive to the mathe-
matical statistician for they are likely to pay a good return on the exercise

of all his mathematical talents. However, such applications are only

touched upon here and there in this monograph. In the rest of this chapter,

for example, we shall consider primarily the inductive process of establishing

tolerances on a single quality characteristic X of any fabricated material or

piecepart.

4 Of course, when making this distinction, we must keep in mind that inductive scien-

tific inference involves the use of both inductive and deductive steps employed in the
process of making and testing a hypothesis.
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A practical example. One might expect that all the engineer needs to

do in order to improve his technique in setting tolerances on some quality

characteristic X is to become acquainted with the available theory of

“ statistical estimation.” We shall later find that such an expectation is

not justified, but that is getting ahead of our story.

Let us assume that we wish to use malleable iron in some design and

to set tolerance limits on its tensile strength. We naturally turn to the

engineering literature for data obtained under practical conditions to be

used as a basis for setting such tolerances. In the report of a recent sym-

posium 5 on malleable iron, we find the results of 5000 tensile strength

measurements on as many test bars of this material. These measurements

were made by Enrique Touceda for the Malleable Iron Research Institute,

the bars having been taken from several different heats over the period from

May to November 1930, from each of the companies comprising the mem-
bership of the Institute. These data are presented in table 1. Here we

TABLE 1

Tensile Strength of 5000 Malleable Iron Bars

Range of values

lbs. per sq. in.

Observed
distribution

Normal law
distribution Difference

Under 45,000 0 0 0
45,000-45,999 1 0 1

46,000-46,999 2 1 1

47,000-47,999 3 5 - 2

48,000-48,999 8 22 -14
49,000-49,999 23 77 -54
50,000-50,999 289 210 79
51,000-51,999 472 447 25
52,000-52,999 739 744 - 5

53,000-53,999 927 963 -36
54,000-54,999 967 970 - 3

55,000-55,999 758 762 - 4

56,000-56,999 481 466 15

57,000-57,999 230 222 8
58,000-58,999 72 82 -10
59,000-59,999 19 24 - 5

Over 60,000 9 5 4

have a very respectable looking unimodal frequency distribution (fig. 12).

However, when graduated to a normal curve, the closeness of fit between

the theoretical and the observed distributions as measured by x
2 = 90.23

is not very good, and the theoretical statistician might therefore argue that

the hypothetical universe is not normal. For our present purpose, however,

the value of x2
is of no interest; we are not concerned with the functional form

of the universe hut merely with the assumption that a universe exists. If it

exists at all, then it would appear that the setting of economic tolerances

6 Symposium on malleable iron castings, published in the Proc. Amer. Soc. Testing

Materials
,
vol. 31, pp. 317-434, 1931.
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reduces to a statistical problem of estimation; and by increasing the sample

size at will, we could presumably approach closer and closer to the tolerance

Fig. 12

range associated with any specified value of probability. 6
If, however, the

universe does not exist, there is no corresponding rule for getting closer and

closer to the tolerance range. Our problem here of set-
Settmg tolerances is ^ tolerances is therefore twofold: (a) to examine the

available evidence to see if one is justified m assuming

that a statistical universe exists, and (5) to consider the technique of

setting tolerances both when the assumption is justified and when it is not.

There is, however, another aspect of setting tolerances that we must con-

sider. For example, let us assume that we wish to make use of pure iron

in some way that requires us to set tolerances on its density. Accordingly

we turn to an authoritative table 7 of physical properties and find the density

given as (7.871 =L 0.002) gms/cm3
. This example is typical of the case

where the available information upon which to base tolerances is given in

the form X ± AX. What is the meaning of such a range and what relation,

if any, does it bear to the tolerance range? Obviously, a tolerance range

can be put into this form so far as its numerical aspects are concerned.

6 For a more critical discussion of the limiting process here involved, see the latter part
of chapter IV.

7 Physical Constants of Pure Metals, The National Physical Laboratory (His Majesty’s
Stationery Office, London, W. C. 1, 1936).
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Furthermore, if we turn to the literature of modern statistics, we find much
emphasis placed upon the assertion that with

Can valid tolerance ranges the help of modern small sample theory such

samples? ranges can be established upon the basis of small

samples just as validly as upon the basis of large

samples. Hence the engineer rightly wants to know if the statisticians

have found a satisfactory way for setting tolerance ranges on the basis of

small samples.

We find much confusion regarding the meaning of ranges X db AX even

in the literature of statistics. The fact that the meaning of the range that

is valid in the sense of so-called modern small sample theory turns out to be

different from the meaning of the tolerance range should be of considerable

interest to statisticians as such as well as to engineers.

How Establish Tolerance Limits in the Simplest Case?

A tolerance range for the bowl universe. Instead of tackling at this

point the practical problem of setting tolerance limits on a property such as

the tensile strength of malleable iron castings, let us start with the simpler

problems of establishing tolerance limits where we know that the sample

Xi, X2 ,

• •
•

,
X i}

•
•

•
,
Xn of data was drawn one at a time with replacement

from an experimental 8 normal universe. Let us consider first how to set a

tolerance range X = Li to X = L2 that will include let us say (1 — p')N
= .5N or one-half of N future drawings from the bowl. An engineer may
wonder why we choose .5 whereas in practice p' is most likely to be less than

.01 ; we choose this value of p' because several books in science and in error

theory seem to tell one just how to establish Lx and L2 for p' = .5. For

example, one outstanding treatise of 1937 on a particular branch of physics

has an appendix discussing accuracy and precision. The authors give eleven

measurements of a length. They calculate the arithmetic mean X of this

sample and the estimated probable error e of a single measurement in accord

with classical error theory. They then state in effect that if another set of n

measurements be made under the same conditions, it is an even chance that

the mean of this set will differ from the mean of the set of eleven measure-

ments by more than e/V n. This certainly looks to the uninitiated like a

means of setting a tolerance range for a probability of Of course, the

implication is that ranges for any probability could be set up in an analogous

manner with proper allowance for the magnitude of the desired value of

p'— 0.1, 0.05, etc.

Sometimes the result of an experiment is more convincing than an argu-

ment, and therefore let us see what might happen to one who set tolerance

8 See, for example, page 165, table 22, of my Economic Control of Quality of Manu-
factured Product, for such a distribution.
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ranges by such a rule. For this purpose, I drew from a normal universe in a

bowl the sample of eleven measurements shown in table 2. The average X,

and the estimated probable error e of a single observation are .009 and .322

respectively. Now let us set up tolerance limits for a probability of J and

sample size 9 n — 4. In line with the previous paragraph, we find that such

limits would be .009 ± .161, since 0.322/V 4 = 0.161. According to the

TABLE 2

.5 .1 - .3 - .9 .1 - .1

- .1 .3 - .6 .7 A

X = 0.009, S.D. = 0.456 = <r, 0.674<rVll/(ll - 1) = 0.322 = e

authors of the text, at least as I interpret their discussion, we should expect

to find fifty percent of the averages of samples of four lying within this range.

Well, let us take 100 samples of four and see if such a prediction is valid.

Fig. 13 shows the results of one such test. We were led to expect 50 percent

within the limits .009 dh .161 shown by the dotted lines: actually we find

27 percent ! The prediction of 50 percent within limits was not valid

!

I.5r

- 1.5-

0 20 40 60 80 100

SAM PLE

Fig. 13

What would happen to a practical man who followed such a rule? In
answering, I am reminded of the old saying: when a doctor makes a mistake,

he buries it; when a judge makes a mistake, it becomes the law. I would
add in the same vein: when a scientist makes a mistake in the use of statis-

tical theory, it becomes a part of “ scientific law”; but when an industrial

statistician makes such a mistake, woe unto him for he is sure to be found
9 Of course, I might have chosen any other value of n.
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out and get into trouble. Why the difference? The answer is that in

establishing tolerances, one can rest assured that he will hear about it if

appreciably more than the expected percentage of the product is found

outside of the limits, because hundreds, thousands, and sometimes even
millions of pieces of product are made per month.

It would, of course, be unfair for the engineer to judge the usefulness

of statistical theory on the basis of the example just considered. Gauss,

the originator of the estimate a^n/{n — 1), was aware of

Student’s theory the fact that it fluctuates from sample to sample, and the

same can be said of all careful writers since his time. Some
of the inherent limitations of the older theory have been overcome by work
that began in 1908 with Student’s publication 10 of tables for the probability

p z that the mean of a sample of n, drawn at random from a normal popula-

tion, will not differ from the expected value X of the population by more
than z times the standard deviation a of the sample. Let us see whether

this fundamental contribution helps us to set tolerance limits for the ideal

case of the normal bowl universe.

First, let us see just what this theory enables us to predict with validity.

Interpreted in an operationally verifiable way, this theory means, among
other things, that given a normal universe, even though its expected value

X and standard deviation a' are unknown, we can nevertheless make the

valid prediction that if we draw a series of N samples of size n, and calculate

the N ranges 11

Xi ± Zo'1, X<L =t Z(J2, * *
*, Xn ± ZGN

then p zN of these ranges may be expected to include the expected value X'

of the population. If the population is an experimental one whereof the

theoretical limiting value X may be obtained, 12 then such a prediction can

be tested. As an example, fig. 14 shows a series of 100 such ranges for

n = 4, 40 ranges for n = 100, and 4 ranges for n = 1000. The ranges were

all calculated with pz = J. The expected value 13 X is zero, and is shown

10 Student, “The probable error of a mean,” Biometrika
,
vol. 6, pp. 1-25, 1908. As

Birge once remarked to the editor, Student nowhere in this paper mentioned the probable

error of a mean except in the title.

11 For samples of 4, and with pz = z — 0.442, as is found from Student’s integral or

Fisher’s table of t, the relation being t — z\/(n — 1). For samples of n = 100 or n = 1000,

one may take z = 0.6745/a/

—

1), since at such large values of n the normal and Student

integrals are practically equal for abscissas not too far into the tails.

12 For a critical discussion of the operational sense in which a theoretically true value

such as X can be obtained, see the discussion of logical verifiability and of the meaning of

concepts in use in the latter part of chapter IV.
13 Of course, zero is the average of the numbers on the chips in the bowl, yet the statis-

tical limit X' of X may not be zero. We have no way of telling, but an operational method
of circumventing this difficulty will be discussed later on in this chapter (see sequences (ll)

and eqs. (12) and attendant discussion), also more fully in the last chapter. Editor.
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by the heavy central line. By actual count, the percentages of ranges that

include zero are 51, 45, and 50, the expected value pz being 50. To me, this

constitutes an excellent check between theory and experiment. Thus we

Fig. 14

*
n = 100 n = 1000

0 30 40 0 5

see that it is possible to make predictions with Student’s theory regarding

the varying ranges in the sense of fig. 14 that are just as valid for small

samples as for large ones. 14

14 Editor’s comment. It is important to realize that the change from bad agreement to

good agreement that has been brought about by substituting the Student ranges in fig. 14

for the single range in fig. 13 is due more to a development in interpretation than to any
numerical refinement provided by Student’s integral.

In fig. 13 there is only one range—the spacing of the horizontal lines; moreover this

one range is centered throughout at 0.009, which happened to be the mean of the 11 measure-
ments on page 57. This one range just happened to give bad results; it might have been
somewhat wider and given better results; if it had accidentally been close to 2 X 0.674o-'/V^,
spaced centrally about 0 (.009 is close enough), it wrould have worked very well. In fig. 14

there is not a single range, but many ranges—one for each sample, their centers and lengths

following the fluctuations of the means and standard deviations of the successive samples.

This would be so whether each range had been computed with the classical estimate of the

probable error made from that particular sample (.674<r/\/(n — 1) = .389<r for samples of

4), or with Student’s multiplier (.442<r), as was actually done. Of course the latter will

give somewhat better results with the normal bowl, on the average, but the numerical
refinement of replacing .389 by .442 is not so momentous as has been proclaimed by many
writers. Of much more importance to the statistician is the fact that, whether he uses

the classical estimate <rVn/(n — 1) of o-', or Student’s integral, he is at the mercy of the

sampling fluctuations of a, even in controlled experiments.

The chief lesson in figs. 13 and 14 is the resignation to the fact that no single

small sample can provide the information needed for setting the width of a single pair
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Students theory inadequate for tolerance limits. Now let us consider

the problem of establishing a tolerance range for samples from the normal
bowl that was used in getting the data shown in figs. 13 and 14. As before,

let us assume that we do not know the parameters of the normal distribution

in the bowl. Our problem is to set a range X = Li to X = L2 such that

the probability of drawing a value X lying within this range is some previ-

ously specified value, 1 — p'. As a special case let us take p' = .5. We
shall assume that the only way we can find out anything about the normal
universe in the bowl is by making drawings with replacement.

Obviously the starting point is to draw a sample of n values of X from
the bowl. To make the problem specific, let us assume that we have drawn
the following sample of four:

1.7, 0.2, 1.4, 0.5

How shall we set up the tolerance limits Lx and L2 for a probability p' = .5?

I think it will be generally (perhaps unanimously) agreed among statis-

ticians that our best estimate of such a range can be put in the general form
X d= ta. It is obvious, however, that no matter what rule is adopted for

computing such a range, that range will only as a rare event correspond to a

probability p' = .5. It is also obvious that the problem of establishing a

valid tolerance range is fundamentally different from the problem solved by

Student. His theory tells how to make valid predictions of the number of

times a series of varying ranges with varying centers may be expected to in-

clude a theoretically true value, whereas, in order to establish a valid toler-

ance range, we must be able to make a valid prediction about how many
times future observed values may be expected to fall within a given pair of

fixed limits.

A study of three types of ranges. The difference between the Student

type of range and the estimated tolerance range is of fundamental impor-

tance. The two ranges should certainly not be confused as they sometimes

of lines that will perform the feat that was expected of those in fig. 13, and the substitution

of a theory that deals with the varying ranges of fig. 14. It should be noted that any
prediction involving a Student range X db z<r is not a probability prediction concerning

that particular range, but rather of a whole sequence of varying ranges.

In control work, and also, I fear, in much of the application of statistics to agriculture,

we need to get back to the idea of a single range—a pair of horizontal lines like those in

fig. 13—but they must be in the right place. The fluctuating ranges of fig. 14 will not suffice,

even though close to 50 percent of them in a long series do overlap the true value, just as

predicted by Student’s theory.

The editor desires to point out that though there was a prior publication of a chart

similar to fig. 14 in Deming and Birge’s Statistical Theory of Errors (their fig. 11), the notion

came originally from conversations with Shewhart, as explained in Deming and Birge’s

footnote 27. An illuminating chart for illustrating the distinction between the samples

included by Student’s integral and those included by the normal integral is fig. 4 on page

341 of an article by Alan Treloar and Marian Wilder, Annals of Mathematical Statistics
,

vol. 5, pp. 324-341, 1934.
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are in the literature, particularly when the probability is taken as .5.

Neither should the meaning of either of these ranges for a probability of .5

be confused with the meaning of the probable error range X' ± .6745a'/^n

of classic error theory for averages of samples of size n, where X and a

are the true average and standard deviation respectively of the universe.

To emphasize this point let us consider the following examples of these

three ranges: 15

50 percent Student
range

:

16

Estimated 50 per-

cent tolerance

range: 17

X db za computed from a sample of n in

such a way that 50 percent of the ranges

computed in this same way from a se-

quence of samples of n from this same
universe may be expected to include X .

1 d- ka computed from a sample of n
and estimated to be the range that will

include 50 percent of the averages of fu-

ture samples of n from the same uni-

verse.

The probable error, X' ± .674 o-'/V n computed from the uni-

or 50 percent toler- verse parameters and assumed to include

ance range

:

18 50 percent of the averages of future

samples of n from the same universe.

The following five points should be noted: (1) the first two ranges are

computed from a sample, whereas the third is computed from the param-

eters of the universe; (2) the predictions involved in the meanings for the

second and third ranges are the same, and this prediction is different 19 from

the corresponding prediction for the Student type of range; (3) the validity

of the prediction for either the Student or the probable error range is to be

independent of the sample size, whereas the validity of the estimated toler-

ance range (the second one of the three) depends upon the sample size n in a

way that we shall shortly consider in some detail; (4) as the sample size n

in the estimate of the tolerance range approaches infinity, we may expect

15 Probabilities of other than 50 percent could be considered with obvious modifications
in the ranges. In fact, in the example treated in fig. 15, the fraction used is 99.73 percent.

16 The 50 percent Student range is what Neyman and Pearson would call the “50 per-

cent confidence interval” computed from the standard deviation of the sample. Here
the 90, 95, 99 percent confidence intervals would be computed similarly, but with different

values of z, as found by Student’s integral. Values of z are conveniently found from
Fisher’s table of t, the connection being t = zy/(n — 1). Deming and Birge show the 50
percent values of z directly in their Statistical Theory of Errors

, p. 140. Editor.
17 It should be noted that the z and k are different numbers even for the same probability

because the ranges X =L za and X ± k<r are not subject to the same interpretation.
18 In chapter IV it is pointed out that there is no possible 'physically operational meaning

to this third type of range.
19 See editor’s comment on pp. 59-60.
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predictions in terms of these estimates to approach the same degree of

validity in the statistical sense as predictions in terms of probable error

ranges; and (5) as the sample size used in computing either the Student or

the estimated probable error range approaches infinity, both these ranges

approach in the statistical sense the probable error range computed from

the parameters of the universe, as given above. 20

Now let us see what we must do in order to set up a tolerance range for

a prediction which is valid within limits that are practical. For this

purpose let us choose 1 — p' = .9973 because this is about the magnitude

customarily used in engineering practice. Of course, if we knew X and

a', the desired range would be X ± 3o-'. Let us see what happens if we
take X db 3a^n/(n — 1) as the range for each sample. Fig. 15 shows 100

such ranges for as many samples of 4 drawn from an experimental universe;

40 ranges for 40 samples of 100; and 4 ranges for 4 samples of 1000. The

dotted limits are X d= 3a'.

A tale of great practical importance hangs on this figure. The standard

deviation a fluctuates from sample to sample so wildly for samples of four that

large errors in prediction often result. But for n so large as 100 the standard

deviation is much steadier, and for n = 1000, steadier yet. If one were to

go through life setting 99.73 percent tolerance ranges for samples of four,

SAMPLE NUMBER

Fig. 15

using the “ estimated” value of a' as indicated in the previous paragraph,

he would sometimes get a range that includes a very small percentage, even

when the samples are drawn from a normal universe. For example, the

second range in fig. 15 includes only 12 percent instead of the aimed-at 99.73

20 At this point the reader may wish to consult a simple example worked out on p. 141

of Deming and Birge’s Statistical Theory of Errors.
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percent. Furthermore, most of his ranges would be off center owing to

fluctuations in X. Even on the average, the ranges thus set up would not

include 99.73 percent but something less. For example, the observed

average for 1000 such ranges for as many samples of four was in one experi-

ment found to be 93 percent. Of course, it is theoretically possible to

choose a coefficient for a that will overlap 99.73 percent of the chips, on the

average, but the errors of the separate ranges would have a larger average

than those observed above.

There are many details of interest that might be considered, but for our

present purpose it is sufficient to note that the varying experimental ranges

have a tendency to hug closer to the ideal limits the larger

Small samples? the sample size- used in computing the limits. This fact

is of great practical importance, because it shows that if we

wish to reduce the chance of making an error in estimating the probability

associated with chosen tolerance limits, there is no royal small sample

road for doing this. Even under the simple conditions here assumed, we
can improve our estimate only by increasing the sample size n. And even

with the normal bowl universe one would not likely be satisfied with a sample

of less than 1000 and would most certainly require 100 or more if he were

trying to set tolerance limits that would insure efficient use of engineering

materials. That is to say, even if the properties of materials and manu-
factured products were in a state of statistical control to begin with, it would

still be necessary, in order to acquire the “
certain and intimate knowledge ” 21

required for setting the most efficient tolerances, to have a sample of at

least 100 and more likely a sample of 1000 or more.

It should also be noted that there is no way to form an opinion concerning

the errors that might be made in adopting an estimated tolerance range of

the form X ± ka unless we know the sample size n from which it was computed.

In chapter III we shall be concerned with ranges again, but from the

standpoint of the presentation of data.

How Establish Tolerance Limits in the Practical Case?

The necessity for control. Thus far we have considered the method of

establishing tolerance limits, assuming that the world is a bowl of chips.

Under such conditions, we can increase our knowledge upon which to base

tolerance limits only through the process of taking more data, that is, by
increasing the sample size. This problem is purely statistical in the sense

that any sample of n observed values may be considered as a sample of an
indefinitely long sequence of numbers satisfying the requirement that they

21 Compare this with the quotation at the beginning of this chapter, p. 50.
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come from a statistical state of control. Schematically the situation is this:

(8)xh X2 ,
-, 1.,

Sample
-Xn+lj

,

Universe

Past Present Future

How to set tolerance limits Li and L2 upon the basis of the sample, and how
to determine the errors that may be expected for samples of n, are problems

to the solution of which the mathematical statistician can contribute more
than anyone else, provided, of course, that the physical state of statistical

control represented by drawings from the bowl can be characterized by the

mathematics of distribution theory. In fact, in such a state of statistical

control, there is, in general,22 nothing useful that an experimental scientist

can tell a statistician about how the n numbers arose beyond the statement

that they were drawn from a bowl. Thus we see that since the state of

statistical control represents the limit to which one can hope to go in attain-

ing uniformity of quality of product, the setting of the most efficient toler-

ances reduces in the end to a purely statistical problem.

Now let us ask : how often in the practical field is one justified in conclud-

ing upon the basis of a small sample of data that the conditions have been
* maintained essentially the same in the sense that

The statistician does not one WOuld be justified in making predictions as

«mt control erists

granted
though the sample had been drawn from a bowl?

A mathematician obviously can not answer this

question; we must appeal to experience for an answer, but in analyzing and

interpreting the experience the statistician and scientist must cooperate.

To make our problem specific let us assume that we are given a set of

sixteen measurements (table 3) of a physical quantity and that we wish to

set tolerance limits for such measurements. 23 What should be our first step?

TABLE 3

6.683
6.667

6.681
6.667

6.676
6.664

6.678
6.678

6.679
6.671

6.672
6.675

6.661

6.672
6.661
6.674

Shall we call in a statistician to proceed as if the sample had been drawn from

a bowl, or shall we first call in the scientist who took the measurements to

tell us something about them? If we call the scientist, what shall we ask

him to do?

22 The qualifying phrase “in general’ ’ is used here to remind us once again that

strictly speaking we can never be sure that we are carrying out any specified measurement
or physical operation, including the operation of drawing from a bowl and defined in this

monograph as a random one.
23 It should be kept in mind that we have chosen here to set constant tolerance limits

on these measurements, instead of the fluctuating limits given by Student’s theory. See

the editor’s comment beginning on page 59.
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Some engineers, scientists, and statisticians make a distinction between

the observations of the highly skilled and technically trained research

worker and those that an engineer must often work with. They tend to

place a kind of halo around the data of research as though such data repre-

sent the limiting condition that one may hope to attain in removing causes

of variability. As noted in chapter I, when scientists think they have done

an excellent job measuring some physical constant or property, they have

the habit of saying that all the measurements were made under the “same
essential conditions.” The statistician as a rule not knowing any too much
science and the scientist not knowing any too much statistics, the two have

often gotten together and agreed, as it were, that the phrase “same essential

conditions” can be taken as a password between the two groups. Hence
one might conclude that it would be sufficient to ask the scientist if the data

of table 3 had been taken under the same essential conditions. If the

scientist answers yes, then one might be tempted to turn the problem over

to the statistician for him to tell us what he could upon the assumption

that the 16 data constituted a sample from a bowl of chips.

Engineering and “research” data are not to be regarded differently with

respect to the assumption of statistical control. Those who would agree

to use this procedure for research data would likely not agree to its use in

TABLE 4

Tensile Strength
lb. per sq. in.

Source Maximum Minimum Average

No. 1 59 000 45 000 54 000
No. 2 58 500 53 000 56 250
No. 3 56 880 50 000 52 460
No. 4 55 850 47 850 52 890
No. 5 62 140 54 400 57 920
No. 6 62 860 52 150 56 350
No. 7 56 000 50 000 53 000
No. 8 58 000 50 000 55 000
No. 9 61 300 49 000 55 000
No. 10 59 800 50 000 53 970
No. 11 60 000 46 600 52 670
No. 12 58 000 50 000 53 000
No. 13 62 000 51 000 53 000
No. 14 56 640 45 500 51 170
No. 15 61 500 45 000 53 710
No. 16 58 000 50 500 55 500
No. 17 56 160 50 480 52 830

Average tensile

strength . 54 040

setting tolerance limits upon the basis of engineering data such as the 5000
observed values of tensile strength of malleable iron castings, table 1,

page 54. They would likely question the justification of assuming that
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these data arose under a state of statistical control. Would one be justi-

fied in questioning this assumption? The answer is yes. For example, the

reference from which the 5000 data of table 1 were taken gives also the

means, maxima, and minima for large samples of similar tests on other

material from the same seventeen different sources, as shown in table 4.

The total number of tests summarized in table 4 is more than 20,000. Even
though the difference between the averages—54,040 lb. per sq. in. and

54,030 lb. per sq. in.—for the data of tables 4 and 1 respectively is not great,

I think that both statisticians and engineers would agree that it is pretty

likely that the chance cause system behind the 5000 test values was not

free from assignable causes, the reason being that the data of table 4 reveal

differences that are statistically significant; and since the 5000 data of table 1

came from the same sources, we may perhaps conclude that one is not justi-

fied in assuming that they arose under a state of statistical control.24 This

failure to satisfy the criteria of control is a typical characteristic of engineer-

ing data.

And now how about the data of “research”? Let us look at some of the

series of data taken in pure science to see if they behave as if they had been

drawn from a bowl. Let us look at the scientists’ measurements of three of

YEAR

Fig. 16

the seven fundamental constants of physical science, namely the velocity of

light c, the gravitational constant G, and Planck’s constant h. Certainly

such observations are among the elite of all physical measurements. Fig. 16

24 Incidentally, this comparison between tables 1 and 4 illustrates the loss of informa-

tion that is apt to result from pooling several sets of data before they can be accepted as

homogeneous. Editor.
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shows the fluctuation in the accepted values of these constants over the

past years.25 The three ordinate scales are not shown since the object here

is simply to indicate in a readily comparable way the variations in each of

the three sets of measurements over the period from 1870 to 1936. On the

evidence here presented, it might be argued that, for the velocity of light c,

the accepted measurement seems to be approaching asymptotically some

fixed value. This type of argument has, in fact, been advanced by Bavink 26

as indicating the more or less ordered way in which we approach perfect

knowledge in physics. The other two curves, however, constitute quite a

contrast. Each ends at approximately the level where it began. Physicists

pretty generally agree that for each of the three constants, the observed

range of variation is so great as to be indicative of “ constant ” errors.

Moreover it should be kept in mind that the points shown in fig. 16 are

averages. Now if we examine the way the single observations are distributed

around some of these points, we find further evidence for believing that there

25 R. T. Birge, “The velocity of light,” Nature
,
vol. 134, page 771, 1934. Sten von

Friesen, “On the values of fundamental atomic constants,” Proc. Royal Soc. London
,

vol. A160, pp. 424-440, 1937. The values of G for 1895 and 1896 are taken from the
article “Gravitation” in the eleventh edition of the Encyclopedia Britannica. These are

the values which the author of the article, J. H. Poynting, thought most likely to be cor-

rect at that time (1910). The 1927 and 1930 values are those given in the Smithsonian
Physical Tables

, 1933, while the 1936 value is obtained from “Fundamental physical con-
stants,” by W. N. Bond, Phil. Mag., ser. 7, vol. xxii, pp. 624-632, 1936.

26 Bernhard Bavink, The Anatomy of Science (G. Bell and Sons, Ltd., London, 1932).
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are assignable causes of variability present. For example, let us consider

the last determination of the velocity of light shown on the chart.27 The
total number of repetitive observations in this one point is large—2885 in

fact. If these readings could reasonably be treated as though they were

a random sample from a normal bowl of chips with an average equal to the

true velocity of light, we could be pretty sure that 99.7 percent of a large

set of future observations by this method would fall within the range

1 ± 3 o'. But as is almost always true when a large sample is available, these

2885 observations do not give much evidence of having come from a normal

universe. Fig. 17 compares the observed distribution of these observations

with the fitted normal curve. The x
2 test tells us that the probability of

getting a deviation from normality (as measured by x
2
) as large as or larger

than that observed, is too small to be read from the tables of x
2

- Hence if

one wished to set up valid tolerance limits on future observations of the

velocity of light, he would be unwise to use a rule based upon the assumption

of normality.

But—and this is the most important question—are we justified in

believing that these data constitute a random sample from any universe,

normal or otherwise? Dare we assume that they arose from a constant

system of chance causes of variation or, in other words, from a state of

Fig. 18

statistical control? Suppose we let the data speak for themselves when

successive groups are plotted in the form of a control chart,28 fig. 18. The

chance of one of these averages going outside the dotted limits if the samples

27 Michelson, Pease, and Pearson, “Measurement of the velocity of light in a partial

vacuum,” Astrophysical Journal, vol. 82, pp. 26-61, 1935.
28 Criterion I as described on p. 309 of my Economic Control of Quality of Manufactured

Product is here used (cited on p. 23).
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had come from a constant chance cause system (even though we do not

know the distribution function for the cause system, i.e. even if we do not

know the form of the universe) is not much different from .003. Four

points outside the limits, in a total of forty-six, is not a very likely event

on the assumption of a constant system of variation. What is the practical

significance of this fact for our present story? It is simply this: Whereas

there is safety in numbers when setting tolerance limits on the basis of a sample

from a bowl, that same degree of safety does not exist when the samples are not so

drawn. My own experience has been that when data behave as they do

in fig. 18 it never pays to rely upon numbers alone.

Now let us look at another point in fig. 16, this time the maximum point

shown on the G curve. This- value, 6.670 X 10-8 cm 3
g
-1

sec
-2

,
is that

given by Heyl. 29 It was derived from the three sets of measurements shown

TABLE 5

Values of G in Units of 10-8 cm3 g-1 sec-2 (Heyl 29
)

Gold Platinum Glass

6.683 6.661 6.678
6.681 6.661 6.671
6.676 6.667 6.675
6.678 6.667 6.672
6.679
6.672

6.664 6.674

in table 5 corresponding to experiments using platinum, gold, and glass

spheres. The value given by Heyl is obtained by weighting the data for

_® » 5 PLATINUM

GOLD J 1 1J • •

GLASS AJ U L

6 *660 6.670 A680 6^690

HEVL’S MEASUREMENTS OF G - GM./CC.V 10"®

Fig. 19

the gold spheres by one third and the other data by unity. The data of

table 5 are shown graphically in fig. 19. Certainly we need no refined
29 Paul R. Heyl, Bureau of Standards Journal of Research

, vol. 5, pp. 1243-1290, 1930.
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statistical tests to convince us that such a set of sixteen data is very unlikely

upon the assumption that a constant system of chance causes is the source

of the observed variability. Heyl says : “The different results obtained with

the various materials used for the small masses are yet to be explained, but

evidence is given that this difference is not to be ascribed to the nature of

the material.” The point I wish to stress is that here again we have a

sample of measurements among the most elite of pure science that do not

seem to behave like drawings from a bowl of chips.

Where does the statistician’s work begin? Now let us return to the

question, given the problem of setting a tolerance range on measurements of

the type shown in table 3, shall we first call in a statistician or shall we first

call in the scientist who is an authority in the field from which the data

came? The evidence (fig. 19) of lack of control in the measurements of the

constants c, G, and h may well serve to shake our faith in a scientist’s judg-

ment that the conditions have been maintained essentially the same, and in

regarding his statement as a satisfactory basis for turning the data over to a

statistician to be treated as if it were a sample from a bowl. As the reader

may have already noted, the sixteen measurements of table 3 (p. 64) are

the same as those of table 5, except for a constant multiplier; hence, after

our experience with fig. 19, we are able to say something concerning the

question that was asked regarding the numbers in table 3; it would be

hazardous to consider them as a sample drawn from a normal bowl or any

other kind of a bowl, no matter who took the data.

In the light of such experience in the investigation of available measure-

ments of the physical constants and in the light of my experience in the

m-t ...... . ,, study of samples of measurements of qual-
The statistician is supreme after j. v m

statistical control has been ity in engineering, I feel that before one
established; until then the scientist turns over any sample of data to the
and the statistician must cooperate

statistician for the purpose of setting

tolerances he should first ask the scientist (or engineer) to cooperate with

the statistician in examining the available evidence of statistical control.

The statistician’s work solely as a statistician begins after the scientist

has satisfied himself through the application of control criteria that the

sample has arisen under statistically controlled conditions. The case is

something like the old story of Pat, the Irishman, who had been in this

country only a few months and in the meantime had located a job as a

hod-carrier when his friend Mike arrived. “Pat,” says Mike, “and what

are you doing?” To which Pat answered, “Sure an’ I have an easy job.

I carry the bricks up four flights of stairs and the man up there does all the

work.” In much the same sense the scientist must carry his data through

several control criteria before handing them over to the statistician to use

in setting tolerances.



HOW ESTABLISH LIMITS OF VARIABILITY? 71

There still remains the question how we are to set tolerance limits when

the chance cause system is not in a state of control. Certainly the engineer

and the scientist both must set tolerance ranges within which measurements

of physical constants and properties may be expected to lie even when condi-

tions indicate that the state of statistical control has not been attained.

Perhaps enough has been said to show that the establishment of tolerance

limits under conditions that are not statistically controlled is not a problem

to be turned over to the statistician to solve by himself on the assumption

that the available data can be treated as a sample from a bowl.

Further Considerations Regarding Tolerance Limits

As a starting point for what follows, we need to look more critically than

heretofore at the requirements that tolerance limits must meet in the process

of mass production of interchangeable parts. So far, we have spoken only

of tolerances expressed in terms of the measurements of some quality charac-

teristic. It has been tacitly assumed that if the measurements of a quality

characteristic on two or more pieces of a given kind of product fall within

their tolerance limits, then the quality of both of these same pieces of

product falls within these same tolerance limits. Obviously, however, this

assumption may not be justified because the measurements may be, as we
say, “in error.” Hence we need to take into account the difference between

the customarily accepted concept of the true value X' of a physical quality

and a measurement X of this true value.

For example, if we have two pieces of product 0 1 and 0 2 of the same
kind, we customarily assume that the values X'i and X' 2 of their true

quality characteristics must both lie within some tolerance range

X' = Li to X' = U (9)

in order that the objects be interchangeable in assembly and use in respect to

the quality characteristic X'. Likewise the desired physical state of statis-

tical control is assumed to be expressible in terms of a sequence of numbers
representing true values of the quality characteristic X' for a sequence of

objects:

XV X' s , X'i, ••.,X'B ,
X'n+lj ;X’n+i, (10 )

These are formal expressions of the fundamental requirements for economic
mass production of interchangeable parts.

Let us now look a little closer at this concept of a true value X' as here

used. How is one to determine whether the true value of the quality
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characteristic lies within a given range? If one can not discover the true

The concept of the true value
vaIue

>
then of what Practical use is the concept

leads to operationally of true value? In answer we shall see that the
verifiable criteria regarding concept of true value leads us to choose opera-
measurements n .<2 ui u • j. ± rtionally verifiable criteria that measurements of

a quality characteristic must satisfy in order that they may be considered

to be measurements of the true value X'. These criteria, as we shall see,

include those for control of any method of measurement and those for

checking the consistency between measurements by different methods.

To begin, let us note that corresponding to every concept of a true

measurable quality characteristic X', such for example as length, there are

usually several assumed methods of measurement. For example, a method
may involve the use of (a) an ordinary rule, (6) a micrometer, (c) a traveling

microscope, or (d) triangulation. Presumably the operation of measure-

ment by each method can be repeated again and again at will so that corre-

sponding to any true value X' there are potentially as many infinite se-

quences of measurements as there are assumed methods of measuring.

Schematically the situation is this:

In, Zi2 ,

• •
•

,
Xu, • • •

,

,
Xin, Xi, n+l,

* *
*

:)
Xl, n+i

,

X2I) X22, •
'

•
,
X2 i,

•
•

•
j1
X2 n, X2, n+l,

* *
*

j
1

X2, n+i,

Xu, Xi2 ,
•

1

1 Xin, Xi
f n+l, *

,
'
X{

t n+i,

(ID

where the symbol —» stands for an operational meaning of measuring X'. 30

The diagram of sequences (11) thus portrays the fact that each method of

measuring gives rise to a sequence of observations, and if there are several

methods, there are as many sequences. However, in order for such a set of

sequences (11) to constitute the operational meaning of measuring the true

value X', each sequence must represent a statistically controlled condition,

and the statistical limits of the averages of the first n terms of these sequences

30 The transition from the sequences (11) to the equalities (12) constitutes a bridge be-

tween the abstract concept of X' and a physically verifiable operation of measurement. In

chapter IV we shall see how one can pass from physical to practical verifiability.

There is no way of giving practical verification to eqs. (12), yet these equalities are

physically verifiable in the sense that to any series of measurements in the sequences (11),

one more observation can always be added, and the average taken. But the average X
of any finite number of measurements is not the same thing as the theoretical limit X

,

even if for some value of n, X happens to be equal numerically to X . This brings up the

question, when can one say that eqs. (12) are true? For an answer one must introduce the

concept of 'practical verifiability
,
involving certain limitations expressed in terms of tolerance

ranges. This matter will be considered carefully in chapter IV. Editor.
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as n approaches infinity must be equal; or expressed formally,

xY = x\ = • • • = x\ (12)

Standard methods of measuring. In practice, it is customary to choose

one of the methods of measurement as a standard. For this method, we

may write the potentially infinite sequence of measurements of the true

value X' as

to set it off from the others. Theoretically, this sequence in order to serve

as a basis for comparison should be random in the sense that it is representative

of a state of statistical control. Requirement (12) then reduces to

As statisticians we might have introduced the requirement in (12) and

(14) that these statistical limits be equal to the true value X', or as we some-

times say, that the method of measurement shall not be biased. Operation-

ally, however, we have no physical or experimental way of getting at X' ex-

cept through measurement, and hence the requirements (12) and (14) are

here expressed in terms of measurements alone. It should be noted, of

course, that (12) and (14) express the requirements in a formal and hence

abstract manner. We shall later consider the practically verifiable opera-

tional meaning of these expressions in use (chapter IV).

Let us pause for a moment to examine some of the proposed standard

methods of measuring a quality characteristic such as length to see what

criteria such measurements must satisfy. These methods of measuring are

usually divided into two classes : those using some arbitrarily chosen physical

object such as the Imperial Standard Yard and the International Prototype

Metre and those using some natural phenomenon such as the velocity of

light.

First let us consider the requirement of randomness or statistical con-

stancy of the standard sequence (13) when applied to a typical standard

method of measurement. To begin, we shall choose an operationally veri-

fiable criterion for control in the sense considered in chapter I. The layman
might expect that, having chosen a criterion of control, it would be quite

simple to find a standard experimental sequence that satisfies the one

chosen. For example, he might expect Michelson’s measurements on the

velocity of light to constitute such a sequence for length. A glance, however,

at the control chart record (fig. 18, p. 68) for these measurements of the

velocity of light should be sufficient grounds for believing that this method
of measurement, at least as represented by Michelson’s data, does not

satisfy the criterion for control here chosen. Since we do not find evidence

(13)

x't = s' a = 1,2, •••) (14)



74 STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CONTROL

step in the establishment

of a standard sequence

of statistical control in measurements of some of the most important physical

constants, it would seem that the first real prob-
Statistical control the first lem jn establishing a standard sequence in terms

of measurements of a physical phenomenon is to

detect and eliminate assignable causes of variation

until one can be reasonably sure that he has attained a state of statistical

control in the measuring process.

Now let us see what the situation is for measurements in terms of arbi-

trarily chosen physical standards. Some interesting results have recently

been given by J. E. Sears, superintendent of the metrological department of

the National Physical Laboratory. In addition to the Imperial Standard

Yard, there are in existence at least four Parliamentary copies. Table 6

shows the observed differences in millionths of an inch between the length

of the Imperial Standard Yard I and the copies P.C. 2; P.C. 3; P.C. 5; and

P.C. VI. Sears places the observations on P.C. 3 in 1876 and those on

P.C. 3 and P.C. 5 in 1892 under suspicion, and hence he argues that accord-

ing to the results shown in this table the lengths of the bars P.C. 2, P.C. 3 and

P.C. 5 have remained in close agreement with that of the standard. How-
ever, he points out that not only the evidence given in table 6 but also other

evidence cited in his article indicates that P.C. VI contracted over this

period in an exponential manner so as to approach the asymptotic difference

of — 228 X 10~6 inch which the bar has now reached. Sears points out that

TABLE 6

Difference in Millionths of an Inch

Comparison 1852 1876 1886 1892 1902 1912 1922 1932

P.C. 2 —I +21 +36 + 6 — - 23 - 19 - 39
P.C. 3 —I -33 +57 — +55 — - 49 - 61 -111
P.C. 5 —I -55 -33 — +70 — - 43 - 23 - 47
P.C. VI—

I

— — -3 — -192 -215 -217 -234

the bar P.C. VI was made several years after the others and argues that

perhaps the reason why the change in length is noted only in the case of

P.C. VI is that the others had reached a stable state before the measurements

in table 6 were taken. Of course, another explanation might be that the

earlier bars, including the Imperial Standard, have been shrinking at the

same rate.

For our present purpose, the point I wish to make is that there is evidence

for believing that the use of such arbitrarily chosen physical standards of

length can not be expected to give a random test series, at least until the

physical standards themselves are several years old. The question of how

many years are required in any given case can be determined only through

a study of the test results at intervals over this period to determine whether
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they give evidence of having attained a state of statistical control. The

initial measurements obtained by the use of such standards certainly do not

give evidence of having arisen under statistically controlled conditions.

What is more important, however, from an operational viewpoint, is to

scrutinize the measurements that are obtained by a given method in order to

determine not only whether they have arisen under a state of control but

also whether they are significantly different from those obtained by other ac-

cepted methods; in other words, to determine whether such measurements

satisfy the requirement (12) or (14) as the case may be.

The use of any one of the duplicate physical standards of length in table

6 is capable of giving an infinite sequence; hence corresponding to the

measurements of a length by the five standard bars, we should have five

sequences of the form shown below:

$11 ,
$12 ?

$21 ,
$22 ,

$il, $i2,

, Su, •
, $ln, $1, n+l,

* *
•, Si. n+i

,

, $2i,
*

*
, $2n, $2, n+l,

* *
•

,
S2, n+i,

,
Sa, *

, $in, $L n+l,
* * ;S{ . n+i,

(15)

Presumably, duplicate copies of a standard should be interchangeable in

terms of the infinite sequences (15) that characterize them in an operational

way. Hence, from the viewpoint of statistical theory, the requirements im-

posed on the sequences in (11) are different from those imposed on the se-

quences in (15). It follows that sequences (11) and (15) must both satisfy

the conditions (12), and in addition that the sequences in (15) must also

satisfy the condition

/($) - /i($i) - /2 ($2)
- • • * - /*•($<) - • •

• (16)

which is supposed to symbolize the requirement that the sequences in (15)

may all be considered as random sequences from the same universe.

Setting tolerance limits when control is lacking. Now we are in a

position to consider in what practical sense we can set tolerance limits on the

“true value” X' under practical conditions. The first thing we must do is

to ascribe an operational meaning to the measurement of the true value X'
that satisfies eqs. (12). If, in a practical case, we knew that each of the

sequences corresponding to the assumed methods of measuring the true

value was random, and that the requirements (12) and (16) were satisfied,

then one could proceed in setting tolerance limits as he would for samples

drawn from a bowl. Evidence has been given, however, to indicate that

requirements (12) and (16) are not met even for the simple case of measuring
a length. How then shall we proceed?
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All that we can do here is to consider some of the general principles that

we must take into account in the establishment of tolerance ranges under

conditions of lack of control. To begin with, we must give attention to the

meaning, validity, and efficiency of the range.

Meaning. In establishing a tolerance range for drawings from a bowl

universe, we attempt to estimate from a sample of n a range that may be

expected to include (1 — p')N of N future numbers drawn from the same

bowl. In contrast, let us consider the problem of establishing a tolerance

range on the tensile strength of malleable iron on the basis of the 20,000

measurements given in table 4, p. 65. The tensile strength of malleable iron

is more complicated and much less definite than drawings from a bowl, on

two scores. In the first place, one must choose the methods that are to be

included in the sequences (11), which define the operation of measuring the

quality characteristic of tensile strength. In the second place, one must

decide which sources of supply of the material are to be covered by the

tolerance. One must, in other words, define the operations of choosing the

material to be included. Obviously, establishing a tolerance range for one

of the sources of material in table 4 would be quite a different problem from

establishing a tolerance range for all of the sources noted in this table; and

this in turn is a simpler problem than establishing a similar tolerance range

applicable to all sources that might be included in the future. We shall

give more critical attention to the operational meaning of tolerance ranges

in chapter IV. We should note here, however, that in the case of a bowl we

may conceivably set a tolerance range that may be expected to include

(1 — p')N of future drawings from the same bowl, whereas under non-

controlled conditions we can conceive of establishing a tolerance range Only

in the sense of finding a range such that the probability of future observed

values falling within this range can not be less than 1 — p'.

Validity. In setting tolerance ranges for future drawings based upon a

sample of size n drawn from a bowl, it was pointed out that the tolerance

range might involve a huge error if fixed upon the basis of a small sample

(fig. 15, p. 62). Under conditions of lack of control the chance for error

is even greater. For example, if one were to set a tolerance range for the

tensile strength of malleable iron upon the basis of a sample of size n from

the source having the smallest range in table 4 (p. 65) it would obviously

involve a huge error irrespective of sample size if applied to any of the other

sources shown in the table.

In the majority of practical instances, the most difficult job of all is to

choose the sample that is to be used as the basis for establishing the tolerance

range. If one chooses such a sample without respect to

Choosing the sample the assignable causes present, it is practically impossible

to establish a tolerance range that is not subject to a
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huge error. Before choosing the sample, therefore, it is desirable to try to

detect the presence of assignable causes and to discover the nature of these

so that their influence may be foretold. The operation of quality control, 31

as well as tests for significant differences, is of great use in this connection

if the tolerance range is to be set so as to include the variability that may
arise if none of the assignable causes is removed. Under such conditions,

one must try to choose the tolerance limits Li and L2 so that under the worst

conditions that one may reasonably look forward to in the light of a study

of the nature of the assignable causes present, not more than p'N of any

group of N observations are expected to fall outside the limits Li and L2 in a

series of N trials.

Thus in setting tolerances for. the tensile strength of malleable iron where

it is desired to include all of the 17 sources in table 4 under the assumption

that they are to remain as uncontrolled as they are, one would simply take

into account the best and worst sources as a basis for setting the tolerance

limits. Then, since it is likely that each of these two sources is not statisti-

cally controlled, one would have to allow for the effects of assignable causes as

best he could. Oftentimes under such conditions the maximum and the

minimum in the best and worst sources respectively are of more importance

than any other statistics of these distributions for indicating the range in

which most of the future observations will lie.

Emphasis should be placed upon the fact that in the use of statistical tests

for significant differences it is necessary to use large enough samples to reduce

to a satisfactory level the risks of making errors in judgments. The reason

for such action is similar to that for going to a sample size between 100 and

1000 in trying to establish a tolerance range even in the simplest case of

drawing from a normal bowl, as was pointed out in the discussion of fig. 15,

p. 62. Also I think it is important to note how extensive the series of

measurements apparently must be before we can hope to gain much by
trying to analyze a set of data as though it were a sample from a bowl. For

example, in the beginning of any investigation involving the measurement of

a “true” value there are usually only a few known methods of measuring

the quantity in question. At least in the field of physical and chemical

science, the requirement of consistency 32 between the results obtained by

31 See, for example, H. F. Dodge, “Statistical methods and specification of quality,”

Bulletin of the American Society for Testing Materials
,
No. 85, pp. 17-21, 1937.

32 This term as here used means agreement or harmony of the sequences among them-
selves as parts of the assumed operational meaning of measuring the true value. A chosen

set of sequences is assumed to be consistent with respect to any specified statistic of the

sequences when the observed differences in the values of this statistic calculated from
the observed portions of the sequences are not greater than may reasonably be left to chance

as determined by some chosen criterion.
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different methods has been a powerful influence in directing attention to the

so-called constant errors. It would appear
Consistency between different that, in general, it is of little value to make very

of great importance large numbers of measurements by any one

method until it has been found to give results

that are more or less consistent with those obtained by other methods. If,

however, a large number of measurements are to be made as, for example,

in the measurement of the velocity of light, it would seem that much is to

be gained by applying statistical criteria of control for detecting assignable

causes of variability, because in no other way apparently can we reach the

state of statistical control and maximum validity in prediction.

Efficiency. Under conditions that are not statistically controlled, the

tolerance limits must be set much farther apart than would be necessary if the

operation of statistical control were applied to detect and weed out un-

necessary causes of variability. Setting an unnecessarily broad tolerance

range naturally leads to an inefficient use of materials. For example, in the

design of ships, 33 or structures of any kind, if the engineer makes the toler-

ances unnecessarily wide, such action results in the use of more material

than is necessary. It should, of course, be noted that efficiency in the sense

here used is limited to the concept of minimizing the quantity of material

used and hence is to be differentiated from the broader concept of economic

use which must take into account efficient use of material as only one of

several factors.

If we are going to make the most efficient use of material, we must close

up on the tolerances as far as it is economical to go. In this process, we
must make use of two kinds of statistical criteria

:
(a) those involved in the

operation of control, and (b ) those required to test the consistency between

the sequences used in giving operationally definite meaning to the true value

X' schematically illustrated in (11) and (15), pp. 72 and 75. Criteria under

(6) are obviously those for testing significant differences in averages and for

testing whether it is reasonable to believe that a given set of sequences came

from the same state of statistical control. This progress toward the ultimate

goal of efficient use of raw materials through reduction of tolerances to an

economic minimum necessarily involves extensive use of tests for significant

differences.

Someone may ask why go further than scientists have gone in trying to

attain random sequences of physical measurements satisfying the criteria

(12) and (16)? The answer is that, in just the same

i^Tndustry
eqUirementS way that industrial applications of scientific prin-

ciples have brought more and more stringent require-

33
Cf. W. P. Roop, ‘‘Features of practice affecting design,” a paper read at the annual

meeting of the Society of Naval Architects and Marine Engineers, 1936.
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ments on accuracy in measurement, so it is that any further steps toward

attaining maximum efficiency in the use of materials will bring additional

requirements on the methods of measurement in regard to the state of

statistical control and maximum consistency, both of which will necessitate

the extensive use of statistical theory and technique.

From what has been said in this chapter, it appears that we must gain a

much more intimate knowledge of the properties of materials than we now
have if the engineer of the future is to minimize tolerance ranges and thereby

attain maximum efficiency in the use of materials. Furthermore it must

be apparent that this ideal can be attained only by the application of statis-

tical theory in establishing criteria for control and other criteria for testing

consistency between methods of measurement. Even in establishing toler-

ances under conditions that are not statistically controlled, it is to the

engineer's advantage to use statistical technique as an aid in segregating

assignable causes of variability; and when a state of statistical control is

reached, the setting of tolerance limits becomes a purely statistical problem.



CHAPTER III

THE PRESENTATION OF THE RESULTS OF MEASUREMENTS
OF PHYSICAL PROPERTIES AND CONSTANTS

A Worthy Goal:

“When you can measure what you are speaking about and
express it in numbers, you know something about it, but when
you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory kind.”

Lord Kelvin

But:

“
. . . knowing begins and ends in experience

;
but it does

not end in the experience in which it begins.” 1

C. I. Lewis, Harvard University

The Nature of the Problem

Increased knowledge of quality necessary. To make the most efficient

use of both raw and fabricated materials, the engineer needs to increase his

present knowledge of their quality characteristics. In fact, he must know
more in the future than anyone now knows about the variability of almost

every such quality characteristic. Needless to say, the measurements of

physical properties and constants made by the scientist and engineer in the

research laboratory contribute materially to such knowledge. However,

as we have seen in the previous chapter, the engineer must also have more

knowledge than he now usually has about the variability of each quality

characteristic of his product under commercial conditions of production if he

is to be able to set the most economic tolerance limits on each characteristic.

The object of this chapter is to consider how an understanding of statistical

theory may help one to present the results of measurement in a way that

will contribute most effectively to the knowledge that the engineer must have

if he is to establish tolerances that will make possible the most efficient use

of his materials. The emphasis throughout this chapter is accordingly to be

placed upon the presentation of observed results as an evidential basis for

knowledge; in fact, the title might well have been, “The Presentation of

Data as Evidence.”

Some considerations of summaries of the density of iron. As an

example, let us assume that we wish to make use of pure iron in such a way
that its density is one of the quality characteristics upon which we wish to

set economic tolerance limits. Since this is a property of pure iron that has

1 “Experience and meaning,” The Philosophical Review
,
vol. xliii, p. 134, 1934.

80
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been studied at length by different scientists and engineers, we may expect

to find the results of their work summarized in standard tables of physical

constants. Let us see if such summaries provide adequate knowledge for

establishing economic tolerance limits. If one looks in the Smithsonian

tables, for example, he finds that the density of pure iron at ordinary

temperature 2
is given as

7.86 gm/cm3
.

Obviously this single value does not provide a basis for setting tolerance

limits because it does not indicate how much variability may be expected.

If one looks in another recent and authoritative table,3 he finds that the

density of pure iron at approximately room temperature is given as

(7.871 ± 0.002) gm/cm3
.

Does such a summary provide an adequate basis for establishing a tolerance

range? Let us assume as a basis for our discussion of this question that

7.871 is an estimate of the true value of the density and that 0.002 is an

estimate of the probable error. Suppose now that we want to set a 99.7

percent tolerance range. Does the information that we have found provide

an adequate basis for establishing such a range?

In the light of the experimental results presented in fig. 15 (p. 62) it is

apparent that the error that might be made in setting a tolerance range upon

the basis of such evidence, even though the
Size of sample must be stated original data were normally distributed without

X ± A* not enough constant error about the true value, may be

quite large unless the estimates of the expected

value and probable error are based upon a large sample. In other words, we
see that even under idealized conditions of sampling from a normal bowl

universe, it is necessary for one to know the size of the sample if he is to

form a reliable estimate of the maximum error that may be expected in the

estimated tolerance range. Hence it appears that a summary of the meas-

urements or a quality characteristic X in either the form IorI± AX does

not in itself provide a satisfactory basis for setting tolerance ranges even

though it be known that the quality characteristic X is in a normal state of

statistical control.

There is, however, a much more important reason why such presenta-

tions of data are inadequate; as emphasized in the previous chapters,

measurements of physical properties and quality characteristics, including

some of the most refined physical measurements, are not ordinarily in a

2 Smithsonian Physical Tables
,
8th revised edition (The Smithsonian Institution,

Washington, 1933), p. 160.
3 Physical Constants of Pure Metals

,
The National Physical Laboratory (His Majesty’s

Stationery Office, London, W.C. 1, 1936), p. 6.
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state of statistical control. As a further illustration of this fact, let us

look at fig. 20 which shows the ranges for several different determinations

of the velocity of light as given in a recent article.4

A more important defect The length of the vertical line in each case is propor-
in summaries of the , .

•, , , , , , Tr ,,

form X ± AX tional to the recorded range. 11 we compare the suc-

cession of ranges in fig. 20 with those shown in fig. 14

(p. 59), neglecting for the moment the fact that the two sets of ranges have

not been calculated in the same way, I think it is obvious that the ranges

in fig. 20 do not appear to behave on the whole like those of fig. 14 in

107-4 '79 '82 '02 1902

YEAR

Fig. 20

particular, the succession of ranges in fig. 20 do not appear to center about

some constant expected value. If we were to construct corresponding sets

of ranges for the measurements of the gravitational constant G and Planck’s

constant h (fig. 16, p. 66), we should find that they also do not behave like

the normal bowl ranges in fig. 14. This illustrates the simple fact that the

meaning or interpretation of any summary in the form X d= AX depends

upon whether the original data arose under a state of statistical control;

such a summary of data does not provide an adequate basis for setting an

efficient tolerance range.

There are, however, certain other reasons why the customary practice of

summarizing data in the form X ± AX does not provide the necessary basis

for setting economic tolerances. Perhaps the chief

against^

^

r

^
1

^
nents among these is the fact that different methods are often

used in making a summary of a given set of data in the

form X dz AX. In other words, starting with an original set of data, differ-

ent scientists may use different methods in estimating the true or expected

value, and the probable error or some other measure of dispersion. They
may also choose a probability other than J in arriving at AX. Hence

X ± AX as used in practice does not always have the same meaning.

4 Sten von Friesen, “On the values of fundamental physical constants,” Proc. Roy. Soc.

London
,
vol. A160, pp. 424-440, 1937. Only the first five ranges in fig. 20 are taken from

von Friesen ’s article. The other ranges take into account different data. There are

two sets of measurements for the year 1882.
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This immediately suggests a question that has been the subject of extensive

investigation in the field of statistics—what method should be used in

estimating?

Enough perhaps has been said to indicate the nature of the problem

that one encounters in trying to make efficient use of data as customarily

summarized. Owing to the fact that such summaries do not usually provide

adequate knowledge, it is necessary for engineers to consider the funda-

mental problem of how one should tabulate data on the quality character-

istics of raw and fabricated materials so as to provide an evidential basis for

the maximum amount of knowledge that one wishes to convey for the estab-

lishment of valid and efficient tolerance limits.

The importance of the problem of presenting data. Before we plunge

into a discussion of the technical aspects of the problem of presenting data,

it is fitting that we mention briefly some of the other ways in which this

problem has come to the attention of engineers. In December 1926 a

Sectional Committee on Standards for Graphical Presentation was organized

under the procedure of the American Engineering Standards Committee.

The scope of this committee’s work included the development of the basic

principles that should be used in the preparation of scientific and engineering

graphs. One of the problems early brought to the attention of this com-

mittee was that of presenting data graphically in a way to provide as much
knowledge as possible about the variability of measurements. Fig. 20

serves as a simple illustration of an attempt of one scientist to provide graph-

ically some knowledge about the variability of the measurements of the

velocity of light. It is obvious, however, that we must find a satis-

factory method of summarizing data analytically along the lines called for

in the previous section before we can summarize the results graphically.

Hence it is reasonable to say that the satisfactory solution of the problem of

determining how best to present experimental data graphically must await a

satisfactory solution of the problem of presenting the numerical aspects of

data so as to make a maximum contribution to knowledge in the sense dis-

cussed in this chapter.

About 1930 the American Society of Mechanical Engineers and the

American Society for Testing Materials jointly sponsored the formation of a

cooperative 5 committee to consider, among other things, the problem of

applying statistical theory in the presentation of the great quantities of data

taken by engineering and scientific groups in the study of the physical

properties of raw and fabricated materials, such data being intended for

6 This committee on the application of statistics in engineering and manufacturing is

now jointly sponsored by the two engineering societies named above and by the American
Statistical Society, the American Mathematical Society, and the Institute of Mathematical
Statistics. The American Society for Testing Materials also organized a committee about
this time on the interpretation and presentation of data to consider the specific problems
arising in their society.
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later use in the establishment of economic tolerances. A vast amount of

data of this nature is summarized each year, and it is therefore of con-

siderable commercial importance to find the most useful method of do-

ing the work. Having been closely associated with these committees

since their organization, I shall try to present in this chapter some of the

basic principles that have been found useful in guiding the choice of a

method for presenting the kinds of data ordinarily obtained by these com-

mittees. 6

We should note at the beginning that the consideration to be given here

is limited in a fundamental way; it has to do with the presentation of data

only from the viewpoint of providing knowledge and not from the viewpoint

of securing an emotive reaction on the part of the one who reads the results

after they are presented. To make clear the significance of this limitation

it is desirable to consider briefly the way in which a summary of a group of

data is a kind of language, and hence must comply with the accepted require-

ments of a meaningful language if it is to be scientific.

The presentation of data from the viewpoint of language. There is

scientific language and emotive language. A presentation of the results

of measurement by an author serves as a language of communication be-

tween the author and his readers. Now there are at least two distinct uses

of such a language: 7 (a) to communicate information or knowledge; and

(6) to arouse an emotional attitude in a reader or to influence his action in

any way other than by the information transmitted. These two uses of

language have been referred to as the scientific and emotive respectively.

In the presentation of scientific and engineering data for the purpose of

providing the reader with a knowledge of engineering materials, it is neces-

sary that the language used be scientific and not

emotive. A statistician must keep this require-

ment in mind if and when he steps in to help the

Strange as it may seem in the face of this situation,

the statistician sometimes rushes in to help the scientist and engineer do a

scientific job and forgets that a lot of his professional lingo is more emotive

than scientific : witness, for example, the statistician’s use of such phrases as

statistical facts, confidence limit, probable error, most probable value, and

best estimate, to mention only a few. Some of these terms;—particularly

most probable value and probable error—have been taken over quite exten-

sively by the scientists. Sometimes scientists even add new terms of their

own, such as “even-bet” error instead of probable error.

6 Such summaries are presented not only in original memoirs and reports but also in

engineering handbooks and tables such as The Smithsonian Tables of Physical Constants
y

the International Critical Tables
,
etc.

7 See for example L. S. Stebbing, A Modern Introduction to Logic (Thomas Y. Crowell

Co., New York, 1930), pp. 10-21.

The statistician’s language

is sometimes emotive

scientist and engineer.
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To illustrate the difference between some of the emotive terms used by

the statistician and some of the terms in current use by physical scientists,

let us consider what the scientist sometimes says about the measurement of a

physical constant such as the velocity of light. In the first edition (1926)

of the International Critical Tables, we find tabulated what the editors of

that publication call the accepted, conventional, or defined values of the

physical constants to be regarded as exactly correct for purposes of compu-

tation. In what respect does such an accepted value differ from a most

probable value or from a best estimate? If a reader, ignorant of the tech-

nical meaning of best, finds two tables, one giving the best estimates and

the other the accepted values, is he not likely to feel that the best estimates

should be better than simply accepted values, and make his choice accord-

ingly? Certainly the use of the term “best” introduces a large emotive

element not present in the term “accepted value,” but this emotive element

does not contribute to scientific knowledge in that it does not have an opera-

tionally definite meaning in terms of future experience. Scientific state-

ments presumably state something about an object or physical phenomenon

that can be tested experimentally by an observer and thus can be shown to

be either true or false. Hence, in the use of statistical techniques in the

presentation of scientific data, we must be careful to give scientific meaning

to all terms used. Although meaning is thus an essential component of

knowledge, it is not the only one—in fact there are two others; and we must
thoroughly understand all three and their interrelations in order to consider

intelligently the role that statistical theory may be made to play in the

presentation of scientific data.

Three Components of Knowledge—Evidence, Prediction,

Degree of Belief

Basic to all that follows is the concept of knowledge here adopted. In

line with the statement quoted from C. I. Lewis at the beginning of this

chapter, I shall assume that knowledge begins and ends in experimental

data but that it does not end in the data in which it begins. From this

viewpoint, there are three important components of knowledge: (a) the

data of experience in which the process of knowing begins, (b) the prediction

P in terms of data that one would expect to get if he were to perform certain

experiments in the future, and (c) the degree of belief p b in the prediction P
based on the original data or some summary thereof as evidence E. These
three components are schematically illustrated in fig. 21. Knowledge be-

gins in the original data and ends in the data predicted, these future data

constituting the operationally verifiable meaning of the original data.

Since, however, inferences or predictions based upon experimental data can
never be certain, the knowledge based upon the original data can inhere in
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these data only to the extent of some degree of rational belief. This follows

from Postulate II (p. 42), in which it is assumed that there is an objective

degree of rational belief p\ belonging to the relation between any prediction

and the original data upon which the prediction is based.

Original data as

evidence E Prediction P

Degree of belief pb

in prediction P
based on evidence E

Fig. 21

What has just been said about the three components of knowledge may
appear to the practical engineer or statistician as being abstract and some-

what formal until he considers how they are met in everyday experience.

For example, I might say, “It is going to rain day after tomorrow.” That

statement has a definite predictive meaning in the sense that you can test it

in the future. However, it doesn’t convey much knowledge, since I have

no standing as a weather prophet. You may therefore ask what makes me
think that it is going to rain day after tomorrow? That is, you ask for my
evidence. Given the evidence, there is presumably a certain degree of

belief p\, however small, that may rationally be held in my prediction.

The evidence as well as the prediction must he considered.

This simple example shows how one may make a perfectly definite

scientific statement—one that is meaningful—without conveying much if

any knowledge. In fact, I should say that the
A statement may convey statement that it is going to rain day after tomor-

knowledge row, *ree °* any suPPortmg evidence and the source

of the statement, conveys no knowledge at all. The

results of experimental work may also be summarized in terms of meaningful

statements that do not transmit knowledge, in that the one who reads the

summary may not know how much belief to place in it. Likewise one may
present a set of original data without making any

e^eriment^ data

Sentm^ interpretative statements. Hence, in what follows

we must consider ways and means for presenting ex-

perimental data in three different ways
:
(a) as original data, (b ) as interpre-

tive predictions, and (c) as knowledge.

The Results of Measurement Presented as Original Data

Presenting data as facts; can it be done? Often the engineer and the

scientist look on the problem of presenting experimental data as though its
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solution were independent of the use to be made of the results presented.

They try to present the data as scientific “facts.” For example, the “ pure ”

physicst or the “pure” chemist studies the structure and properties of

materials; measures the fundamental constants of nature; and seeks to dis-

cover the “laws” of nature—all with the idea of learning the facts of nature.

Such a scientist may not be concerned with any industrial use of his data.

In any case he usually contents himself with the thought that he is “pre-

senting the facts” that any application must start with. This is because it

is conceived (e.g.) that the velocity of light c, the gravitational constant G,

and all similar constants of nature are objective and independent of the

kinds of use that may be made of them. In much this same way, tables of

the physical and chemical properties of materials are often treated by both

the compiler and the user as though they presented facts. This is quite

natural, of course, because one is apt to think of the material contained in

such tables as giving the characteristics of an unchanging “real” universe

instead of a universe of measurements that are subject to sampling

fluctuations.

Original data must be considered as evidence for inferences of various

kinds. Rule 1 . It is customary practice to conceive of the density of pure

iron in any chosen system of units as some single value. If such a true value

exists and if we could discover it, we could presumably put it down once and

for all as a fact. In practice, however, we can not discover this true value;

we can simply make measurements and draw inferences from such measure-

ments about other measurements not yet made if we are to limit ourselves to

inferences that can be operationally verified. As previously stated, knowledge

provided by such measurements begins in these measurements and ends in

measurements, but does not end in the measurements in which it begins:

such knowledge can only be probable. Hence we must think of the original

data simply as evidence for one or more various probable inferences, each of

which involves its own specific prediction P. Whenever the original data

constitute evidence for some specific prediction P it is usually if not always

possible to summarize the original data in such a way that the summary itself

constitutes an appreciable fraction of the evidence in the original data.

In accord with Postulate II (p. 42), it is assumed that there is an objective

degree of rational belief p\ in the prediction P based upon the original

evidence E. By definition we shall say that a summary contains all the

evidence in the original data for a specific prediction P when the objective

degree of belief based upon the summary is the same as that based upon the

original data. In general, a summary does not contain the whole of the

evidence in the original data, and what constitutes a good summary of the
data for one prediction may not be so good a summary for another.
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Since the useful knowledge based upon an original set of data involves a

more or less definite set of predictions and associated evidences, we may set

down

Rule 1. Original data should be presented in a way that

will preserve the evidence in the original data for all the
predictions assumed to be useful.

But just what predictions will be useful? A human element of choice enters

here in much the same way that a human element enters into the choice of

the readings of scientific instruments in the laboratory. When one is trying

to determine how to present data in a given case, it is essential that he con-

sider the kinds of prediction that may be attempted in

without^heory
^he knowing processes to which the data may be subjected.

What has just been said illustrates the generally accepted

conclusion that we can not have facts without some theory .

8

Two different problems of presentation—data may or may not arise from

statistical control. When presenting data we should differentiate between

(a) those that arose under a state of statistical control, and

(h) those that did not.

It is necessary to do this because the role played by statistical theory

under statistically controlled conditions is fundamentally different from

what it is under noncontrolled conditions. For the purpose of the present

chapter, I shall assume that drawings from a bowl are in a physical state of

statistical control and that the mathematics of distribution theory applies.

Likewise I shall assume that measurements taken under presumably the

same conditions, provided 9 they satisfy Criterion I of control to the extent of at

least 25 samples of four (p. 37), arise under a

physical state of statistical control. As was

pointed out in the previous chapter (pp. 70 and

79) the statistician 10 alone is then in a position

to set up tolerance ranges and make predictions

For statistical control it is not

sufficient that measurements
be taken under “presumably
the same conditions.” They
must also satisfy Criterion I

8 “ ... if there is to be any knowledge at all, some knowledge must be a priori.’

From C. I. Lewis, Mind and the World-Order (Scribners, New York, 1928), p. 196.

—

Editor

’

9 For reference to Criterion I, see p. 30. It may be of interest to note that the require-

ments imposed here and elsewhere in this monograph on the data that are to be treated as

though they arose under a physical state of statistical control are operationally much more
stringent than the requirements made quite generally, and in particular by Neyman on page

21 of his Washington lectures (previously cited on p. 10). There he classes as random
experiments carried out repeatedly with utmost care to keep the conditions constant. Here
we require in addition that not less than some fixed number of such measurements must be

taken and that these must satisfy a particular criterion. Neyman’s requirements would
presumably be met by the measurements on the fundamental physical constants (fig. 16,

p. 66; fig. 20, p. 82), whereas such measurements do not meet the requirements imposed in

this monograph.
10 Of course, an engineer or scientist may also act as a statistician if he knows statistical

theory.
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that will have maximum validity. However, under conditions that are not

in a state of statistical control, the statistician and scientist must cooperate.

In fact, the contribution of the scientist to the use of data as evidence under

such conditions may be greater than the contribution of the statistician.

Four important characteristics of original data. There are at least the

following four characteristics of original data to be considered in pres-

entation :

Original Data

—

1. Numbers representing the numerical

values of the measurements.

2. Text describing the condition under
which each measurement was made, in-

cluding a description of the operation

of measurement.

3. Human element or observer H.

4. Order in which the numbers were taken.

Thus if we let Xi, X2 ,

• •
*, X;, • •

•, X n represent the numerical values of a

set of n measurements of some quality characteristic X, then to every Xi
there is some associated condition Ci, an observer Hi, and order i. This

situation may be represented schematically by a diagram like this

:

X;

Hi Ci

Every thoughtful student of science or engineering is aware that each of

these aspects of the original data may influence his interpretation of the

results obtained in any experiment. Table 5 (p. 69) showing the results

of Heyks measurements of the gravitational constant G, is an example of a

tabulation in which the data are divided into three groups corresponding to

three different experimental conditions. If the same operator took all the

measurements,

Hi = H, (17)

If the experimenter is of the opinion that the conditions under which all the

n measurements were taken are essentially the same, he would say that

Ci =* Ci (18)

In such a situation one might be tempted to overlook the order in which
the numerical data were taken. However, we have seen in the previous

chapters that even under conditions assumed to be

disregarded only in
the same

>
order is very important until statistical con-

controlled experiments trol ^as been established, as will be further emphasized

below under the discussion of the presentation of the

results of measurements from the viewpoint of knowledge.
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Table 7 is an example of the presentation of a set of 204 observations as

original data both in regard to the 204 numbers and the order in which they
were taken. The numbers provide the numerical values of 204 measure-

TABLE 7

5045 4635 4700 4650 4640 3940 4570 4560 4450 4500 5075 4500
4350 5100 4600 4170 4335 3700 4570 3075 4450 4770 4925 4850
4350 5450 4100 4255 5000 3650 4855 2965 4850 5150 5075 4930
3975 4635 4410 4170 4615 4445 4160 4080 4450 4850 4925 4700
4290 4720 4180 4375 4215 4000 4325 4080 3635 4700 5250 4890
4430 4810 4790 4175 4275 4845 4125 4425 3635 5000 4915 4625
4485 4565 4790 4550 4275 5000 4100 4300 3635 5000 5600 4425
4285 4410 4340 4450 5000 4560 4340 4430 3900 5000 5075 4135
3980 4065 4895 2855 4615 4700 4575 4840 4340 4700 4450 4190
3925 4565 5750 2920 4735 4310 3875 4840 4340 4500 4215 4080
3645 5190 4740 4375 4215 4310 4050 4310 3665 4840 4325 3690
3760 4725 5000 4375 4700 5000 4050 4185 3775 5075 4665 5050
3300 4640 4895 4355 4700 4575 4685 4570 5000 5000 4615 4625
3685 4640 4255 4090 4700 4700 4685 4700 4850 4770 4615 5150
3463 4895 4170 5000 4700 4430 4430 4440 4775 4570 4500 5250
5200 4790 3850 4335 4095 4850 4300 4850 4500 4925 4765 5000
5100 4845 4445 5000 4095 4850 4690 4125 4770 4775 4500 5000

ments of the insulation resistances of as many different pieces of a new kind

of material produced under presumably the same essential conditions. The
order in which the test pieces were made is that obtained by reading from the

top down in each column beginning at the left of the table. These are the

data shown in the control charts of fig. 7 (p. 32), where they were considered

first in the order in which they were taken and then without respect to this

order. There we found that it was the order that furnished the clue to the

presence of assignable causes of variability that were later found and

removed.

Summarizing original data; by symmetric functions; by Tchebycheff’s

theorem. Rule 2. It is well to keep in mind that numbers and order are

the two aspects of original data that are amenable
Presentation of results by a mathematical analysis. For example, in any
frequency distribution—only

,
, . .

, „
for controlled experiments physical or engineering paper there are usually

many pages of text descriptive of the operations of

measurement and the conditions under which the data were taken. Need-

less to say, such information is often of very great value as evidence for

certain predictions, but there is not, in general, any way available for sum-

marizing it at one stroke. Any mathematical summary can present but a

portion of what must be considered as the original data. If the order is

neglected, as it can be without loss of information when and only when the

data arise from a state of statistical control, we may present the set of n num-
bers in the form of an ungrouped frequency distribution. It will be assumed

in what follows that such a distribution contains all the useful information

in the original set of nonordered numbers. Thus if we have a sample Xh

X2 ,
•

•
•

,
Xi, •

•

•, X n drawn from a bowl universe (pp. 9 ff), the whole of the
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information useful as evidence in predictions is assumed to be contained in

the set of numbers arranged in a frequency distribution.

To save space, however, it is often desirable to try to

summarize a frequency distribution of n finite numbers

in terms of a set of m numbers, 6 1 ,
02 ,

• •
•

,
dm ,

where

m < n and the 0’s are symmetric functions of the n

The ideal aimed at is to secure a set of these numbers

such that one can go from the 0’s to the X’s as well as he can go from the

X’s to the 0’s. This ideal we may represent schematically as follows:

Summarizing by a

small number of

symmetric functions

original numbers.

Xi, X2 ,
•••,!» 6m . (19)

Now, of course, without making m — n, it is not possible to attain this

ideal. It is possible, however, purely from a summary consisting of the

sample size n, the average X of the n numbers, and

Tchebycheff’s theorem
their root mean s9uare deviation <r, to say with cer-

tainty that not more than n/t2 of the n numbers Xi,

X2 ,

* •
*, Jn were outside the limits X ± ta, t being any number whatever

that is greater than unity. 11 It should be noted that this statement is true

for any set of finite numbers and hence is absolutely independent of whether

the set of n data arose under conditions that permit the drawing of valid

probable inferences about the expectancy of future values of X falling within

the range X ± ta.

For example, let us consider the frequency distribution of the 204 num-
bers given in table 7. Given only the average X = 4498.18 and standard

deviation a = 465.24 of this set of 204 numbers, one can say with certainty,

without ever having seen the original figures, that not more than 204/t2 of

these numbers were outside the limits X ± ta = 4498.18 d= 465.24£.

Tchebycheff’s theorem applies as a description of the distribution observed

in the sample, irrespective of how the numbers are distributed so long as

they are all finite. It is a remarkable theorem, but it does not allow one to

differentiate between distributions having the same X, a, and n. Hence if

the use of the data summarized in the form of the d’s involves inferences

that depend on the distribution of the numbers in the sample, it is necessary

to give more information in the summary of the original data than is con-

tained in the three statistics X, a, and n.

It must be kept in mind that given any prediction P, there is, in accord

with Postulate II (p. 42), an objective degree of belief p'b belonging to the

relation between this prediction and the original data. If, instead of starting

11
Cf. Tchebycheff’s theorem, W. A. Shewhart, Economic Control of Quality of Manu-

factured Product (Van Nostrand, New York, 1931), p. 95. Tchebycheff’s original article

“Des valeurs moyennes” (in French) appeared in Liouville’s Journal, 2d series, vol. xii, pp.
177-184, 1867. A translation into English is given in Smith’s Source Book in Mathematics
(McGraw-Hill, New York, 1929), pp. 580-587. Editor.
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with the original data, we start with a summary of these data, the corre-

sponding objective degree of belief in the same prediction P may turn out to

be somewhat different. Hence we may set down the following rule for

summarizing a frequency distribution of data in terms of symmetric

functions:

Rule 2 . Any summary of a distribution of numbers in terms
of symmetric functions should not give an objective degree of

belief in any one of the inferences or predictions to be made
therefrom that would cause human action significantly differ-

ent from what this action would be if the original distribution

had been taken as a basis for evidence.

The Results of Measurement Presented as

Meaningful Predictions

Every interpretation involves a prediction. Criterion of meaning. The
idea of presenting experimental results as original data is familiar to all of us.

However, presentation as a prediction may not be so familiar; in fact some

scientists and engineers may prefer to think of only two ways of presenting

the results of experimental work, namely, as original data and as an inter-

pretation. Closer examination reveals, however, that every meaningful

interpretation involves a prediction. 12

As a starting point, it may be helpful to note that the statistician may
examine and analyze a sample of data from a normal bowl universe and set

down estimates of the true average and standard deviation of the universe.

Here the sample constitutes the original data and the estimates constitute an

interpretation. As another example, a physicist may examine all the original

data on the measurement of Planck’s constant h, and then state his findings

in terms of the customary units in the form

h = (6.551 ± .013)10~27
.

Here the physicist has presented only an interpretation. As a third

example, we shall consider a recent statement by Sir William Bragg in his

book, The Crystalline State (Oxford, 1925): “The difference between the

three principal states, gaseous, liquid, and crystalline—it is better to say

crystalline rather than solid—is brought about generally by an alteration in

temperature. When the temperature is high enough, the atoms and mole-

cules are endowed with so much individual energy of movement that they

lead a more or less independent existence as a gas. When the temperature

sinks somewhat, the forces begin to get the upper hand, and the molecules

12 The editor is reminded of C. I. Lewis’ statements, “
. . . there is no knowledge of

external reality without the anticipation of future experience.” “
. . . what the concept

denotes has always some temporal spread. ...” “ There is no knowledge without

interpretation.” Mind and the World-Order (Scribners, 1929), p. 195.
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join up to make a liquid, but not so tightly as to bind neighbours together

permanently and in a definite way.” Here we have a beautiful interpreta-

tion of many measurements of different kinds that are not given in the text.

In each of these examples, we can easily distinguish between original data

on the one hand and the interpretation on the other. Where then does

prediction come in?

Let us consider first the quotation about the crystalline state. This

certainly predicts what will happen to a gas when the temperature sinks

somewhat. One gets a vivid picture of the way the molecules will join up

to make a liquid. Here is certainly prediction. Likewise the statement

about Planck’s constant may lead us to expect that future measurements of

this constant will give us somewhat similar results to those quoted above.

In much the same way, the statistician’s estimate of a universe parameter is

a prediction of what he would expect to find the true value to be if he could

measure it without error. In each of the three examples, there is an element

of prediction, and it is this element that helps to make scientific results

useful.

Let us look a little more carefully at this element of prediction. Just

what is predicted in each case? For example, how wmuld one proceed to

check the prediction that the molecules will join up to make a liquid,

when the temperature sinks somewhat? So far as this can be tested experi-

mentally in a quantitative way, the prediction must be translated into terms

of measurements of certain kinds that may be expected when the measure-

ment of temperature sinks somewhat. We certainly can not “see” the

molecules joining hands when the temperature sinks. Just so soon as we
make such a translation to predictions in terms of future measurements,

we have to allow for the fact that future measurements of any kind, even

though made under presumably the same essential conditions, will not

likely all be identical—a fact tacitly recognized in the tabulation above of

Planck’s constant and in the example of the statistician’s estimate of the

true value of a parameter. Thus we see that different predictions in terms

of future repetitive measurements are of fundamental importance.

We shall now consider how data may be presented in the form of three

types of prediction of interest from the viewpoint of repetitive measurements.
Two of these have already been referred to in connection with figs. 14 and 15;

the first, the type of prediction involved in a Student
We shall here range, we shall here refer to as type Pi; the second,

of prediction trie type oi prediction involved m the tolerance range,

we shall refer to as type P 2 . The third type of predic-

tion, type P 3 ,
is that involved in estimation, and will be considered first

since it is the one with which the statistician is most familiar. It will be
helpful to keep in mind that predictions Pi, P 2 ,

and P 3 are three special
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types schematically represented by P in fig. 21 (p. 86) as constituting a

fundamental component of knowledge. 13 It should be noted that the field

as here limited excludes consideration of predictions that arise from a

scientific theory except in terms of repetitive quantitative measurements.

Obviously all scientific predictions must have definite meanings, and we
shall accordingly choose the following

Criterion of Meaning: Every sentence in order to have defi-

nite scientific meaning must be practically or at least theoret-
ically verifiable as either true or false upon the basis of

experimental measurements either practically or theoretically

obtainable by carrying out a definite and previously specified

operation in the future. The meaning of such a sentence is

the method of its verification.

Our immediate object is to compare the operationally verifiable meanings

of these three kinds of prediction from the viewpoint of presenting data.

For example, the presentation of data as a Student range X ± AX consti-

tutes a symbol for a definite prediction or expectancy that is fundamentally

different from that associated with a presentation of data either as a toler-

ance range or as an estimate of some parameter.

Prediction involved in estimation—type P3 . “Best” estimates. Both

the scientist and the statistician make estimates. For example, the scientist

estimates the true values of physical constants and of the qualities of

materials and objects. The statistician appears to go through much the

same process in estimating from a sample the parameters of an assumed

universe. In fact much of modern statistical theory deals with the problem

of determining the “best” estimates of parameters. Granted that the

statistician can obtain what he chooses to call the best estimates in cases

where samples are drawn from experimental bowl universes, just what do

such estimates mean in the sense of the criterion of meaning stated above?

In answering this question, we shall discover a type of prediction that I

designate as P 3. Recognizing this type, we shall be in a position to consider

the significance of such estimates from the viewpoint of the scientist and

engineer.

We start with a sample Xi, X2 ,

• •
•

,
X;, •

•
,
X n drawn with replacement

and thorough mixing from an experimental bowl universe of known func-

tional form /(X) involving s parameters X'i, X' 2 ,

• •
•, X';, • •

•, X' s . The
statistician sets for himself the problem of finding from the sample the

corresponding best estimates <pi, <p2 ,
•••,<£>£, •

• •, (p s of these parameters.

13 There are many kinds of prediction other than types Pn Pt, and Ps. For example,

quite a little was said in chapter I about the prediction that an assignable cause can be

found when an observed statistic falls outside Criterion I. However, a discussion of these

three types should serve to illustrate the general principles involved in presenting data as

a prediction.
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Let us consider first what Neyman has called the best unbiased estimate. 14

Any estimate (pi of a parameter A\- is called unbiased by Neyman if the

expected value of <pi is equal to A '*•. Then from among the unbiased esti-

mates, he chooses that one as best which has minimum variance. Let us

look at this best unbiased estimate from the viewpoint of our criterion of

meaning. For this purpose, let us assume that the distribution in the bowl is

as nearly normal as can be made with a reasonable number of chips—let us

say 1000. Now it can be shown that the average X of a sample of n is what

Neyman calls the “best unbiased estimate ” of the average X' in the bowl.

In what w'ay can one verify the statement that the average X of the sample

is the best unbiased estimate?

Apparently two operations are involved. If we can in some way find

the average X' in the bowl, 15 we can then see whether the mean value of the

arithmetic means of N samples of n drawn from this bowl approaches this

average in the sense of a statistical limit (ch. I, page 20) as the number

N of samples is indefinitely increased; in this way we should determine

whether the average of a sample is an unbiased estimate. To investigate

the meaning of “best” operationally would be more difficult; it would be

necessary to plot for each unbiased method of estimation a distribution of

the estimates of X' obtained by that method from the N samples of n; that

method whose distribution has the smallest standard deviation (or roughly,

spread) is the “best.”

Hence we see that what Neyman calls the best unbiased estimate of a

parameter has a pretty definite theoretically verifiable operational meaning.

Neyman emphasizes the fact, however, that other criteria of best estimates

have been proposed and still others may be developed. The predictive ele-

ment in each of these would have a meaning different from that described

in the previous paragraph, so that, as he says clearly enough, there is no
such thing as the best estimate : there can be only an estimate that is chosen

(or shall we say accepted?) as best by someone. In this sense, the statisti-

cian ends his hunt for a best estimate pretty much as the editors of the

International Critical Tables end their hunt for the true values of physical

constants—both accept some estimate even though they do not accept, in

general, the same kind of estimate. In one case, the statistician does the

accepting and in the other case- the scientist does the accepting, but it is

acceptance in either case. The statistician, however, can give a very

definite operational meaning to his choice of estimate.

14 J. Neyman, Lectures and Conferences on Mathematical Statistics (The Graduate
School, The Department of Agriculture, Washington, 1938), pp. 127-142.

15 Of course, if we make up the bowl ourselves, we know the average X' because we build
it up to certain specifications, e.g. normal, with a certain mean X' (e.g. 0), a certain standard
deviation cr' (e.g. 1), and some convenient class interval (e.g. 0.2<r').



96 STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CONTROL

It should be noted that the statistician does not attempt to make any
verifiable prediction about one single estimate; instead he states his predic-

tion in terms of what is going to happen in a whole sequence of estimates

made under conditions specified in the operational meaning of the estimate

that hfe chooses.

Let us see in what sense Neyman’s “best unbiased” estimate could be

tested in the practical problem of estimating the true value of some physical

constant such as the velocity of light. In this case, we presumably can not

find the true value as we could find the true average in the experimental bowl

;

hence we can not verify in a practical way the prediction that the supposedly

unbiased estimate of the true value actually approaches the true value in

the statistical sense; the process of verification can only be theoretical.

However, we could compare the variance of the assumed “best” estimate

of a true value of a physical constant based upon N samples of n measure-

ments with the variance of another kind of unbiased estimate of the same

true value based also upon N samples of n measurements, and we could see

which estimate is better by Neyman’s criterion.

Now let us consider the difference between presenting data in terms of

estimates and presenting them as original data or summaries thereof in

terms of symmetric functions. For this purpose, let us assume that we
start with a sample Xi, Xi

}

• •
•, Xi, • •

*, Xn from a bowl universe of un-

known functional form f(X). It is important to note that any of the

generally accepted statistical methods of estimating a parameter from the

sample of n involves two assumptions: (a) the functional form f(X), and

(6) the particular type of estimate to be

chosen as best, for example, the best un-

biased estimate, the maximum likelihood

estimate, or that obtained by the use of the

Bayes-Laplace theorem. It is particularly

important to note that different kinds of estimates do not have the same op-

erationally verifiable predictive meaning; hence to say that pi is an estimate

of a parameter is not in itself operationally definite; we need further to

know what estimate. The predictive meaning of an estimate is clear

(provided the reader knows the kind of estimate), even though he does

not know the functional form/&(X) that happened to be chosen to represent

the universe as a basis for computing the estimate.

It may be helpful to indicate the relations between the original data and

any such set of estimates by the following scheme:

Different kinds of estimates have
different predictive meanings, yet

the predictive meaning of a particular

estimate is independent of the form
assumed for the universe

Xi t Xi) *
’

*
, Xi, *

*
*

,
X n ) , 6m

MX)
Pk l, Pki, *

*
'

, Pks (20)
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wherein the symbol —» represents one method of going from the sample to

the symmetric functions and the symbol fk (X) over the arrow suggests

one of the many ways of going from the 0’s to a set of estimates. As just

noted, we do not need to know the functional form fk(X) to interpret the

predictive meaning of the <p’s.

However, we should note that the ^’s by themselves do not constitute a

summary of the original data in the sense that the 0’s constitute such a

summary, because it is possible if we know the 0’s

Estimates are predictions to make other sets of estimates based upon other

^atistl^sTsummary assumed forms for f(X), but it is not possible to do

this if we start with a set of <p ’ s and do not know the

corresponding assumed form of the universe. An estimate (pk is of the nature

of a symbol of something that may be experienced in the future, whereas a

statistic 0 k is simply a summary of a characteristic of previous observations.

This illustrates the sense in which the requirements for presenting the results

of measurements as a meaningful prediction are different from those of

presenting the original data and preserving the information contained therein

for all the useful predictions that might be based on them (cf. Rule 1 on

p. 88).

Prediction involved in the use of the Student range—type Pi. Some-

times the statistician presents his results in terms of what I have called

Student ranges (ch. II). For example, .950 ± .715 is one such Student

range corresponding to a probability 1 — p' = §. Now let us ask, what is

the operationally verifiable meaning of such a range or what kind of verifi-

able prediction is it a symbol of?

In the first place, it is of interest to recall that any single Student range

such as .950 =fc .715 considered by itself is not suggestive of a probability

interpretation involving an operationally verifiable prediction (see p. 61).

In just the same way, the statement that a given estimate is the best un-

biased one can not be verified except as a member of a class of estimates.

Student ranges for a probability of J are subject to the following interpreta-

tive prediction: If N samples of the same or different sizes be drawn from
the same universe or from other universes, and if in each case a Student range
for the probability 1 — p' be computed, then we may expect to find that

(1 — p')N of the ranges thus set up will include the corresponding true uni-

verse averages—a kind of prediction illustrated in fig. 14 (p. 59) and discussed

at that point.

Some scientists have sought to calculate Student ranges for the physical

constants and they have often chosen a probability 1 — p' = Student
ranges are also frequently used in other fields of scientific investigation; hence
the associated type P i prediction is of broad general interest in the interpre-
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tation of the measurements of published results of science. The fact that a

prediction involving a Student range (X d= AX) is not a probability predic-

tion concerning this particular range but rather of a whole sequence of vary-

ing ranges should be of equal interest (p. 59). It should be noted, however,

that for most scientific measurements, including those of physical properties

and constants, such predictions are only theoretically verifiable because we
can not discover the corresponding true values.

From the viewpoint of the presentation of the results of measurement in

terms of Student ranges that will provide a meaningful prediction of type

P i, it should be noted that we do not need more than can be presented in

the form of a range X ± AX, it being understood that this is a Student

range for a given probability, e.g. p2 = |, or pz = .95, as the case may be.

Practical need for clarification of predictive meaning. We should note

that interpretations of such ranges by some scientists appear to involve

predictions other than that described above as type P i, though just what
else is involved may not always be clear. Thus in a recent paper, Edding-

ton 16 puts the question : suppose I have occasion to use Planck’s constant h

and that I find the following two determinations recorded in the literature

in terms of the appropriate units

:

hi = (6.551 ± .013) 10
-27

hi = (6.547 =fc .008) 10-27

If we assume that these two are to be taken at their face value, which one

shall I choose? He argues that the second one is the more useful to him
because it limits h to a narrower range and hence will lead to sharper con-

clusions.17 I am not sure what the expression “assuming that these are

to be taken at their face value” covers. However, let us assume that it

implies that in both instances the values of h were calculated by the same

method from what the statistician would call random samples of measure-

ments free from constant errors. Now in what experimentally verifiable

sense does the second determination h 2 limit h to a narrower range than does

hi! I assume that all will agree that this inference implies something more

than would be implied in the statement that both hi and h 2 are ranges inter-

pretable as a type Pi prediction, but I am not sure what more is implied

and hence I am not sure how one would set about checking the meaning.

I assume that anyone who is asked to choose between hi and h 2 as esti-

mates of h' would want to choose the value of h that might reasonably be

16 A. S. Eddington, “Notes on the method of least squares,” Proc. Phys. Soc. (London),

vol. 45, pp. 271-287, 1933.
17 This seems to imply a prediction of type Pi in the sense that the tabulated range is

supposed to include the true value, although the ranges may not have been computed upon
the basis of Student’s theory.
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expected to be the closer to the true value h'. In fact, the physical scientist

usually does not want to set up Student ranges that are expected to corral

50 percent of the true values of the physical constants, but instead he w'ants

to set up ranges that center as closely as possible about the true values.

From this viewpoint, which of the two ranges should the scientist choose?

Some might be tempted to choose the smaller range as Eddington did. This

may be as good a rule as any other to follow under the present assumptions

and when we only have the ranges given. However, it is not the rule that

one would likely follow if he were given the sample sizes n\ and n 2 corre-

sponding to hi and h 2 . For example, so far as we can determine solely from

the tabulated ranges hi and h 2 ,
the two might have been based upon different

sets of data both of which had been taken by the same man under pre-

sumably the same essential conditions, the only difference being that the

numbers of observations ni and n 2 were different. If we were given n i and

n2 ,
then the desirable practice to follow would be to choose that value of h

that was determined from the larger number of observations.

To make this point clear, let us consider the following two Student

ranges obtained from two samples drawn with replacement from a normal

bowl universe

:

.3500 ± .0200

.0015 ± .0218

Which one of the averages, .3500 or .0015, would you choose as the one

closer to the true average of the distribution in the bowl? Suppose one

chooses the value .3500 because it is associated with the smaller range.

This might be a reasonable choice simply upon the basis of the tabulated

ranges, but it would certainly not be the choice if one knew that the sample

size for the first range was 4, and for the other range, 1000. Under such

conditions I assume that all will agree that the choice would no longer be

.3500. If we turn back to fig. 14 we shall see the location of these two ranges

in respect to the true value; the first of these ranges is that shown as the

second on this figure and the other is the fourth from the last. I trust that

enough has been said to indicate the danger of trying to read into a Student

type of range a predictive meaning that is not justified.

Prediction involved in the use of the tolerance range—type P 2 . In

chapter II (pp. 61 and 62) we considered briefly the predictive meaning of

a tolerance range. For example, if we were to say that the 90 percent

tolerance range for drawings from a given normal bowl universe is X =t AX,
the operational meaning of this is that 90 percent of future drawings from
the bowl may be expected to fall within this range.

In practice, of course, we have the problem of establishing tolerance

ranges upon the basis of a sample. To make our discussion specific, let us
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assume that we have at our disposal the following sample of four drawn
from what we know is a normal bowl universe:

1.7 0.2 1.4 0.5

For this sample, the average X — .950; and the standard deviation a = .619.

Obviously we can not establish the 90 percent tolerance range upon the

basis of this sample. The 90 percent estimated tolerance range for a

sample of size four in the sense here considered is approximately 2 ± 3<r.

For this particular sample of four, this estimated range is .950 ± 1.857, and is

subject to verification in two senses. In the first place, it is possible to carry

out additional drawings from the bowl to see whether 90 percent of these

will fall within the stated tolerance limits. As was pointed out in chapter

II, we may seldom expect that tolerance ranges established in this way will

be found to be correct. This was illustrated in our discussion of fig. 15

where it was pointed out that only by increasing indefinitely the sample size

used as a basis for estimating the tolerance range could we expect to get a

tolerance range that would prove to be exact. Hence in practice where we
must use estimated tolerance ranges, it is always desirable to record the

sample size n—in this case four—that was made the basis of the estimated

tolerance range.

Now this estimated tolerance range for a sample of four is in addition subject

to the following operationally verifiable meaning: if we draw N samples of

four from the same normal universe and set up tolerance ranges Xi =b 3<r»

(i = 1, 2, 3,
• •

•, N) for these N samples and if we then compute the corre-

sponding fractions 1 — ph 1 — p 2 ,
•••,!— Pn of the total population in

the universe included by these ranges, the average of these fractions will

approach 18 approximately .9 as a statistical limit as N is increased in-

definitely. This statement implies a prediction about the expected areas

of the parent population swept out by the ranges Xi ±3 Gi instead of im-

plying a prediction about the expected number of true values included within

the ranges Xi =b A4(n, where i = 1, 2,
• •

•, N (see p. 61).

Common characteristics of the predictions. Now we should note three

common characteristics of the scientific meanings of these three types of

prediction

:

A. The meanings permit practical experimental verification

only if, as in the case of experimental universes, we can dis-

cover the true average and the true universe area swept out by
a range. 19 In most practical cases such as measuring physical

constants the method of verification can only be theoretical.

18 This limit of .9 is approximate in the sense that it was determined empirically by
taking the average of 1 — p for 1000 samples of four. W. A. Shewhart, “ Note on the proba-

bility associated with the error of a single observation,” Journal of Forestry
,
vol. xxvi,

pp. 600-607, 1928.
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B. The meanings are all in terms of a number of samples and
not in terms of a single sample. They do not tell us anything

about a characteristic (estimate, Student range, or estimated

tolerance range) of a single sample except that it is one of a

class.

C. From a practical viewpoint, what is perhaps the most im-

portant common characteristic of the meanings of these three

types of prediction is that the method of verification theoret-

ically involves an indefinitely large number of samples of size

n. Hence when it comes to verifying any one of the three

types of statistical statement by experiment it is necessary

to take many samples of size n and in this way a large sample

—

a fact that is of great importance when presenting data from
the viewpoint of knowledge, as we shall soon see.

Before leaving the subject of presentation of data in the form of a pre-

diction, 20 let us look again to see how this differs from the presentation as

original data. The situation is illustrated schematically in fig. 22.

In passing from the original data at the left of fig. 22 to the predictions

on the right, the interpreter takes three steps, involving the introduction of

assumptions and interpretive constructs; he adds something to the original

data. When scientific results are presented as predictions they have opera-

tionally verifiable meaning in terms of data that may be taken in the future.

They do not, however, in themselves convey knowledge.

The Results of Measurement Presented as Knowledge

—

Ideal Conditions

We take data to acquire knowledge; how to present the results of meas-

urements as knowledge is therefore of outstanding importance. For ex-

ample, it was stressed earlier in this chapter that the engineer needs more

knowledge about properties of raw and fabricated materials in order to set

the most efficient tolerance ranges. Engineers are interested in knowing

how they can use statistical theory to help them extract the requisite knowl-

edge from available data and to present it in a form that will be useful to

others.

To every prediction there corresponds a certain degree of rational belief.

It is necessary now for us to note more carefully than heretofore how
knowledge differs from original data and from predictions. Knowledge,

19 This, of course, involves the assumption that drawings from an experimental normal
bowl universe can be said to be in a state of statistical control that is normal. Even here,

of course, verification is practical only in the sense that no matter how many samples we
have taken in the process of verification, we can always take one more.

20 Needless to say, the presentation of data as evidence upon which to base a prediction
is an entirely different problem. This problem is discussed in the next section, pp. 110 ff.
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as has been stated, begins in data and ends in other data. It starts with

original data and makes predictions about data not yet taken, involving,

at the same time, something more—it involves a certain degree of rational

belief in a prediction based upon evidence derived from the original data:

this relationship between prediction and evidence is of great importance

from the viewpoint of the presentation of the results of measurement as

knowledge.

It is perhaps not necessary to point out that just as soon as we begin to

consider knowledge it is customary for us to introduce some kind of require-

ment of truth or validity for the predictions based upon the analysis of the

original data. However, the fact is often lost

There is a distinction between sight of that there is an important distinction be-

fts^efng^ustifiabl^
^ ^ween valid prediction in the sense of a prediction

being true
,
and valid knowledge in the sense of a

prediction being justifiable upon the basis of the available evidence and the

accepted rules of inference. Thus a prediction may in a given case prove

to be false, yet upon the basis of the evidence available at the time the pre-

diction was made, this prediction may be that which the majority of the

recognized authorities in the particular field of investigation would have

made. From this viewpoint, what might have been acceptable as valid

knowledge yesterday may not be acceptable as valid knowledge tomorrow

even though no new data are introduced.

For example, the rules of inference accepted by scientists change with

time, and as a result what would be accepted today as a valid inference upon

the basis of given evidence E might not be accepted tomorrow. Thus an

analyst in making predictions of types Pi, P 2 ,
and P

3

^rul^of inference^ (PP* 92-102) makes use of certain distribution theory,

and when better distribution theory is developed, the

analyst must use it if he is to record the results of measurements, as knowl-

edge, in a way that will be accepted by authorities as valid knowledge.

Likewise the scientific analyst must present his evidence along with his

predictions if he is to present his results as knowledge. In terms of the

schematic diagram of fig. 22, the evidence for the predictions is everything to

the left of the three predictions including the deductive as well as inductive

chain of reasoning symbolized in the arrows. Such evidence, including the

analyst’s chain of reasoning, is necessary if the engineer or scientist is to be

able to judge the validity of the knowledge solely upon the basis of what is

presented.

In all of this, we must remember that it is possible to make statements

having a definite operationally verifiable meaning without presenting any

evidence (cf. p. 86). Meaning involved in predictions constituting com-
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ponents of knowledge is not only independent of that knowledge but ante-

dates and outruns that knowledge because we must first have a meaning to

a prediction before we can decide either its validity or its reasonableness

upon the basis of the available evidence; but the meaning of the prediction

remains the same even after the validity of the knowledge has been judged.

Nonstatic character of knowledge. Just as soon as we adopt the picture

of knowledge here sketched, we are forced to consider knowledge as some-

thing that changes as new evidence is provided by more data, or as soon as

new predictions are made from the same data by new theories. Knowing in

this sense is somewhat of a continuing process, or method, and differs funda-

mentally in this respect from what it would be if it were possible to attain

certainty in the making of predictions. For example, if we had some way of

finding out once and for all what the 99.7 percent tolerance range for the

density of pure iron is, or what the true value of the velocity of light is (as-

suming that these things have constant objective values), we could put the

figures down once and for all, and they would not change with the acquisition

of further measurements.21 Since, however, we do not know either of these

with certainty, and since we can make operationally verifiable predictions

only in terms of future observations, it follows that with the acquisition of

new data, not only may the magnitudes involved in any prediction change,

but also our grounds for belief in it.

Limits to knowing. Predictions based on the bowl universe have

maximum validity. The more we know, the more able we are to make
valid predictions. Knowledge in this sense is a process or a method of ap-

proximating a practical ideal of a minimum number of false predictions.

So far as the three kinds of prediction (pp. 92-102) are concerned, the

limiting situation is that conceived of as a state of statistical control repre-

sented empirically by drawings from an experimental bowl universe. In

fact, it is assumed that if we knew the distribution in the bowl, the validity

of the predictions that we could make concerning the fluctuation in the

observed characteristics of samples therefrom represents the limit to which

we could hope to go. This is a second characteristic of drawing numbered

chips from a bowl universe (with replacement, stirring, etc.), attention

having already been directed to the fact that in the state of statistical control

so represented, the order and the observer do not constitute useful items of

data.

21 We can, of course, attain this kind of fixity in a deductive science such as mathematics.

Deductive statements are either right or wrong and may be verified once and for all by
using the conventional formal rules. For example, let us consider the statement that

|tt - 3.141592653589793238462643383280| < 10'30

We can be sure that such a statement is true once and for all, or is false once and for all.
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The object of a scientific investigation and the presentation of its results.

It is important to note that statistical distribution theory provides the

fundamental basis for predictions in this limiting case. Knowing is a

process by which we may hope to approximate closer and closer to this ideal

state. I take it that the object of a scientific investigation is so to organize

past experience and so to direct the acquisition of new experience that it will

be possible to make valid predictions on the outcome of any proposed ex-

periment that is capable of being carried out, and to make the prediction in

less time than it would take to carry out the proposed experiment. For this

reason, the distribution theory of statistics is thus the tool that must ulti-

mately be used for making the kinds of prediction considered here.

Since knowing is of the nature of a developing process directed toward

the attainment of an idealized state where maximum validity of prediction

results, perhaps the most important requirement on the presentation of data

is that the results of an experiment should be presented in a way to contribute

most readily to the development of the knowing process. This is particularly

important in connection with the making of a running report on the quality

of product turned out by a repetitive process in mass production where the

ultimate goal from the viewpoint of establishing efficient tolerances is the

establishment of sets of tolerances having the maximum degree of validity.

The presentation of results from the normal bowl. Let us assume that

we know that the distribution is normal but that we do not know the two
parameters—the average X' and the standard deviation a'. First, let us

illustrate a fact to which attention has been called above, namely, that

knowing is not static. For this purpose, let us consider the manner of

estimating the true average X' upon the basis of a sample of size n. If we
adopt the rule of computing the “best unbiased” estimate (p. 95), we shall

find that the estimate for a sample of size n — n\ will not in general be the

same as the estimates for n = u\ + 1, n = n\ + 2, etc., as has already been

illustrated by the averages computed for the statistical limit in fig. 5 of

chapter I (p. 21). Thus knowledge may fluctuate both in the prediction

and evidence.

In a similar way, let us consider tolerance range predictions in terms of

samples drawn from a normal bowl in which the parameters are unknown.
Fig. 15 of chapter II (p. 62) shows how such predictions actually change
from one sample of four to another. This same figure, however, does some-
thing more—it shows that without a knowledge of the sample size one is not

in a position to estimate the size of error that he may make in a prediction

of this kind. Hence even in this simple case, we ought to tabulate the sample
size if the data are to be used at any time in establishing tolerances. The
striking thing, however, is that in the simple case of drawing from a normal
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bowl, it is sufficient to tabulate merely the average X, the standard devia-

tion a, and the sample size n; nothing else is of any use in the predictions

here considered.

The presentation of results from a bowl when its distribution is known
but is not normal. Theoretically it is feasible to set up ways and means of

making valid predictions through the use of statistical distribution theory

for each of the three types discussed above (pp. 92-102) for any universe;

it is of interest to remark, however, that only a comparatively few functional

forms other than the normal law have been investigated. So far as we are

here concerned, it is interesting to note that when the known distribution in

the bowl is not normal, the tabulation of the average, standard deviation,

and sample size will not lead to predictions, particularly of the Student and
tolerance range types, that are of the same degree of validity as are those

derivable from these same factors when the distribution in the bowl is normal.

Furthermore, the answer to the question of how the data may best be sum-

marized under these conditions can be determined with a reasonable amount
of labor only by means of theoretical distribution theory such as the theoret-

ical statistician may be expected to supply in the future. For predictions

of types Pi and P 3 it is perhaps reasonable to believe that the average and

standard deviation will be two of the symmetric functions that are required.

It is almost certain, however, that in order to provide necessary information

concerning the magnitude of the errors that may be expected in making

tolerance range predictions it will always be necessary to tabulate the

sample size n.

Thus for predictions of the three types here considered, it is desirable to

tabulate at least the average, standard deviation, and sample size; and for

certain non-normal forms of distribution, it is necessary to tabulate other

symmetric functions also.

The presentation of results from a bowl when its distribution is un-

known. From the viewpoint of presenting the results of measurement,

what is different as we pass from the previous case where the functional form

of the distribution in the bowl is known, to the present case where it is

unknown? The more or less obvious answer is that we must have more in-

formation from the sample than in the previous case in order to make the

greatest number of valid predictions. It should be noted, however, that so

long as the sample of n is drawn from a bowl, it is assumed that the frequency

distribution of the numbers in the sample and the sample size n contains the

whole of the information given by the sample; in other words, it presumably

makes no difference who takes the sample and what order is observed.

How shall one make predictions of types Pi, P 2 ,
and P 3 when the func-

tional form of the bowl universe is unknown, particularly if only a small
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sample is available? What the statistician customarily does is to make
predictions as though he were dealing with samples from a normal bowl.

Such a procedure may lead to comparatively large errors as a simple example

will serve to show. Suppose that one is interested in making predictions

in terms of the Student ranges (type Pi) based on samples of four and corre-

sponding to a probability of .50, and that he follows the procedure in setting

up such ranges that he would be justified in following if he knew that the

samples came from a normal bowl. Fig. 23 shows the results of setting up
100 such ranges corresponding to as many samples of four from each of

three different bowls. The functional forms of the experimental universes,

although unknown to the observer, were normal, rectangular, and right

triangular respectively. Whereas for a normal bowl, 50 of the 100 ranges

would be expected to include the true value, the observed number of inclu-

sions for the three sets of data are 51, 56, and 68 respectively. There can be

little doubt that the percentage failure of prediction in the rectangular and

right triangular cases was largely the result of lack of normality of the un-

known parent distribution. This experiment simply illustrates the well-

known fact that it is necessary to know the functional form of the distribu-

tion in the bowl if we are to attain the limit to which we can go in making

valid predictions.

Although, as we have seen, when the distribution in the bowl is normal,

the average, standard deviation, and sample size contain what is perhaps the
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essential information from the viewpoint of setting tolerance ranges, it is

worthy of note that in the present case, where the functional form of the

universe is unknown, such a summary is inadequate. Suppose, for example,

that we are given X = — .0028, cr = .9663, n = 1000, and that we are

interested in setting tolerance limits for a probability of .997. We have

already seen in fig. 15 how accurately tolerance limits can be established

upon the basis of such information provided that we know the universe is

normal. Suppose now that we set the range for this sample of 1000 in

exactly the same way that we would if we knew the universe were normal,

by taking the average plus and minus three times the observed standard

deviation. This range is laid off on the X axis in fig. 24.

Now let us look at this range in relation to the observed frequency distri-

bution of the sample of one thousand. I think almost everyone will agree

that tolerance limits — 1.4 and + 2.6, for example, would satisfy the re-

quirements much more efficiently than the tolerance range j ± 3a, which

is unnecessarily large. Obviously, in order to go as far as we can in setting

valid tolerance ranges, it is essential that we take into account the observed

distribution in the most efficient way. In the present state of our knowledge

of the theory of estimation and the establishment of valid ranges of varia-

bility in terms of a comparatively few symmetric functions, I feel that one is

not justified in trying to summarize a sample of the size usually required

(1000 or more) solely in terms of symmetric functions as a basis for establish-

ing valid tolerances. We should instead, at least in our present state of

knowledge, tabulate the frequency distribution

/

0 found in the sample.

As another illustration, let us consider a small sample—a sample of

eight drawn from a bowl universe of unknown functional form:

1.7 10.7 0.2 1.4 10.0 10.4 0.5 10.6

How would you summarize these numbers? Would you be satisfied with X,
c, and n from the viewpoint of predictions of the three types here considered?

As a background for answering these questions, let us plot these eight values

on a straight line, fig. 25. I believe that it will be generally agreed that the

knowledge based on the distribution of numbers, particularly when shown
graphically, is sufficiently different from that based on the summary in

terms of the average X = 5.69, standard deviation cr = 4.76, and sample
size n = 8 to make it desirable to record the distribution—here, the eight

L • • ' •—•—i ' 1 1 1 1 1 1 4 —I

0 2 4 6 8 10

Fig. 25

numbers themselves. For example, suppose one were interested in setting

a tolerance range for a probability 1 — p' = .997 based on this sample. If
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all one knew was the summary in terms of X, a, and n, he would likely set

up the range as though the sample had been drawn from a normal bowl

universe, and in so doing, he would experience a certain degree of belief in his

tolerance range prediction. If now, the same person were shown the original

distribution, would his degree of belief be increased or decreased? Mine
would be decreased materially. Hence I should want to be given the ob-

served sample distribution /0 even though the sample size is only 8. Of

course, a tolerance range so set would be subject to large error. Anyone
familiar with even elementary sampling theory appreciates that a sample of

1000 or more must be available, even when drawing from a bowl, before one

can place much reliance in his judgment concerning the functional form of

the distribution in the bowl, particularly if one is interested primarily in the

tails of the distribution. Furthermore, such a person is familiar with the

serious difficulties of trying to judge the form of the distribution when the

only information available is a set of symmetric functions such as the 0’s in

fig. 22, p. 102. So from the viewpoint of summarizing a sample drawn from

a bowl in which the form of the distribution is unknown, it does not appear

desirable—at least in engineering work and particularly in the setting of

tolerances—to give a summary simply in the form of symmetric functions.

Hence when tabulating the results that are to be used in setting tolerances

when the distribution in the bowl is unknown, it appears desirable to show at

least the four quantities

/o, X, a, and n

fo being the ungrouped distribution of results in the sample.

The Results of Measurement Presented as Knowledge

—

Customary Conditions

Complications in real measurements not in a state of statistical control.

The problem of presenting the results of measurement of a physical quality

characteristic or constant is much more complicated than that considered

in the previous section dealing with samples from a bowl universe. This

complication arises from the fact that measurements do not in general

behave as though they arose under a state of statistical control. In fact,

not only do repetitive measurements made by any one method of measuring

usually show lack of control, but also measurements of the same quality

characteristic or physical constant made by different methods usually indi-

cate the existence of assignable causes of difference. For example, on page

89 we called attention to the fact that for any physical measurement X t

there are three associated elements from the viewpoint of operational mean-

ing, namely the condition C» under which the observation was taken, the

human element Hi introduced by the observer, and the order. Now to
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assume that an observation such as a drawing from a bowl arises from a

state of statistical control implies operationally the assumption that for

such an observation we may neglect the factors Ci and Hi as not contributing

to knowledge. We shall soon see, however, that these factors play an im-

portant role in the problem of presenting the results of physical measurement.

How to present Ci and Hi is a difficult problem. It goes without saying,

however, that without knowing anything about Ci and Hi there is little

ground for believing in any prediction that may be made upon the basis of a

series of n repetitive measurements Xi, X2 ,

• •
•

, Xi, • •
•

,
Xn . Here we shall

confine our attention to certain aspects of the problem that are significant

from the viewpoint of determining the usefulness of statistical theory as a

guide in the presentation of the .results of measurement.

In the first place, it should be noted in the light of the results presented

in chapter II that if the formal rules for making predictions of the three

types Pi, P2 ,
and P 3 are applied to an actual set of physical data, the ex-

pectancy of the percentage of valid predictions would be very low compared

with the percentage attainable for drawings from a bowl. From the view-

point of setting the most efficient tolerances, more knowledge is required

than is contained in any tolerance set by such a rule, unless we have evidence

to indicate that such observations are statistically controlled about a

statistical limit which appears to be the same for all of the known methods

of measuring. Hence we shall here consider some of the ways statistical

theory may be applied to advantage in the process of approaching the

idealized condition of statistical control—that is, applied to advantage in

the knowing process.

Although there are three component factors of knowledge as here con-

sidered, namely evidence, 'prediction, and degree of belief pb, it is noteworthy
that we have no quantitative way of measuring p b . Let us consider the

investigations in any new field of measurement. Many, many observations

of an exploratory character are often taken before a scientist will even take

Prior to the attainment of statistical
time to reCOrd them - U is alm0st alwayS

control, our knowledge does not a long experimental road between such ini-

increase indefinitely as more and tial efforts and the announcement of the
more measurements are taken n ^ ,, £ , . , T

final results as, lor example, in the

measurement of the velocity of light by Michelson. For our present purpose,

perhaps the most important characteristic of such an approach to scientific

knowledge is the fact that the method of increasing knowledge does not con-

sist in taking more and more repetitive measurements under presumably
the same conditions as it does when one is making drawings from a bowl. In
fact, a scientist seldom bothers to take more than five or ten observations
under what he considers to be the same essential conditions (drawings from
a bowl), although often he experiments with what he thinks may be slightly
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different conditions. An illustration is provided by Heyhs measurements of

G shown in table 5 (p. 69) wherein the results are given for three different

experimental arrangements which we might call conditions C i, C2 ,
and C3 ,

provided it is permissible to conclude that the conditions remain the same
for the measurements in each one of the three columns.

Consistency between different methods more important than consistency

in repetition. The degree of belief that a scientist holds in a prediction

made upon the basis of measurements of some physical constant or property

depends a lot more on the consistency between the results obtained under

slightly different conditions and by different methods of measurement than

it depends upon the number of repetitions made under what he considers to

be the same essential conditions. In all such work, it has long been recog-

nized that the statistician may contribute to the efforts of the scientist in

discovering assignable differences between two or more sets of observations.

For example, in table 5 the statistician might apply tests for determining

whether the data obtained under the three possibly different conditions

could reasonably have occurred as a result of sampling fluctuations; all he

needs for this purpose are the average, standard deviation, and sample size

for each of the three sets of measurements.

A word on the detection of constant errors by “tests of significance. ,,

It is very difficult, however, to weigh the importance of this contribution of

the statistician and to determine how much the results of his efforts con-

tribute to a rational belief in the conclusion derived from the analysis of

data. From the viewpoint of scientific inquiry, the validity attainable in

predictions depends so much upon the skill of the experimentalist in selecting

appropriate sense data on the one side and connecting principles or concep-

tual theories on the other, that unless this process is carried out successfully,

almost nothing that the statistician contributes is significant. One must not

place too much reliance upon the existence or nonexistence of so-called signifi-

cant differences upon the basis of any statistical test. However, if the

scientist is successful in his choice of data and interpretative principles, the

results of the application of statistical tests have the value customarily at-

tributed to them and are successful to this extent. Hence in tabulating data

from the viewpoint of providing knowledge, it is often desirable that sum-

maries be made in terms of the average, standard deviation, and the sample

size for each group of data taken under conditions assumed to be the same

by the scientist, instead of summarizing all the data as though it constituted

a single sample from a statistically controlled condition.

Need for the attainment of statistical control. What seems to me a

very important contribution of statistical theory to scientific methodology

comes about when one tries to go further than the scientist customarily

goes in looking to see whether repetitive observations made under pre-
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sumably the same essential conditions satisfy the criteria of control referred

to in chapter I. If one is to attain the kind of knowledge that is requisite

for establishing the most efficient tolerances—the kind that could be estab-

lished for drawings from a bowl—it is obvious that one must attain a close

approximation to a state of statistical control. Furthermore, as I have said

before, it is necessary to have a comparatively large sample, usually more

than a thousand, as a basis for establishing the tolerance range if one is to

keep within practical limits the error in setting such ranges. What I have

termed in chapter I the “operation of control” constitutes an operational

procedure for attaining this control and the knowledge requisite for estab-

lishing such tolerances. This application of statistics is inherently different

from that of making the three kinds of prediction Pi, P 2, and P 3 from a

single sample, referred to above. In fact, it is the function of the operation

of statistical control to help attain with a minimum amount of human effort

a state of control wherein we may with reasonable assurance of attaining

valid results make these three kinds of prediction as if they were applied to

drawings from an experimental bowl.

An interesting characteristic of this operation of attaining knowledge is

that to begin with we can not tell how many observations will be required.

So long as we find any evidence of lack of control, we can not estimate the

degree of belief that we should hold in any prediction made upon the basis

of accumulating data. However, this operational procedure of detecting

and eliminating assignable causes provides a method of approaching a state

of statistical control of a given repetitive operation in a more or less regular

manner. So far as the claims for this operational technique are justified,

it follows that the available data should be so tabulated that criteria of control

may be applied
,
even when the scientist assumes that his data have been

taken under the same essential conditions. An illustration of such a pres-

entation is provided in table 7 (p. 90), which gives the 204 observations of

insulation resistance in the order in which the pieces were made. For
investigating their state of control, the averages and standard deviations of

the successive samples of -four would have been a satisfactory summary of

the original data.

It will be noted that in the previous section dealing with ideal conditions

(pp. 102-110), the recommendation there given was to present the observed

results in an ungrouped frequency distribution /0 ,

SntroHs^staWished
1^1

but no such recommendation is made in the

present section; here we are not assuming that control

exists, but rather that we are attempting to attain it or prove it. The
reason is obvious; the use of the observed frequency distribution /0 is

to give evidence concerning the nature of the distribution function in the
experimental bowl, whereas in the initial stages of investigation, the condi-
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tion of control has not yet been attained and there is no universe (bowl) to be

discovered. For example, there would be little if any advantage, so far as

I see, in presenting the 204 observations of table 7 as an ungrouped fre-

52 -

SAMPLE NUMBER

Fig. 26

Fig. 27

quency distribution since these data when tested by means of Criterion I

give evidence of lack of control. If, on the other hand, these data had

been found to satisfy the criterion of control and if they were to be used
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as the basis for setting let us say a 99.7 percent tolerance range, the observed

distribution would be of some help in indicating the validity of such a range.

As we saw earlier (pp. 86 and 103) a prediction devoid of supporting

evidence, conveys no knowledge. And so it is that in order to convey to

another person the knowledge that one obtains from a study of his own
experimental work, it is necessary to present the evidence as well as the predic-

tion. Since it is customary in experimental work to find that the state of

statistical control can be approached only as a limit by discovering and

weeding out assignable causes, the presentation of evidence that the assign-

able causes have been found and removed necessarily adds to one’s rational

belief that the end results represent a state of statistical control. For

example, fig. 26 shows a control chart for 51 averages of four measurements

each, derived from a sequence of 204 measurements of resistance on as many
pieces of a new kind of product. This figure points with some definiteness

to a lack of control, and on this basis certain assignable causes of variability

were found and removed from the process, after which the data of fig. 27

were taken. The latter chart gives evidence that it arose from a statistically

controlled state, and this belief is strengthened by the recognition that

certain causes of variability had been located and removed with the help of

fig. 26 before the data of fig. 27 were taken. It is important to keep a

running report as a basis for judging quality in mass production because

such a report may indicate progress toward the attainment of a state of

control even though such a state has not yet been attained.

Distinction between summarizing data for evidence of statistical con-

trol, and for setting tolerance limits after it has been attained. In the

process of testing data for evidence of control, I have shown elsewhere why
it is desirable for the scientist or engineer to divide the original data into

comparatively small groups which he thinks arose under the same essential

conditions. These are then tested for control by some criterion involving

in general the use of the average X
,
standard deviation a, and sample size

n of each subgroup. Suppose, however, that one wishes to continue the

study of the resistance of the new kind of material just considered until he

has sufficient evidence for setting valid minimum tolerance limits; beginning

with the data shown in fig. 27 and continuing until a sample of something

like one thousand or more is reached, the data may be kept in the form of a

frequency distribution, for the reason that statistical control may now be

assumed to exist. Here we see the difference between (i) summarizing

data for getting evidence of control, and (ii) summarizing data that ap-

parently come from a state of statistical control, for the purpose of providing

a basis for establishing tolerance limits that will make possible the most

efficient use of material.
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Tolerance limits when statistical control has not been attempted. There

is, however, another problem that we should consider, namely, that of

setting tolerance limits when no attempts at statistical control have been

made. In this case, the maximum and minimum observed values play a

very significant role in enabling an engineer to set tolerance limits that will

include most of the product, although such limits do not permit making the

most efficient use of material. This is particularly true if a large number of

measurements representing a wide range of conditions is available: the

20,000 measurements of the tensile strength of malleable iron from 17

different sources shown in table 4 of chapter II (p. 65) constitute a good

example. For reasons that we need not go into here, the average should

also be given, so we may say that under conditions of lack of control, at

least the following statistics should be tabulated:

Max., Min., X, and n.

Need for evidence of consistency—constant errors. Let us assume

that one wishes to set tolerance limits on the measurement of a physical

constant such as the velocity of light. As previously pointed out in chapter

II, this problem is the same analytically as that of setting tolerance limits on

the true value of quality of pieces of product of a given kind. It is true, of

course, that the tolerance limits on a quality must take into account not

only the variability of the “true” quality but also that of the method of

measurement, hence the problem of setting tolerances on the measurement

of a presumably constant value of a given quality always constitutes a part

of the job of setting tolerances on a quality characteristic.

Suppose that one is given in the appropriate units the average X,

standard deviation <7
,
and sample size n for the measurements on the

velocity of light previously considered (pp. 67-69)

:

X = 299,773.85; <r = 13.37; n = 2885

Let us also assume, although contrary to fact, that these data satisfy Cri-

terion I of control (p. 30), and that the distribution is approximately normal.

Should we be justified in using this set of data alone as a basis for setting

tolerance limits for the measurement of the velocity of light? Obviously

the answer to this question is No, if by measurement we are to include

measurement not only by the method used in this case but also by other

methods admitted by scientists as having a just claim for consideration.

For example, let us compare this set of measurements with another set of

651 more recently reported by Anderson. Fig. 28 shows 22 control charts

22 Michelson, Pease, and Pearson, “Measurement of the velocity of light in a partial

vacuum,” Astrophysical Journal
,
vol. 82, pp. 26-61, 1935 (2885.5 observations); W. C.

Anderson, “A measurement of the velocity of light,” Rev. Sci. Instruments
,
vol. 8, pp. 239-

247, 1937. (651 observations.)
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placed end to end for the two series and constructed as best one can 23 from

the data as recorded. The striking thing to note is that the two averages

are significantly different. For example, Anderson’s data give

X = 299,764.15; <r = 14.96, and n = 651.

The ratio of the observed difference in averages to the estimated standard

deviation of this difference is

X! - X 2

.6370
15.23.

It is indeed very unlikely that a difference so large as this would arise as a

result of random sampling. Incidentally, I think that it is this general type

299,800r

MICHELSON ANDERSON

5 299,760 -

>

299,740- _
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Fig. 28

of experience in which different test methods appear to give assignably

different results that leads scientists to stress the importance of looking at

the consistency between measurements made by different methods, rather

than to stress repetition of the same measurement a great many times

(p. 112).

Kinds of information needed for setting limits in uncontrolled condi-

tions. Obviously the kind of evidence that one would want to have before

trying to set an efficient tolerance range would be the maximum observation

given by the method producing maximum values, and the minimum observa-

tion for the method producing minimum values. One would also want to

know the number of different methods of measurement that had been tried

because “ constant errors” have in the past usually been discovered through

the use of different methods of measurement. If one takes the time to look

back through the literature in physics, let us say for a period of some
twenty years or more, he will find quite a variation in the accepted values

23 Anderson records average deviation for each sample; the sigmas used in the control

chart are the mean deviations multiplied by V71-/2. The broken control limits for the
Anderson data arise from the fact that his samples are not all the same size.
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for many of the constants there tabulated. The same is true for measure-

ments of the atomic weights in chemistry as is illustrated in table 8 which

shows the accepted values relative to oxygen = 16.0000 for the dates 1931

and 1936.

From the viewpoint of establishing tolerance limits upon such measure-

ments, it therefore appears that one should record the maximum and mini-

mum values and the number of different methods involved. It would not

appear that very much information is provided by a weighted average and

an estimate of a so-called probable error so long as the results given by
different methods are assignably different. Perhaps in this case more than

in any other, the name of the scientist is also an important factor. It would

seem, therefore, that statistical theory does not contribute much to the

technique of presenting evidence upon which to base a tolerance range under

conditions that are not statistically controlled. However, if for some

reason it becomes necessary to close up on such a tolerance range by detecting

and eliminating all constant errors, statistical tests for significant differences

become, as we have seen, a necessary tool in the process.

TABLE 8

International Atomic Weights

Relative Atomic Weight

Oxygen =16

Element 1931 1936

Arsenic 74.93 74.91

Caesium 132.81 132.91

Columbium 93.3 92.91

Iodine 126.932 126.92

Krypton 82.9 83.7

Lanthanum 138.90 138.92

Osmium 190.8 191.5

Potassium 39.10 39.096
Radium 225.97 226.05

Ytterbium 173.5 173.04

Column 2 from table 595, Smithsonian Physical Tables
,
8th ed. (Washington, 1933).

Column 3 from the Journal of the American Chemical Society
,
vol. 58, p. 547, 1936.

Concluding Comments

We are now in a position to survey in a more critical manner the contri-

bution of statistical methods as they are used for the attainment of knowl-

edge requisite for establishing the most efficient tolerance ranges. The

roots of any such knowledge must be grounded in the experience of the

scientist. Whatever is selected by the scientist as a basis for quantitative

measurement depends upon his intellectual ability in perceiving the im-

portant characteristics of a given experience and in making hypotheses and

conceptual theories relating these characteristics to others that can be
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tested by future experiment. The scientist alone is responsible for this

initial step. However, when he reaches the stage at which he examines his

experiment critically with a view to eliminating assignable causes of variabil-

ity and attaining a condition of control wherein predictions can be made with

the greatest validity, he needs the cooperation of the statistician; it is the

statistician who can provide an efficient operational procedure for attaining

the state of statistical control. In order that he may apply the statistical

technique of control, it is essential that the scientist tabulate the data in

such a way that they can be used in the criteria of control. And if knowledge

is to be conveyed concerning the attainment or nonattainment of this state,

the results of applying control techniques must be presented as evidence.

As soon as a state of statistical control has been attained, the statistician

can proceed without the help of the scientist to set up rules that lead to the

most efficient prediction. The two may, in other words, part company.

Thus we see that the knowing process begins with the scientist and ends with

the statistician, but between the beginning and the end the two must co-

operate.

Finally, let us ask : What has all this to do with quality control? In the

first chapter, we got a picture of the interrelations of the three fundamental

steps in control. There, as well as in the second chapter, we saw the need

for a running record of quality measurements not only from the viewpoint

of giving quality assurance but also from the viewpoint of providing in the

end an adequate basis for establishing tolerance limits that will secure the

most efficient use of materials, such as is necessary for the establishment of

economic standards of quality. In fact an economic standard of quality is

not a written finality but is a dynamic process. It is not merely the im-

prisonment of the past in the form of a specification (Step I, fig. 10, p. 45)

but rather the unfolding of the future as revealed in the process of produc-

tion (Step II) and inspection (Step III), and made available in the running

quality report. These facts must be taken into account in the production

and exchange of goods if the most economical use of raw materials in the

satisfaction of human wants is to be attained. In the preparation of a

quality report that will make full use of the additions to available data

arising out of a continuing process of mass production, the statistician must
play a prominent role.



CHAPTER IV

THE SPECIFICATION OF ACCURACY AND PRECISION

The concept is synonymous with the corresponding set of

operations .
1

P. W. Bridgman, Harvard University

Various Aspects of the Problem

Applied science more exacting than pure science regarding accuracy

and precision. The development of improved methods of attaining ac-

curacy and precision is an excellent example of the principle that necessity

is the mother of invention. When man became a measuring animal he had

to adopt standards of length, mass, and the like. Then commerce and

industry called for the legalizing of certain standards and the establishment

of methods of measuring with ever increasing accuracy and precision in terms

of such standards. For example, the introduction of interchangeability

about 1787 brought about a need for accurate measurement and the inven-

tion of gauges. Then the steady increase in the required accuracy of inter-

changeable parts produced under manufacturing conditions led to the in-

vention of standard length gauges with 0.00001 inch tolerances, and pushed

the accuracy of test methods out to 0.000001 inch. 2 Both pure and applied

science have gradually pushed further and further the requirements for

accuracy and precision.

However, applied science, particularly in the mass production of inter-

changeable parts, is even more exacting than pure science in certain matters

of accuracy and precision. For example, a pure scientist makes a series of

measurements and upon the basis of these makes what he considers to be

the best estimates of accuracy and precision, regardless of how few measure-

ments he may have. He will readily admit that future studies may prove

such estimates to be in error. Perhaps all he will claim for them is that

they are as good as any reasonable scientist could make upon the basis of the

data available at the time the estimates were made. But now let us look

at the applied scientist. He knows that if he were to act upon the meagre

1 The Logic of Modern Physics (Macmillan, New York, 1928), p. 5.

The term operation as used by Bridgman is not limited to physical operations but may
include in certain contexts what he calls paper and pencil operations and verbalizing. See

for example his paper “Operational analysis” in the Philosophy of Science
,
vol. 5, pp.

114-131, 1938.
2
Cf. F. H. Rolt, Gauges and Fine Measurements (Macmillan, London, 1929), vol. 1, p. 10.
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evidence sometimes available to the pure scientist, he would make the same

mistakes as the pure scientist makes in estimates of accuracy and precision.

He also knows that through his mistakes someone may lose a lot of money or

suffer physical injury, or both.

For example, applied scientists are often called upon to make measure-

ments of many different qualities of raw materials and finished products with

specified degrees of accuracy and precision. Such specifications may be used

in describing some physical quality characteristic of a material to be used in

some part of a machine, such as the steering rod of an automobile, or of a

material to be used as a food, or of some drug to be used as medicine. In

each of these typical cases, a failure to meet the specification may occasion

physical injury to someone. In other cases, the specified degrees of precision

and accuracy may define conditions economically desirable as, for example,

when they define the conditions to be met by the quality characteristics of

pieceparts in order that they may fit together in random assembly without

an economically prohibitive percentage of rejections. Thus we see why it is

that the applied scientist can not stop with making estimates of precision and

accuracy—he must also act on the basis of such estimates. He knows that

this action will reveal his mistakes
,
and what is more important, he knows

that such mistakes may carry with them serious consequences.

The applied scientist in order to be “successful” can not afford to make
too many mistakes even though they be small, and in no case can he afford

to make a mistake that is large enough to cause serious

mus^ge^eno^g^data trouble. Hence his tendency is to be cautious in ac-

cepting any estimate of precision or accuracy as a

basis for action. In his language, he wants to be “sure” of his estimates be-

fore making them the basis of mass production practices. He does not

consider his job simply that of doing the best he can with the available data;

it is his job to get enough data before making his estimates.

The practical man has yet another worry. He knows that specifications

of quality involving requirements of fixed degrees of accuracy and precision

may become the basis of contractual agreement, and he knows that any

indefiniteness in the meaning of any of the terms used in such a specification,

including those of accuracy and precision, may lead to misunderstandings

and even to legal action. Hence the applied scientist finds it desirable to go

as far as one can reasonably go towards establishing definite and operationally

verifiable meanings for such terms.

Fivefold objective. More specifically, there are two characteristic

kinds of engineering sentences in which the terms accuracy and precision
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are used. One states a specification such as

A. The accuracy of the test method shall he ± 1 percent.

B. The precision of the test method shall he d= 1 percent.

The other states a judgment such as

a. The accuracy of this test method is =L 1 percent.

h. The precision of this test method is ± 1 percent.

Not only must the engineer clearly distinguish between the meanings of the

concepts of accuracy and precision but he must also be able to differentiate

in an operationally verifiable manner between a specification and a judgment

involving either of these concepts; he must also know what kind of evidence

and how much evidence is required as a basis for making a valid statement

in the form of a judgment about either accuracy or precision.

It is important to note that, at least in the statement of a judgment

(such as a or h), it is necessary to consider not only the meaning but also the

truth content and the validity of the statement. As already noted, a state-

ment in the form of a judgment such as a or h has the property of being

either true or false. This property of a statement or judgment of being

either true or false in a specific case must be distinguished from the opera-

tionally verifiable meaning of the statement that necessarily antedates and

outruns the truth content in a specific case. What is more important, as

pointed out in the previous chapter, a judgment always involves a relation

between specified evidence and a specified prediction, and the judgment may
be valid even though the prediction be false.

A specific example may help to make clear this distinction between the

meaning of the prediction involved in a judgment and the validity of that

judgment. I have before me a commercial specification for core solder that

includes the following chemical requirement: “The percentage of tin shall be

determined by any method capable of a precision of =b .2 percent.” Pre-

sumably this requirement might be stated and might have definite meaning

even though no method could be found satisfying the requirement. If,

however, I find a method Z that I believe meets the requirement, I may
upon the basis of specified evidence E make the statement, “This method Z
is capable of a precision of ± .2 percent.” This statement may not prove

to be true; but whether true or not, the judgment upon the basis of the

evidence E may still be valid in the sense that it is the judgment that a

,

reasonable man would reach upon the basis of the specific evidence E.

The problem in this chapter is fivefold: (a) to indicate how far one can

hope to go in giving operationally definite meanings to specifications of ac-

curacy and precision; (6) to consider available ways and means for determin-
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ing the truth content of a judgment about either accuracy or precision; (c)

to consider the operation of determining whether or not a judgment about

accuracy or precision is valid; (d) to consider ways and means for controlling

the error of judgment; and (e) to indicate the role played by statistical

theory in giving operationally verifiable meanings to statements involving

accuracy and precision and in determining the truth content and validity of

such statements.

Broad interest in the problem. Before beginning the technical discus-

sion of this chapter, let us note how many classes of people are interested

either directly or indirectly in being able to attain the objectives set forth at

the end of the previous paragraph. These objectives are important to the

producer and consumer of manufactured goods, both of whom are interested

in making specifications that afe definite. They are also important for him
who would legislate a standard of quality in such a way as to minimize the

room left for judicial interpretation, and for the court called upon to adjudi-

cate cases arising from such legislation .

3 They are important for every

scientist who must record the accuracy and precision of the results of his

research, or interpret those of others. That the limit to which we may go in

attaining an operationally definite meaning for accuracy and precision con-

stitutes the limit to which we may go in attaining definiteness in any kind

of meaning follows at once if we admit, as I think we must, that no greater

degree of definiteness is attainable than in the field of quantitative scientific

measurement. Hence to provide an operationally definite meaning for

accuracy and precision is a fundamental problem for the physical and social

scientist, as well as the logician interested in exploring the limits to which

one can go in developing an operationally verifiable theory of meaning .

4

Finally it should be of interest to the statistician to discover that statistical

concepts and techniques must play a fundamental role in giving definite

meaning to the concepts of accuracy and precision as well as in the process of

attaining specified degrees thereof in experimental work. Hence the roll

call of those interested in the problem considered in this chapter includes

3 See for example: “Standards and grades of quality for foods and drugs,” by Gilbert
Sussman and S. R. Gamer, The University of Chicago Law Review

,
vol. 2, No. 4, 1935.

The following recent publications of the Chamber of Commerce of the United States are

also indicative of the breadth of interest in the problem of legislating standards: Quality
Standards and Grade Leveling

, 1935; Standardization of Consumers’ Goods
,
1934.

4 Some popular writers have become enthusiastic over the social and scientific advantages
that would accrue from increased definiteness in language and have painted in glowing
terms the world as it would be if all of us made use of the operational theory of meaning.
See, for example, The Tyranny of Words by Stuart Chase (Harcourt, Brace and Co., 1937).
That there are certain very definite limits to which we may go in attaining the dreamed-of
definiteness even in the case of accuracy and precision should be of interest to those who
would weigh the importance of such popular expositions.
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producers, consumers, scientists, legislators of standards, judges in litigations

involving standards, logicians interested in the operational theory of mean-
ing, and lastly, the statistician who is called upon to furnish some of the

foundation structure upon which any solution of the problem must rest.

The Meaning of Accuracy and Precision—Preliminary Comments

The terms accuracy and precision have long been and continue to be

used by technical people in the discussion of both pure and applied science;

they are among those most commonly found in scientific literature. Etymo-
logically the term “ accurate” has a Latin origin meaning “to take pains

with” and refers to the care bestowed upon a human effort to make such

effort what it ought to be, and “accuracy” in common dictionary parlance

implies freedom from mistakes or exact conformity to truth. “Precise,”

on the other hand, has its origin in a term meaning “cut off, brief, concise”;

and “precision” is supposed to imply the property of determinate limitations

or of being exactly or sharply defined. Even though there is this definite

difference between the etymological meanings of the two terms, they are

treated as synonyms in the standard dictionaries and, what is more im-

portant, they are often used interchangeably in scientific and engineering

literature. In fact, this practice of using the terms loosely and inter-

changeably has gone to the point where the author 5 of one of the most widely

known books on the precision of measurements bemoans the fact that the

two terms are so often used carelessly and indiscriminately. Since these

terms are frequently used incorrectly and since there is a “rather wide

divergence of views in respect to their meanings,” 6 they were made the

basis recently of a round table discussion. Such facts are typical of the

available evidence indicating that engineers are aware of the existing confu-

sion in the use of these terms at least in some quarters and of the practical

need for distinguishing in a definite and verifiable manner between their

meanings.

Careful writers, in the theory of errors, of course, have always insisted

that accuracy involves in some way or other the difference between what

is observed and what is true, whereas precision involves the concept of

reproducibility of what is observed. Thus Laws, writing on electrical

measurements, says: 7 “Every experimenter must form his own estimate

of the accuracy, or approach to the absolute truth, obtained by the use of

his instruments and processes of measurement. He must remember that a

6 H. M. Goodwin, Precision of Measurements and Graphical Methods (McGraw-Hill,

1913), pp. 7-8.
6 Bulletin of the American Society for Testing Materials

,
April 1937, p. 23.

7 Frank A. Laws, Electrical Measurements (McGraw-Hill, New York, 1917), p. 593.

-— v
1

, i;
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high precision, or agreement of the results among themselves, is no indica-

tion that the quantity under measurement has been accurately determined.

”

As another example, we may take the following comment from a recent and
authoritative treatise on chemical analysis: 8 “The analyst should form the

habit of estimating the probable accuracy of his work. It is a common
mistake to confuse accuracy and precision. Accuracy is a measure of the

degree of correctness. Precision is a measure of reproducibility in the hands

of a given operator.”

On first reading, these distinctions seem to be clear cut, concise, and to

the point. With such distinctions available, why should it have been

necessary to hold the round table conference called by the American Society

for Testing Materials in 1937 to consider the meanings of accuracy and

precision? With such distinctions recognized in the literature, why at the

conclusion of this round table conference was it thought necessary by those

present to adopt the following resolution in respect to the word precision?

“Resolved that when a standing committee records or specifies a numerical

value for precision in a standard, the committee should make clear what is

meant in terms of operations or procedures to be followed for purposes of

verification.” Is it that engineers are not familiar with the literature or

is there a more fundamental difficulty? Can it be simply that the cited

differences between accuracy and precision are not operationally definite?

Let us now look at these differences in a critical manner to see if we can

throw any light on such questions.

Why statements about accuracy and precision are often indefinite. Let

us note the advice given by Laws to the effect that every experimenter must
form his own estimate of the accuracy or approach to the absolute truth.

The very phrase “his own estimate” implies that all persons may not be

expected to estimate alike. If and so far as different experimenters use

different methods for estimating, the advice given by Laws does not have an

operationally definite meaning that is the same for all people. Looked at in

this way, such advice is indefinite. In the same quotation from Laws,

“high precision” is given as synonymous with the phrase “agreement of the

results among themselves.” But agreement of results among themselves is

itself not very definite because there is obviously an indefinitely large

number of senses in which results might be said to agree among themselves.

For example, in what sense are we to infer that the 204 data of table 7 agree

among themselves? We might, for example, think of their agreement in

terms of the way they cluster about the observed average or in terms of the

magnitude of some one or more of the indefinitely large number of symmetric

8 Lundell and Hoffman, Outlines of Methods of Chemical Analysis (John Wiley and Sons,
New York, 1938), p. 220.
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functions of these data. Or again we might concern ourselves with the order

in which the observations appear.

Much the same kind of indefiniteness exists in the advice quoted from
Lundell and Hoffman, wherein accuracy is considered as a measure of the

degree of correctness. The meaning of this is definite only if we know what
measure is implied and if we know what the degree of correctness is that we
are supposed to measure. The phrase “degree of correctness” presumably

corresponds more or less with the phrase “approach to the absolute truth”

in the advice given by Laws. Likewise, the suggestion that precision is a

measure of reproducibility is definite only if we know what measure is im-

plied and if we know what the reproducibility is that we are to measure.

Does this mean that the advice given in the two quotations cited above

is not good advice? Quite the contrary. In my estimation at least, it is

some of the best advice that I have seen in any practical book discussing

accuracy and precision of measurements. Anyone who reads this advice

with as much care and thought as the authors apparently used in giving it

will get a very definite feeling that accuracy and precision are distinctly

different concepts, even though they may not be able to put their fingers on

the difference. Furthermore, anyone who reads the books from which these

quotations were cited will see that the authors go about the measurement of

accuracy in a different way from that in which they go about measuring

precision. The point that I wish to make here is simply that such advice is

not nearly as definite as we sometimes feel that it is; and furthermore that

it does not provide meanings of accuracy and precision that are subject to ex-

perimental verification as is so often desirable, particularly when such terms

appear in specifications that form the basis of contractual agreements.

To emphasize this point, suppose we consider the requirements in a

specification that the accuracy of the test method shall be ± 1 percent and

that the precision of the same test method shall be =t 1 percent. If there

were one and only one experimental method of measuring accuracy, and

similarly, one and only one method of measuring precision, and if successive

measurements of either accuracy or precision always gave the same identical

results, there would be no uncertainty about whether or not in a given case

the specification had been met. Just so long, however, as it is admitted

(as it seems to be in the quoted advice) that there is more than one way of

measuring both accuracy and precision, and just so long as we know that

repetitive measurements of either accuracy or precision may not give the

same result, such a requirement in a specification loses much of the definite-

ness that it at first seems to have.

There is yet another and more fundamental sense in which the advice

quoted above is indefinite. Most operations of measuring a physical
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quality characteristic may be repeated again and again an indefinitely large

number of times. Such a method may be thought of as being potentially

capable of generating an infinite sequence. To what portion of such a

sequence do such phrases as “ agreement of the results among themselves’

’

or the “reproducibility of the observed values” refer? Unless this question

can be answered, the meaning of such phrases is indefinite even though we
knew what measure was to be used and what aspect of agreement or repro-

ducibility was to be measured. We shall return later to this point.

In this chapter we are trying to see how far it is possible to go toward

making definite statements in the form of either specifications or judgments

involving the terms accuracy and precision. Our next step will be to

examine briefly the concepts of accuracy and precision as revealed in the

theory of errors to see if they provide some of the definiteness lacking in the

advice quoted above from practical treatises on measurement.

Accuracy and precision in the theory of errors. Customary assumptions.

Let us start with the consideration of what is usually admitted to be the

simplest kind of physical measurement, namely, that of the length of the

A B

line AB. To be definite, let us specify that this measurement is to be made
with an engineer’s scale graduated to 0.01”.

In the theory of errors, we customarily assume that we may repeat

such a measurement again and again at will, obtaining an infinite sequence of

observations

Xi, X2 ,
•••, Z<, •••, Z», X n+lj n+l) (3 )

The next step is to assume that the line AB has a true length X' which is

constant for all time. Then we introduce the concept of an error e'i of a

single observation X; defined by the relation

eL = Xi - X' (21)

Thus far everything seems to run along very smoothly.

Now let us ask ourselves, what is the meaning of the accuracy of the

method of measuring the length of the line A

B

by means of an engineer’s

scale? Of course, one of the things that is done in the theory of errors is to

assume that the infinite sequence (3) (p. 12) has a limiting average value X '

;

then we sometimes speak of the difference

d! = X' - X' (22)

as a constant error. This constant error provides a kind of measure of the

accuracy of the test method in somewhat the same way that eq. (21) provides

a measure of the accuracy of the single observation X t .
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Usually, however, we go further and conceive of the accuracy of a given

method of measurement as being determined by the frequency of occurrence

of the numbers in an infinite sequence such as (3) within some specified

range X' — Lh X' + L 2 . If, for example, we assume that L = L x = L 2

so that the range becomes symmetrical about the “true” value X', and if we
choose L so that the fraction 1 — p' of the terms in the infinite sequence (3)

that lie within the range X' db L is |, then the distance L is termed the

probable error. 9 It should be noted, of course, that p' in such a case is as-

sumed to be a constant value in much the same sense that the true value X'

and the expected value X are assumed to be constant values. We may, as

is often done, conceive of the probable error thus defined as a measure of

the accuracy of the method of measurement characterized by the infinite

sequence (3).

Statisticians and experimentalists realize full well that there is nothing

sacred about probable error as thus defined, for example, we might choose

limits that would include a fraction 1 — p' different from J. Likewise, there

is nothing sacred about making L x = L 2 . It appears, however, that most of

our common concepts of accuracy in the theory of errors depend in some

way or other upon the frequency of occurrence of the numbers in an infinite

sequenqe within a range specified in relation to the true value X'

.

Passing now to the concept of precision we see that it seems to differ

principally from the concept of accuracy in that the clustering of the

numbers in the infinite sequence is measured in terms of the fraction 1 — p’

of these numbers within the range X — L, X + L, this range being related

to the average X of the infinite sequence (3) instead of the true value X' of

the thing being measured.

Mathematically all this is extremely simple. For example, we may
postulate (i) that repetition of the process of measuring some objective

quality characteristic under essentially the same conditions gives rise to an

infinite sequence of numbers, approaching, as n is increased, an average

value X
;

(ii) that the quality characteristic being measured has a true

value X' ;
and (iii) that associated with any specified range either in respect

to X' or X there is a definite fraction 1 — p' of the numbers in the infinite

sequence lying within this range. In the terms of such postulates, it is a

simple matter to differentiate between the concepts of accuracy and precision.

Some difficulties with the usual theory. However, when we try to apply

the concepts of accuracy and precision based upon such a set of postulates

we run into difficulties. To begin with, the first postulate involves the in-

definite requirement that the repetitions be made under the “same essential

conditions.” Does it therefore follow that the theory of errors is applicable

9
Cf. chapter II.
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to any sequence observed under what the experimentalist assumes to be the

same essential conditions; or would it be better to seek some formal criterion

that may be applied to the observed data? Classic error theory attempted

to provide the basis for a formal criterion by imposing the limitation that

the distribution of the numbers in an infinite sequence should be normal

and that the observations should be made at random. However, it was

early realized by statisticians that the requirement of normality might be

met to a very high degree of approximation by measurements that contain

assignable causes of variation; hence the requirement of normality did not

provide a satisfactory basis. It is also obvious that in order to apply the

concept of randomness it is necessary to have an operation that describes

once and for all the meaning pf “random.” However, classic error theory

does not provide such a meaning.

Our effort to attain a definite operational meaning for accuracy and

precision would not end here, however, even if we found such a meaning for

^ .. .. ,. random, because the meanings for accuracy and

statements concerning the precision thus far given are in terms of the un-

objective existence of the known and nonexperienceable true value X', ex-
length of a line

pected value X'

,

and fraction 1 — p' of the num-
bers in an infinite sequence within certain limits. In the measurement of

the length of a line AB, for example, there is no way of observing any one of

these three numbers
;
instead, all that we can experience quantitatively is a

finite number of measurements; and the only kind of practically verifiable

statements that we can make about the length of the line in the sense that

it may be said to have objective existence is that expressible in terms of

a finite number of measurements not yet made. To make this point specific,

let us consider ten observations on the length of one such line, obtained with

an engineer's scale reading to 0.01 inch, the next decimal being estimated

(table 9).

4.000

3.996
3.996
3.994

TABLE 9

3.996
3.994

3.990
3.992

3.994
3.992

If we are to keep our feet on the ground and make statements that are

subject to practical verification, we must express the meaning of the accu-

racy and precision of the method in terms of the characteristics of a finite

portion of the infinite sequence that this operation of measurement is

capable of giving. We must go even further if we are to attain operationally

definite meanings for statements (specifications or judgments) about accuracy

and precision. It is certainly important that we try to determine in what
sense the validity of such judgments can be verified: it is just such judgments

that form the basis for action and hence in the engineering field are of

fundamental practical importance. As a starting point, it will be necessary
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to consider the nature of operational meaning more carefully and critically

than we have yet done.

Operational Meaning

Operation or method of measurement; two aspects. It is important to

realize in what follows that there are two aspects of an operation of measure-

ment; one is quantitative and the other qualitative. One consists of num-
bers or pointer readings such as the observed lengths in n measurements of

the length of a line, and the other consists of the 'physical manipulations

of physical things by someone in accord with instructions that we shall

assume to be describable in words constituting a text. A simple example of

a text outlining an experimental procedure may be useful at this point to

help fix the two aspects of a measurement. For this purpose, we shall take

the following instruction for the measurement of the surface tension T of a

liquid: 10

In order to make a direct measurement of the surface tension T,

attach a very light wire frame a (Fig. 1 13) to a delicate helical spring s, and

by means of an elevating table b, raise a vessel of liquid till the frame is

immersed. Next lower the table carefully by means of a rack and pinion

r, until a film forms between the prongs of the frame. Then quickly take

the reading of the index i upon the mirror scale m. Before repeating, stir

the liquid vigorously by means of a glass rod which has been carefully

cleaned in a Bunsen flame. Continue this operation until a number of

consistent readings can be obtained. The difference between this reading

and that taken when the spring and frame hang freely is, of course, a

measure of the force of tension F possessed by the two surfaces of the

film. In order to reduce this force to dynes, observe the elongation pro-

duced by a known weight of the same order of magnitude as F. Then

apply Hooke’s Law to determine F accurately in grams? Finally meas-

ure the distance l between the vertical wires of the frame a with an

ordinary metric scale and calculate T from T = F/2ab.

The number obtained as T is an example of what is referred to above as a

pointer reading. All the rest of this quoted paragraph describes the physical

part of the operation.

First let us note that the physical part of even such a simple operation

as measuring the surface tension of a liquid is far from being perfectly

definite. To begin, we need only call attention to such phrases as “attach

a very light wire frame/’ “lower the table carefully,” and “quickly take the

reading.” Not only are such phrases vague but they must also be under-

stood in terms of other precautions that the experimenter should take, such

as making sure that the wire frame and the vessel containing the liquid are

10 R. A. Millikan, Mechanics
,
Molecular Physics, and Heat (Ginn and Co., New York,

1903), pp. 195-6.
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free from grease. “Being free from grease” in turn is not rigorously definite;

to some people it means clean enough to eat on; to the experimental physicist

it may in some instances mean baked out at a high temperature under

vacuum; etc.; and I assume that all would agree that no amount of effort

could make such instructions absolutely definite.

Next, let us note that the operation here under consideration is specified

not only in physical terms but also in terms of the numerical results obtained

by repeating the operation. For example, we have the sentence : “Continue

this operation until a number of consistent readings
A requirement on the can be obtained.” In other words, the text describ-

among the observed data
m§ the operation does not say to carry out such

and such physical operations and call the result a

measurement of T. Instead, it says in effect not to call the result a measure-

ment of T until one has attained a certain degree of consistency among the

observed values of F and hence among those of T. Although this require-

ment is not always explicitly stated in specifications of the operation of

measurement as it was here, I think it is always implied. Likewise, I think

it is always assumed that there can be too much consistency or uniformity

among the observed values as, for example, if a large number of measure-

ments of the surface tension of a liquid were found to be identical. What is

wanted but not explicitly described is a specific kind and degree of con-

sistency. These facts illustrate an important characteristic of every

physical measurement considered as an operation, namely, that neither the

physical nor the numerical aspect of an operation by itself can be taken as a

complete description of the operation.

What has just been said is important for the present discussion in that

it shows why the definiteness of a specification of an operation depends upon

how successfully the requirements upon both the physical and the numerical

aspects of an operation have been set forth. Likewise the interpretation of

experimental results must take into account both aspects of the operation;

failure to meet the requirements for either one may be the source of an error

in a judgment based upon the observed results. For example, the failure

of the experimenter to keep the wire frame and container free from oil in

the measurement of surface tension is a source of error. Likewise, the

inability of the experimenter to meet the requirement of consistency is a

source of error. Furthermore, it is obvious that a criterion of consistency

may be met when the requirements on the physical operation have not.

Hence it follows that any conclusion that a statistician may derive from the

numbers obtained by repeating an operation of measurement must be con-

sidered as only part of the evidence in determining the validity of any judg-

ment based upon such an analysis as evidence.
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Consistency and reproducibility. Finally, it should be noted that the

advice to repeat the operation of measuring surface tension until a number of

consistent readings have been obtained is indefinite in

readings^ consistent?
it does not indicate how many readings shall be

taken before applying a test for consistency, nor what

kind of a test of consistency is to be applied to the numbers or pointer

readings. Hence we must conclude that the operation of measurement for

surface tension quoted above is somewhat indefinite not only in its physical

but also in its numerical aspect. One of the objects of this chapter is to

see how far one can go toward improving this situation by providing an

operationally definite criterion that preliminary observations must meet

before they are to be considered consistent in the sense implied in the instruc-

tion cited above.

Before doing this, however, we must give attention not so much to the

consistency of the n observed values already obtained by n repetitions of the

operation of measurement as we do to the reproducibility of
What about

operation as determined by the numbers in the potentially
reproducibility?

. \
J

,

infinite sequence corresponding to an infinite number of

repetitions of this operation. No one would care very much how consistent

the first n preliminary observations were if nothing could be validly inferred

from this as to what future observations would show. Hence it seems to

me that the characteristic of the numerical aspects of an operation that is of

greatest practical interest is its reproducibility within tolerance limits through-

out the infinite sequence. The limit to which we may go in this direction is to

attain a state of statistical control. The attempt to attain a certain kind of

consistency within the first n observed values is merely a means of attaining

reproducibility within limits throughout the whole of the sequence.

A requirement concerning a verifiable statement about precision. Just

as soon, however, as we begin to consider the reproducibility of the operation

in this sense, we must take into account the whole of the potentially infinite

sequence in trying to define what we mean in an operationally definite way
by the term “ reproducible.’ ’ It should be noted that if we are to give

definiteness to a test of consistency of the first n observed numbers in an

infinite sequence, only these first n numbers are involved, whereas if we are

to give definiteness to the concept of reproducibility of the operation of

measurement we must take into account the whole infinite sequence or at

least that part of it beyond the first n observed values that we arbitrarily

choose to consider. Hence it follows that, since any requirement of con-

sistency placed on the n preliminary observations is but a means of insuring

reproducibility, the nature of this requirement of consistency can not be

given definite meaning until the criteria of reproducibility have been

definitely fixed.
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It is this characteristic of reproducibility that must be defined in an

operationally definite way when we try to give an operationally definite

meaning to precision. As we have already noted, the classical concept of

precision is stated in terms of the whole of the infinite sequence, but if we

adopt this concept, we can never practically determine the truth content of

any statement about precision because it is not practically possible to ob-

serve the whole of the infinite sequence. If we are to make a statement about

precision that we can verify in practice, that statement must involve a concept of

precision that does not take into account the whole of the infinite sequence. This

leads us to a further consideration of verifiability as a criterion of meaning.

Practical and theoretical verifiability. Suppose it turned out that a

statement or judgment that the accuracy or precision in a given case is such

and such could never be verified, or that it is not possible to determine

whether the prediction involved in such a statement in a specific case is true.

Particularly within the last decade or so it has been said by many writers

that any such statement, not being verifiable, would be meaningless; and

from this viewpoint, a statement about precision that involves the concepts

of precision that we have attributed to the classical error theory would be

meaningless for the reason that we can not practically observe an infinite

sequence. The fact is that if we were to adopt practical verifiability as a

criterion of meaning, much of what is written about accuracy and precision

would be meaningless.

In chapter III, however, we adopted a criterion of meaning (p. 94) that

permits either theoretical or practical verifiability. Fig. 29 shows schemat-

ically the portions of an infinite sequence that are subject to practical and

theoretical verifiability. In this figure, the number j of terms within the

Previously observed

Xi, X2 ,
-J,

Past

Practically verifiable

Xn+ 1, Xn+2)
' '

'
j Xn+j)

Only theoretically

verifiable

Xn+j+i, Xn+j+2, •
• *

Future *

Present

Fig. 29

region of practical verifiability is assumed to be finite. No matter how large

we make j, so long as it is finite, there is an indefinitely large portion of the

infinite sequence that remains subject only to theoretical verifiability.

Therefore, in order to say anything that is practically verifiable about an

unobserved portion of the potentially infinite sequence after having repeated

the operation of measurement n times, it is necessary to frame this statement

in such a way that it will involve only the numbers in a finite portion of the
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infinite sequence. To make such statements definite, we must do three

things: (1) specify the numberj; (2) define the function or functions of the

set of j numbers that are to be computed; and (3) specify for each such func-

tion \f/i the interval \f/n ^ ipi ^ \f
/i2 within which the function

\J/ {
must lie if

the statement is to be considered true.

The operational meaning of a quality characteristic. The only way one
can experience any quality characteristic quantitatively is by means of an
operation of measurement. As already pointed out (p. 72), there are

usually several known ways of measuring any such quality characteristic and
presumably many as yet unknown but knowable ways. Corresponding to

each method of measurement, there is a physical operation that is observably

different from the corresponding physical operation for any of the other

methods. The objectivity of a quality characteristic exists only in the con-

sistency between the indefinitely large number of potentially infinite sequences

constituting the numerical aspects of the operations. Any such quality

characteristic is therefore operationally verifiable in a practical sense only

for statements confined to finite portions of the infinite sequences of the

specified methods of measuring the quality under consideration. The region

of practical verifiability is schematically shown by the numbers enclosed

within the rectangle of fig. 30. For convenience, the number of observations
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j
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within the region of practical verifiability has been taken as j in each se-

quence, though the number of observations taken in each sequence need

not be the same. To make any practically verifiable statement about a

quality characteristic X, we must do four things: (1) specify each of the k

physical operations of measurement that are to be considered; (2) specify

the number of terms that is to be considered for each infinite sequence (the

terms thus specified are represented schematically within the rectangle of

fig. 30) ; (3) define the function or functions to be computed in terms of the

set of observations thus specified; and (4) specify for each such function \pi

the interval \pn ^ ipi <J \pi2 within which the function xpi must lie if the

statement is to be considered true.

Having now considered the region of practical verifiability for an opera-

tion of measurement and also for a quality characteristic, let us next consider
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the corresponding theoretical verifiability. This is necessary if we are to

trace the connection between the theoretical and practical meanings of

accuracy and precision and if we are to indicate the usefulness of both.

Physical and logical aspects of theoretical verifiability. Examples. For

our present purpose it is desirable to consider two aspects of theoretical

verifiability, namely, physical verifiability and logical verifiability. An in-

finite sequence can not be realized in practice, but we can always conceive of

making one more measurement and thus theoretically of getting as long a

sequence as we wish. In this sense, an infinite sequence is physically ob-

servable; theoretically we can observe as much of it as we like. In much the

same way we can not express V 2 in our “rational” number system, but we
can conceive of coming as close to it as we like; by carrying out more calcula-

tion we can always get one more figure.

(i) The true value of X'. But now let us consider in contrast the concept

of the true value X' of a quality characteristic, for example the length of a

line AB, or the velocity of light. I am not able even to conceive of a physical

operation of observing or experiencing a true length X'. You may argue

that there are ways of measuring the length of a line, by any one of which

you may obtain a sequence of observations; you may even argue that the

limiting average X is equal to X'. But the physical operation is a method
of obtaining X

,
not X'. Whether X = X' we shall never know. The

true length X' is the given, unknowable, unapproachable, ineffable. 11 It is

removed from the pale of observation as securely as V — 1 is removed from

the realm of real numbers; there is not even the question of approximating

V — 1 with the rational and irrational numbers.

This does not mean that anyone is not free to conceive of there being a

true value X', but simply that I am not able to
A true value X' is not conceive of a physical operation whereby I can ob-

serve it. The conception of true length in terms of

operations with symbols having logical and mathe-

matical significance is possible but in terms of physical operations such a

conception is not possible.

At this point, someone might suggest that we consider the measurement
of the sum of the angles of a triangle. It might be suggested that here we
know the true value of the sum to be 180° independent of any measurement.
We must keep in mind, however, that the claim that the sum of the angles

of a triangle is 180° rests only upon the acceptance of a certain set of postu-

lates about abstract geometry as being descriptive of our real world. If

we had chosen another well-known 12 set of postulates, the sum would

11
Cf. C. I. Lewis, Mind and the World-Order (Scribners, New York, 1929), ch. II.

12 J. W. Young, Fundamental Concepts of Algebra and Geometry (Macmillan, New York,
1911), p. 34.

observable by any physical

operation
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theoretically be greater than 180° and for still another well-known set of

postulates, the sum would theoretically be less than 180°. If there were
available some physical operation by which we could determine which, if

any, of these sets of postulates were true, we could then consider this opera-

tion as establishing the true value X'. It has long been agreed, however,

that there is no physical operation by which we can determine the truth

content of a set of postulates.

(ii) The expected average X . We may now think of the theoretical sense

in which the expected average X of the infinite sequence is verifiable. As
already noted, it is always possible to conceive of repeating a physical opera-

tion of measurement once more, irrespective of how many observations have
already been made, and of computing the average of this much of the poten-

tially infinite sequence. This operation, however, in itself does not provide

a method of approaching to within a specified range of X unless we assume

some limiting process. And if we assume a limiting process, it will not

necessarily apply to the observed sequence; hence it would seem that the

expected value X of an infinite sequence can be considered as verifiable

only in the logical sense.

(iii) The degree of belief p\. Next let us consider the degree of belief p\
assumed to exist in a prediction upon the basis of evidence E. Here again

there does not seem to be any conceivable physical operation of finding p'b .

Hence it too must be considered as being only logically verifiable.

(iv) Randomness. Finally we may ask in what verifiable sense a se-

quence can be “ random.’ ’ Of course we can start with a concept of an

infinite sequence that satisfies certain specified postulates as defining a

random sequence. To allow for a wide variety of sequences that may be

formed from the same set of numbers and yet be called random, the subse-

quences that may be formed from the original sequence by some rule that

does not depend upon the magnitude of the terms chosen from the original

sequence, as well as the original sequence itself, are usually assumed to satisfy

the same set of postulates. However, as pointed out in chapter I, it is not

humanly possible for anyone to write down one such original sequence, nor

has anyone succeeded in giving a rule whereby a person can determine

whether an observed sequence satisfies the given set of postulates. Hence

the meaning of any such theoretical approach to the definition of random
can only be logically verifiable.

As an example of this purely logical or postulational approach, we might

limit the meaning of random to those sequences satisfying the following two

requirements: (1) the limit of the average of the first n terms of the sequence

shall exist and approach X' as n becomes infinite; and (2) the limit of the

average of the first n terms of any subsequence, formed from the original

sequence by a rule such that the choice of the terms to be included in the sub-
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sequence does not depend upon the magnitude of the term, shall exist and

approach X' as n becomes infinite. Since there is an indefinitely large

number of rules for selecting a subsequence that will satisfy the requirements

laid down, such a definition of random admits an indefinitely large number of

random sequences.

If instead of starting with some simple postulational basis, one attempts

to set down a set of criteria that sequences drawn “physically at random”
from a bowl should satisfy if they are to meet the conditions of random

sampling, there seems to be potentially an indefinitely large number of such

criteria to be considered, whereas only a few have so far been formulated.

Such criteria depend upon the frequency distribution of the statistical uni-

verse and in this way are not so general as those considered in the previous

paragraph. Even if we admit that there may come a time when all of these

criteria can be set down, there would still be the difficulty of even conceiving

of a rule or operation of writing down one such sequence that would satisfy

all of these criteria. Then, even if we could surmount this difficulty, we
should have to devise some rule of getting random subsequences from this

original sequence. Any attempt to do this will meet serious and, I believe,

unsurmountable difficulties.

In some way or other it is desirable to get a formal definition or logical

concept of random that is applicable to any 'physical process admitted as

being random. For example, let us suppose that drawings with replacement

from a bowl gave what was admitted to be a random sequence. Now it is

generally (if not always) assumed that a physically random process may give

any possible order of the numbers defined by the operation. It is difficult to

see how one can even conceive of a set of criteria that will admit all of these

sequences as being random.

Put somewhat crudely, the point that I have attempted to illustrate is

this: even if it were possible to write down a random sequence defined in

terms of abstract postulates, and if we could independently carry out

physical processes such as drawing from a bowl, such processes to be called

physically random, no one has yet so far as I know even conceived of a satis-

factory rule or operation of relating the two kinds of sequences in a logical

manner. The situation is much like that of a differential equation, in

which the symbols are purely formal. We may, however, interpret a certain

symbol as some physical quantity such as heat, but there is no a priori

unique way of relating such a symbol to the experimental results obtainable

by measurement.

Now that we have briefly examined the operational meanings of the true

value X' and the expected value X
,
which enter into the classic definitions

of accuracy and precision, we are in a position to consider the operational

meaning of these terms.
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The Operational Meaning of Accuracy and Precision

Some fundamental difficulties. It may be helpful to represent schemat-

ically what we have seen to be a fundamental difference between the classic

concepts of accuracy and precision (fig. 31). Having chosen a statistically

controlled operation of measurement, precision is defined in terms of the

X' p'

-i 1 1

—

U L2
Accuracy

L 1 L 2

Precision

Fig. 31

fraction 1 — p' of the numbers in the potentially infinite sequence associated

with that operation and lying within a range fixed in respect to the expected

or average value X of the sequence. Accuracy for the same operation of

measurement essentially differs only in that the range is fixed in respect to

the true value X' instead of the expected value X . Usually, however,

accuracy is thought of in terms of more than one operation of measurement,

because the term true value usually implies consistency among all the infinite

sequences corresponding to different methods of measurement (cf . sequences

(ID, P. 72).

The first point I wish to make is that the ranges used in defining the classical

concepts of both accuracy and precision are of the tolerance type in that they are

constant ranges conceived of as being tied down to fixed points.

It should also be noted that the operational meanings of accuracy and

precision are more involved than that of either X' or X' in that even after

these symbols have been given meaning, we must yet consider the operational

meaning of p'

.

Of course, we can logically conceive of the fraction p' asso-

ciated with any fixed range. However, it is not so easy to conceive of an

operation either physical or formal by which one could obtain p' from a

given observed sequence. In practice, we often think of the fraction p of

the first n numbers of an observed sequence and speak of the statistical limit

of p as n approaches 00 as being equal to p'. However, as previously

pointed out, this concept of a limit does not provide any formal process of

determining how close p approaches p' for any chosen value of n. Hence p'

is not formally defined in an operational way other than to say that it may
be thought of in much the same way that a true value X' may be thought of,

even though we are not able to conceive of an operation of finding either

p ' or X'.
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Enough has been said to show that the symbols p', X', and X' entering

into the classical definitions of accuracy and precision stand for logical con-

cepts that are neither practically nor physically verifiable. Likewise the

concept of degree of rational belief p\ relating evidence E to a prediction P
involving either accuracy or precision is verifiable only in a logical sense.

The same situation holds for the logical concept of random. Let us now

consider briefly the sense in which accuracy and precision are practically

verifiable.

Practically verifiable meaning of accuracy and precision. It follows that

the only kind of quantitative and practically verifiable criterion of either

accuracy or precision is of the nature of a tolerance range. To make this

range operationally definite, we must specify

(1)

the physical operation of measurement for precision, and

the one or more such operations for accuracy.

(2) the finite number of terms from each of the potentially

infinite sequences to be made the basis of the tolerance

requirement.

(3) the function or functions ipi of the terms upon which

tolerance limits are to be set, and

(4) the tolerance limits ipn and \pi2 for each such function -pi.

Here again reference to figs. 29 and 30 (pp. 133 and 134) will be helpful

in showing schematically the practically verifiable portion of the infinite

sequences that must be used in defining precision and accuracy respectively

in terms of measurements not yet taken. These \p functions may in cer-

tain cases be symmetrical functions previously designated by 0, but they
are not necessarily so.

These four steps in specifying a tolerance range are of fundamental

practical importance in the preparation of operationally definite specifica-

tions of quality. It is important to note that we can not speak of the prac-

tically verifiable meaning of accuracy and precision, but only of a chosen

verifiable meaning. Furthermore, it appears that such a practically verifi-

able meaning for either precision or accuracy does not make much use of the

concepts of true value X', expected value X', fraction p '
,
and random. In

the sense that operationally verifiable criteria of accuracy and precision re-

duce to tolerance range requirements, it is ap-

parent that if one were to stop at this point, he

might be misled into thinking that one is free to

choose at will any specific verifiable meaning for

However, when specifying these terms in prac-

tice, one is not free to choose arbitrarily any conceivable requirement,

no matter how much he would like to do so, because he must limit himself to

Tolerance requirements for

accuracy and precision must
be economic

accuracy and precision.



140 STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CONTROL

those that are economically attainable. In other words, tolerance require-

ments for accuracy and precision must be economic. We have already con-

sidered at some length in chapter II the problem of setting such tolerances.

Within this limitation, the meaning of accuracy and precision is perhaps

sufficient for use in specifying requirements such as “The accuracy (or

precision) shall be 1 percent.” However, we must go further in our con-

sideration of meaning if we are to give an operationally verifiable interpre-

tation to a judgment or statement such as “The accuracy (or precision) is

1 percent.” We must, in other words, provide an interpretation for the

process of determining the validity of such a judgment.

Furthermore, since in specifying accuracy and precision we are tied down
to the statement of requirements that can be met, we are not free to ignore

the importance of the concepts of true value X', expected value X', fraction

p', and random, all of which enter into the classic concepts of accuracy and

precision. Likewise in the interpretation of a judgment, we must make use

of the fundamental concepts that any judgment involving a prediction P in

terms of either accuracy or precision based upon specific evidence E implies

an objective degree of rational belief p'&.

The meaning of these concepts in use. Up to this point we have con-

sidered the logical but not the practically verifiable meaning of these con-

cepts as concepts. Now we must consider their meaning in use. For our

present purpose, we should recall that a concept as a concept is an abstract

logical form. The delineation of such a concept is an act of reason and is

independent of any necessary connection with empirical or physically ob-

servable data. For example, as already noted (p. 135) we may choose at

will a postulational basis for a geometry that will make the sum of the angles

in a triangle 180°, more than 180°, or less than 180°. Our choice is inde-

pendent of any necessary connection with the sum of the angles of any real

triangle determined by some specified operation of measurement. Now let

us recall briefly how a concept is used.

In the first place, the application of a concept as a concept to a particular

given experience may be hypothetical. For example, we can say that if the

sum of the angles of a real triangle is 180°, and if there exists an operation of

measurement that can be repeated an indefinitely large number of times,

and if 50 percent of the values in this infinite random sequence lie within the

range 180° ± L, then L is the 50 percent tolerance range for precision for

this particular operation of measurement. Likewise in sampling theory, we

constantly use concepts as hypotheses. We say again and again something

like the following: If we draw a sample of n at random from a normal popu-

lation with average X and standard deviation a', then such and such follows.

In fact, the mathematical theory of distribution simply provides us with an

indefinitely large number of hypotheses consisting of sets of conditions of the
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Abstract concepts serve

as guides.

More on the distinction

between a statement

and a judgment

form “If ...
,
then . . .

.” Such is the nature, for example, of tests for

statistical significance. Such hypotheses may be formulated at will so long

as we conform to the accepted rules of abstract logic. However, they have

no necessary connection with what is observable.

In the second place, it is a fact (of very great importance in use) that

thinking of an abstract concept serves as a guide to the choice of a particular

operationally verifiable criterion of experience as a

basis for action. Invariably each such practical rule

of action, so far as it has been adopted as a result of

reasoning, is based upon some abstract concept or set

of concepts. There is obviously a very important

difference between the hypothetical statement, “If the accuracy (or pre-

cision) of a specified test instrument is one percent, accept the instrument/’

and the judgment constituting a criterion of action, “The accuracy (or preci-

sion) of this particular instrument is one percent, hence accept this instru-

ment.” Such a choice of criterion of action in each particular instance is an

instrumental or pragmatic means of correlating experiences. From this

viewpoint, that choice from among all the possible choices that is most useful

in correlating experience, is the best. However, best in this sense can be

determined only by experiment; it can not be determined by pure reason

alone; and it can be determined only by finding out experimentally what

kind of action under a specified set of conditions works out more successfully

than other kinds of action that have been tried.

Practically verifiable procedures for realizing p\ X'
,
X\ p\ )

and random-

ness. Distinction between the meanings of concepts and operationally

verifiable procedures. In chapters II and III respectively we considered

the establishment of economic tolerance ranges and the factors to be con-

sidered in determining whether a prediction in terms of a tolerance range

and based upon specified evidence E is likely to be true. Now we shall

briefly indicate how each of the abstract concepts of p', X', X
, p'&, and

randomness, have suggested and given rise to the development of opera-

tionally verifiable procedures whose usefulness in the field of quality control

has been justified by experience. Such operationally verifiable procedures

do not constitute the meaning of the concepts for they are not susceptible

to such meaningful interpretation. Instead, they are procedures in no way
connected with the abstract concepts except that thinking of the one leads

to the trial of the other.

Engineers and scientists always want to make valid predictions. But as

we have seen, validity of prediction in terms of a tolerance range depends

upon the degree of reproducibility of the potentially infinite sequence with

respect to this range. We conceive of there being a limit to which we may
hope to go in attaining reproducibility, and we conceive of this as being that
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which is most likely to be correlatable with the abstract concept of random.
Under such conditions one must search for a practical criterion of random-
ness, and the outcome in the theory of quality control has been the develop-

ment of a practically verifiable operation of control. Hence the meaning of

random in use considered in this monograph is of the nature of such an

operation of control.

The next step in the chain of reasoning is to assume that in those cases

where we have eliminated the assignable causes in the practical and definite

sense of the theories of quality control, we can find a mathematical probabil-

ity model upon the basis of which we can make valid predictions. This

leads us, for example, to assume that associated with the abstract concept of

a certain fraction 1 — p
f
of the numbers in an infinite sequence lying within

any specified tolerance range there is an observable number 1 — p which

we may use in our mathematical model. For example, we may choose to

associate 1 — p with the simple operation of observing the fraction of the

numbers in a finite set of n observations found to lie within some specified

range. It is of interest to note that though this 'practical range can he fixed,

it can not he fixed in respect to either X' or X
,
and hence differs fundamentally

in meaning from the conceivable ranges so fixed in the classical concepts of

accuracy and precision.

Naturally in practice we must have some operation of trying to approach

closer and closer to what we call the true value X'
. In our chain of reason-

ing we assume that we have an operation of measurement giving a sequence

whose expected value X is numerically equal to X', but we have also noted

that this is not the same as assuming that operationally X' and X are the

same. Then we must find some way that constitutes an attempt to ap-

proach X . This gives rise to the adoption of Postulate I (p. 22), or in

other words, the simple practical rule of operation whereby we choose to ac-

cept the average X of n + i observed values in preference to the average X
of n observed values. Of course, this rule is not considered applicable in

practice until it has been shown that the observed portion of the sequence

satisfies the chosen operation of control, and until we have done something

that we often describe as eliminating constant errors in the sense now to

be considered.

In the measurement of what we assume to be a constant of nature or a

property of a physical object, practice is modified by the result of thinking

of the abstract concept of an objective value X'. The nearest approach that

we can attain to such constancy is in terms of reproducibility in each of the

admitted physical operations of measurement, and also in terms of con-

sistency between the results thus obtained. In turn this suggests the use of

one or more operationally verifiable statistical tests for significant differ-

ences between the results obtained by the different methods of measurement
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that have been adopted. Such tests constitute practically verifiable criteria

for the absence of constant errors.

Now we come to the problem of trying to find an operationally verifiable

procedure for determining whether a given judgment in respect to accuracy

or precision is valid. There appears to be no way of determining quantita-

tively even an observed degree of belief p&. All we can do is determine in an

operationally definite manner whether the action taken by someone on the

basis of specified evidence is the kind that someone else would take upon the

basis of the same evidence. This is pretty much the kind of practical pro-

cedure that has been adopted in the theory of jurisprudence. The method

there followed is in general to take the majority opinion of a specified group

of reasonable men. Perhaps this procedure is as rational as any other to be

followed in determining the validity of a judgment in respect to accuracy and

precision based upon specified evidence E. This rests upon the assumption

that if every reasonable man could experience the objective degree of rational

belief p\ in a prediction P upon the basis of specified evidence E
,
then all

such reasonable men would act in the same way. In turn it is assumed that

commonness of action on the part of reasonable men is a practical basis for

believing that those acting the same way have experienced the same degree

of belief. That is to say, if the objective degree of belief possessed by
any person on the basis of evidence E, is to be measured by his action, then

commonness of action on the part of reasonable men is an arbitrary but

convenient basis for defining their measured degrees of belief as being equal.

Their objective degrees of rational belief, symbolized by p\, may or may
not be equal; they are unknowable in the same sense that the true value X'

is unknowable.

We have now reached the stage where we realize that

p', X', X'
,
and p'&

all turn out to have a common characteristic: each stands for a concept that

can not be reduced once and for all to an operationally verifiable meaning.

Instead, these concepts serve as fountains of suggested operational meanings

from which we must choose in order to talk with definiteness in specific

instances.

Need for specifying the minimum quantity of evidence for forming a

judgment regarding accuracy and precision. It is important to note,

however, that in addition to these operationally verifiable criteria in use

corresponding to the different fundamental abstract concepts, we have also

called attention again and again throughout this monograph to the need for

specifying the minimum quantity of evidence that shall be used as a basis for

judging accuracy and precision. Too much emphasis can not be placed

upon this requirement if we are to control the error of judgment within
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practical limits. Without such a requirement one might choose sets of

operational criteria that would be satisfied and yet not provide against an

occurrence of errors in judgment that are prohibitive from the viewpoint of

practice. In fact, the necessity for taking a certain quantity of information

as a basis for any important act is the fundamental starting point for the

application of all of the five other practical operations in use, namely: (1)

those of control, (2) use of probability theory, (3) statistical limit, (4) tests

for significance and (5) majority action of reasonable men corresponding

respectively to the abstract concepts of random, p\ X', X\ and p\.

The meaning of abstract concepts is not unique. Next we should note

that we can not justly refer to the meaning in use of the abstract concepts in

the classic definitions of accuracy and precision, but instead we can only

refer to a chosen specified set of operationally verifiable meanings
,

it being

possible to set down an indefinitely large number of different sets of such

criteria. The ones that have been discussed and illustrated in the preceding

pages have proved successful at least in the field of quality control. In this

sense, they are fundamentally experimental in character, and are not to be

confused with generalized concepts that are not subject to experimental

verification. Some one else may find a better set. As time goes on, such

criteria in use may be expected to change even though the fundamental

abstract concepts were to remain the same. However, the details of the

abstract concepts also may be expected to change since there is always an

interaction between practical procedures and the associated conceptual

background.

Conclusions

We started out in this chapter with a fivefold problem and we may
now state our conclusions.

First: How far can one hope to go in giving operationally definite meanings

to specifications of accuracy and precision

?

Since there must always be a physical and a numerical aspect to a

quantitative physical operation and since it is not possible to make the

requirements on the physical part of the operation rigorously definite, it

follows that we can not make a specification of accuracy or precision rigor-

ously definite. We can, of course, place practically verifiable tolerance re-

quirements for accuracy and precision in a specification, but of course only

on the numerical results. However, any such set represents an arbitrary

choice from among an indefinitely large number of possible sets and hence

no one of them means the same as the requirement: “The accuracy (or

precision) of the test method shall be 1 percent ” (p. 122).

To the extent that we wish to fix the objective properties of the thing

specified in terms of accuracy and precision, we must take account of the



THE SPECIFICATION OF ACCURACY AND PRECISION 145

idealistic concepts of accuracy and precision in classic error theory. These

concepts, however, are not practically verifiable and hence can not be made
operationally definite. In fact, there is no necessary relation between the

abstract concepts entering into the classic meaning of accuracy and precision

and the results of any physical operation. We are not free to choose at will

an operationally definite set of criteria if we are at the same time trying to

_ . . , approach as close as possible to meanings that can
Definite meanings for

, . . T „

accuracy and precision can be used to advantage m practice. In fact, we
not be specified once and for find that associated with each of the five funda-
aU mental concepts entering into the classic defini-

tions of accuracy and precision there are at least as many suggested types of

operationally verifiable meanings in use, each of which must be taken into

account if we are to attain the practical advantages of specifying accuracy

and precision. Since these meanings in use change with experience as

well as with the detailed aspects of the abstract concepts, it is impossible to

specify once and for all a satisfactory operationally definite meaning for either

accuracy or precision.

Hence, in many instances, it may be desirable to specify accuracy and

precision in terms of formal abstract requirements that suggest operationally

verifiable criteria in use. For example, the requirement that the accuracy

(or precision) shall be 1 percent, if interpreted in the classic way, is a require-

ment of this character. It has no necessary connection with experience in a

specific instance
;
but any interpretation of observed data in terms of accuracy

or precision will of necessity be shaped in accord with our choice of opera-

tionally verifiable criteria that are suggested by the abstract concepts of

accuracy and precision.

If, on the other hand, a specification of accuracy or precision is limited to

the statement of operationally definite criteria, it is perfectly feasible to meet

such criteria without attaining the practical objectives for which the criteria

were set. It should also be noted that any statement of accuracy and pre-

cision in terms of an operationally definite tolerance range fails to fix any

requirements of the reproducibility that is so vitally
Operationally definite important in understanding the practical usefulness

included in specifications
of the concepts of accuracy and precision. Repro-

ducibility here refers to a property of the infinite se-

quence and therefore involves a portion of it not yet observed. It is often

of vital importance to include operationally definite criteria of accuracy and

precision in addition to the statements of such a general requirement as

“the accuracy (or precision) shall be 1 percent.”

Second: What ways and means are available for determining the truth

content of a judgment involving accuracy or precision f
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If the requirements in respect to the numerical aspects of a physical

operation are stated in a practically operationally verifiable manner, all we
need to do is to carry out the operation thus specified in the requirement and

see whether it has been met. Even this simple process, however, is not quite

so simple as at first appears, in that the one who is to judge whether a require-

ment has been met must take into account not only the criteria on the

numerical aspects of the operation but also the requirements in respect to

the physical operation, which, as we have seen, always must be somewhat

indefinite. It follows that a human element must always enter into a judg-

ment of either accuracy or precision even though the numerical requirements

are stated in a perfectly definite operationally verifiable manner.

However, there is a more important factor to be taken into account,

namely, that a specification is fundamentally the statement of requirements

as a means to an end which we idealize in terms of the classic concepts of

accuracy and precision. For practical purposes, therefore, there is always

left over, beyond any verifiable definite specification,

A specification can not be something that we may term the intent of the require-

of the requirement merit. A simple example may help to make this

point clear. We have seen that as a starting point

for fixing in a definite manner the significance of accuracy and precision it is

necessary to adopt some operation of control. In fact, we considered an ex-

ample of such a requirement stated in definite terms in connection with the

description of an operation of measuring the surface tension of a liquid (p.

130). Since, as has been pointed out, it is not possible to write down all

the criteria that should be met in such instances, any specific criterion can be

considered a necessary but not a sufficient condition. For example, suppose

that we were to adopt as an operation of control the technique involving the

use of what I have referred to in this monograph as Criterion I.
13 In fig. 8

(p. 35) we showed a set of one hundred averages of four which satisfies this

criterion. Assume, however, that a condition arose where this criterion was

implied or stated in the specification and where instead of getting the points

shown in fig. 8 we got the succession 14 of points shown in fig. 32. Anyone

supposed to judge whether Criterion I had been met would have to answer

Yes if he considered only the letter of the requirement. However, I think

he would have to answer No if he were to take into account that the specifi-

cation was intended to define a condition of randomness which is only par-

tially fixed by any criterion such as Criterion I. In this case such evidence

13 Page 309 of my book cited on p. 10.

14 These points are the first ninety-six averages of samples of four drawn from a normal

universe and previously shown in fig. 8. Each group of sixteen averages has been arranged

in ascending order of magnitude.
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would undoubtedly suggest that at least the intent of the requirement had

not been met.

Third: How may we determine whether a judgment about accuracy or 'preci-

sion is valid?

An example of a judgment of accuracy or precision might be, as already

indicated, a statement of the character: “The accuracy (or precision) of this

test method is 1 percent.” Such a statement is a prediction in terms of a

tolerance range, and this prediction rests upon certain specified evidence E.

The act of judging in this sense is an act of reason relating the evidence E
and the prediction P, and is discussed in chapters II and III in connection

with the general theory of tolerance ranges.

40 60

SAMPLE NUMBER

Fig. 32

It should be noted, of course, that such a judgment is a specific act under

specific conditions. Its validity is independent of whether the prediction

proves to be true and instead depends upon whether the act is the one that a

reasonable man should have taken under the particular conditions fixed by
the evidence E and the prediction P. It seems that a method for determin-

ing operationally whether a judgment is valid is to find out whether it is

approved by the majority of reasonable men, where reasonable is taken

pretty much in the legal sense of this term.
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Fourth: How may we control the error of judgment

f

The first step in controlling the error of judgment is to take not less than

a certain quantity of data, this quantity being fixed by practice in each

particular field of inquiry (pp. 37-38). The next step is to make sure that

the operation of control is satisfied. We may then proceed to define the

desired tolerance type of range for either accuracy or precision. To estab-

lish this range we may use the methods discussed in chapter II.

Fifth: What role does statistical theory play in the specification of accuracy

and precision in a definite manner

f

The further we go in trying to fix requirements of accuracy and precision,

and in trying to attain in an economic manner a quality of product that will

meet such requirements, the more we must rely upon the application of

statistical methodology at every step. Starting with the fundamental

classic concepts of accuracy and precision, we find that the operations in

use associated with these concepts are fundamentally statistical in character.

One of the most fundamental requirements underlying accuracy and preci-

sion is the reproducibility of an operational procedure, and this leads us at

once to the fundamental abstract concept of random and its associated

operational verifiable meanings in use. Likewise, in trying to fix the require-

ment of accuracy corresponding to the concept of an objective true value,

we naturally are led to a statement of requirements not only in terms of

randomness of a single infinite sequence but also in terms of consistency be-

tween sequences as this may be measured in terms of tests for significant

differences.

Just as the development of abstract concepts and associated practical

techniques go hand in hand in any research, so they have gone hand in hand

in the development of ways and means of specifying and attaining accuracy

and precision in the control of quality.



EPILOGUE

Hindsight supplements foresight: A view backward often adds ma-

terially to a view forward. In his preface, the editor comments briefly on

what the reader may expect to find in the four lectures presented in „ this

monograph. A reader who has reached this page can look back and see

what he has found. For such a reader, the following paragraphs are offered

in the hope that they will help him to round out his picture of statistical

method from the viewpoint of quality control.

Central to the theme of the four lectures is the concept of the act of

control, which consists of the three components (a) the act of specifying

the end to be attained, (b ) the act of striving to attain the end specified,

and (c) the act of judging whether the end has been attained. In mass

production, as we have seen, these component acts are commonly called

specification, production, and inspection. Fundamentally the set of com-

ponent acts may be put in parallel with three fundamental steps in scientific

method as shown below:

The consideration of the three component acts of control as steps in

scientific method provides a means of visualizing the act of control as a

scientific one, and constitutes a background for the entire discussion in this

monograph.

Since the outcome of the repetitive act in mass production, like that of

the repetitive one of measurement under the same essential conditions in

science, can not be predicted with exactness, we must introduce into sci-

entific method statistical hypothesis, statistical experimentation, and sta-

tistical tests of hypotheses. Thus we come naturally to the concept of

statistical control. Viewed as an illustration of the role of statistical

method in scientific control of the physical world, what is said about the

application of statistical theory in the control of quality has an intriguing

generality. However, my discussion has been concerned primarily with

showing how the theory and practice of statistical control may be made to

provide the highest standards of quality of manufactured goods at any
given cost. From the practical viewpoint, it is significant that mass pro-
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duction plus statistical techniques when combined in the operation of

statistical control provide a continuing, self-correcting process of making
the most efficient use of raw materials and fabrication processes. The
adjectives continuing and self-correcting are also the essential character-

istics of the scientific method.

Chapter I describes the concept of the statistical state of control, the

operation of statistical control, and the judgment of control. The assump-
tion that such a state can be attained as a limiting condition in control

constitutes the underlying fundamental hypothesis in the theory of sta-

tistical control. The five steps in the operation of statistical control provide

a practical means of attempting to attain the idealized state (p. 25). Em-
phasis is placed upon the importance of order in the results of a series of

repetitions as a basis for detecting assignable causes of variability. It is

shown that the nature of the problem of judging whether a state of statistical

control exists is essentially one of testing the hypothesis that assignable

causes have been eliminated.

Of fundamental importance for all that is said in this monograph is the

fact that the three component acts in the control of quality, namely,

specification, production, and inspection, are so interrelated that they can

not be taken independently if we are to attain the most efficient control

of quality.

Chapter II takes up the very practical problem of establishing toler-

ance limits that will make possible the most efficient use of raw materials

and pieceparts. From a statistical viewpoint, the use of tolerance limits,

which are so important in industry, differs in a fundamental way from the

use of fiducial limits so extensively discussed in modern statistical theory.

Although it is shown that the tolerance range can be reduced toward a

minimum with inherent economic advantages as we approach a state of

statistical control, evidence is provided to show that such a state is not a

natural one, at least in the fields of physical and engineering measurements.

This empirically established fact should have some repercussion in many
fields where it is the prevalent practice to rest inferences upon the assump-

tion that a state of statistical control (or randomness) exists. It is also of

far-reaching significance that even after a state of statistical control has

been attained, which is usually a long process in itself, it is still necessary

to have available the results of a thousand or more repetitions of the pro-

duction process if we are to be able to set valid tolerance limits that will

provide maximum efficiency in the use of materials. Such facts point to

certain inherent advantages of mass production in scientific control.

The problem of providing an efficient running quality report in mass

production as discussed in chapter III is obviously of great practical im-

portance. The discussion of this problem leads to a consideration of three
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aspects of scientific knowledge and in so doing may be suggestive of im-

proved practices to be developed in many other fields of presenting the

results of scientific experimentation as “ knowledge.”

The fourth chapter takes up the simplest type of problem of specifying

in an operationally verifiable way a state of statistical control of a single

quality characteristic. Such a specification must introduce the concepts

of both precision and accuracy. It becomes necessary to make use of and

to extend the operational theory of meaning both theoretically and prac-

tically to attain the desired end of practical verifiability. Not only is the

material here discussed of fundamental importance on account of providing

a scientific basis for writing operationally definite specifications of quality,

but it may be of considerable interest to statisticians as well as others in

attempting to say what they mean and to mean what they say.

Although time did not permit a discussion of the role played by the

so-called statistical design of experiments in the control of quality, the

importance of the use of such statistical foresight in the layout of the

measurements to be made is emphasized in step 2 (p. 25) of the operation

of control, and in step 2 (p. 139) of the act of specification.

Throughout this monograph care has been taken to keep in the fore-

ground the distinction between the distribution theory of formal mathe-

matical statistics and the use of such theory in statistical techniques designed

to serve some practical end. Distribution theory rests upon the framework

of mathematics, whereas the validity of statistical techniques can only be

determined empirically. Because of the repetitive character of the mass

production process, it is admirably suited as a proving ground wherein to

try out the usefulness of proposed techniques. The technique involved in

the operation of statistical control has been thoroughly tested and not found

wanting, whereas the formal mathematical theory of distribution constitutes

a generating plant for new techniques to be tried.



SOME COMMENTS ON SYMBOLS AND
NOMENCLATURE

It is a well-established practice of many authors to include a list of

symbols used, and at the suggestion of the editor, I undertook to prepare

one to be inserted at this point. A start was made by putting down the

following description of the symbol X and the symbols Xh X2 ,
•

•
•, Xn .

Symbol Description

X Some measurable quality characteristic

Xij Xij X3 ,

• •
•, Xn Numbers denoting the results of n observations

on some quality X.

A careful reader, however, would immediately point out that X had also

been used as a mathematical variable in several different places as, for

example, in the equation dy = f(X)dX, where dy represents the probability

that X will fall within an interval X d= \dX. Of course, we may let X
represent some quality characteristic, but this does not make a mathe-

matical variable X the same as a quality characteristic X.
In much the same way, Xh X2 ,

X3 ,

• •
•

,
Xn are not always referred to

simply as n numbers denoting the results of observations on some quality

X. For example, they are sometimes referred to as a sample, and at other

times as measurements. Here we have three different descriptions of the

same n symbols. Most of these inconsistencies, if they may be called such,

would not likely give much cause for worry. They are, in fact, the kinds

of inconsistencies present in most discourse, even in the natural sciences.

But now let us pass to a less familiar symbol like X' or X '
. The very incon-

sistencies that we may be willing to slur over in every day practice are the

ones that need to be stressed in learning how to make the best use of such

terms.

For example, we might describe X' as the mean of a universe or popula-

tion. Mathematical statisticians have a perfectly definite way of using

such a mean in formal mathematics. But what is the meaning of X' in the

physical world? Do we have any “statistical universes or populations” in

the true sense? The answer to this must involve some consideration of the

concept of random operation, and I trust that enough has been said to

indicate the difficulties that we get into when trying to describe randomness

in an operationally definite way. On the other hand, the usefulness of

152
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statistical theory depends on our giving that operation a definite meaning as

has been done, for example, in the case of the operation of statistical control.

The same symbol X' is also used in this monograph for the true value

of a physical constant, and as such plays an important role in the discussion

of errors. In the mathematical theory of errors, the term true value here

represented by X' is used consistently by most authors. However, when

we try to appraise the usefulness of the mathematical theory involving the

use of X' we must think of the objective meaning of X' in the world about

us. Such meaning is of paramount importance in the specification of

quality, involving as it does the concepts of both accuracy and precision.

It is for this reason that operational meanings both theoretically and prac-

tically verifiable have been introduced, and a distinction drawn between

meaning solely as a prediction and meaning in knowledge. The same type

of discussion could be given about the description of every symbol that I

have used including not only letter symbols such as X, X', X
, p, p

r

,
and

the like, but also word symbols such as random.

What is the trouble with our symbolism? Is it not possible to find a

satisfactory one that can be described in a simple but definite manner?

Such questions demand consideration. To do justice to these questions

would take far more space than is here available. However, I shall try to

suggest what appears to me as a helpful manner of approaching the meaning

of symbols.

But first let us consider a question that may be in the minds of some
readers. Why all this fuss over symbols here when there is not so much
fuss in such fields as physics and chemistry, for example? Well, in such

fields, the usefulness of mathematical theory has been pretty well estab-

lished over a long period of research and application. Put somewhat
crudely, the physicist and chemist have learned by experience how to extract

certain numbers from their experimental work and how to put these into

the mills of the mathematician which grind out other numbers or functions

that the scientist has learned by experience can be used in certain more or

less well established ways. This means that the mathematician and the

scientists in these two fields have grown to have a more or less common
ground in language.

However, in the case of mathematical statistics, some scientists and
engineers still question the usefulness of all the high-brow theory. They
appreciate, for example, that it is one thing to assume that a sample has

been drawn at random and another thing to base much reliance upon con-

clusions that rest upon such assumptions. Then, too, the very concepts

such as probability, randomness, universe, statistical limit, and the like

are indefinite. All in all we may say that at least in the field of engineering

we are only now in the process of learning how to get the right kind of data
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to put into the refined mill of the mathematical statistician. What is

more, engineers know that the usefulness of this mill can be proved only
by experience that provides operationally definite meanings in use for the

terms appearing in the formal mathematics.

Now let us return to the problem of providing a definite scientific

symbolism. To begin, let us recall that there are at least three important

aspects to every symbol. One of these is the relation of the symbol to the

objective thing symbolized; another is the relation of the symbol to the

individual or group interpreting the symbol; and the third aspect is the

relation of a symbol to other symbols. Schematically we have the following

diagram :

Other

Symbols

Symbol

Thing Interpreter

Symbolized

Now let us return to our discussion of the description of the symbol X'.

In mathematical statistics this symbol is formally related to other symbols

such as, for example, the relation of X' to the symbol for the error e'i of an

observed value Xi, as shown by the equation e'i = X' — Xi. Then there

is the response R of a given interpreter to a symbol X' serving as a stimulus S
and sometimes indicated by the expression S —» R. Finally there is a way
of relating the symbol to an operationally verifiable experience that is

presumably independent of any observer, at least to a first degree of approxi-

mation. Such, for example, are the theoretically and practically verifiable

meanings introduced in this monograph.

As another example, let us take the word random. The mathematical

statistician uses this word symbol in a pretty definite way in relation to

other symbols in his theorizing. An experimentalist using this word in its

relation to his own work is led to expect such and such to be observable

when the symbol is used. Here we distinguish the relation of the symbol

to the interpreter. However, the practical man has learned all too well

that he may be mistaken in his expectations. What he wants to do is to

maximize his ability to predict without disappointment. Thus more or less

naturally we are led to search for the best way of relating the symbol to an

objective kind of observable experience which we may designate by the

term random. We want to learn how to distinguish this kind of experience.
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In doing this, we must distinguish between meaning considered simply as

a prediction and considered in reference to evidence as a basis for a certain

degree of rational belief. The significance of the term random is different

in each of the three relations considered in this paragraph.

To each one of these three types of relation there belongs a more or less

definite set of rules defining that relation. This is particularly true in the

case of the relation of a symbol to other symbols as found in mathematical

statistics per se. The rules describing the relation of the symbol to the

individual are far less definite particularly in the field of applied statistics.

Furthermore, those rules in current use are not always the best. From the

viewpoint of use, what we particularly want to do is to establish rules for

relating symbols to operationally definite and practically verifiable entities

that will yield the greatest possible number of valid predictions. For

example, I have considered at great length the operational rule of statistical

control and the rules for judging when we may assume with a high degree

of assurance that a state of statistical control exists. Possibly we are justi-

fied in saying that scientifically what we are interested in doing is to establish

rules relating the symbols used in mathematical statistics to operationally

definite and observable meanings in experience that will lead to the greatest

possible number of valid scientific predictions.

In the present state of application of statistical theory in the control of

quality, it is essential that we keep in mind each of the three relations

characterizing the significance of a symbol .
1

1 The reader interested in surveying some of the literature on the significance of signs

and symbols in scientific discourse will find a very useful introduction in Foundations of the

Theory of Signs by C. W. Morris (University of Chicago Press, 1938).
















