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ADDITIOML NOTES, 193?

Demlng and Blrge, "On the statistical theory of errors",

Reviews of Modern Physics 6, 119-161 (July 1934).

After using the material in this publication for

three years, and watching further developments in sta-

tistical inference, the authors welcome an opportunity

to attach a few notes to this 1937 reprinting. It is

heurdly worth while to bring the entire paper into lino

with our present ideas; it will be sufficient to discuss

briefly some of the main changes in exposition that

might be helpful.

Regarding section 3c, on statistical tests.

Professor Fisher has kindly commented on some

parts of our treatment; see the letter attached. His

remarks on the z test are especially illuminating.

Recent researches of J. Neyman and Egon Pearson in-

quiring into the circumstances that need to be taken

into account when selecting a suitable statisticeil
41

test should also be mentioned. Briefly, the argument

runs something like this: If we are sampling always

from a population with ineanH-, then the chance of
42

unjustly re jecting depends simply upon the size

of the region of rejection, and not at all on its

shape or position; u or z contours, or any others,

curved or straight, could serve indistinguishably as

boundaries of such a region. Obviously, the risk of

rejecting can be reduced to zero by diminishing to

zero the size of the region of rejection, of whatever

shape or position~in other words, by the rule of al-

ways accepting Hq. And this we should certainly do if

the sampling were known to be always from|J.o; no test

of any kind would then be needed or considered, no

matter what the sample mean x.

If we do not always accept p.^, it is because an

alternative mean|ii, or a whole class of alternatives,

is considered a possibility. It is then that a test

for (Iq becomes important. We need to take a region of

rejection of finite size (as 0.01 or 0.06), so shaped

and placed that if is the true mean, the sample

point will have the best possible chemce of falling

into it, €ind the mean thus be rejected. The shape

41. See the Statistical Research Memoirs vol. 1, ed-
ited by J. Neyman and Egon S. Pearson, published in
1936 by Biometrika, University College, London, W. C. 1.

42. The size of a region of rejection for the hypo-
thesis that Pq is the population mean is the chance of
a sample point falling into this region, this chance
being calculated on the assumption that Pq is the true
mean.

and position of the region of rejection need to be

chosen with due regard to whether Pj '^P^. or

V-l > Pq, or Pj^ Pq; also whether a is known or not.

In the circumstance that o is known and Pi> Pq»

the best region of rejection is the shaded area to

the right of a u contour like BB in Fig. 10a. But

if 0 is not known, the best region of rejection is

to the right of a z contour like OD in Fig. 10c.

(Replace BB by AA, and OD by 00 if Pi< p^; use

both AA and BB, and OD and 00, if p ^^ l^o^* Thus

there is really no disagreement between the u and z

tests, because in practice they would never bo ap-

plicable at the same time; each is supreme in its

own sphere of circumstances.

Regarding the nomograph, p. 136.

The nomograph of Nekrassoff is very convenient

for Fisher's t test, whether for one sample or a

pair of samples. The scale for z yn- 1 is really

the scale for Fisher’s t; and the scale for n, if

the numbers were all reduced one unit, would be the

scale for Fisher’s n (degrees of freedom). The

scale is then Fisher’s P for the t test.

Regarding section 3e, on fiducial limits.

In our treatment of flducially related values of

s and o it was stated that there are but 5 chances in

100 that o(s,5) is less than the S.D. of the parent

population. o(s,5) is easily calculated from Table

III (page 143) for a given value of s. Now it is es-

sential to Tinderstand in Just what sense "5 chances

in 100" and "the given value of s" are to be taken.

There must be no selection of values of s; the rule

for calculating o(s,6) must be followed consistently

for all values of s in one’s entire sampling ex-

perience, whether or not o varies from one sample to

another, and whether or not any such variation is

known to exist. Under the assumption that the sam-

pling distribution of s in samples from populations

having any given value of a follows the Helmert curve

(Eg. 14), it can then be said that on the average

only 1 in 20 of the values of o(s,5) will be less

than the S.D. of the sampled population. But if

o(s,5) were calculated only whenever s fell within

some previously selected range, no such statement

would hold. We are indebted to Dr. T. Koopmans of

Amsterdam and to Professor Egon Pearson for pointing

out our failure to note this point in our original

exposition.



It would be well to mention bere also a simple

diagram for showing the fiducial relation between s

and o. In Fig. 16 the horizontal line at ordinate

a is shaded proportional to the density of samples

Fig. 16. Diagram for finding a(s,5). In Ney-

man's terminology, OA forms a 'confidence

belt' with the s axis of 'confidence coefficient'

0.95. The slope of OA depends on n; see

Table HI.

following a Helmert distribution of s, for a chosen

veilue of n. Five percent of the values of s lie to

the left of B and 95 percent to the right. Now sup-

pose that in a sample of n the S. D. is found to be

s. Let the distance s be laid off from 0 on the

horizontal axis. A vertical line through s then

outs OA at D, and the ordinate of D is o(s,5).

Whenever s falls to the right of C, as pictured,

and as happens in 95 percent of the samples, then

a(s,5) > o. But if s had fallen to the left of C,

as will happen in 5 percent of the samples, then we

should have found o(s,5) < o. These statements

hold no matter what a may be, known or unknown, and

whether o be constant or not from one sample to an-

other. This is the sense in which the chances are

19 : 1 that a random value of o(s,5) > a.

The same probability statement could as well be

made concerning a random fiducial limit properly cal-

culated from an insufficient statistic. However, if

a sufficient statistic can be found, as is the case

in the problem here considered, a fiducial limit

calculated otherwise would be of no interest. Thus,

once o(s,5) is calculated, we should not have the

slightest concern for a fiducial limit calculated

from the mean deviation ^S|x^-x| . This circum-

stance undoubtedly explains the apparent contradic-

tion with the last paragraph of the attached letter.

A sample, no matter what o be, is represented

by a point somewhere in the plane of Fig. 16. Ob-

viously, if one were to calculate o(s,5) only for

the subclass of samples falling within the vertical

dashed lines of Fig. 16, no probability statement

could be made without knowing the prior curve 0(o)j

see p. 161. This is in other words the statement

attributed to Dr. Koopmans four paragraphs bacTc-

It is Interesting to note that the first pub-

lished statement on the notion of fiducial or con-
43

fidence limits was made by E. B. Wilson in 1927.

He dealt with confidence limits for samples from a

discrete universe, but without introducing a name

for them.

Regarding sections 4b euid 4c, on estimates of j .

The terms biased and unbiased have been intro-

duced in describing estimates of parameters; e. g.

s®n/(n-li, as given in Eq. (36), is an unbiased esti-

mate of o®, because the average value of s®n/(n-l)

in a Helmert distribution is a®. Likewise the mean

estimate s(o/s) , Eq. (38) , is an unbiased estimate of

a. But 3 /n/Tn-l) is a biased estimate of o, and

[s(o/5)]® is a biased estimate of a®. The factor

n/(n-l) in place of tmity was ascribed on p. 145 to

Bessel; however, it was more likely Gauss or his pu-

pil Encke^ who first recognized the need of correct-

ing for the loss of one degree of freedom for every

condition imposed by the adjustment if one would

secure what we now call an \inbiased estimate of <T®.

In contrast with other estimates, the median estimate

(p. 146) of o is invariant, whether made from the

median of the distribution of s, or s®, or any func-

tion of s. We are indebted to Dr. Alan E. Treloar

for this interesting fact. A recent article by

Pitman^^ on "closest" estimates discusses some other

properties of the median estimate.
46

Two papers, one by Paul R. Rider, the other

by J. F. Tocher, had been used with profit by the

authors, but were inadvertently omitted in the

citations to literature.

It is a pleasure to acknowledge the assistance

of Dr. Samiuel S. Wilks, of Princeton on several points.

W. Edwards Deming

Raymond T. Birge

43. E. B. Wilson, J. Amer. Stat . Soc. 22, 209-212

(1927).

44. See pages 284 and 285 of the book by Encke,

1832, cited in reference 21, p. 133.

45. E. J. G. Pitman, Proc. Cambridge Phil. Soc.

33, 212- 222 (1937).

46. Paul R. Rider, "A survey of the theory of small
samples," Annals of Mathematics 31, 577-628 (1930).

47. J. F. Tocher, "What is probable error?" Lectures

published by the Institute of Chemistry, 30 Russell
Square, London, W. C. 1; price 2/6.



Reprinted from The Physical Review, Vol. 46, No. 11, 1027, December 1, 1934

Printed in U- S. A.

A Letter to the Editor of The Physical Review

On the Statistical Theory of Errors

Professor R. A. Fisher has most kindly responded to our

request for criticisms of the article that appeared under the

above title.' The material in his letter is much too valuable

to be filed away, so with his consent we here present the

substance of his comments, together with some additions

here and there of our own.

It is doubtful if on page 135 it was made sufficiently clear

that in the absence of a reliable estimate of a, the u test

cannot be used, and that the z test (which is equivalent to

Fisher and Student’s t test) is the only recourse. (By a

reliable estimate of <x we mean an estimate that is consider-

ably more reliable than can be obtained from the single

sample under test.) The z test is not inherently misleading;

it tests objectively a proposed value of z, and for this

purpose it is of course perfectly valid (as we say). Like any

statistical test, the z test lays down and accepts a perfectly

definite hazard. Misinterpretations of the z test may be

common, but the blame should be placed, not on the test

itself, but on misunderstandings of the nature that we

point out on page 135. What is more to be feared than

over-confidence in the z test is the use of the normal prob-

ability integral (the u test) with an estimate of <r based

on the single sample under test.

The separation of the parameters of the parent popula-

tion from estimates of these parameters has been a gradual

process. Many writers have been extremely careless in

confusing that which is estimated with an estimate of it.

Thinking to avoid any such looseness, we systematically

used Greek and Latin letters to distinguish the two-classes

of quantity. It is perhaps well to go even further and use

distinguishing names for the two classes. For this purpose

there are in use today the terms "parameter” of the parent

population and “statistic” of the sample, the word

“statistic” having been introduced by Fisher (footnote 4

of our article) in 1921 to fill the need of a term antithetical

to “parameter.” A parent population is completely specified

by its one or two or more parameters, but a sample of >i

would require n different statistics for its specification. To
each of these statistics there corresponds a particular

parameter or parametric function toward which the value

of the statistic tends as the sample is indefinitely increased

:

but to each parameter there “corresponds,” in this sense,

as many statistics as there can be of samples from a given

parent population, to which number there is no limit.

For these reasons it would doubtless have been better to

have written “corresponding statistic of a sample” on page

142, 7 lines below section (3e), to avoid giving the im-

pression that there is a one to one correspondence between

the two quantities i and a.

In further connection with fiducial probability it should

be mentioned that fiducial values can be taken only from

distributions of statistics that contain the whole of the

information that can be obtained from the sample. The
distribution of 5 fulfills this requirement, and our discussion

of fiducially related values of <r and s is therefore valid, but

it is worth while to note that the distribution of, for

example, the arithmetic mean deviation, from which

Peters' formula (see any text on least squares) is derived,

could not be so used. There is not room here, and neither

was there in the original article, to discuss the criteria of

“efficiency” and “sufficiency,” but they might at least be

mentioned with a reference. The reader will find them

discussed in the papers cited in footnotes 4 and 31.

W. Edwards Deming,

Bureau of Chemistry and Soils,

Washington, D. C.

Raymond T. Birge,

University of California

Berkeley.

November 9, 1934.

> Doming and Birge. Rev. Mod. Phys. 6, (19.^4).
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standard deviations (S.D.), of the parent population and of the

sample.

125 the observations constituting a sample.

125 €i^Xi—fX true errors.
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125 f> probable error (p.e.) of a single observation.
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ni N an indefinitely large number of samples of n drawn from the

parent population.

128 s the mode of the sampling distribution of s, Eq. (14), Helmert’s

equation.

128 s the mean of the sampling distribution of s.

128 s = <r/f the median of the sampling distribution of s. This defines /.

<T would be the median on the sampling distribution of fs.

128 B{m,n) the beta function x’"~^(l —x)’‘~’dx. The arguments m and n
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129 r.(w) the incomplete gamma function x'‘~^e~^dx.
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129 z =u/s, the true error of the mean in units of the S.D. 5 of the

sample (abscissa of Student’s distribution, Eq. (21)).

132 5 defines a contour of arbitrary constant altitude on the u,s fre-

quency surface.
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Page Symbol Explanation

132 X defines a contour on the u,s frequency surface along which the

probability of a given set of errors bears the constant ratio X to

the maximum value that this probability can attain.

132 Pu probability of drawing a sample with true error greater than \u\.

133 7 denotes 0.674 • •
• /V 2 = 0.476936276 • • •

.

133 P> probability of drawing a sample with S.D. greater than s.

133 argument in the chi-test.

135 Pz probability of drawing a sample with \u/s
\

= \z\ greater than a

specified value.

137 A probability of drawing a sample lying outside a specified X

contour of the u,s frequency surface.

137 Ps probability of drawing a sample lying outside a specified S

contour of the u,s frequency surface.

140 r value of |z| for which Pz = h, i.e., the quartile deviation in

Student’s distribution of z in samples of n.

141 denotes the factor 0.674- • -//Vw. r would be the median on the

sampling distribution of 05.

142 <r{s,5) the 5 percent fiducial value of a corresponding to a given value

of s. There is 1 chance in 20 that the S. D. of the parent population

is greater than cr(j,5) for the given value of s.

142 s(a,95) the 95 percent fiducial value of s corresponding to a given value

of <T. There are 19 chances in 20 that the S. D. of the sample is

greater than 5(<r,95) for the given value of cr.

143 r(s,5) the 5 percent fiducial value of r corresponding to a given value

of s. There is 1 chance in 20 that the probable error of the mean
of n observations is greater than r(5,5) —<t>obS.

142 fiS that particular value of <r/s designated by a-{s,5)/s or by o-/i(o-,95).

143 096 denotes the factor 0.674- • -/ss/Vw; <t>siS = r(s,5).

143 fbO the same as/; the subscript 50 is used for emphasis, especially in

discussing 50 percent fiducial values of a and s.

143 060 the same as <j>; the subscript 50 is used for emphasis, especially

in discussing 50 percent fiducial values of <r and s.

145 <T8, f e estimates of a and of r derived from the sample alone.

147 <j>S some multiple of 5, denoting an estimate, o-j, made from a sample.

148 F the r.m.s. error in an estimate of er, in uhits of <r, or the r.m.s.

error in an estimate of r, in units of r, both of which are equal to

the estimated proportional r.m.s. error in an estimate of cr or of r.

150, 151 0(<r) the ordinate at the abscissa a on a prior existence curve for the

S. D. of the parent population.

150, 151 p or p{(r) the ordinate at the abscissa <r on a posterior curve for the S. D.

of the parent population.

154 So an observed S. D. in a sample of n.

154 rq the "posterior quartile deviation” of u, the quartile deviation at

the section j = const, on the posterior probability surface for u

and s.

155 9(m) the ordinate at the abscissa /x on a prior existence curve for the

mean of the parent population.

155 a, h, c adjustable parameters in Molina and Wilkinson’s forms of prior

existence curves for n and <r.

156 T denotes «-t-2+c-t-ii in Molina and Wilkinson’s curves.

156 q{u) the ordinate at the abscissa u on the posterior surface for u and s,

taken at the section 5 = const.

156 t the quartile deviation on Student’s curve when n is replaced by

P =n~\-'l~\-C'^b,

156 r,(50), r,(80),\ the 50, 80, 90 and 99.73 percentile deviations at the section

r,(90), r,(99.73)/ s = const. on the posterior probability surface for u and J. f, is

generally used in place of r,(50).

m the number of observations on the mean (7=1,2, • • •, m).158
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Page Symbol Explanation

158 the mean of the parent population from which the Wi observations

constitute a sample (f = 1, 2,
• • •, m). The m means uu • • •, Mm

may or may not all be distinct, but the m parent populations

all have the same S.D. a.

158 m a finite number of samples or series of observations on means

that may all be distinct and in which n may vary from one

sample to another, but for which a is constant.

158 Ui the error in the mean of the m observations on the mean yui.

158 Si the S.D. of these w; observations.

§1. Introduction

S
OME of the recent advances in probability

and mathematical statistics throw con-

siderable light on the theory of errors. Problems

that arise in drawing conclusions from observa-

tions are essentially statistical and should be

handled as such. Unfortunately the literature on

statistics has received but scant notice from

writers of treatises on errors. In the present

paper we shall attempt to put the pertinent

results of statistics in such a form that they will

be useful for the interpretation of physical data.

Pursuit of the theory of errors is often con-

sidered to be futile for the reason that systematic

errors, suspected or unsuspected, may be so

large as to eclipse any accidental error likely to

occur. It Is true that a statistical treatment of the

data obtained from a single experiment per-

formed under controlled conditions can never

disclose the systematic errors in that one experi-

ment. It is only by comparing the results - of

several observers that it is possible to form some

idea as to whether all observers were really

measuring the same thing or if, on the contrary,

the systematic errors present in one experiment

were different from those in the others. Such

comparisons are possible only when the data of

each observer have been correctly treated,

statistically, on the assumption that all system-

atic corrections have been eliminated. For this

reason a working knowledge of the theory of

errors is indispensable to the interpretation of

experimental data. The detection of systematic

errors by statistical analysis has been discussed

and applied by one of the writers.^

‘ Raymond T. Birge, Phys. Rev. 40, 207-227 (1932); 40,
228-261 (1932).

The branch of statistics that concerns the

theory of errors is called “sampling” or “the

theory of small samples.” The object of sampling

is to make possible an estimation of the magni-

tude and variability of some measureable prop-

erty of a very large number of items by testing

only a portion of them. From the measurements

of the individuals in a random sample of 5, 10,

20, 30 or more items, and from previous ex-

perience with similar items, some estimate of the

mean of the measureable magnitude and of its

variability in the entire lot can be made by
statistical methods of induction. The confidence

that one may place in such an estimate depends

on the size of the sample and on previous

experience with similar items, when such ex-

perience is available. Complete confidence or

certainty can only be approached as a limit by

indefinitely increasing the size of the sample. No
guarantee can be made beforehand as to how
large the sample must be in order that an

estimate shall lie within a specified amount from

the true value^; however, it may be possible to

lay odds beforehand that an estimate will fall

within the specified range. The theory of sam-

pling furnishes both the methods of estimation

and the odds.

A “frequency curve” is a curve so constructed

that the area included between two abscissas is

equal to the number of items having a measured

quality lying within the range defined by these

abscissas. Since the area of any strip must be

integral and therefore finite, even though the

^ The reader may consult J. M. Keynes, A Treatise on
Probability, Ch. 29 (Macmillan, 1921); W. A. Shewhart,
The Economic Control of Quality, pp. 362, 438 (Van
Nostrand, 1931); Thornton C. Fry, Probability, Ch. 3

(Van Nostrand, 1928); M. S. Bartlett, Proc. Roy. Soc.

A141, 518-534 (1933), especially pages 520 and 521.
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abscissas differ only infinitesimally, it is clear

that the total area under any frequency curve

must be infinite and that its actual construction

would require an unattainable number of

measurements. A frequency curve therefore is an

attribute of a hypothetical and indefinitely large

aggregate, known by the term “parent popula-

tion.’’ An actual sample, no matter how large, is

finite, and therefore will have not a frequency

curve but a frequency polygon.

As the size of the sample is indefinitely in-

creased and the “class interval” along the

abscissa indefinitely decreased, the frequency

polygon of the sample approaches the frequency

curve of the parent population from which it is

drawn. The parent population and its frequency

curve have the same objective existence as any

statistical limit; hence they can be approached to

any desired degree by the two expedients (a)

taking a large enough sample, and (b) refining

the measurements so that enough figures are

recorded for each item to allow a sufficiently

small class interval.

In the theory of errors a set of n equally reliable

observations may be considered as a sample of n

drawn at random from an indefinitely large

number v of observations that might be made if

time and opportunity would permit and if the

apparatus would not wear out. This hypothetical

aggregate will be the parent population in the

problem.

If there were no systematic errors present, the

mean of the parent population would be the true

value of the quantity being measured. The
effect of a systematic error is to displace the mean
of the parent population of observations above or

below the true value. This correction, if ever

isolated and evaluated, can be added to or

subtracted from the mean of the parent popula-

tion to give the true value.

The object of making the n observations is to

estimate what would be obtained for the mean of

an indefinitely large number of observations; in

other words, the object is to estimate the

position of the mean of the parent population.

Its exact value remains unknown because n is

finite. As our hopes vanish of ever knowing
exactly the mean of the parent population, we
become increasingly interested in the number of

significant figures in the estimate. That is, if x is

an estimate of the mean u of the parent popula-

tion, we should like to know what is the chance

that X differs from /.t by a stated amount. On the

basis of certain assumptions regarding the form

of the parent population, the study of statistics

furnishes the answers to this question and to

several others that arise.

The true value of the quantity being measured

is approached by correcting for systematic errors,

one after another. The effect of accidental errors

can be reduced as far as desired by taking enough

observations. The measurement of each system-

atic correction presents a problem in statistics,

for a correction cannot be intelligently applied

unless its precision is stated.

§2. The Specification of the

Parent Population

The frequency curve for the parent population

will be assumed “normal.” There are several

reasons for this choice. In the first place, for error

theory the normal curve is nearly always an

excellent approximation. Furthermore, several

investigations on non-normal populations have

shown that even considerable departures from

normality do not produce appreciable changes in

many important deductions based on the normal

curve. It has also been established that the

frequency curve formed by the means of samples

drawn from a non-normal parent population is

often much more nearly normal than the

population itself. While there exist several types

of measurement that by nature do not have

normal parent populations, rarely will deductions

based on the normal law fail to be valid.

It is therefore idle to investigate whether a

parent population is exactly normal. However, it

may be worth while to discuss some arguments

that are commonly- advanced as proof that the

normal law cannot possibly ever be obeyed. The
most incisive arguments run as follows: (a) Since

only certain discrete values can be recorded, the

probability for all intermediate values is zero.

Therefore the law of error cannot be continuous,

hence cannot be the normal curve, because of the

inherent discontinuous nature of measurement,

(b) The frequency polygon of a set of measure-

ments is nearly always skew and irregular,

whereas a symmetrical and regular figure should

be obtained if the normal law holds, (c) Ex-
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tremely large residuals apparently do not occur,

whereas according to the normal law they should

occur once in a while. When the statistical view is

taken and the normal curve becomes a frequency

curve for the parent population of observations,

the fallacies in these objections become evident,

as will now be explained.

The discontinuous nature of measurement has

nothing to do with the law of error, which is the

specification of the parent population. The step

or least count of the instrument, being finite,

simply has the effect of grouping the observations

into class intervals. Such grouping must always

be accomplished before a frequency polygon can

be constructed : if the instrument did not attend

to this, the computer would have to do it.

It might be expected that the moments of a set

of n measurements would vary somewhat as the

least count and the zero of the measuring scale

are changed, and such is in fact the case. This

effect has been carefully investigated by Shep-

pard,^ Fisher,^ and Wilson;^ and the corrections

to be applied to the various moments on account

of the finite width of the class interval have

properly come to be known as “Sheppard’s

corrections.” These serve to bridge the gap

between a continuous law of error and the

discontinuous nature of measurement. Such

investigations have served to show that the least

count of the instrument should be small enough

so that when a large number of readings (perhaps

a hundred or more) are taken, there will be a

variation in the recorded terminal digits of

around 20 units, for otherwise a considerable

portion of a set of observations is, in effect,

scrapped. An astonishingly large number of

observations may be required to overcome the

damage done by unnecessarily coarse reading or

graduation of the scale.

The appearance of a frequency polygon can be

very misleading. Even when there are many
hundred observations in a set, the appearance of

the polygon may be of little value for inferring

the law of error. Fortunately the adequacy of a

chosen parent population, whatever it may be

and however arrived at, can be tested quanti-

^ W. F. Sheppard, Proc. London Math. Soc. 29, 353-380

(1897); J. Roy. Stat. .Soc. 60, 698-703 (1897).
^ R. A. Fisher, Phil. Trans. Roy. Soc. A222, 309-368

(1921-22).
* E. B. Wilson, Proc. Nat. Acad. Sci. 13, 151-156 (1927).

tatively and objectively by Karl Pearson’s chi-

test or criterion for goodness pf fit.® This test

determines the probability that a given set of

observations follows the normal law or some

other proposed form. The chi-test provides the

only decisive criterion, yet it is almost never used

by physicists. One good reason is that at least 500

observations are required in order that confidence

may be placed in the result.^ Even when the test

shows a small probability that the set of observa-

tions came from a normal parent population,

conclusions based on the normal law will usually

be safe.

If the least count of the instrument were

infinitesimal, the normal law would admit the

occurrence of a certain small proportion of very

large residuals. But in practice the least count is

always finite, and this serves to divide the area

under the frequency curve into rectangular strips

every one having width equal to the least count,

and the one of maximum height being centered at

the mean of the curve. The readings that can be

made on the instrument are the abscissas of the

centers of these strips, and if an infinite number

of readings were taken, the number recorded of a

particular magnitude would be the area of the

corresponding strip. Now where the curve

approaches the horizontal axis, the areas of the

successive strips decrease very rapidly because of

the infinitely high order of contact made by the'

curve. This will especially be true if the gradua-

tions on the scale are coarse, for unless the least

count is extremely fine there will always be some

outlying strip whose area is much greater than

all the area lying beyond. The abscissa of the

center of this strip will then, in the long run, be

® Karl Pearson, Phil. Mag. 50, 157-175 (1900). This was
Pearson’s first paper on the chi-test. Tables for using the
criterion were computed by W. Palin Elderton, and
appeared first in Biometrika 1, 155-163 (1901-02). These,
with additions and examples, are found in Tables for
Statisticians and Biometricians, Part I, edited by Karl
Pearson and published in 1914 by the Biometric Labora-
tory, University College, London, W. C. 1. Some important
discussions of the chi-test are summarized by R. A. Fisher
in his Statistical Methods for Research Workers (published

by Oliver and Boyd, 1925, 4th edition, 1932),
^ It is interesting to notice the frequency polygon for

500 measurements of a spectral line made by one of us
(reference 1, p. 210). The chi-test gives P = 0.22, which
means that in about 1 out of 5 trials we should expect in

random sampling a larger than that here obtained if the
real distribution is normal. This probability is not only
high, but is a result that could never have been deduced
from the mere appearance of the polygon.
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recorded more frequently than all the further

outlying readings combined, which means that in

practice the residuals apparently have an upper

limit. Extremely large residuals will occur once in

a while, but their frequency is much diminished

by the discontinuity of measurement and the

shape of the normal curve. The fact that

extremely large residuals are seldom’ found

supports the normal law and does not subvert it.

As was pointed out by Pearson® in his original

paper on the chi-test, and as has been clearly

explained by all later writers on the same subject,

it is necessary to lump the tail of a frequency

curve into a single “cell”; consequently slight

disagreements between calculated and observed

frequencies in the tails of the curve are of no

concern whatever, either in making an objective

test (such as the chi-test) of the fit of the curve or

in speculations on the extent to which departures

from normality may invalidate deductions that

are based on a normal parent population. Thus
the last argument is found to be irrelevant.

§3. The Distribution of Certain Properties

OF Samples Drawn from a Normal
Parent Population, and

Some Deductions

(3a). The distribution of u, s, and z

The normal curve® is fully specified by its

mean ix and S.D. a. If xi, X2 ,
•••, Xn are n

observations of equal reliability and x is their

arithmetic mean, the n true errors are defined as

Xi— At= 6i and the n residuals as x,—x=y,. By
definition, the S.D. of the parent population is a,

where

(T® = 2j(Xi— ju)V»' = Z!eiV''- (1)
V V

® The normal curve is sometimes called a Gaussian error

curve. It has been attributed to Gauss rather than to

Laplace solely because Gauss’ Theoria Motus Corporum
Coeleslium appeared in 1809, three years prior to the

appearance of Laplace’s Theorie Analitique des Proba-
bililes. But this was not Laplace’s first treatment of the

normal curve; in 1774 (Memoires . . . presentes a I’Aca-

demie T. vi, p. 628) he arrived at the normal curve as an
approximation to the hypergebmetric series, and in 1778
(Memoire sur les Probabilitcs) he dealt further with it and
emphasized the need of tabulating the normal probability

integral. Accordingly Laplace should be credited with the

normal curve and its integrals rather than Gauss. How-
ever, both men were considerably antedated by Abraham
De Moivre, according to evidence presented in a historical

note by Karl Pearson, Biometrika 16, 402-404 (1924).

De Moivre arrived at the normal curve and its integrals

The algebraic form of the normal curve is®

yd6 = C«'/(rV(27r)>-‘“/®‘’“d€. (2)

The total area under the curve is v, the number of

observations (and hence errors) in the parent

population.

The “probable error” of a single one—-any one

—of the observations is that constant quantity p

that divides the area of the curve into quarters.

It is therefore defined by the equation

yde = l\ yde = \v, (3)

>
^—CO

wherein y has the value assigned by Eq. (2). The
value of p is found to be an irrational fractional

multiple of <r, namely,

p = 0.6744897502---(t. (4)

It is an even bet that any one of the v observa-

tions taken at random lies within p±p, for half of

them lie jnside p±p and the other half outside.

Curve (a) in Fig. 1 shows a normal frequency

curve and the abscissas that divide it sym-

metrically into quarters.

"^he division of a symmetrical curve into

quarters is called a “quartile” division, and the

distance from the center to the dividing lines on

either side is known as the “quartile distance.”

In the normal curve (a) of Fig. 1, the probable

as approximations to binomial series in about 1721, and
printed his findings under the title Approximalio ad

Summam Terminorunt Binomii {a-\-b)'^ in Serietn expansi,

dated Nov. 12, 1733. This seven page pamphlet was

bound into the unsold copies of his Miscellatiea Analylica

as a second supplement. Only two copies of this book com-

plete with the second supplement have been reported

extant, but these rare pages have been made generally

accessible by a photographic reproduction in a com-

mentary by R. C. Archibald, Isis 8, 671—683 (1926).

De Moivre himself translated the Approximalio . . . into

English and amplified it for portions of the second and

third editions of his Doctrine of Chances, published in

1738 and 1756, respectively. This English translation is

quoted in full on pages 567-575 of David Eugene Smith’s

A Source Book in Mathematics (McGraw-Hill, 1929).

The essential parts ot this translation are found on pages

14-17 of Helen M. Walker’s History of Statistical Method

(Williams and Wilkins, Baltimore, 1929).

® In this paper, frequency curves will be written in

differential form, y will be used indiscriminately for the

ordinates of all of them. The differential specifies what

sort of frequency curve y is the ordinate of, and the whole

expression gives the frequency in the elementary cell.

Thus in Eq. (2), y de is the number of errors in the interval

edhjrfe.
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Fig. ]
.
(a) The normal freciuency curve of errors in the

parent population; its S.D., or square root of the second
moment about the mean, is <r. The area under the curve is

the total number of errors, v. The abscissas ±p = 0.674 • • -cr

di\ ide the curve symmetri ally into quarters, (b) The
frerpiency curve of the errors of the means of N samples
of 6 each, drawn at random from the preceding parent
population of errors. This curve is also normal, but its S.D.
is (t/V 6, hence the abscissas that divide it into quarters
are ±r = 0.674- • •a/^J 6. The area under the curve is N, the

number of samples.

error p is therefore the quartile distance of the i>

observations from the mean p.

The S.D. s of the sample of n observations is by

definition the r.m.s. residual, so

p X Xi

f.—

1.' :

*

Fig. 2. An observation falls at x, and the average of

a sample of n falls at x. The figure shows the relations

between the error e;, the residual Vi, and the error u of

the .sample. Here ix<x<Xi, hence a, vi, and u are oositive,

as the arrows indicate.

discussing the precision of Bessel’s correction, he

had occasion to find the distribution of 5 in

samples of

Eq. (2) gives the number of errors in the parent

population lying in e±|de; whence the proba-

bility of the coexistence of n errors lying in the

ranges tjzh^dei (f = 1, 2,
• •

•
,
w) is

[1/ (tV (27t)]'‘ exp dti-
1

( 7 )

This can be expressed in terms of u and s by-

noting the relations between errors and residuals

that are exhibited in Fig. 2 and expressed

algebraically by

= + M

€2 = Z^2+ M

^71— 1 n— X -f- 1i

= '^{Xi— xY = In. ( 5 )

The true error of the mean of the sample will be

These follow directly from the definitions. Since

the algebraic sum of the residuals is zero, it is

evident that

.u = x — ix. (6)

5 and X can always be computed, but u is un-

known as long as p remains unknown.

Our study of the theory of errors depends

mainly on the distribution of u and s in samples

of n drawn from the parent population. This was
first found by Helmert in three neglected papers

that appeared in 1875 and 1876. He found first an
n

expression for the distribution of in a set of
1

n measurements.*® The following year, 1876, in

F. R. Helmert, Schlomlich’s Zeits. f. Math, und Phys.
20, .300- -303 (1875): ibid. 21, 192-218 (1876). Helmert’s
derivation i.s reproduced in Emanuel Czuber’s Beobachlungs-
Jehler (Tcubner (1891)) on pages 147-150.

= Y^v^-{-nu^ = ns^-\-'nu'^. (9)
1 1

This resembles the formula for the moment of

inertia of n points of equal mass about p. 5 is the

radius of gyration about x, and u is the distance

from p to X.

The Jacobian of the transformation (8) is n, so

that dt\ dti- • - den becomes n du dv\ dv-i- • ’dvn-i',

whence the probability of the coexistence of the n

residuals Vi, • •
•

,
is

" F. R. Helmert, Astronomische Nachrichten 88, No.
2096, 122 (1876). This is given in Czuber’s book on pages
159-163. References to Helmert’s work are often in-

accurately given.
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y du dvi dv 2
' • •dVn-l = n{_l/(^^| (2ir)]" exp (

— — nu^/2a^)du dvi dv 2
- • -dv^- (10)

By a clever transformation, Helmert changed the element of volume from du dvi dv2
- • -dvn-i in the

residual space to the element du ds in the u,s space. A shorter method than Helmert’s is the geo-

metrical one introduced by Karl Pearson,® which for brevity we shall follow. Since the integral of the

right-hand side of Eq. (10) over all values of u, V\, V2 ,
• •

•
, t’n-i is convergent, integration with respect

to Vi, V2 ,
• •

•
, Vn-i can be accomplished by using an ellipsoidal shell in the orthogonal V\, • •

•
, Vn-\

space in place of the rectangular element dvi dv2 - • -dvn-i. The volume of the thin ellipsoidal shell

defined by the two surfaces over which has the pair of constant values n^{s±\ds)

^
ds—a result that is known from studies in hyper-space. Now since

the right-hand side of Eq. (10) up to the differentials is constant over either surface of the shell that

has just been described, it can be integrated throughout this shell simply by replacing dvi dv2
- • -dVn-i

bby|^27T^^"
-2

)
gn-2 Multiplication by N, which denotes an indefinitely large

number of samples of n drawn at random from the same parent population, will then give

y du ds = Nn\\/ (jyj (27r)]”{27r^^"~ib'^P[Kw — exp {
— ns"^!

—

nu^/2a‘‘)du ds

=[;

iVV n

V (2ir)

_g~nu^l2c^ dwT—

-

lrri(w-

i(n—1)

r[Hw-i)]2P"“®v
( 11 .)

for the frequency distribution of u and 5. y du ds

is the number of samples that have S.D. in the

interval and means in the interval u±^du
measured from the mean u of the parent popula-

tion. n is the number of observations in each

sample, and N is the number of samples.

Eq. (11) is a very important one. In the first

place, by integrating it with respect to 5 from 0 to

oo there results

ydu ^[_N^| n/ a ^| (27t)>-"“'«.2 (12)

accordingly pl^n\ that is^®

f = 0.674> • ~o-/V«. (13)

A frequency curve for the means of samples of 6

is given as Curve (b) of Fig. 1. The vertical lines

with abscissas ±r divide its area symmetrically

into quarters. It is an even bet that the mean of n

observations does not differ from the mean of the

parent population by more than r.

In the second place, integration of u from — oo

to -f-oo in Eq. (11) gives

for the number of means having errors in the

interval u±^du. Eq. (12) is another normal

curve, and its S.D. is <7/ V n. This is an important

property of samples from a normal parent

population. The probable error r (or the quartile

distance) of the mean of n Observations is

Instead of using the actual volume of the ellipsoidal

shell, it is perhaps more convenient simply to say that

the volume contained between the two ellipsoidal surfaces

must be some constant times s"~^ds, since it is in a space of

n — 1 dimensions. Then from Eq. (10)

y dw (fs = const. s’‘~^ exp {
— ns^l2<T^—nu-l2a'^) duds

will be the frequency distribution of u and 5 if the factor

of proportionality is properlj^ch^en. This factor can be

found by equating (1/iV) / | y du ds to unity; its

value so determined and inserted back into the expression

for y du ds gives Eq. (11) immediately.

y ds =
r[K«-i)]2i''‘-®v

0' (14)

for the number of samples having S.D. lying in

the interval sdb^ds and with x lying anywhere.

This is equivalent to a result obtained by
Helmert^ in 1876, and for this reason it will be

called “Helmert’s equation.” A graph for « = 6 is

shown as Fig. 3. Karl Pearson*'* has discussed the

A table showing the factor 0.674- .-/Vw to five

figures, for n running from 1 to 1000, was published by
Winifred Gibson, Biometrika 4, 385-393 (1906). This is

reproduced as Table V in the Tables for Statisticians and
Biometricians, Part I. Table 26 in the Smithsonian Physical
Tables shows 0.674- • -/V (« — 1) to four figures up to
n = 99, whence the factor 0.674- --/Vw can be read if

one takes care to increase the argument by unity.

Karl Pearson, Biometrika 10, 522-529 (1915).
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Fig. 3. Frequency distribution of the standard deviation
5 in samples of 6 from a parent population whose standard
de\ iation is a.

y ds = -

2l(

e m = 6

iVis the number of samples; n is the number in each sample
and is here equal to 6. The mode comes at V<r = 0.S165.
The median comes at i/«r = 0.8516. The mean comes at
i/cr = 0.8686.

geometry of these curves. They are decidedly

skew when w is small, but as n increases they

become normal about the point s — a with S.D.

0-/V (2m), as Pearson showed analytically and as

is exhibited graphically in Fig. 4. Each full line

curve is the true graph of Helmert’s equation,

while the corresponding broken line is a normal

curve of S.D. cr/V (2m) so placed that its center

(peak) comes at the mean s of the full line curve.

The approaching coincidence of the full and

broken curves with increasing n shows hdw
Helmert's curves lose their skewness and become

normal with S.D. a1^1 (In).

The mode (maximum) is at

5 = <r[(M —

2

)/m]’—

>

cr(l — Xfn — XIln^-— • • •). (15)

The mean (first moment of area) is at

5=1 5 y (Is/
I

y ds

= cr(27r/M)V5[K«-l), |]-^ct(1-3/4m

-7/32n^ ). (16)

Table I. The median <rlf of the standard deviation frequency
curves, a/f is defined by

.-1,

“ (19)

and mode.

i
Comparison with the mean

Median Mode Mean

<r(2?r/)l)b-S^—n a// aV[(«-2)/«]

2 0.476 9363 ff 0 0.564 1896
3 .679 7782 0.577 3503 <r .723 6012
4 .769 0862 .707 1068 .797 8846
5 .819 3527 .774 5967 .840 7487

6 ,851 6120 .816 4966 .868 6267
7 .874 0808 .845 1543 .888 2029
8 .890 6326 .866 0254 .902 7033
9 .903 3347 .881 9171 .913 8749
10 .913 3911 .894 4272 .922 7456

11 .921 5509 .904 5340 .929 9598
12 .928 3048 .912 8709 .935 9418
13 .933 9874 .919 8662 .940 9825
14 .938 8347 .925 8201 .945 2877
15 .943 0191 .930 9493 .949 0076

16 .946 6671 .935 4143 .952 2538
17 .949 8761 .939 3364 .955 1115
18 .952 7207 .942 8090 .957 6464
19 .955 2598 .945 9053 .959 9103
20 .957 5399 .948 6833 .961 9445

21 .959 5989 .951 1897 .963 7823
22 .961 4675 .953 4626 .965 4507
23 .963 1706 .955 5331 .966 9721
24 .964 7297 .957 4271 .968 3652
25 .966 1620 .959 1663 .969 6456

49 .982 8634 .979 3792 .984 6022

75 .988 8337 .986 5766 .989 9609

to the factorials that arise from the beta

function.

The median s of one of these curves is the

abscissa that divides its area into halves. This

abscissa will be some multiple of c, say o-//,

which by definition will satisfy

wherein the integrand is given by Eq. (14). The

r(|M)

-)r(i)

1 n — 2 «— 4 n—

6

6-4-2 ^ \ 2 7
IT n — 3 n—5 n — 7 5-3-1 ir(re-2)!

1 n—2 n—i n—6 5-3-1 (re-2)!

2 re — 3 re— 5 re —

7

4-2 2’‘-V«-3

V 2 7

n even

n odd

The last parenthesis comes from applying the De
Moivre—Stirling approximation

m! = (27rM)HM/e)”(l+ l/12M

+ 1/288m2- 139/5 1840m3+---) (17)

These products can be derived from the recursion formula
r(n+ l)=n T(n), which leads to

(«— 2)!V5T 1= « even I

= [5 (n—3)T n odd J
since Ffs) = V ir.
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upper limit can be found by inverse interpolation

in the Tables of the Incomplete Gamma Function}^

These calculations have been made for us by

Lola S. Deming, and are given in Table I,

together with the abscissas of the mean and

mode. The positions of the mean, median, and

mode are shown graphically for. w = 6 in Fig. 3.

Clearly, as n increases, the mean, median, and

mode all approach the value <r, as is already

evident from the discussion of Fig. 4.

In the third place, it is evident that the

distributions of u and s in Eq. (11) are completely

independent; in any sample u may be large and s

small, and conversely. This is the fundamental

reason for the difficulties that are encountered in

attempting to find the true mean n and the

probable error of x when the only information at

hand is that provided by the sample itself.

These difficulties disappear as n increases, as

will be clear from a later section. The inde-

pendence of u and 5 is a property peculiar to

samples drawn from a normal parent population.

This property does not hold for a non-normal

distribution.

The fourth result to be derived from the

simultaneous distribution of u and 5 is the

distribution of u/s, with s lying anywhere

between 0 and ufs can be thought of as the

distance from the mean of the sample to the

mean of the parent population measured in

terms of the S.D. of the sample. The distribution

of u/s was first found by Student^^ in 1908. To
accomplish this he needed the distribution of s.

Unaware of Helmert’s work. Student established

the distribution of 5 beyond reasonable doubt by

an ingenious empirical process. Then after

proving that there is no correlation between u

and 5
,
nor between and he assumed that u

and 5 are independent, and proceeded by the

following method to find the distribution of u/s.

Tables of the Incomplete Gamma Function, edited by
Karl Pearson, published by His Majesty’s Stationery
Office, Imperial House, Kingsway, London W. C. 2. (1922).

The incomplete gamma function is defined by the integral

r.(»)-X'X" ^ix.

In the same symbolism the complete gamma function
would be but for brevity and by convention we
drop the subscript « and write simply r(»). The left-hand

side of Eq. (18) is N
2 j where t;= w/2F.

‘’Student, Biometrika 6, 1-25 (1908); 11, 414-417
(1915-17).

Fig. 4. Frequency distribution of the standard deviation

j in samples of n from a parent population whose .standard

deviation is a.

yds =— p- (-) e "A-ff
(Is

r

-y ds =
^ g-n(s-i)2 /ff2

crV K

N is the number of samples. 5/cr is the abscissa of the
center of area for a particular full line curve. These curves
illustrate the mode approaching the mean and the fre-

quency distribution of i becoming normal with standard
deviation al{2n)\ as n increases.

In Eq. (11) let u/s be replaced by z. Then if s

and z be used as orthogonal axes in place of u and

s, the elementary volume y du ds becomes

y s ds dz, so that the simultaneous distribution of

5 and z is

N
y ds dz —

V (2x)r[-|(w — 1)]2’*'‘~“V-

• (5,/(r)’-’^ ^20)

Integration of this with respect to 5 from 0 to

00 gives

N
y dz — (l+Z“)~‘"t/s

( 21 )
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Normal distribution of S.D. 1/V ni,

y dz = N-^ {tn dz, m = «— 1, n — 2, n — 3.

The curves are plotted for n = 5. The normal curve of

S.D. 1 /(w- 3/2)5 is not shown because it lies so close to
Student’s distribution that it would cause confusion.

The area under all curves is N, the number of samples,
n is the number in each sample, z is the distance from the
mean of the sample to the mean of the parent population
(the true value), measured in terms of the S.D. i of the
sample.

l/(«— 3/2)^ will fall very close to Student’s

distribution, especially near the center; in fact

such a curve could not be shown on the same

figure without confusion and so has been

omitted. The agreement in the quartile distances

of the two curves is shown in Table II, which will

be needed later.,

(3b). The u,s frequency surface

The simultaneous distribution of u and 5 is

important not only for the four conclusions that

have already been deduced from it, but also

because it is the equation of the “u,s frequency

surface”—a surface whose altitude y on the

orthogonal axes u and 5 is given by Eq. (11). The
elementary volume y du ds is the number of

samples whose errors fall in the range u±\du
while their standard deviations fall in the range

5±-2<fi'; consequently, by integration, the volume

erected on any closed figure in the u,s plane is the

number of samples whose errors and standard

deviations fall simultaneously within the ranges

defined by the boundary of the given figure. The

total volume under the surface is N, the number

of samples. The authors have found this surface

to be extremely valuable in describing certain

properties of small.samples.

Because of the complete independence of ii

and s, all plane sections u = const, on this surface

will be skew curves similar to the curve defined

for the number of samples having z in the range

z±\dz and any S.D. s whatever. This is called

“Student’s distribution.” The most important

property of this equation is the absence of a.

Student’s 1908 paper was a powerful stimulus to

the theory of sampling, not alone for the distri-

bution oi u/s but for the distribution of s itself,

since not until long afterward was Helmert’s

prior work discovered by statisticians.^®

Student’s curves are symmetrical in z, as

would be expected, since for any value of s, u

is as likely to be positive as negative. As n

increases they become normal near the center,

with S.D. l/(»— 3/2)h The full line curve in Fig.

5 is Student’s distribution for w = 5. The dashed

ones are the normal curves of S.D. l/(w — 1)^
1 /(m — 2)% and l/(«— 3)^ for comparison. The
figure shows that a normal curve of S.D.

Karl Pearson, Biometrika 23, 416-418 (1931-32).

Fig. 6. The frequency surface

' du ds=\ ' e
L<rV(2ir) J

illustrated by sections. As n increases, the volume becomes
more and more concentrated about the point m = 0, s= <r.

The total volume is always N, the number of samples.

The j = const, curt^es are always normal with S.D. =(t/-^ n.

The M = const, curves approximate normal curves with

S.D, =<r/V (2») as n increases sufficiently.
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by Helmert’s equation, which has already been

discussed. Fig. 3 is then typical of any of these

curves. They will all have the same mode, mean,

and median that have been found in Eqs. (15),

(16), (18), for Helmert’s equation. As n increases,

the mode, mean, and median approach coinci-

dence with the value c while the curves lose

their skewness and become normal with center at

5 = <r and with S.D. c/V (2ra).

The 5 = const, curves will be normal, all with

center at = 0 and with S.D. o-/V n. Clearly, as n

increases, the u,s frequency surface becomes

more and more concentrated about the point

M = 0, s = a. Two u,s frequency surfaces are

represented by sections in Fig. 6. The one on the

left is for a small value of n and the one on the

right is for a comparatively large value of n.

(3c). Tests for hypotheses concerning the parent

population

Since the frequency surface for a normal

parent population is completely determined when
its mean and S.D. a are given, it is sufficient

in our problem to state that the object of making

n observations is *to enable something to be

conjectured regarding the mean or the S.D., or

both, of the hypothetical indefinitely large

number of observations that might be taken and

from which the n observations constitute a

sample. By' keeping in mind the u,s frequency

surface it is possible to make certain objective

statements regarding the parent population from

which a sample is drawn.

As long as the parent population remains

unknown, the position of a sample in the n,s

plane remains unknown so far as its u coordinate

is concerned. The S.D. s and the mean x can be

computed for the sample, but the error u = x — n
obviously cannot be computed, for n is unknown.

Moreover, on account of the independence of u

and s, the known value of 5 gives us no clue

regarding the value of u ; however, it may help us

to lay odds on any specified range within which ii

might be found.

Since the same sample can come from many
sources, the exact parent population cannot be

determined from the sample. On the other hand,

considerations of the u,s frequency surface are

often very helpful in deciding whether a sug-

gested hypothesis regarding the parent popula-

tion is improbable. To be more specific, there are

certain tests which determine the probability

that the given sample could have been drawn
from a suggested parent population—that is, a

parent population having a proposed mean and

S.D. These various tests will not all give the

same answer to the problem, in fact at times they

may differ so widely that a suggested hypothesis

will be accepted on the basis of one test but

rejected by another. Such a situation is, of course,

a difficult one, but it is apt to arise when dealing

with small samples. The larger n is, the finer will

be the distinctions that can be drawn between

one hypothesis and another, and the closer will

all tests agree. In the limit, as n becomes infinite.

A 8

Fig. 7. Contours in the u,s plane. A sample of S.D. ,r

and of error u can be plotted in the u,s plane. The sample
point («,i) lies on the four contours shown;

|«l =const. |s| = |«/i| =const.
5 = const. X = const.

the sample becomes identical with the parent

population and any proposed hypothesis can be

decided with certainty. However, n is for

various reasons usually limited to a small integer,

and the problem is to learn how much can be

safely inferred from such a sample.

By proposing values of n and a, a u coordinate

for the sample is provided for testing purposes,

and the sample may be placed at the point

(m,5) in Fig. 7, and certain conclusions drawn.

The volume of the ii,s frequency surface lying

outside any one of certain contours that pass

through the point furnishes a test of the hypothe-

sis.

Through the given point in the u,s plane there

can be drawn five contours that divide the
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volume symmetrically each side of the ^ axis.

They are

zhM = const., (22)

5 = const., (23)

±s = m/5 — const., (24)

5 = exp [— |n(M--f5^)/o-"]

= const., (25)

\={s/(7)” exp [
—

-

2-«(m^+ 5^ — (7^)/(7^]

= const. (26)

The first three are straight lines extending to

infinity; the last two are oval closed curves

surrounding the highest point (m = 0, s

= a[_(n— 2)/n'}^ of the volume defined by Eq.

(11). Only the z contours are independent of <t.

A certain fraction of the volume lies outside the

symmetrically placed u contours AA and BB-
this fraction is the probability of drawing a

sample of n items having an absolute error in

their mean greater than the proposed value of u.

This fractional part of the volume can be

computed easily from a table of the normal

probability integral. Its value is

Pu = 2-
V n

cr^I (2 tt) a

^

V n

^CO

I

,5(n-l) lOO / \ n—2

du-
rC|(M-i)]25

— ff-)

= 2 e-"“'/2"'dM = l-V(2/7r)
crV (27t) Ju *^or^J (2w)

(27)

If Pu turns out to be small, say 0.01, then only once in 100 trials could the mean of the sample be

expected to differ so widely from the mean of the proposed parent population; in such a case the

hypothesis would immediately be placed under suspicion, but it cannot be definitely rejected until

other tests have been made and the circumstances carefully reviewed. On the other hand, if Pu turns

out to be fairly large, say 0.2 or higher, then in at least 1 trial out of 5 a greater error would, in the

long run, be obtained, and there would be no grounds for rejecting the hypothesis on this criterion.

The test just described will be called the “u test.”

The upper limit in the last integral of Eq. (27) is the ratio of u to aj^n, i.e., the ratio of u to the

S.D. of the means of samples of n. In this form the value of is easily found from Sheppard's Tahle}^

If the form of the integral in Eq. (27) is changed so that

^u/V (2 <72/71)

Pu=l-(2/^/

7

t) e-‘^dt, (28)

•7o

the upper limit becomes the argument in various other tables of the normal probability integral.^® The
upper limit could also be made to depend on the ratio ujr with an attending increase in convenience

for some problems; thus.

W. F. Sheppard, Biometrika 2, 174-190 (1902). This
table is reproduced as Table II in Tables for Slatisticians

and Biometricians, Part I. The upper limit in the integral

of Eq. (27) is Sheppard’s x, and our Pu is his 1—a or

2[l-|(l+a)].
20 The first table of the normal probability integral was

computed by Kramp and published in his Analyse

des Refractions, pp. 195-206 (Strasbourg, 17/19). This

formed the basis for all tables down to 1898, when James
F. Burgess in the Trans. Roy. Soc. Edinburgh 39, Part II,

pp. 257-322 (1898) tabulated the integral in Eq. (28) to

15 decimals, together with first and second differences,

the argument being the upper limit of this integral and
proceeding in steps of 0.001 from 0 to 1.499 and then in

steps of 0,002 from 1.500 to 3. Shorter tables, based on
Burgess’, are given in B. O. Peirce’s A Short Table of

Integrals (Ginn and Company), in the Smithsonian
Physical Tables (pp. 56 and 57 of the 1th and &th editions),

and in many texts on the theory of errors, least squares,
and statistics. Notable also is the Kelley-Wood table,

Appendix C of Truman L. Kelley’s Statistical Method
(Macmillan, 1924), where the upper limit of the integral
in Eq. (28) is tabulated with Kl~-Pu) as argument in

steps of 0.001 from 0 to 0.499. One of the handiest tables
for Pu are Tables I and II in R. A. Fisher’s Statistical

Methods for Research Workers (page 79 in the fourth
edition), where u/{<r/-d n) is listed to six decimals for values
of Pu proceeding in steps of 0.01 from Pu = 0.01 to Pu = 1.00,

and also for P„=10“2^ 10“^, • 10“®. It is interesting to
note that the “Diffusion Integral’’ of Table 31 in the 7th

and 8ih editions of the Smithsonian Physical Tables is

just our Pu.
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J

'tul r ^ul r

e-Uo.m-y^t^dt=l-(2y/^Tr) I e~y^‘^ dt

0 ^0

J

r%yul r

dt, (29)
D

wherein 7 = 0.674- • •/V2 = 0.476936276- • The probability integral was first tabled with u/r as

argument by Encke,^^ and this form has been adopted by several later writers.

The necessity of using tables of the normal probability integral is to a large measure obviated by
Fig. 8, which shows closely enough for most purposes the chance P„ of the occurrence of an error (in

the absolute sense) as great as or greater than given multiples both of the S.D. (or r.m.s. error) cr/yj n

and of the probable error r = 0.674- • -o-fy/n.

Tables of the normal probability integral generally tabulate the fraternal portion of the area under

the normal curve, that is, the rarashaded portion of the area in the upper right-hand corner of Fig. 8.

This internal area is to be subtracted from the whole area (unity) to obtain the external portion,

which we designate by P„. The reader should note carefully that in the headings of some tables, the

letter P is used for the internal portion of the area, and is then just the complement of our P„.

The other contours in Fig. 7 provide other tests. Thus, the fraction P^ of the volume that lies above

the s contour EE is the chance of drawing a sample of ra having a S.D. greater than s. This leads to

another type of probability integral, the incomplete gamma function, which has been tabled by Karl

Pearson and his staff.^® From Eq. (11) the fraction of the volume above EE in Fig. 7 is

r Vw r” T 1
Ps= I I

LcrV (27t) JLr[^(ra — 1 )
\^

/

J

= 1—
raKn-l)

r[K«-i)]

'ra— 1

ds

(30)

wherein v = ns^l2(i^, and and F represent the

incomplete and the complete gamma functions.^®

Here it should be noted that the ratio of ^ to <t is

required in order that this integral can be found,

but no value of tx is needed. If P« is small, there is

an equally small chance that a sample of S.D. as

large as the known 5 could have been drawn from

a parent population having the suggested S.D. a,

Encke, Berliner Astronomisches Jahrbuch fur 1834,

pp. 249-312 (1832). The tables on these pages are repro-

duced in Encke’s Astronomische Abhandlungen Vol. 1, No.
7 (Berlin, 1866). Kramp’s tables (see preceding footnote)

formed the basis for Encke’s computations. Abbreviations
of Encke's tables are given in several more recent books,
among which are T. W. "Wnght’s Adjustment of Observations

(Van Nostrand, 1884; revised by J. F. Hayford in 1906),

David Brunt’s Combination of Observations (Cambridge
University Press, 1917), W. W. Johnson’s Theory of Errors

and Method of Least Squares (John Wiley, 1912), A. de
Forest Palmer’s Theory of Measurements (McGraw-Hill,

1912), The Smithsonian Physical Tables, page 57.

and the interpretation is that the hypothesis, as

far as a is concerned, is unlikely. If P^ turns out

to be nearly unity, it is practically certain that if

the suggested <r were the true value, the S.D.

of the sample would have been larger than that

observed. Hence the suggested value of a would

again appear' unlikely. 'When P, is anywhere near

I, there is no ground for rejecting the hypothesis

on the basis of this criterion. This test will be

called the “s test.”

Instead of using tables of the incomplete

gamma function for calculating Ps, it is usually

easier in this work to use tables for the chi-test.®

In the chi-tables, P(x^) depends on two argu-

ments, and the number of “degrees of freedom.”

Ps will be identical with P(x^) if ns^la- replaces x‘

and if ra— 1 be taken for the number of degrees of

freedom. In Elderton’s table the number of
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degrees of freedom is denoted by — 1 ,
and in

Fisher’s table it is denoted by n. The identity of

Ps and P(x^) is more than a mathematical

coincidence, for it turns out in studying the chi-

test that actually is for n observations

made on a single magnitude—but we cannot

pursue the matter further here. Besides the chi-

tables, another short cut to calculating P^ is

possible when n is around 20 or more, for then the

normal curve of S.D. tr/V (2«) is a close enough

approximation to Helmert’s equation near the

mode, as was learned from Fig. 4, and a table of

the normal probability integral can be used to

ascertain whether the sample is unusual. For

smaller values of n this approximation may not

be close enough.

A third criterion comes from the z contours.

CO and OD are drawn making the angles ± arc

tan u/s with the i axis. The fraction Pj of the

volume lyin'g outside these contours is the

probability of drawing a sample of n having a

ratio of M to 5 greater than the ratio arising from

the proposed u and observed 5. The calculation of

Pz leads to a third type of probability integral,

the incomplete beta function; however, the

special type here encountered is generally known
as “Student’s integral,” since it is simply an

integral of Student’s distribution and Student

himself prepared rather extensive tables. From
Eq. (21)

2

P.= l (31 )

P.Z is the fractional part of the area lying beyond

±2 under Student’s distribution of z (Fig. 5),

just as Pu is the fractional part of the area lying

beyond ±w under the normal distribution of u,

and shown shaded in the upper right-hand corner

of Fig. 8. For the calculation of Student’s integral

it is not necessary to postulate a value of a, since

Pz is simply the probability that a sample of n

will fall outside a proposed pair of z contours, and

these are independent of <r. Probably the handiest

scheme for looking up the value of Student’s

integral is with the nomograph devised by V. A.

Nekrassoff^^ and reproduced as our Fig. 9 with

the kind permission of the Bell Telephone

Laboratories. The curved portion of the 2V {n — 1)

V. A. Nelcrassoflf, Metron 8, No. 3, 95-101 (1930).

scale will give better results than the straight

portion, which it supersedes over a short range,

but both the curved and straight portions will

give practically the same results.

The reader familiar with Fisher’s methods will

realize that the 2 test here described is equivalent

to his t test for the significance of the mean of a

single sample.

A very small value of signifies that the

sample has an exceptionally large value of 2
;

thus, on the average, only once in 1000 trials will

u/s (= 2) be so large that Pz = 0.001. In such

cases either the proposed error u is unusually

large or else the S.D. 5 of the sample is accidently

very low. Evidently, then, if we reject the idea

that the error in li; is as great as the proposed

value of u every time P» turns out to be small, we
shall occasionally reject a perfectly good hy-

pothesis, for not only will the error in the sample

actually be large sometimes but also the S.D. 5

will occasionally be unusually small. When,
however, Pz is closer to unity, say 0.2 or greater,

the sample is not unusual, and the interpretation

is either that u is not exceptionally large or that

if it is, then 5 is also. In such a case it would

evidently be unwise to conclude that the error in

X can easily be as great as the postulated value

of u unless there is good reason to believe that

the S.D. of the sample is not unusual.

If the S.D. of the sample happens to be

exceptional, the u and z tests will give different

results regarding the proposed value of u, and it

is the latter test that will be misleading. Without

even a guess as to where a lies there is no way of

surmi ing whether 5 is or is not extraordinary and

the 2 test will accordingly be hazardous when
considering the error of the sample. On the other

hand, if there is some fairly definite knowledge

concerning a, the u test can be applied
;
the 2 test

is in this case irrelevant except that it serves as an

indication of whether the S.D. of the sample is or

is not extraordinary. If the sample is not

exceptional, the u and 2 tests will indicate

substantially the same conclusions; and con-

versely, if the sample is exceptional they will

disagree.

This' has an important bearing in those

problems in physics wherein, having given the

mean x and the S.D. s of n observations, we seek

merely the probability that the error in x could
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NOMOGRAPHIC REPRESENTATION

OF THE PROBABILITY P^ THAT THE

ERROR IN THE MEAN OF A SAMPLE

OF n, MEASURED IN TERMS OF ITS S. D.

,

IS GREATER IN MAGNITUDE THAN Z.

n

8 -

9 - -

10 -

12 -

14 - -

16 ’
18 :

:

20 -

:

25-

FROM A NOMOGRAPH PUBLISHED

BY V. A. NEKRASSOFF IN

METRON fi, NO. 3, 95-99 (1930)

0.6000 -t
-

0.5800 --

0.5600 --

0.5400

a5200 --

05000 -

0.4800 --

0.4600 - -

0.4400 - -

0.4200 --

v:. 0.4000 -

0.3800 -

' 0.3 600 ••

0.3400 --

g 0.3200 -

tn

^ 0.3000 --

a'*
0.2800 -

0.2600 -

0.2400 --

0.2200 -•

0.2000

0.1800 -

0.1600

0.1400 -•

0.1200 -
0.1000

0.0800 ••

0.0600

0.0400 -•

0.0300

0.0200 -

0.0 1 00 -

0.0060 -

0.0040

0.0020

0.0002 •

T 0.6

- 0.7

0.6

- 0.9

1.0

2 .0 -

2 .
5-1

I 2.5

I 3.0

20.0

Fir,. 9. Chart for making the 3-test. Published by permission of the Bell Telephone Laboratories, Inc.
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be as great or greater than a proposed error u
;
in

other words, where we seek the probability that

the given sample could have been drawn from

some normal parent population having its mean
at !i{ = x— u) and having any S.D. whatever. This

is a natural question to ask, especially when
there is no information at hand concerning a.

Now since <r is not needed for the z test, it might

seem that here is a criterion peculiarly adapted

to the problem. Unfortunately, however, this is

not so. For although its value may be unknown,

nevertheless the parent population does have a

certain S.D., and as has just been learned, it is

necessary to have some notion what this S.D. is

before the proposed error u can be judged with

confidence on the basis of the z test. Evidently,

then, it is impossible to make any progress

without postulating some value of a, and all

conclusions respecting the error, whether drawn

from the u or the z test, will depend on this

postulate.

The z test simply tells whether the value of

u/s obtained in a given sample is extraordinarily

large or small, and for this, it is, of course,

perfectly valid. Usually, however, we are more

interested in knowing whether u=x~n is ex-

ceptionally large or small, and the trouble with

testing 2 = u/s is that z expresses u in units of s,

which is itself a variable, being subject to the

fluctuations of sampling according to Eq. (14).

Careful considerations of the u, s and z tests

will generally disclose about all the information

concerning the parent population that the sample

alone is capable of giving. Any one of the three

tests by itself may be misleading, because they

all possess an inherent weakness owing to the

fact that the contours on which they depend

extend to infinity.

An important contribution was made by J.

Neyman and Egon S. Pearson^^ when they

developed a single test depending on a unique

family of closed contours for the probability

associated with a proposed parent population.

They devised for this purpose the X contours, and

the test depending on them will be called the

“X test.” Along a X curve the ratio of the altitude

J. Neyman and Egon S. Pearson, Biometrika 20a,
175-241 (1928). The diagrams and tables published by
Neyman and Pearson, together with remarks on their use,

will be found in Tables for Statisticians and Biometricians,
Part II.

at any point of the u,s frequency surface to the

maximum value that it can be made to take (by

putting M = 0 and a = s) remains constant. The
fraction of the volume under the u,s frequency

surface lying outside the X contour drawn through

the point iu,s) is

Px =
V(27r)r[i(«-l)]2^Hn-3)^2

(3 ,,

the integral being taken outside the X curve.

Neyman and Pearson published values of P\ as a

function of n, u/a, and s/<j. By- means of their

diagram and table the X test is as easy to apply as

any of the others. When turns out to be small,

the hypothesis respecting /r or <r, or both, appears

questionable. The diagram published by Neyman
and Pearson enables the computer to ascertain at

a glance just where the trouble lies when F\

turns out to be small.

A fifth test is provided by the h contours of Eq.

(25), but* the difference between Pa and Px is

insignificant, and there is a theoretical reason

why the X contours are better suited to the

purpose. The 5 contours are curves of equal

altitude on the u,s frequency surface, but for

small values of n they would not be curves of

equal altitude on a u,s‘‘ or on a u,s^ frequency

surface. But the significance of the X contours is

always the same, regardless of the coordinate

system. As n increases, the 5 and X contours

approach coincidence; in fact at w=10 they are

already very close together.

The significance of each test depends not only

on the value of P (P„, Ps, • • •) that is found, but

also on how rnuch is known a priori regarding the

parent population. A hypothesis regarding n and

ff cannot be accepted merely because the tests

give high values of P, for it may seem wise to

abandon this hypothesis in favor of one that

leads to smaller values of P but which is a priori

more logical or has_a more rational basis. For this

reason considerable caution must be exercised

before accepting a hypothesis purely on the basis

of any one or all of these tests. High values of P
simply show that there are no grounds for

rejecting the proposed values of n and a on the

basis of these criteria alone.
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On the other hand, a very low value of P does

not present such difficulties, for it forces us,

regardless of a priori considerations, either to

admit that the sample is exceptional or to regard

the hypothesis with suspicion. Which one of

these alternatives is to be chosen will depend for

one thing on how compelling were the reasons for

selecting the particular hypothesis in the first

place. It is thus clear that statistical tests are

more readily useful for rejecting a hypothesis

than for accepting one.

In rejecting a hypothesis we may reject one

that is true: in accepting one we may accept one

that is false. The frequency of the former mistake

can be controlled to a large extent by lowering

the limit for rejection. Thus, if we decide to reject

a hypothesis when any P<0.01, we shall commit
the mistake of rejecting a perfectly good one on

the average of once in 100 such tests, but by

lowering the rejection limit to 0.001 we lower this

average to once in 1000. It is, however, impos-

sible to control so easil> .he mistake of accepting

a hypothesis on the basis of a high value of P
when actually it is false, for there will always be

false hypotheses that give higher values of P than

the true one gives, so that it is impossible to

distinguish between the true and the false by

objective tests alone. Methods for making

quantitative use of other information concerning

the hypotheses under test have been devised by

J. Neyman and Egon S. Pearson,^^' who have

given an excellent discussion of this whole

subject.

In some cases it is more important to avoid

rejecting a hypothesis that is true than it is to

avoid accepting one though it be false; and in

other cases just the reverse is true. The serious-

ness of either mistake depends on the action that

is to follow the decision and on the interests

involved. A clear illustration of this statement is

found in the conflicting interests of producer and

consumer in the results of sampling tests on a

consignment of goods. For the proposed hypothe-

sis we might say that the consignment which is

sampled complies with certain specifications;

then a low rejection limit works to the advantage

of the producer but to the disadvantage of the

Neyman and Egon S. Pearson, Phil. Trans. Roy.
Soc. A231, 289-337 (1933); Proc. Camb. Phil. Soc. 29, 492-
510 (1933). See also Thornton C. Fry, Probability and Its

Engineering Uses, pp. 269-270 (Van Nostrand, 1928).

consumer, whereas a high rejection limit does

just the opposite.

As an example for illustrating the application

of the different tests let us consider the following

10 readings made on a micrometer: 1.078, 1.080,

1.071, 1.076, 1.081, 1.077, 1.075, 1.073, 1.079,

1.070. There is reason to suppose that these are of

equal reliability, so they will be given equal

weight. Their mean is X= 1.0760 and their S.D.

5 = 0 . 00355.26

Let us first consider the hypothesis that the

sample was drawn from a parent population with

true mean 1.0740. If this is the case, the true

error of the mean of our sample is -t- 0.0020, and

we may now ask the question, what is the chance

that the true error could be as large as or larger

than 0.0020? Without some knowledge con-

cerning a the only thing we can do is to postulate

that the sample was not extraordinary, and apply

the z test. If m=

+

0.0020 or greater, then

u/s= +0.0020/0.00355 = +0.563 or greater. Now
with w=10 and z = 0.563, Fig. 9 shows that

Pj = 0.13. So in about 1 out of 8 samples of 10,

I

m/5
I

will be as large as or larger than 0.563, or in

1 out of 16 samples, u/s will be as large as or

larger than +0.563. Hence on the assumption

that the S.D. of the 10 readings is not unusual,

there is no compelling reason to reject the

proposal that if the number of measurements

were to be indefinitely increased, their mean

would finally settle down to the value 1.0740.

Suppose now that there has been some previous

work done by the same observer with the same

instrument, and there is good reason to believe

that <r lies very close to 0.0040. It is clear,

without actually calculating Pj, that 0.00355

was in fact not an extraordinary S.D., for the

average S.D. in samples of 10 drawn from a

normal parent population having <r = 0.0040 is, by

One of the slowest ways to eonipute x and 5 is to follow

their definitions, i.e., lake the sum and divide by n,

and then find the s(|uare root of the average squared

residual. Considerable lime ean be saved by computing
X and j simullaneously by using the departures from some
selected poini (inslead of from x), and then applying a

correction. In this example 1.075 might be selected as a
datum. The departures from this point are 3, 5, —4, 1, 6,

2, 0, —2, 4, —5, all limes 10“\ The average of these

numbers is -fl.O, whence x= 1.0754-0.0010= 1.0760. The
sum of their scpiares is 136; hence, by a well-known

formula in mechanics, 5^*= (136/10 — 1.0'“) • 10~®= 12.6- 10“®

and 5 = 0.00355. .See Whittaker and Robinson, The Calculus

of Observations, Art. 96 (Blackie and Sons, 1924 and

1926).
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Table I, 0.0040-0.9227 = 0.0037, which is close to

0.00355 So in this case the conclusion indicated by
the z test can be accepted with confidence. But if

a is known pretty definitely, the u test is

possible. The probable error of the ten measure-

ments is r = 0.674- • -<r/V 10 = 0.00085, so the

ratio M : r = 0.0020 : 0.00085 = 2.34. The ratio

u Iff/yin is 0.0020 : 0.0040/V 10 = V (5/2) = 1.58.

Either of these ratios enables P„ to be read

quickly from Fig. 8. The result is P„ = 0.114,

which means that there is about 1 chance in 9

that
I

u
I

S 0.0020, or that there is about 1 chance

in 18 that M= -f-0.0020. The u and z tests

therefore concur, as they will when the S.D. of

the sample is not extraordinary.

In the preceding paragraphs we have made the

hypothesis that the mean of the parent popula-

tion is 1.0740 and on the basis of the z and u

tests have calculated the chance that a sample of

10 with x= 1.0760 or greater (i.e., with u=
-1-0.0020) could have been drawn from such a

parent population. In making the z test it was

necessary to assume that the S.D. of the sample

was not extraordinary, and in the u test to

assume and use some definite value of <r. The
reliance that can be placed on the results depends

entirely on the validity of these assumptions.

When ff is not known very definitely, but reasons

exist for thinking that it may be in the neighbor-

hood of (e.g.) 0.0040, we might be interested in

the question of what fraction of the samples

drawn from a normal parent population with

n— 1.0740 and (r = 0.0040 would, on the average,

lie outside the oval shaped X contour drawn

through the point in the u,s plane corresponding

to the 10 observations. With m = 0.0020 and

5 = 0.00355 it is found that P\ = 0.27, which

means that about 3 out of 11 samples will fall

outside this X contour. On the basis of the X test,

then, there is no reason to reject the {Proposal

that 1.0740 and <r = 0.0040.

For the sake of illustration, it is interesting to

assume that (t = 0.0025 instead of 0.0040. This

will reverse some of the previous conclusions. In

the first place, the S.D. of the sample now
appears to be exceptionally high, for with

z» = w5V2cr2= 10(0.00355)72(0.0025)2 = 10.1, £q.

(30) gives

P, = 1 - r„(9/2)/r(9/2) = 0.0168,

which means that in only about 17 samples out of

1000 could the S.D. be as high as or higher than

that found. We may now expect the z and u tests

to disagree. The probable error of x is now only

(0.674- - -)(0.0025)/V 10 = 0.000533, and the pro-

posed error 0.0020 is accordingly 3.75 times the

probable error, for which P„ is 0.0114—just

about 1/10 of what it was before. So if o- = 0.0025,

an error as large in magnitude as 0.0020 could

occur in only 11 or 12 samples out of 1000, and

the proposal that 1.0740 could be the true value

should be looked upon with suspicion. Certainly

in the face of such odds the proposal could

hardly be other than rejected without some very

forceful arguments to support it. This conclusion

contrasts with that which would be drawn from

the z test, for Pz retains its former value, 0.13.

The disagreement between the u and z tests

shows how misleading the latter would be if used

alone. The trouble comes, of course, from the fact

that the S.D. of the sample is now exceptionally

high.

Finally, we may examine the X contour on the

double assumption that /x= 1.0740 and (7 = 0.0025.

In this case P\ is found to be 0.013, which is so

low that the assumption appears improbable.

From the position of the sample in the u,s

diagram it is evident that the low value of P\

arises almost solely from the high value of the

ratio s/ff.

(3d). Three important relations when P=f
The u, s, and z tests lead to three important

statistical relations. If the straight line contours

of Fig. 7 take positions such that the volume

under the u,s frequency surface is divided sym-

metrically into quarters by each of them, it will

be an even bet that a random sample will fall

inside or outside the u and z contours, and above

or below the s contour. Fig. 10 illustrates this

situation.

In Fig. 10a, Pu = i- The lines AA and BB
effect quartile divisions of every one of the

normal curves obtained by taking sections

5 = const, through the u,s frequency surface.

The particular constant value of
|

m
|

along these

lines is therefore r = 0.674- • - (t/V w, the prob-

able error of the mean of n observations.

In Fig. 10b, Pa = h- The line EE divides into

halves the area under each of the Helmert’s
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Fig. 10. The volume under the u,s frequency surface

can be divided into quarters in several different ways'
Here the division is effected with u, s, and z contours by
setting the shaded areas (to infinity) each equal to |.

In (a) the lines A A and BB are a distance r from the s

axis, r being the “probable error.” r is determined from
the normal probability integral by setting — In (b)

the line EE divides all the « = const. curves into halves
and therefore lies the median distance i = tr// above the u
axis. 1// is determined from the Tables of the Incomplete
Gamma Function by setting Ps = h and its values are

given in Table I, column 2. In (c) the lines CO and DO
make equal angles with the ^ axis, this angle being tan~' f.

f is determined from Student’s integral by setting Pz=\,
and its values are given in Table II, column 2. r and s

depend on a and n both, whereas f depends only on n.

z — ujs is constant and equal to f along the lines CO
and DO.

curves that are obtained by taking sections

= const, through the u,s frequency surface. The
particular constant value of 5 along RR is s= <r//,

the median of Helmert’s distribution, given by

Eq. (18) and Table I, column 2.

In Fig. 10c, Pz = \- The constant value of

z = ujs along the z contours is always the tangent

of the angle that these contours make with the 5

axis. In Fig. 10c, the lines OD and OC effect a

quartile division of Student’s distribution of z,

and the particular constant value of |z| along

them is denoted by f. Values of f for n running

from 3 to 25 have been calculated for us by Lola

S. Deming and are listed in Table II.

The values of f in Table II were calculated by putting
2 = tan 0 and then making successive approximations to

find the limits of the integral written in the heading of

Table II. The same purpose could be accomplished with
less precision by inverse interpolation in Student’s original

tables (see footnote 17) or in later tables by Student and
R. A. Fisher, Metron 5, No. 3, pp. 90-120 (1925). Another
possibility is inverse interpolation in the Tables of the

Incomplete Beta Function, recently prepared by Karl
Pearson and his staff (issued by the Biometric Laboratory,
University College, London, W. C. 1, 1934), but our
Table II was calculated and used several years before the
appearance of the Tables of the Incomplete Beta Function.

Table II. The quartile deviation f in Student's distribution.

f is defined by

Comparison with the normal curve of S.D. iRn — i/l)^.

0.674- - -

Discrepancy,
percent lown r V(w-3/2)

3 0.577 349 0.550 719 4.612
4 .441 614 .426 585 3.403

5 .370 348 .360 530 2.651

6 .324 981 .317 957 2.161

7 .292 942 .287 603 1.822

8 .268 786 .264 557 1.573

9 .249 745 .246 289 1.384

10 .234 241 .231 348 1.235

11 .221 300 .218 833 1.115

12 .210 288 .208 152 1.016

13 .200 768 .198 896 0.9324
14 .192 434 .190 774 0.8621
15 .185 056 .183 573 0.8014
16 .178 467 .177 130 0.7492
17 .172 533 .171 321 0.7025

18 .167 154 .166 048 0.6617
19 .162 249 .161 234 0.6256
20 .157 752 .156 816 0.5930
21 .153 607 .152 742 0.5631
22 .149 774 .148 970 0.5368

23 .146 214 .145 464 0.5129
24 .142 896 .142 195 0.4906
25 .139 794 .139 137 0.4707

As has already been pointed out, a does not

enter Student’s distribution of z, hence f is

independent of <x and depends only on n.

Further, since the normal curve of S.D.

l/(n — 3/2)^ or of probable error 0.674- •/
(w — 3/2)^ was found to be an excellent approxi-

mation to Student’s distribution of z near the

center, we should expect this last expression to

be a good approximation to f, provided n is not

too small. The actual discrepancy is given in

Table II, column 4. In practice, the approxima-

tion f = 0.674- • -/(w— 2)^ will be found entirely

satisfactory when w>20, though of course,

0.674- - -/(«— 3/2)^ is always a better one.

If s be computed for each of an indefinitely

large number N of samples, half the values of s

will be less than s=c/f, and the other half will

be greater, by definition of the median s = a/J in

Eq. (18). Clearly, then, if fs be computed for

each sample, half the values of fs will be less

than cr and half will be greater. Finally, if

0.674- - -/i/V M be computed for each sample,

half will be less than r and half will be greater.



STATISTICAL THEORY OF ERRORS 141

It is convenient to denote 0.614:- -fj^ n by

the symbol so that (p and (ps bear the same

relation to the probable error r that / and fs do

to the S.D. a. Values of cp are given in the second

column of Table III. The heading of this column

is (pio, for reasons that will become clear later.

The preceding discussion shows that the

contours in Figs. 10a and 10c correspond to

quartile distances r and f on the distributions of

u and z, respectively, and that the contour in

Fig. 10b corresponds to the medians a/f, a, and

r on the distributions of s, fs, and <ps, respec-

tively. Hence in the case of a large number of

samples of n observations each, it will be found

that

(a) in (|± 6 i) the cases. \u\

(b) in (|db€ 2) the cases.

<ps 5 r\

fs^a\'

(c) in (§± 6
.3) the cases, \u/s

\

wherein ei, a, €3 approach zero as a statistical

limit* as the number of samples is indefinitely

increased; that is, the odds that ei, 62 or 63 shall

differ from zero by less than a stated amount

can be made as great as desired by taking enough

samples. No one can say in advance just how

Fig. 11. For each of 100 samples of 4, ±f5 is laid off in

the vertical from the point that represents x. The mean of

the parent population is ^ = 0, and its S.D. is unity.

r = 0.074- 4 = 0.337. The horizontal lines at distances
±r from the true value show the range covered by the
probable error. In 51 out of 100 samples \u

\

<fs. In 52
out of 100 samples \u\ <r. In 53 out of iOO samples
4>s<r. As the number of samples is indefinitely increased,

the fractions of them satisfying these three inequalities

each approach j as a statistical limit.

many samples must be taken in order that ei

may be less than (e.g.) 0 . 01
, but it is possible to

find the probability that ei< 0.01 for a given

number of samples.

The relations (a), (b), and (c) just given can

be stated still more simply as follows. It is an

even bet that for a random sample

(a) \u
\

>r or \u\ <r;

bA fs<a^
(b) or

<ps>r <ps< rl

\u/s
\
>i \u/s\<t

(c) or

1

M
1

> f5 \u
\

<^s

The character of each of these quantities, for

any given value of n, is worthy of notice. In (a)

r is a constant while u varies from sample to

sample. In (b) a and r are constants, while /5 and

(ps vary from sample to sample. In (c) f is a

constant while u/s varies, and in the second

form, both ^s and u vary from sample to sample.

These facts and relations are illustrated in Fig.

11
,
where the value of x for each of a number of

samples is measured along the vertical and

marked by a heavy dot, then the distance ^s

for the sample is laid off in the vertical above

and below the dot. Thus a vertical line of length

2^s with center at x marks each sample. In Fig.

11 these lines represent the first 100 samples of

4 drawn from a normal parent population of

S.D. o-=l and mean /r = 0.** From Table II,

f = 0.4416 when « = 4.

It will be noticed that in 51 out of the 100

samples, the range measured from x

overlaps the true value n=0. For a random
sample, there is by relation (c) above an even

chance that [«| <f5
, so we should expect to find

approximately half these ranges to overlap /jl=0.

A pair of horizontal lines equally spaced at a

distance r = 0.674 ^c/^l 4 = 0.337 • • • above and

below the true value yu= 0 show the range covered

by the probable error. Before a sample is drawn,

it is an even bet by relation (a) above that

These are listed in W. A. Shewhart’s book, The
Economic Control of Quality, Table D, page 454 (Van
Nostrand, 1931). The authors are indebted to Dr. Shewhart
for the idea of this figure. It was first exhibited by him
at a joint meeting of the American Mathematical Society
and Section K of the A. A. A. S. in Atlantic City, De-
cember 27, 1932.
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\u
\

<r, and it is interesting to note that 52 dots

fall inside the range ±r and 48 fall outside. If

for each sample in the figure the range ±<f>s

were laid off from the horizontal line fi = 0, it

would be found that <j>s<r in 53 samples, <j)S>r

in 46 samples, and <t>s = r to three digits in one

sample. (To avoid confusion, the ranges

are not shown on the figure.)

Thus the 100 values of |m| and the 100 values

of <j>s are separately about equally divided each

side of the probable error r. At the same time the

100 values of \u/s\ are about equally divided

each side of f, so that about half the 100 values

of
I
tt

I

are greater than the corresponding values

of ^s. If the number of samples were indefinitely

increased, the ratio of the number for which

\u
\

>r to the number for which \u\<r would

approach unity as a statistical limit, and the

same can be said of the other inequalities written

in (b) and (c).

(3e). Fiducially related values of a and s

Closely related to the tests that have previ-

ously been described is the notion of fiducially

related values of a and 5. The adjective fiducial

was introduced in 1930 by Fisher^* for the

description of a certain objective relation that

exists between a parameter of the parent popu-

lation and the corresponding parameter of a

sample when the sampling distribution of the

latter depends only on the former. Such is the

case with a and s. Thus, if a set of n observations

has been taken and the S.D. is found to be s,

we can arbitrarily put P, = 0.95, using the

observed value of 5 for the limit of integration in

Eq. (30), and then make the perfectly objective

statement that there is only 1 chance in 20 that

the S.D. of the parent population can be greater

than the value of a required to be used in the

integral. This is the same thing as drawing the

5 contour of Fig. 7 at a distance from the u axis

equal to the observed S.D. s, and then arbitrarily

selecting for <r that value which will put 95

percent of the volume of the u,s frequency surface

above the contour and the remaining 5 percent

below it. These particular values of a and ^ are

accordingly so related to each other that if a

were actually the S.D. of the parent population

then there would be 19 chances in 20 that a

R. A. Fisher, Proc. Camb. Phil. Soc. 26, 528-535 (1930).

sample drawn therefrom would have a S.D. as

large as or larger than s\ and conversely, since

s has actually been observed, there is only 1

chance in 20 that the S.D. of the parent popu-

lation is as large as or larger than <r.

The value of a required to be used in the

integrals of Eq. (30) will for a given value of n
be a function both of P, and of the limit of

integration s, so it seems desirable that the

nomenclature for fiducial values should express

this fact. If P« has been placed equal to 0.95, we
designate the required value of a by the symbol

(t(^,5) and call it “the 5 percent fiducial value of

(T corresponding to the given value of because

there are 5 chances in 100 that the S.D. of the

parent population is greater than a{sf>) for the

given value of s. Likewise the value of s required

to be used as a limit of integration in the same

equation will be a function of a and Ps, so when
P« = 0.95 we denote the required value of 5 by

the symbol 5(tr,95) and call it “the 95 percent

fiducial value of 5 corresponding to the given

value of O',” because there are 95 chances in 100

that the S.D. of the sample is greater than

5(<r,95) for the given value of «r.

Now it so happens that in the incomplete

gamma function to which Eq. (30) reduces, 5

and a occur only in the ratio s : a. This ratio

will of course be a function of Ps for a given

value of n. If, then, for P, = 0.95 this ratio be

denoted by I//9B, Eq. (30) gives

j
^n/2/296

( e~^dx
r[K«-i)]-'a

= r„/ 2/9B[K« - i)]/r[§(«- 1)] = 0.05, (34)

from which the numerical evaluation of /96 for

different values of n can be accomplished. When
«<9, the most satisfactory method seems to be

to integrate in series, retaining enough terms to

give the accuracy desired, and then to solve for

«/2/^95 by any scheme that happens to be

suitable for finding the numerical roots of the

resulting algebraic equation. When «>9, inter-

polation in the Tables of the Incomplete Gamma
Function^^ by means of a central difference

formula will give 7 place accuracy. Values of /9s

obtained by a combination of these methods are

shown in Table III for n running from 2 to 25.
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These values of /gs provide the reciprocal

relation between the S.D. of the parent popula-

tion and the S.D. of the sample that has been

described above: when a sample of n shows a

S.D. s, there is only 1 chance in 20 that the S.D.

of the parent population whence it came can be

greater then/gg^, and conversely, if the S.D. of a

parent population is <r, there are 19 chances out

of 20 that the S.D. of a sample of n drawn
therefrom will be greater than

The notion of fiducial values can ecisily be

extended to the probable error of the mean of n
observations, for if there is only 1 chance in 20

that the S.D. of the parent population is greater

than /gs5, there is the same chance that the

probable error of the mean o"f observations is

greater than

r(5,S) = 0.674 • • -/gsVV »^ <t>9bS, (35)

which may accordingly be termed “the 5 percent

fiducial value of r corresponding to the given

S.D. s.” The factor 0.674- •

-/gg/V « is denoted

by 0gB, as just indicated, and its values for n

between 2 and 25 are listed alongside the values

of /gg in Table III. The factor <^gg gives a very

useful relation, because although the value of a,

and hence that of r, may be unknown, we can

be “19/20 sure” that r is not greater than r(^,5)

as calculated in the last equation. Thus, to go

back to the 10 observations previously under

consideration, since their S.D. is 0.00355 there is

only 1 chance in 20 that the probable error of

their mean x is greater than 0.3699X0.00355
= 0.00131. The values of <f>gg in Table III make
the calculation of 5 percent fiducial values of r

a very simple matter.

With the notation here introduced, extension

to other fiducial points can be conveniently

accomplished. Thus with some value of Pa other

than 0.95, the subscripts for / and 4> can be

changed to the new percentage; likewise c{s,5),

s{(T,95), r{s,5) can be rewritten to correspond

with the new value of P,. In particular, the 50

percent point is of special interest, for it cor-

responds to the median of Helmert’s distribution

of s, as is evident from a comparison of Eqs.

(19) and (30). The values of I//50 are accordingly

just those ratios of sja that were labeled 1//

in Eqs. (18), (19), and Table I, and the cor-

responding factors <^gg = 0.674 ••
-/go/Vw are

just those that were denoted by <f> in the pre-

ceding section. The median of Helmert’s curves

is so frequently used that for brevity and con-

venience the subscript 50 will ordinarily be

omitted, so that except when emphasis is desired,

/go and 0go will appear simply as / and cj>.

Values of /go for n between 2 and 25 are shown

in the second column of Table III; these are,

of course, simply the reciprocals of l//in Table I.

Alongside these are shown the factors <^go

= 0.674- • -//V «• (Later on, (f)S will have still

another significance, and it will be convenient

to have <^go retabulated in Table IV for com-

parison with two other functions yet to be

introduced.)

When the S.D. of a sample of n turns out to

be s, there is an even chance that <r</5, and

Table III. Fiducial values of <r and s. Multiplying
factors for getting the 5 and 50 percent fiducial values of <r,

and the 5 and 50 percent fiducial values of the probable
error r, corresponding to a given S.D. i in a sample of n.

fn is defined as the ratio of the 5 percent fiducial value of <r

to the observed value of j. /as is obtained by setting

F, = 0.95, whereupon Eq. (30) gives

1 C"/2/^96 ,

1 = 0 05 1341

The 5 percent fiducial value of a- is /asi, and the 5 percent
fiducial value of r is accordingly

r(5,5) =0.674- - -/asW « = <#>9ss. (35)

The odds are 19 : 1 that r is not greater than ipas. /so

and <^60 (or simply/ and 4>) are defined in a similar manner
by setting Pa = 0.50. l//so is then just the median value of

s/a, and has already been given in Table I. The odds are

even that r is not greater than r(s,50) = <t>hoS, which is the

50 percent fiducial value corresponding to the given

S.D. s.

n fbO 050= 0.674. . ./s«/V w fib 095= 0.674. . ./9s/V S

2 2.096 716 1 22.552 803 10.756 2497

3 1.471 008 0.572 8587 5.353 057 2.084 5706

4 1.300 244 .438 5007 3.371 735 1.137 1005

5 1.220 476 .368 1455 2.652 372 0.800 0640

6 1.174 244 .323 3389 2.288 667 0.630 2057

7 1.144 059 .291 6586 2.068 899 .527 4310

8 1.122 797 .267 T514 1.921 235 .458 1533

9 1.107 009 .248 8888 1.815 807 .408 0230

10 1.094 821 .233 5170 1.734 191 .369 8896

11 1.085 127 .220 6783 1.670 828 .339 7901

12 1.077 232 .209 7462 1.619 586 .315 3470

13 1.070 678 .200 2916 1.577 196 .295 0457

14 1.065 150 .192 0093 1.541 478 .277 8745

15 1.060 424 .184 6755 1.510 922 .263 1308

16 1.056 338 .178 1222 1.484 443 .250 3104

17 1.052 769 .172 2201 1.461 245 .239 0418

18 1.049 626 .166 8682 1.440 730 .229 0455

19 1.046 836 .161 9858 1.422 439 .220 1062

20 1.044 343 .157 5083 1.406 Oil .212 0553

21 1.042 102 .153 3825 1.391 165 .204 7596

22 1.040 077 .149 5648 1.377 670 .198 1113

23 1.038 238 .146 0186 1.365 341 .192 0227

24 1.036 560 .142 7132 1.354 027 .186 4220

25 1.035 023 .139 6225 1.343 599 .181 2487
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that r^4>s. This statement is only a repetition

of relation (b) in the previous section, but it is

now seen that the even odds that were obtained

by placing the line EE in Fig. 10 at the median

is only one of an infinite set of odds that can be

laid on pairs of values of a and 5 through the

fiducial relation. In practice, it has been found

that the odds 1 : 1 and 19 : 1, given by /so and

/gs, will yield sufficient information. Thus,

although we may know nothing beforehand

concerning <r, we can by a glance at Table III

say that the probable error of 20 observations

is as likely as not to be greater than 0s = 0.1585,

but that there is only 1 chance in 20 that it is

greater than 09s5 = O.212 5. Since these two mul-

tiples of 5 are so close together, we can be fairly

confident that the probable error of the 20

observations is in the neighborhood of 4>s. On
the other hand, while the probable error of 3

observations is as likely as not greater than

0.573 5, it has 1 chance in 20 of being greater

than 2.085 On account of the disparity between

these last two multiples of s (they differ by
alrriost four -fold, we should be extremely

cautious about assigning any value to the

probable error of 3 observations, on the basis of

their S.D. alone.

It is interesting to note from Table III that

the values of /go and /gg are widely different when

n is small, but that they both approach unity

monotonically and are not so greatly different

toward the end of the table. The approaching

coincidence of /go and /gg is, of course, brought

about by the tendency of the Helmert curves to

become more and more concentrated about the

abscissa 5/ 0- = 1 as n increases, as is illustrated

by the curves in Fig. 4. This shows that as n

increases, the fluctuations in 5 are confined

more and more to a narrow band about <7 .

§4. The Estimation of the Probable Error

(4a). Introduction

R. A. Fisher^ has divided the problems of

statistics into three classes: (a) the specification

of the form of the frequency curve of the parent

population, and of the necessary parameters;

(b) the distribution of various properties (means,

errors, standard deviations, etc.) of samples

drawn from a given parent population; (c) the

estimation of the parameters of the parent popu-

lation from information provided, at least in part,

by the sample. The first and second class can be

handled independently of the third, but the third

is intimately related to the others. In this treat-

ment of the theory of errors, the problem of

specification was disposed of by making the

assumption that the parent population of ob-

servations is normal. The simultaneous dis-

tribution of errors and standard deviations in

samples was then found, and certain deductions

were drawn from it.

These deductions are most conveniently ex-

pressed in terms of the u, s, z, and X tests, and

by means of the fiducial relation between cr and 5
,

which have been described in the preceding

sections. These tests lead to statements such as

the following, ^‘If the S.D. of the parent popu-

lation is O', then there is not more than one

chance in 100 that the error in x could be as

large as the proposed value of u,” or “It is an

even bet that the error in x is not more than
(5.” Such statements are entirely objective, and

involve none of the risks of estimation. These

tests make no pretense of estimating cr; the u

test, for example, though it depends on a, simply

finds the odds against the occurrence of an error

as large as or larger than the proposed error, and

the odds so found will of course vary as a varies.

The parent population of observations is, by

assumption, normal, and is therefore cornpletely

specified by the three parameters v, u and a.

When a set of n observations is taken, their

mean x differs from u by an unknown error u.

Odds against the occurrence of an error as large

as or larger than a given magnitude can be found

by the u test, but, as has been noted, the results

of this test depend on the value of a chosen for

the purpose. Clearly, then, it is desirable to use

a value of a that is as close as possible to the

actual S.D. of the parent population. It is the

purpose of any process of estimation to provide

a value of a that will make the u test valid, or,

what is the same thing, to provide an estimate

of the probable error of x.

The problem of estimation has necessarily been

deferred to the last, since it is a process of at-

tempting to reckon from the sample back to the

parent population, and therefore depends on the

distribution of u and 5. It is a problem that

involves all the entanglements of induction.
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There are three methods of attempting to say

something about the parent population—max-

imum likelihood, empirical or arbitrary schemes,

and the posterior method. The first two disregard

all prior knowledge and base the estimate purely

on the sample. The last one utilizes the methods

of Bayes and Laplace to combine previous ex-

perience or knowledge with the information

contained in the sample. As the size of the sample

increases, the results provided by all these

methods become indistinguishable. The three

methods will be treated here in the order named.

(4b). Maximum likelihood

It is evident from Helmert’s Eq. (14) and the

curve for « = 6 in Fig. 3 that when a sample of n

is drawn from a parent population having a

certain S.D. <r, the S.D. 5 of the sample may lie

anywhere between 0 and
,
whether cr be large

or small.*- It is further evident that a sample of

S.D. s may have come from any one of an infinite

number of parent populations. Out of this

infinity of parent populations there is a particular

one that is most favorable to the given sample;

that is, there is a particular one for which the

probability of drawing a sample of S.D.

is greater than for any other parent population.

To arrive at this particular one, Helmert”

simply found the value of a that makes y in Eq.

(14) a maximum for the given value of 5 by

setting dyjda = The necessary relation between

5 and <7 is easily found to be

<r = 5[^»/(«— 1)3*. (36)

' This value of cr, which will be called ffj, may
be adopted as an estimate of the unknown S.D.

(T of the parent population. When it is substituted

into Eq. (13) and used with the definition of 5

in Eq, (5)', it gives

r, = 0.674- • •5/(« — 1)*

= 0.674- •• 1)3* (37)

for an estimate of the probable error r oi n

equally reliable observations. The subscript s,

attached to any quantity such as u or r, signifies

that the quantity is an estimate derived from the

sample alone. The factor 0.674- ••/(»— 1)* is

Since the least count of any measuring instrument

must be finite, the S.D. of a sample will in practice have
an upper limit.

tabulated in the second column of Table IV for

n between 2 and 25.^*

Eq. (37) is a familiar formula. In textbooks

it is usually called the “formula for the probable

error,” but it should be carefully noted that this

is a misnomer; rs is not the probable error r of x,

it is an estimate of r, and only one of many
possible estimates. Failure to realize this is very

likely responsible for the disrepute of “probable

error” in some quarters. Just as x is an estimate

of fly and is subject to statistical fluctuations for

which r is a convenient measure, so is an

estimate of r, and is similarly subject to statis-

tical fluctuations the measure of which will be

described presently. When n is small these fluc-

tuations are serious. As n increases, they become

less and less bothersome, for we have seen from

the curves of Fig. 4 that as n increases 5 becomes

more and more restricted to the neighborhood of

<7 , so that the estimate r, becomes more and

more restricted to the true probable error r.

The introduction of the factor [«/(»— 1)3* in

Eq. (37) is called “Bessel’s correction,” since it

seems to -have been first used by Bessel. The
history of just how and when he derived it is at

present obscure. The process that Helmert used

in deriving Bessel’s correction has been named
by R. A. Fisher^’ the “method of maximum
likelihood,” and the estimate so obtained the

“optimum value”; Eq. (37) then gives the

"optimum estimate of r.” Another interpretation

of the relation between 5 and a in Eq. (36) will

be given in the derivation of Eq. (42).

(4c). Empirical estimates

There are other methods of attempting to

reckon from the sample alone what the S.D. of

the parent population actually was. One might

arbitrarily assume that the observed S.D. s of

the sample is the average of all those that would

be observed if a very large number of samples

were to be drawn. Geometrically this is equiva-

lent to placing the observed value 5 at the mean

s of the S.D. frequency curve (Eq. (14) and Fig.

3). If this is done, the estimate of a is, by Eq.

(16),

R. A. Fisher, Messenger of Mathematics 41, 155-160
(1912).

R. A. Fisher, Proc. Camb. Phil. Soc. 22, 700-725

(1925): 26, 528-535 (1930); 28, 257-261 (1932).
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<r, = 5V {njlir) 5 )

-^sl{\-ijAn-Vi2n^ ) (38)

and by introducing this into Eq. (13), the cor-

responding estimate of the probable error r is

r, = 0.674- • -W (1/27t) |). (39)

We shall call this the “mean estimate of r”
The factors multiplying 5 have been worked out

by Lola S. Deming for n running from 2 to 25

and are shown in the third column of Table IV

Another possibility is to assume that if more

samples were to be drawn, as many would be

found with S.D. >s as have S.D. <s. Geomet-

rically this is the same thing as arbitrarily

placing the observed S.D. at the median s = a/f

of the S.D. frequency curve; hence this estimate

of (7 is fs, and by Eq. (13) it leads to

= 0.674 •• •/s/V« = 4>5 (40)

for the corresponding estimate of r. We call

this the “median estimate of r.” It is identical

with the 50 percent fiducial value of r. It will be

recalled that in the discussion of the median,

f was defined by Eq. (18), and that values of 1//

and / (or /so) have been shown in Tables I and

Table IV. Factors that multiply s to get various estimates of
the probable error r of n observations.

The “optimum estimate,”

r. = 0.674- • -i/VCw-l). (37)

The “mean estimate,”

r. = 0.674---W(l/27r) |). (39)

The “median estimate,”

r, = 0.674 •• •/i/Vw = <#>-t. (40)

n ,0.674... /V{n-1)
0.674... V( 1/2 7t)

XB(U«-1). i) 4> =0.674...//V»

2 0.674 4898 0.845 3475 1

3 .476 9363 .538 1650 0.572 8587
4 .389 4168 .422 6738 .438 5007
5 .337 2449 .358 7766 .368 1455

6 .301 6410 .317 0053 .323 3389
7 .275 3593 .287 0213 .291 6586
8 .254 9332 .264 1711 .267 7514
9 .238 4681 .246 0183 .248 8888
10 .224 8299 .231 1497 .233 5170

11 .213 2924 .218 6829 .220 6783
12 .203 3663 .208 0348 .209 7462
13 .194 7084 .198 8026 .200 2916
14 .187 0698 .190 6985 .192 0093
IS .180 2650 .183 5101 .184 6755

16 .174 1525 .177 0772 .178 1222
17 .168 6224 .171 2761 .172 2201
18 .163 5878 .166 0099 .166 8682
19 .158 9788 .161 2011 .161 9858
20 .154 7386 .156 7871 .157 5083

21 .150 8205 .152 7168 .153 3825
22 .147 1857 .148 9477 .149 5648
23 .143 8017 .145 4446 .146 0186
24 .140 6408 .142 1774 .142 7132
25 .137 6796 .139 1209 .139 6225

III respectively. The factors = 0.674 •• •//>(«

have also been given in Table III, in the column

headed 0so- For ready comparison between

median, optimum, and mean estimates, <p is

again listed in Table IV.

There are other possibilities without number.

Only two more will be mentioned. One is to

place the observed S.D. at the mode (maximum)
of the S.D. frequency curve; this leads to

r, = 0.674•••^/(«-2)^ (41)

which may be called the “modal estimate of r.”

Another is to assume that the observed is

the mean square of all the standard deviations

that would be obtained fropi a very large number
of samples. It is a simple matter to prove by
Helmert’s equation that the mean square of the

standard deviation in a very large number of

samples is o-^(w — l)/w. Thus, using Helmert’s

Eq. (14),

s^= f s^(s/o-)”~^ exp (
— ns^/2a^)dsj

^00

I
(5/ 0-)””^ exp ( — w5^/2ct^)<75

(

w+ l\ / /w-l\—
jj
Yy^^ = a\n-\)ln.

.

• (42)

This scheme of estimating a brings in the factor

{n—\.)ln and therefore leads to none other than

the optimum value, and the corresponding

estimate of r is identical with Eq. (37).

It is not necessary to know the distribution

of standard deviations in samples in order to

find the mean square standard deviation ; it can

be found by writing Eq. (9) for each of a large

number N oi samples of n items each, and adding

the N equations so obtained. This procedure

gives

N n N N

11 I 1

{\/Nn)^i:e?={\/N)Y.s^+ (\/N)^u\
11 1 1

The left-hand side of the last equation is the mean
square (true) error in N samples, and is therefore
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(7*. The first term on the right is 5^, the mean
square value of s, and the last term is the mean
square error of the means of the N samples,

which by Eq. (12) is simply <r^/n. So we have

a^ = s^-^a^/n
or _

s^ = a^{n — \)ln,

as before. This is the method adopted in some
textbooks for the derivation of Eq. (37)^

Usually, however, the texts forget to warn the

reader that it is only the average value of 5* that

is equal to — 1)/«; the S.D. 5 of any one

sample may give an estimate that differs con-

siderably from the true value. Further, the

texts usually do not mention the fact that this

is only one of many possible methods of esti-

mating r.

It is evident from a comparison of the columns

of Tables I and IV that the optimum, mean,

median and modal estimates are approaching

coincidence as n increases. Table I and Fig. 4

have already shown that the mean, median, and

mode on Helmert’s curve approach <r as »

increases, and that the values of ^ become

restricted practically to a very small range near

the abscissa 5 = <r. So when n is very large, a

may be equated to s[n/{n— \)~\^, or, closely

enough, simply to s, with considerable confidence.

(4d). Fluctuations in estimates. The r.m.s. error

in an estimate of r. Significant figures

Estimates of r made by maximum likelihood

or any empirical method are subject to the

statistical fluctuations of sampling. Just as there

is no way of judging how much significance dare

be attached to the mean x of a sample without

knowing the r.m.s. fluctuation c/V « (i.e., the

S.D.) of the means of such samples—or what
amounts to the same thing, their probable

error r—so there is no way of judgirig the sig-

nificance of an estimate of <r or of r without

having some idea of the r.m.s. fluctuation of

such estimates. It is therefore desirable to study

the precision of estimates of the probable error.

Every method for estimating a from the

sample alone places

a a = (43)

where w is some function of n that approaches

unity as n increases. This proposed relation

between 5 and a gives, from Eq. (13),

rs = 0.674- • = (44)

for the corresponding estimate of r. The error in

writing Va for r is

— r= (0.674- • /V«)(w5— <r). (45)

If this were written. for an indefinitely large

number of samples, the mean square error com-

mitted would be the average of {ra — rY taken

over all samples. Now yds in Eq. (14) is the

number of samples having S.D. ds, so with

this it is easy to write down the contribution

from each interval ds between 5 = 0 and j=

toward the sum of (r» — r)^. The sum of all these

contributions divided by N is the desired average

of {ra— ry-, wherefore

(r,-f)2 = (1/iV) (0.674- - -/V«)'
f

{o^s-oYyds

= (1/iV) (0.674- - -tr/V«)=' f {l-2o:s/a-\-oi^sy<T^)yds.

The three integrations that arise from the three terms in the parenthesis correspond, save for constant

factors, to the integrations that would be used for computing the zero, first, and second moments of

the area under Helmert’s curve, Eq. (14), all of which have been found. The zero moment is of

course unity; the first moment or mean is 5 and is given by Eq. (16); and the second moment is

s^= a^{n—V) /n, as was found in Eq. (42). Whereupon it follows that

and that the

(r^— r)^ = r^{ 1 — 2co5/ o--|-w^(w— 1)/«)

,

r.m.s. error in writing Ts for r

l-2coV<r+ w2(w -!)/«!».

(46)

r

(47)
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For convenience, the right-hand member of this equation will be designated by the letter F.

For the optimum estimate of r, w = [«/(w — 1)3^ so the r.m.s. error in the classical formula Eq.

(37) is, in units of r,

{2-2(J/cr)V[n/(«-l)]}^={2-2V[27r/(w-l)]/5[i(«-l),|]P

->{2(«-l)!-i{l-l/16(w-l) }. (48)

The gamma functions come from the value of 5

given in Eq. (16). Helmert^^ published this

result in 1876. It was to this end that he derived

Eq. (14).

Eq. (47) gives the r.m.s. error of any estimate

of r in fractional parts of r. But when r is un-

known, we have only Tg, and this increases and

decreases with w. Hence it would be interesting

to express the r.m.s. error of an estimate in

units of Ts. To accomplish this it is only necessary

to multiply Eq. (47) through by r a

j

Accordingly the

r.m.s. error in writing for r

={aloiS)F, (49)
r,

F being, as already noted, the expression in w

on the right-hand side of Eq. (47). We shall call

the expression {(j/ws)F, just derived, the pro-

portional r.m.s. error in and shall abbreviate

it “p. r.m.s.” error. It has its minimum value

when w = a/~s, as is easily found by equating to

zero the derivative of (o-/a)5)F with respect to w.

This result shows that the mean estimate of r,

given in Eq. (39), has the smallest possible

p.r.m.s. error.

Like a and r, the p.r.m.s. error (<r/cos)F can

only be estimated from a sample; its true value,

as far as can be learned from the sample, remains

unknown. Now it so happens that the estimate

of {<t/us)F is simply F, since the estimate of a

is cTj, and <r«/ws is unity by Eq. (43).

We therefore have shown that

F=\l-2ws/<T-ho3‘^{n-l)/n}i (50)

is not only by Eq. (47) the r.m.s. error in rj, in

units of r, but that it is also the estimated p.r.m.s.

error in r^.

To get the estimated p.r.m.s. error of the

optimum (classical) estimate of r, we put

to={«/(»— l))i in the expression just written

for F, and for the mean estimate we put co = <r/s.

The numerical values of Ffor these two estimates

are given in Table V for n running from 2 to 10.

The estimated p.r.m.s. error F in either estimate

of r is seen to be roughly 25 percent when n = 9,

and it increases rapidly as n decreases. Evi-

dently, then, an estimate of a is subject to rather

violent fluctuations when n is very small.

In the last column of Table V are shown values

of l/[2(»— 1)3^ for comparison with the second

and third columns. Evidently \/[_2{n— \)~\^

comes about midway between the optimum and

mean values of F\ it is a little larger than the

former and a little smaller than the latter. It is

perhaps a good enough approximation for either

estimate even down to w = 2 and 3, since little

significance can be attached to such small samples

anyway. The values of F in the second and third

columns of Table V clearly approach those of

l/[2(«— 1)3* in the last column. It should be

mentioned that Helmert in his 1876 paper” gave

a three-place table of F for the optimum estimate

running from n = 2 to w = 8, and compared it

with l/[2(«— 1)3*.

On account of certain considerations arising

from the notion of maximum likelihood, it is

probably safe to say that when an estimate of r

is to be made from the sample alone, there is no

better procedure than the classical one of using

the optimum estimate, Eq. (37). We have here

discussed other ways of estimating the probable

Table V. Values of

F=\\-2ors/a-\-w‘{n-\)/n\^ (50)

for the optimum (classical) and the mean estimates of the

probable error. Comparison with 1/ [2 (» — !)]*. For the

optimum estimate, 03 = [«/(« — !)]*. For the mean estimate,

co = o-/5 = V \nl2ir) B[§(« — 1), I].

n
F

optimum
F

mean l/[2(«-l)]*

2 0.635 7915 0.755 5106 0.707 1068

3 .477 0180 .522 7231 .500 0000
4 .396 6920 .422 0157 .408 2483
5 .346 4517 .362 9993 .353 5534
6 .311 3427 .323 2123 .316 2278
7 .285 0656 .294 1050 .288 6751
8 .264 4600 .271 6367 .267 2612
9 .247 7471 .253 6224 .250 0000
10 .233 8406 .238 7648 .235 7023
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error mainly to emphasize the fact that all of

them are subject to fluctuations arising from the

sampling distribution of ^ as given by Helmert

in Eq. (14).

If n is so large that the sampling distribution

of 5 (Helmert’s Eq. (14)) can be considered

normal, its area can be divided into quarters

that for practical purposes are symmetrically

situated about the mean. An estimate of r then

has a probable error, and since the curve is.

normal, this probable error will be 0.674- ••

times the S.D. or the r.m.s. fluctuation. But we
have already observed from Table V that the

r.m.s. errors in the optimum and mean estimates

approach l/[2(«— 1)]^ and when n is large

enough for one of these estimates to have a

probable error, any of the other possible esti-

mates that have been considered would have

practically the same r.m.s. error; hence we can

say that when a probable error of an estimate

of the probable error r exists, its estimated value

is 0.674- - -/[2(« — l)JVs, that is, the

estimated probable error in

= 0.674 - - - r«/[2 («- 1)]5 = yr,/V (w - 1) , (51)

7 having the value 0.674- - -/V 2 = 0.4769- • - as

in Eq. (29). This is often loosely called “the

probable error of the probable error.” Strictly,

the probable error r has no probable error, since

it is a definite, though“perhaps unknown, mag-

nitude for any set of n observations. The esti-

mate rs made from the sample alone does, how-

ever, always have a r.m.s. error, but cannot have

a probable error, as just explained, unless n is so

large that the distribution of 5 is practically

normal. This condition is perhaps approached

closely enough when « = 20, but of course no

definite line can be drawn there. Now either

from choice or circumstances, 20 is about as

large a number of observations as physicists are

in the habit of taking, so that only rarely does

an estimate of r actually have a probable error.

It therefore seems best to deal exclusively

with the estimated p.r.m.s. error of r,, which

has been designated by the letter F in Eq.

(47), calculated in Table V, and which is well

enough approximated by the simple expression

l/[2(w — 1)]L Accordingly, the mean of n ob-

servations, together with either the optimum or

the mean estimate of the probable error.

should then be written

x±rs(l±l/[2(«— l)]i).

In so doing, it is important to remember that

although Ts is the estimated probable error in x,

the quantity 1/[2(m — 1)3^ is the estimated pro-

portional r.m.s. error in

Only when n is large can any reasonable degree

of belief be placed in an estimate of r. For this

reason a statement of the estimated probable

error r, is by itself of little use; we require also

the source of this estimate and whether it be

from 5 observations or from 25. If it is from 5

observations we know immediately that it is

subject to an estimated p.r.m.s. error of over

one-third and it must therefore not be taken too

seriously. One way of overcoming this difficulty

is to bring in prior knowledge by the methods

to be outlined later, but this is not always

feasible nor possible. On the other hand, if the

estimate is made from 25 observations, some
significance can be attached to it. In publishing

an estimate made from a sample alone, either n

or the estimated p.r.m.s. error should be stated.

Thus, the result of the 10 observations made on

a micrometer, previously considered, should be

written

1.0760±0.0008(1±0.24)

or

1.0760±0.0008, (10 observations).

Either line conveys the information that the

estimated probable error is subject to consider-

able doubt. The estimated p.r.m.s. error tells

how many figures are significant in r^, and in

turn tells how many are significant in x. A
proper appreciation of these principles is essential

when correcting data for systematic errors, or

when drawing any conclusion from experimental

results.

(4e). The posterior method. The prior and
posterior curves for a

Estimates of cr obtained by maximum likeli-

hood or by any empirical method are based on

the sample alone and hence are subject to

statistical fluctuations. They take no account of

knowledge concerning <r that may exist in varying

amounts before the sample is taken. The confi-

dence that any one places in an estimate made
by one of the foregoing devices will depend in
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some manner on his previously formed ideas

concerning the range in which cf lies and on how
large the sample is. As n is indefinitely increased,

previous experience and ideas are gradually and

unconsciously relegated into insignificance.

The posterior method of reasoning combines

prior knowledge with the information contained

in the sample. It is applied in a qualitative way
quite generally. Everyone who thinks to himself,

“This result seems higher (or lower) than I had

for good reasons expected to find it; I wonder

therefore if by chance it is not too high (or too

low),” is combining prior knowledge with new
information provided by the sample and is

therefore employing, qualitatively, the posterior

method.

Prior^^ knowledge concerning a may range

from none at all to the ability to place it within

very narrow limits. As an example of the latter

situation we may cite cases where it is possible

to make a long series of measurements (perhaps

a hundred) on a single magnitude. The S.D. of

this long series multiplied by (100/99)^ may
confidently be adopted as the correct value of a

for computing the probable error of subsequent

shorter series of observations made with the

same instrument and under the same conditions.

In such a situation, the value of cr is established

so definitely that the S.D. of the subsequent

small samples need not be computed at all, and

the uncertainties of trying to estimate a from

each one of them alone are eliminated.

At the other extreme stands the less fortunate

situation where nothing at all is known regarding

(j and where there is no hope of taking a longer

series of measurements under comparable condi-

tions in order to establish it. Between the two

extremes come more or less hazy notions, often

no more than enough to state wide limits

between which a must lie. At other times the

limits may be narrower.

These notions might be expressed graphically

in a probability curve, to be called a prior

existence curve, so drawn that the area between

any two abscissas is the probability of finding a

Prior knowledge can sometimes be obtained after the n
observations are taken as well as before. Our adjectives
relating to time are chosen for convenience to fit the usual
descriptions of the law of causality, but they may be
changed if desired.

Fig. 12. Prior and posterior estimates of a.

<b(a) VS. (j. The prior existence curve for a shows the state
of knowledge concerning the S.D. of the parent population
before a sample is drawn from it. In this example, o- is

known to lie with constant probability between 1 and 2.

p{a) vs. a. The posterior curve for a shows the
state of knowledge concerning the S.D. of the parent
population after a sample has been drawn and its S.D.
computed. Here, the sample was found to have a S.D.
of 3/2. The probability is no longer constant between 1

and 2, but becomes more and more concentrated about the
point a = s as n increases. The area under all curves is

unity.

between them. The total area under the curve

would then be unity, since a must lie somewhere
within the range of the curve. A simple curve is

shown in Fig. 12. Here it is supposed that a is

known to lie somewhere between 1 and 2, and
the probability that it lies in any intermediate

interval is proportional to the width of that

interval; hence the curve is flat. Such a prior

curve, having finite discontinuities at <r=l and
a = 2, would, of course, never be used in practice,

but it is a convenient one mathematically and
so will serve well for the first example.

In the situation where a long series of observa-

tions has provided rather definite information,

the prior existence curve would have nearly all

of its area enclosed in a narrow strip centered at

the S.D. of the long series. The exact shape of

the curve over this short interval would be

unimportant.

A horizontal line extending from very small

to very large values of a and including unit area

with the (J axis implies that the S.D. of the

parent population has equal probability in equal

ranges. Such a graph might seem to be the

appropriate prior existence curve in the absence
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01 any previous knowledge whatever concerning

the precision of a set of observations; but if

there is no knowledge concerning cr, then there

is none concerning In <r,
• •

•
; and if the

horizontal line expresses ignorance of <r, it must

also express ignorance of these functions of a.

But if a has equal probability in equal ranges,

then <T^, (T®, In (T, • • • do not have equal proba-

bilities in equal ranges of <r®, In cr, • • •. So it

appears hazardous to attempt to express mathe-

matically a state of complete ignorance con-

cerning cr. Nevertheless, Harold Jeffreys^® has

argued that the correct procedure in such cases

is to make the ordinates on the prior existence

curve proportional to o-~^, i.^., to assume that

In (T is uniformly distributed. Be that as it may,

it will be clear later that when the prior informa-

tion is so hazy that there is difficulty in ex-

pressing it, the posterior method is affected by
the statistical fluctuations of small samples

nearly as much as the estimates made by maxi-

mum likelihood or any empirical method, and so

is hardly worth the effort. Jeffreys’ curve is a

special case of one introduced by Molina and
Wilkinson in 1929, which will be studied later.

The quantitative application of the posterior

method of approaching the parent population is

always possible by Laplace’s generalization of

Bayes’ theorem^^-®* provided the state of prior

knowledge is expressed graphically or analyti-

cally in a prior existence curve. The process

involves only simple principles in the theory of

probability.

If 0(<r) is the ordinate on the prior existence

curve at the abscissa cr, then ^(<r) da is the prior

existence probability—the probability that the

S.D. of the parent population lies in the interval

aii^da according to the state of knowledge

Harold Jeffreys, Scientific Inference, Ch. 5 (Cambridge
University Press 1931); Proc. Roy. Soc. A138, 48-55 0932);
Proc. Camb. Phil. Soc. 29, 83-87 (1933); Proc. Roy. Soc.
A140, 523-534 (1933). Jeffreys’ arguments are disputed by
R. A. Fisher, Proc. Roy. Soc. A139, 343-348 (1933).
^‘'Thomas Bayes, Phil. Trans. Roy. Soc. S3, 370-418

(1763).
^ Laplace, Theorie Analytique des Prohabilites (1812).

Poisson, Recherches sur la Probabilite des Jusements
(1837).
” See also Edward C. Molina, Bull. Am. Math. Soc. 36,

369-392 (1930); Ann. Math. Stat. 2, No. 1, 23-37 (1931).
An excellent treatment of Laplace’s generalization of

Bayes’ theorem is in Ch. 5 of Thornton C. Fry’s, Probability
and Its E?igineering Uses (Van Nostrand, 1928). See also
Ch. 6 in Arne Fisher’s Mathematical Theory of Proba-
bilities (Macmillan, second edition 1922).

existing before the sample was drawn. Now if

the S.D. of the parent population is a, the

probability of drawing a sample having the

S.D. sAz^ds is, by Helmert’s Eq. (14), const.

Xa~^{s/aY~'^ exp {
— ns'^j2a^) ds. This is called the

prior productive probability of a. The probability

that the S.D. of the parent population lies in the

interval a±^da and that the S.D. of a sample of

n drawn therefrom will lie in sAz^ds is the

probability of a compound event, and will

therefore be proportional to the product of the

prior existence and the prior productive proba-

bilities, namely,

p da ds = const.

X(l>{a)a~^{s/a)”'~^ exp {
— ns^jla'^) da ds. (52)

We can imagine a surface of ordinate p plotted

on the orthogonal axes a and 5. Let us take a

slab of thickness ds at s, parallel to the p,a plane.

The equation of the curve made by this section is

p da = const. 4>{a)a~^{s/a)’^~^ exp {
— ns'^/2a‘^) da.

p da will- be proportional to the posterior proba-

bility of a, which is the name given to the

probability that the S.D. of the parent popula-

tion lies within the interval a±\da after the

sample is drawn and found to have S.D. s. The
factor of proportionality will be unity if the area

under the curve is unity, as it will be if the

constant is properly chosen. This is insured if

the last equation is written

4>{a) a~^ {s/aY~‘^exp {
— ns-/2a‘'~)

p da= da.

4>{<c) / (r)"“^ exp {
— ns~/2a^)da

(53)

When the constant factor in the equation of any

probability curve is so chosen that the total

area under the curve is unity, the equation is

said to be “normalized,” and the required

constant factor is called the “normalizing factor.”

It simply serves to identify unity with certainty.

As in the equation just written, the process of

normalization is. nearly always most conveni-

ently etccomplished by writing a denominator

identical with the numerator, and then inte-

grating in the denominator over all values of

the variable whose probability is being written.

The following example will illustrate the use

of the method and will exhibit some of its
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features. We shall suppose that before any

sample is drawn, a is known to lie between 1 and

2, and that equal intervals are equally probable

in this range. Then the ordinates of the prior

existence curve will be

4>{cr) = 0 0<cr<T

4>(<t) = 1 1 < cr < 2 -•

0(cr) = 0 2 < cr

(54)

The graph is shown dashed in Fig. 12. Now let

us suppose that a sample of 6 is drawn and

that its S.D. is computed and found to be 1.5.

Are all values of c between 1 and 2 equally

probable now? The posterior curve furnishes

the answer. Its ordinates are found by substi-

tuting the proper values of 0(tr), n, and 5 into

Eq. (53). The result is

p{cr) = 0 0 <(7<1

exp {
— ns'^lla-'^)

P((t) da = da
f^a~'^{s! aY~'^ exp {

— ns~l2a-)da

= 187.13cr“5 exp (-27/4<r2)d<r

\<a<2

p{a) = Q 2 < (T

(55)

The normalizing factor 187.13 was obtained by
using the Tables of the Incomplete Gamma
Function to evaluate the denominator in the

preceding line.

Eq. (55) is plotted in the same figure. Instead

of being flat, the posterior curve has a maximum.
Approximately half the area is included between

the abscissas 1.46 and 1.86, so the location of a

is now a little more definite than it was. The
area of the posterior curve would be more
concentrated, and a more definitely located, if

the prior curve had had a maximum near the

middle instead of being flat.

If n had been 24 instead of 6, the equation of

the posterior curve would have been

p{a) d(T = 33.371 XIOV-23 exp (-27/(7^) da,

\<a<2. (56)

This is also shown in the figure.. The area is

now much more concentrated in the neighbor-

hood of the maximum, so that with n = 24 we

should have a much better idea of where a

actually lies.

The posterior method fyrnishes a probability

curve for a by changing the prior existence curve

in accordance with the new information con-

tained in the sample. Before the sample was
drawn the probability was given by (\>{a)

;

afterward, by p(a).

The shape of the posterior curve changes more
or less as s changes; it is therefore not entirely

free from the statistical fluctuations of sampling.

Just how sensitive it is to variations in 5 will

depend on how large n is and on how definite

the prior information was; as one would expect,

when the prior curve confines a to fairly narrow

limits and n is not large, variations in 5 have

little effect; in fact if the prior information is

extremely definite, a very large value of n will

be required to affect noticeably the posterior

curve through changes in s. This is why the

value of a that has once been established by

means of a long series of measurements can be

used for subsequent shorter series; the standard

deviations of these shorter series need not be

computed at all because their influence on the

posterior curve would be negligible. However,

if the prior information fixes a only loosely, the

sample may influence the posterior curve con-

siderably, even when n is small. When n is large,

the posterior curve rises to a sharp peak at the

abscissa provided by maximum likelihood, irre-

spective of the shape of the prior curve. Further-

more, as n increases, the fluctuations in 5 become

inappreciable. It is therefore correct to say that

a value of a can be established by taking a long

series of measurements.

The form of the prior existence curve shown

in Fig. 12 is useful for illustration, but on

account of its discontinuities it lacks some of the

practical features of the curve proposed by

Molina and Wilkinson to be considered in a

later section.

(4f). Further remarks on the method of maxi-

mum likelihood

Before leaving the prior existence curve of

Fig. 12 it may be worth while to examine further

the position of the maximum of the resulting

posterior curve. Starting with a flat prior ex-

istence curve like that in Fig. 12, the maximum
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will always come at the abscissa <r = s\_nl {n —
This result arises, of course, from differentiating

with respect to <r the expression for p{(7) in

Eq. (55), holding 5 constant, and setting the

derivative equal to zero. The resulting relation

between a and 5 is independent of the denomi-

nator, which is merely a constant; hence this

relation is independent of the range over which

the prior existence curve extends, provided only

that it is flat. If the prior existence curve for a

were other than flat, the maximum on the

posterior curves would in general lie elsewhere,

because p{(j) da would no longer be given by the

right-hand side of Eq. (55) nor anything pro-

portional to it, but would be given by Eq. (53)

wherein 4>{a) would not be a constant but some

function of a.

Now the position of the maximum (or the

mode) on the posterior curve that comes from

using a flat prior existence curve for a turns out

to be identically the same relation between a

and 5 as was obtained in Eq. (36), which was

arrived at in our search for the parent population

that is most favorable (or most likely in Fisher’s

sense) to the S.D. that was actually observed in

the sample. It will be recalled that we arrived at

this most favorable parent population by differ-

entiating Helmert’s Eq. (14) with respect to a

and setting the derivative equal to zero; also

that we called this process the method of maxi-

mum likelihood, after Fisher. That the two

results—the position of the maximum on the

posterior curve and the application of the method
of maximum likelihood—must be identical is

evident from the fact that when the prior

existence curve for a is flat, 0(<r) is simply a

constant and the right-hand side of Eq. (53)

then expresses, save for a constant factor, the

same relation between a and 5 as occurs in

Helmert’s equation, so that we are really 'differ-

entiating the same function in both cases.

Because of this coincidence, the method of

maximum likelihood has often been described as

the process of finding the mode of the posterior

curve that arises from a flat prior existence curve.

This explanation, although it masks the true

nature of the notion of maximum likelihood,

would in itself do no harm were it not that by

implications it leads to misinterpretations. Thus,

as has been pointed out, the abscissa of the

mode of the posterior curve changes as the

prior existence curve changes, and the particular

abscissa a = s\n/ {n — is the mode of the

posterior curve in general only when the prior

existence curve for <r is flat; whence such an

explanation as proposed above leads innocently

to the statement that the method of maximum
likelihood is a posterior method and depends on

a uniform (flat) prior existence curve for the

parameter sought—in our case, a. But if we had

used some function of a such as a^, In <r,
• • •

in place of a as the equally spaced abscissas along

the axis of the prior and posterior curves, we
should likewise have found that, starting with a

flat prior curve for <r^, a^, In <r,
• •

• as the case

may be, the relation <r = s[w/(w— 1)3^ is not that

existing at the mode of the new posterior curve;

whereupon any uniqueness that the method of

maximum likelihood might have seemed to

possess now appears to have been an illusion.
.

The resolution of the difficulties that we are

led to by such an explanation lies in the realiza-

tion that the method of maximum likelihood is

not a posterior method at all. It is simply a

process for finding the parent population that is

most favgrable to the event that was observed

to happen—in our case a sample having S.D. s.

Obviously the answer to such a problem as

finding the most favorable parent population

should not, in fact must not, depend on the

choice of coordinates nor on any state of prior

knowledge, and it is interesting to note that if

Helmert’s Eq. (14) be expressed in terms of any

function of a, rather than in terms of a itself,

the result of setting the derivative with respect

to a or any function of a equal to zero is always

the same as that already found in Eq. (36),

namely, a = s\n/{n — \)lf. This invariance is a

general property of the method of maximum
likelihood, and the proof is very simple; if the

function f{x), continuous in any interval, be

expressed in terms of v so that f{x) — F{v) and

v = g(x) over that interval, we shall find that the

values of x that maximize or minimize f(x)

correspond through the relation v = g(x) precisely

to the values of v that maximize or minimize

F(v), provided dvfdx is neither 0 nor

A graphical illustration of the meaning of

maximum likelihood is provided by Fig. 13,

which shows three Helmert curves for n = 6. One
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SCALE FOR S/Sq

Fig. 13. Curves illustrating the meaning of maximum likelihood. A sample of n is drawn, and
its S.D. proves to be So. The S.D. <r of the parent population can be anything between 0 and «

,

blit the value <r = JoV (w/(w— 1)) is “most likely,” for this gives the greatest possible ordinate
at 5 = 5o on the frequency distribution curve for the S.D. of samples of n (Helmert’s equation).
The curves illustrate that the ordinate at s = So is higher when <r = ioV («/(w— 1)) than when
<r = So or (T = 5oV («/(w — 2)). With the latter value, the mode of the curve cornea at s = So. The
equation of the curves is

y as—

-

in which n has been placed equal to 6.

curve is plotted with the maximum likelihood

value of a, namely, a = Sa\_n/{n — \)'y‘, So being

the S.D. observed in a sample of n; and the

other two are plotted with slightly less and

slightly greater values of <r. At s = So, or at

V^o= 1, the ordinate along the curve having S.D.

a = So[n/{n — \)'}^ is clearly greater than the

ordinates of the two other curves. This fact

illustrates that out of the infinity of parent

populations that the sample could have come
from, that having the maximum likelihood value

of a is most favorable, since it gives the greatest

possible ordinate at 5 = 5o and therefore maxim-

izes the probability of drawing a sample of S.D.

(4g). The posterior method, continued. The
probability curve of the unknown mean,

and the calculation of the posterior

quartile deviation

One particular value of <r gives the u,s fre-

quency surface that was studied in previous

sections. A u,s frequency surface having its total

volume equal to unity but made up of contribu-

tions from several values of a would be a com-

posite surface. Its sections would no longer be

the u and s curves that were studied, since all

values of a under the prior existence curve for <r

make their contributions to the volume according

to their relative probabilities, which are desig-

nated by the ordinates <^>(<r).

To make the posterior method complete, it is

necessary to consider also the prior existence

curve for the mean ii of the parent population.

The prior curve for y., as well as that for a, will

have its effect on the composite surface.

We may take sections j = const, on this com-

posite u,s surface, just as before, but such

sections will not now be normal curves as they

were with the simple surface. We shall assume

that they are symmetrical, however; and we
shall define the “posterior quartile deviation”

r, to be the absolute magnitude of the u abscissas

that divide an 5 section symmetrically into

quarters. Sometimes, if not always, these ab-

scissas r, will vary as the s coordinate of the
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section varies, whereas with the simple u,s

surface the abscissas ±r cut all s = const, sections

symmetrically into quarters.

Mathematically manageable forms, allowing

sufficient freedom for any degree of prior knowl-

edge likely to be encountered, have been intro-

duced by Molina and Wilkinson^® for the prior

existence probabilities of the mean and the

S.D. <T of the parent population. They are

1

<j>((x)dff = <^(T, (57)
2^^r(ic+l)a

r 1

e{n)dtx =A\\+ — (
) dtx. (58)

L l+a^/ras^V 5 / J

a, b and c are adjustable constants. A can easily

be found by setting yi* 0 (m) 1, but its value

will not be needed.

Graphs of Eq. (57) with c = 3 and c=10 are

shown in Fig. 14. They are skew curves; the

mode comes at a/(c+3)^ and the mean at

[o/V (27t)J5(^(c-(- 1), I). The <r axis is tangent

to the curves at 0 and <», where it makes high

order of contact, so extremely small and ex-

tremely large values of <r are always excluded.

The larger c is, the narrower is the range in

which the greater part of the area is confined.

The two constants a and c permit whatever

concentration of area happens to fit the state of

prior knowledge and also permit the mean or

mode of the curve to be placed at will. It will be

noticed that if a = 0 and c=— 2, Molina and

Wilkinson’s prior curve for a reduces to the one

proposed by Jeffreys,^^ namely, (/>(<t) = const. o-~\

and that if o = 0 and c = — 3, we obtain the flat

prior existence curve = const.

Fig. 14. Molina and Wilkinson’s prior existence curve
for <r.

da (57)

a and c are arbitrary constants. The area included between
any two abscissas is the prior probability that a lies within

that interval. The total area under each curve is unity.

The curves here drawn with c = 3 and c=10 show that

increasing values of c correspond to increasingly definite

prior knowledge concerning the S.D. of the parent popu-
lation.

The prior curve for the mean is of the Student

type (see Fig. 5). It is symmetrical about the

mean x of the sample, so when b>0 this curve

implies that the mean of the sample is a pruri

to be preferred as the mean of the parent

population. When 6 = 0, the curve is flat from 0

to 00
,
meaning that equal ranges from — oo to

-foo are, a priori, equally probable. This is the

most conservative value of 6.

If M and a were known, the probability of

drawing a sample with S.D. and with

mean at xAz\dx would be given immediately by

Eq. (11), and can be written

y{x,s) dx ds = Ca~'^{s/aY~'^ exp
\_
— ns^/2<A — n(Jc — ny/2a^~\dxds. (59)

This is the prior productive probability of n and a.

The posterior probability of n and <r, i.e., the probability that the mean and S.D. of the parent

population lie in the ranges n±hdn and a±\da while the mean and S.D. of the sample lie in the

ranges x±^dx and is given, except for the normalizing factor, by the product of the prior

existence and prior productive probabilities as expressed in Eqs. (57), 158), (59). Finally, integration

of this product over all possible values of a gives the posterior probability of namely

ydix =
y’o” e{ti) (p{<r) y{x,s) da

^
dfJt din) y{x,s) da-

rn

E. C. Molina and R. I. Wilkinson, Bell Syst. Tech. J. 8, 632-645 (1929).
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This is the probability, after the sample of mean x and S.D. 5 has been drawn, that the mean of the

parent population lies in the interval yL±\dix. As usual, the denominator is simply the normalizing

factor. The constant C in Eq. (59) cancels, so its value need not be determined.

The integrations with respect to a in this fraction are easily performed when the prior existence

probability functions 0 (m) and have the forms suggested by Molina and Wilkinson. The result is

y djx = -

1

5 V {\-\-a^/ns‘^)B

L l+0-/w5^V 5 / J

-Kn+2+c+6)

dfx (61)

for the posterior probability of fi.

It is here convenient to replace the error x— ^ by its usual symbol u, dix by —du, and to denote

W+2+C+6 by T and the entire resulting expression by —q{u) du. Then

1 r 1

q{u)du = Id du (62)

is the posterior probability curve for the error u

when the S.D. of the sample is 5 .

This is the equation for a section 5 = const, on

the composite u,s frequency surface formed by
the contributions of all values of a in the assumed

d>{a) distribution. The posterior quartile devia-

tion, previously defined is then given by the

integral

since it must divide the jr = const, curve sym-

metrically into quarters. The value of r, will

then be expressed by

r, = 5/(l+a^/n5“)2 (64)

where t is a function of T only, and satisfies

T = n-\-l,-{-c-\-b.

The integral by which t is determined is of

the Student type; in fact t is just the value of f

given by Table II when the n in that table is

replaced by If the integral were equated to

The value of T to be used in Table II must not be
confused with the actual number of items n in the sample.
T and n are numerically the same only when 2-|-c-l-i) = 0,

as Eq. (65) shows. In the prior existence function assumed
by Jeffreys (footnote 33), c=—

2

and b = Q, and this

relation is satisfied. Since Jeffreys also assumed c = 0 we

0.80, 0.90, and 0.9973, the corresponding limits

would determine the posterior 80, 90, and 99.73

percentile deviations. These can be denoted by

r,(80), r,(90), r,(99.73). The posterior probable

error, or 50 percent error, could be denoted by
rg(50), but unless emphasis is desired it will

usually be written simply as r,.

Curves showing t as a function of T for the

four values of the integral of Eq. (65) are shown
in Fig. 15. The ordinates for the 50 percent

curve come from Table II
;
the others were kindly

furnished by Molina and Wilkinson. They show

a similar chart in their paper. The procedure is

very simple after the constants a, b, and c are

settled upon. It is only necessary to find t for

the abscissa T=n-\-2-\-c-\-bhy means of Fig. 15;

then to compute r, by Eq. (64).

It is interesting now to notice certain features

in the results that have been obtained. In Fig.

15 the ordinates for large values of T drop off

more and more slowly with increase in T, so

when n is large, t is not very sensitive to changes

in n, b, and c. Hence as ^ increases indefinitely,

t approaches coincidence with f regardless of b

and c. Further, as «—> <»
,
o^/w5^->0 and 1 +0^/ ns'^

-^1; therefore r^-^st^s^, which in turn ap-

have from Eq. (64) the further interesting relation that

Tq = ls = ^s. Thus when 0(<r) = const. /<r, the posterior

quartile deviation is numerically equal to what may be
called “Student’s 50 percent error” (see Table II and
Fig. 10c and the accompanying discussion). It should be
emphasized, however, that this is a mere numerical
coincidence and that the two quantities r, and fs have
very different theoretical meanings.
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T
Fig. 15. Chart for using Molina and Wilkinson’s prior existence curves. The ordinate t on any curve multiplied by

Syj (1+a^/wi^) gives the indicated posterior percentile deviation of u. The abscissa 7’=«+2+6+c; » = number in sample;

a, b, c are constants used in fitting Molina and Wilkinson’s curves to the prior knowledge.
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proaches r as a statistical limit. Thus the true

probable error will be attained as the sample is

indefinitely increased, irrespective of the prior

information, for the constants a, b, c then have

negligible influence.

When n is small, the situation is different, for

the value of t, and hence that of r,, will depend

considerably on b and c. Also if the term

a^lns^ in Eq. (64) will be important on account

of its stabilizing action for it will prevent r, from

fluctuating as widely as 5 does. But if a = 0, the

term a^lns^ will be absent, and r, will be pro-

portional to 5, and will therefore fluctuate with s.

This is the situation in Jeffreys’ assumption.®^’

The significance of r,(50) is that according to

our knowledge and beliefs concerning ju and a,

derived from all sources including the sample,

we are willing to lay even odds that \u
\

$rq.

The significances of rg(80), r,(90), and r,(99.73)

are similar except that the odds are 80 : 20,

90 : 10, and 99.73 : 0.27 that \u
\

<r,(80), r,(90),

and rg(99.73), respectively.

Tg is not the probable error of the mean of n
observations, nor is it an estimate of the probable

error, any more than fs is. r, simply provides

another statistical relation; it differs from in

that by taking account of prior information it is

not subject to fluctuations to the same degree

as 5 and ^s. It is interesting to note that Molina

and Wilkinson®® made 21 different assumptions

regarding the prior existence curves for n and <r

and thereby obtained 21 different values for the

posterior quartile deviation Tg. For a sample of

n = 5 the highest and lowest of these values of

y dsidsi • dsm = const. exp I

^ni+n2+* • •+ y

is the probability that the S.D. of the m series

will lie in the m ranges Si±|d5i, S2±^ds2 ,
•••,

Sm±hdSm while their means lie anywhere between
— CO and +CO. a is the same for all sets since

we are assuming that all the observations are

made under the same conditions as far as

Tg are closely in the ratio 2:1, which shows that

prior information may have considerable in-

fluence on Tg when n is small.

(4h). The estimation of a from several samples

We have seen that a value of <r can be estab-

lished by taking a long series of measurements

on a particular magnitude; if s is the S.D. of this

long series, we may with considerable confidence

estimate a to be s[n/{n — \)~\^{\±\/\_2{n — \)~\^).

If n is large the estimated p.r.m.s. error

l/[2(w — 1)J' will be small and the effect of prior

knowledge will be negligible. We may then use

this value for cr in calculating the probable error

of subsequent shorter series of observations

made under similar conditions.

Unfortunately it is not always practicable nor

possible to take a long series of measurements in

order to establish a value of a. Oftentimes,

however, there do exist records of many short

series of observations, all presumably made
under approximately the same conditions and

therefore all with practically the same precision.

In such cases it is desirable to have a method
for estimating <r from these several sets of

observations.

Let there be «i observations on the mean fx\, ti2

on the mean jj.2 ,
• •

, Wm on the mean Hm- Let the

means of these m series of observations be in

error by the amounts Mi, M2 ,

• •
•

, Um, and let their

S.D. be 5i, S2 ,
•••, Sm- By writing down the

probabilities of the occurrence of errors and

residuals after the manner of the development of

Helmert’s equation it is not difficult to see that

Ml5i®-fM2^2^+ • • •

|cf5ir752- •

-(ii,,, (66)
2(7® /

precision is concerned. It is cr that is to be

estimated. To accomplish this we can apply the

method of maximum likelihood—that is, differ-

entiate the above expression with respect to cr,

set this derivative equal to zero, and solve for

(7. The result is

Wi5i®+ M2S2^+ •
• +nmSj- Wl+ W2d l"«m

Mi+M2H \-n,n~m «i+W 2 H Vrim—m
(67)
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where
niSi^+ ri2Si^-\

= (68)
ni+n2-\ Vrim

s as here defined is just the S.D. that would be

calculated for the entire lot of W1+W2+ •••+??„

observations if each series of observations were

held rigid with respect to its own mean and the

m sample means moved into coincidence.

Eq. (67) gives the optimum estimate of cr,

found from the m series of observations. Its

estimated p.r.m.s. error is very closely l/[2(wi

+W2+ • •
• +Wm— w)(]^ which of course reduces

to l/[2(»— 1)]^ for a single set, as has already

been found in Table V. This optimum estimate,

together with its estimated p.r.m.s. error is then

statistically more reliable than an estimate made
from any one of the individual series of observa-

tions that make up the entire lot; it is also

statistically more reliable than an estimate from

a subsequent short series of measurements yet

to be made under the same conditions. We
should therefore not bother to compute the S.D.

of subsequent short series, but should rather

calculate their probable errors immediately by
Eq. (13) using therein the more reliable estimate

of a that comes from Eq. (67). There is, of

course, no reason why the S.D. of any short

series should not be combined with previous ones

to get a still more reliable estimate if such a

course seems advisable, and it should be noted

that the form of the middle member of Eq. (67)

is such that this is very easy to accomplish.

The point that we wish to emphasize is that

the S.D. of short series should not be used by
themselves if there is any way to avoid doing so.

An interesting special case is where measure-

ments are made in duplicate. Here Wi = W2 = Ws

= ---=Wm = 2, and m, the number of items

measured, is equal to |(«i+W2 -T ••• +»»£). Eq.

(67) then reduces to

<r8^= (^i^+52^H (69)

for the optimum estimate of a. The S.D. of any
pair of measurements is obviously just half the

difference between the pair. Now any single pair

of measurements constitutes a sample of 2 and

is by Table V almost useless for estimating cr,

but if several hundred items have been measured

in duplicate, the pairs of observations can be

combined and used in Eq. (69) to get a fairly

reliable estimate, since the r.m.s. error of this

estimate will be l/(2w)^.

As an example in the use of Eq. (67) we take

20 samples of 5 each from the 500 readings on a

spectral line that were made by one of us.*-^

The fact that all these sets of 5 readings were

observations on a single magnitude rather than

on distincfmeans uu M2 ,

• •
•

, M20 is of no conse-

quence in the application of Eq. (67) ;
there is

in fact an advantage for purposes of illustration

in having the 500 readings all on the same
magnitude, because after we estimate cr by means
of Eq. (67) from the 20 samples of 5 each we
shall have for comparison the still more reliable

estimate obtained from the entire 500. The 20

samples of 5 each were made up from the 500

observations in the following way: Readings

No. 1, 11, 21, 31, 41 constitute the first sample,

readings No. 51, 61, 71, 81, 91 constitute the

second sample, • •
•, readings No. 451, 461, 471,

481, 491 constitute the tenth, readings No. 2,

12, 22, 32, 42 constitute the eleventh, readings

No. 52, 62, 72, 82, 92 the twelfth, etc. The S.D.

and individual estimates of cr made by both the

optimum and mean formulas (Eqs. (37) and

(39)) are shown in Table VI. Here ni = «2 = ws

= • • • = 5 and m — 20. With the squares of the

S.D. in the second column Eq. (67) then gives

5 X 1336+5 X1976H [-5X1464
cr,2 = XlO-8

5+ 5H 1-5-20

1336+ 1976H hl464
= Xl0-« = 1517X10-*,

16

ct8 = 0.00389.

Here the estimated p.r.m.s. error is l/[2(wi+W2

+ • •
• +Wm— m)]' = 1/V 160 = 0.079, so we write

ct8 = 0.0039(1 ±0.08). (70)

The averages (r.m.s. and arithmetic) of the

optimum and mean estimafes in the fourth and

fifth columns of Table VI compare very favorably

with this result, but it is interesting to see how

the individual estimates in these same columns

fluctuate. Until the estimate of cr written in Eq.

(70) has been displaced by a still better one, the

probable error of the mean x of any one of the

20 series of 5 observations each, or indeed of
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Table W. An estimate of <r made from 20 samples of 5 each.

Comparison with the optimum and mean estimates of
<r made from the individual samples.

By Eq. (37) the optimum estimate of a is s[n/{n—\)ff
= l.llSOj when n = S.

By Eq. (39) the mean estimate of a is s{n/2ir)^ B{\{n — 1), |)
= 1.1894J when w = S.

Sample
No.

(S.D.)2 = i2

mm^ mm
Estimates of <r, in mm
Optimum Mean

xio- xio- XIO- xio-
1 1336 36.55 40.87 43.47
2 1976 44.45 49.70 52.87
3 0936 30.59 34.21 36.39
4 0256 16.00 17.89 19.03

5 0896 29.93 33.47 35.60

6 1064 32.62 36.47 38.80
7 0704 26.53 29.66 31.56
8 0200 14.14 15.81 16.82

9 0544 23.32 26.08 27.74
10 1056 32.50 36.33 38.65

11 3944 62.80 70.21 74.70
12 0256 16.00 17.89 19.03
13 3384 58.17 65.04 69.19
14 2296 47.92 53.57 56.99
15 0800 28.28 31.62 33.64

16 0704 26.53 29.66 31.56
17 0400 20.00 22.36 23.79
18 0776 27.86 31.14 33.13
19 1280 35.78 40.00 42.55
20 1464 38.26 42.78 45.51

Average

32.41*

* 38.95** 38.55+*

The optimum estimate of <r made from the 20 samples of 5
each is found from Eq. (67):

, ni5i^+n2^2^H
°

»i+n 2+ • +n„ —

m

5Xl336+SX1976+----h5Xl464_
5+5+---+5-20 ^

= 1
3364_1976+-+1464x i517 X 10-

16

O', = 0.00389 mm.

* arithmetic mean.
** root mean square.

any subsequent 5 observations taken under the

same conditions, should be written as

[0.674- • • X0.0039/V5](l±0.08)

= 0.0013(1±0.08), (71)

which makes use of the estimate of a furnished

by the 20 samples rather than by any individual

sample of 5.

In this particular example we have at hand
400 more readings, since we have used only

100 (
= 20X5) so far. When a is estimated from

the entire 500 the result is

(T3 = 0.003583(500/499)5[1±1/V2(500-1)]

= 0.00359(1 ±0.032). (72)

The figure 0.003583 is the S.D. of the 500

readings. The factor (500/499)^ is hardly neces-

sary, since n is so large. The previous estimate

of a furnished by Eq. (70) and used in Eq. (71)

should now be replaced by the estimate in Eq.

(72). In practice we are generally not so fortunate

as to have a series of 500 observations from

which to estimate a but must instead be content

to combine several small samples by the method

of Eq. (67); indeed, more often the estimate of

<r must be made from a single small sample. In

such a case, Eq. (67) reduces to Eq. (37), the

use of which has been discussed earlier.

§5. Conclusion

So far, we have dealt with methods for laying

odds on the error of the mean of a single sample.

The error of the mean has referred throughout

the paper to the difference between the mean of

the n observations in the sample and what the

mean would be if n were indefinitely increased.

We have therefore considered only accidental

errors. As was stated at the beginning of the

paper, no amount of analysis of a single sample,

regardless of how large it is, can of itself lead

one to suspect the presence of constant errors.

The parent population of errors, and any

sample therefrom, is one of accidental errors

only. The mean of the parent population is not

necessarily the true value of the thing being

measured ; it is displaced by an amount equal to

the sum of all the constant errors that happen

to be operating. Only by considering several sets

of observations (samples) from different arrange-

ments of apparatus or from different laboratories,

but supposedly made on the same unknown
magnitude or on the same function, can sta-

tistical tests indicate the presence of constant

errors.

A large portion of the work that has been

done in mathematical statistics during the last

few years has been directed toward the problem

of several samples, or toward the more general
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problem presented by observations on points in

the plane or in space when the true coordinates

would supposedly satisfy a given functional

relation. Statistical methods, together with the

necessary tables and charts for facilitating com-

putation, have been devised from the results of

recent advances in theory for getting a quanti-

tative answer to the important question of how
well or how poorly a proposed law of physics is

substantiated by experiment. This question, as

far as statistics goes, is closely related to the

detection of constant errors.

The theory and the method for handling

several samples is a more general problem, but

not necessarily a more difficult one, than the

treatment of a single sample. In order that safe

conclusions may be drawn from several series of

observations, it is essential that each series

receive correct statistical treatment, or none at

all. It follows that although a single sample

cannot by itself lead to the detection of constant

errors either with correct or incorrect treatment,

the statistics of a single sample must form the

background for the interpretation of several

samples. The present paper is the result of an

attempt to gather the elements of the statistics

of a single sample into one place for ready

reference, in order to promote the study of

general methods for the interpretation of ob-

servational data.
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