



*The World's Largest Open Access Agricultural & Applied Economics Digital Library*

**This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.**

**Help ensure our sustainability.**

Give to AgEcon Search

AgEcon Search  
<http://ageconsearch.umn.edu>  
[aesearch@umn.edu](mailto:aesearch@umn.edu)

*Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.*

*No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.*

## **Historic, Archive Document**

Do not assume content reflects current scientific knowledge, policies, or practices.

90  
2008

# Proceedings

ref 73



USDA  
NATIONAL LIBRARY  
SERIALS  
DIVISION

MAR 23 '89

ACO/SERIALS BRANCH

# OUTLOOK '89

65th Agricultural Outlook Conference  
U.S. Department of Agriculture  
Washington, D.C.

November 29 - December 1, 1988

# ANNUAL AGRICULTURAL OUTLOOK CONFERENCE

United States Department of Agriculture

Washington, D.C.



Outlook '89, Session #30

For Release: Wednesday, November 30, 1988

## FOODBORNE DISEASE: A LOOK AT A CONTINUING PROBLEM

J. Glenn Morris, Jr., MD, MPH&TM

Associate Professor of Medicine and

Epidemiology and Preventive Medicine

University of Maryland School of Medicine

### Introduction

Foodborne disease (i.e., disease caused by infectious agents or toxins in or on foods) is a topic of continuing concern to both producers and consumers. Given the number of different pathogens that can be associated with food, it is difficult to accurately assess the extent of the foodborne disease problem in this country. In a recent review, Archer and Kvenberg (1) estimated that there were between 24 and 81 million cases of foodborne disease per year in the United States. A somewhat more conservative estimate of 6,496,000 cases/year has been proposed by Bennett *et al* (2). Bennett's estimate is based primarily on data available for known foodborne pathogens such as *Salmonella*, *Campylobacter*, and *Staphylococcus aureus* (Table 1), and makes use of fairly well established multiplication factors for calculating incidence based on reported numbers of cases. The estimate of Archer and Kvenberg includes a broader range of potential pathogens, and uses somewhat more speculative factors in calculating incidence; the actual incidence of foodborne disease probably lies somewhere between these estimates.

Clinically, most of the major foodborne pathogens cause gastroenteritis (diarrhea, vomiting, abdominal pain). It should be emphasized, however, that symptoms of foodborne illness are not necessarily confined to the gastrointestinal tract. Pathogens such as *Salmonella* may get into the bloodstream (septicemia), particularly in older or debilitated patients or infants. *Yersinia enterocolitica* can cause mesenteric adenitis, producing abdominal pain that mimics appendicitis; *Streptococci* carried by food can cause pharyngitis. Botulism can result in neuromuscular paralysis, as can Paralytic Shellfish Poisoning. Enterohemorrhagic *E. coli* produce a toxin that can cause intravascular hemolysis and renal failure (the hemolytic-uremic syndrome). A patient's immune response to certain pathogens can also cause illness: some persons are predisposed to development of a reactive arthritis (Reiter's Syndrome) after infection with pathogens such as *Salmonella* or *Shigella*, while *Y. enterocolitica* has been implicated as a cause of erythema nodosum, polyarteritis, and a variety of other autoimmune conditions.

### A. Major Foodborne Pathogens

While we are still trying to define the role of some microorganisms in foodborne disease, several bacterial species have come to be well recognized as major causes of foodborne illness. As shown in Table 1, *Campylobacter* and *Salmonella* are probably the two most important of these.

TABLE 1: MAJOR FOODBORNE PATHOGENS AND THEIR ESTIMATED ANNUAL INCIDENCE

| ETIOLOGIC AGENT                | estimated cases/year |
|--------------------------------|----------------------|
| <u>Campylobacter</u>           | 2,100,000            |
| <u>Salmonella</u>              | 1,920,000            |
| <u>Staphylococcus</u>          | 1,513,000            |
| <u>Streptococcus</u> Group A   | 500,000              |
| Trichinosis                    | 100,000              |
| <u>Shigella</u>                | 90,000               |
| <u>E. coli</u> - pathogenic    | 50,000               |
| <u>Clostridium perfringens</u> | 10,000               |

(Data from Bennett et al [2])

1) Campylobacter

Campylobacter jejuni is a recently recognized bacterial species that can cause diarrhea, abdominal pain, fever, nausea, and vomiting (3). Up to 50% of patients with Campylobacter infections report having bloody diarrhea. Illness can range from mild diarrhea lasting less than 24 hours to severe, bloody diarrhea with abdominal pain and fever lasting several weeks; in one study the average duration of illness was 13.5 days (4).

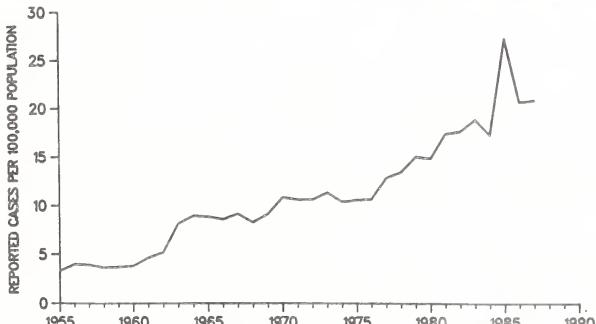
C. jejuni appears to be present in the intestinal tract of most mammalian and avian species. A number of early C. jejuni outbreaks were associated with consumption of raw milk or untreated water (5). More recent epidemiologic data suggest that up to 48% of C. jejuni cases are attributable to consumption of chicken (4). The organism has been isolated at many points during the slaughter and processing of broiler chickens, and a significant proportion of broiler chicken carcasses available for retail sale carry C. jejuni (Table 2).

Because of the lack of a good national reporting system, it is difficult to determine whether the overall incidence of Campylobacter infections is increasing or decreasing. However, it is clear that C. jejuni constitutes a significant foodborne problem: there is a definite need for further epidemiologic data (including incidence data) on this organism.

2) Salmonella

Salmonella are bacteria that cause diarrhea, abdominal pain, fever, nausea, and vomiting (6). Diarrhea usually lasts less than 7 days, but occasionally persists for as long as several weeks; in one recent study the average duration of illness was 10.25 days (4). Bacteremia (presence of bacteria in the blood) occurs in less than 5% of adults with gastroenteritis. This rate may be higher in children and persons with major underlying diseases (including AIDS). The case fatality ratio for Salmonella has been estimated to be approximately 0.1% (2).

Salmonella is present in the gastrointestinal tract of mammalian and avian species, and is often transferred to the surface of animal carcasses during slaughter and processing. Using broiler chickens as an example, nationwide surveys in conducted in 1967 and 1979 demonstrated extreme variability in the Salmonella contamination rates among various lots of birds, with an incidence range of 7.5% to 73.7% in 1967 and 2.5% to 87.5% in 1979 (7). Data on rates of contamination of chicken carcasses from several published studies are shown in Table 2.


TABLE 2: RATES OF SALMONELLA AND CAMPYLOBACTER CONTAMINATION OF CHICKEN CARCASSES

| Microorganism | Part of Chicken Sampled and Stage of Procedure | No. Sampled | Percent Positive | Reference |
|---------------|------------------------------------------------|-------------|------------------|-----------|
| Campylobacter | chicken livers                                 | 40          | 30%              | 8         |
|               | mechanical deboning of chicken                 | 40          | 12.5%            | 8         |
|               | chicken livers from giblet chiller             | 36          | 69.4%            | 9         |
|               | wings ready for packaging                      | 36          | 66.7%            | 9         |
|               | wings on arrival at supermarket                | 94          | 82.9%            | 10        |
|               | chicken; supermarket shelf                     | 862         | 23.1%            | 11        |
| Salmonella    | chicken; supermarket shelf                     | 862         | 4.3%             | 11        |
|               | whole, eviscerated chickens; chill tank exit   |             |                  |           |
|               | in 1967                                        | 597         | 28.6%            | 7         |
|               | in 1979                                        | 601         | 36.9%            | 7         |
|               | whole, eviscerated chickens; chill tank exit   | 215         | 11.6%            | 12        |
|               | whole, eviscerated chickens; chill tank exit   | 171         | 20.5%            | 13        |

(From: National Research Council, Poultry Inspection: The Basis for a Risk-Assessment Approach [14])

There has been a slow but steady increase in the overall incidence of *Salmonella* cases reported to the Centers for Disease Control during the past several decades, from approximately 4/100,000 population in 1955 to 22/100,000 in 1987 (Figure 1)(15). It has been estimated that these reported cases represent 1%-2% of the actual number of cases that occur (accounting for the projected incidence of approximately 2 million cases given in Table

SALMONELLOSIS (excluding typhoid fever) — By year, United States, 1955-1987



(From: Centers for Disease Control, Summary of Notifiable Diseases, United States, 1987 [15])

1 [2]). While these numbers are clearly subject to a variety of ascertainment and reporting biases, this slow, steady increase (which has not been seen with other enteric pathogens, such as *Shigella*) is disturbing. These data emphasize the need for continuing research on *Salmonella*, and the importance of implementing appropriate control programs for this pathogen.

In contrast to the slow increase that has been seen in the overall incidence of *Salmonella*, the incidence of one particular serotype, *Salmonella enteritidis*, has shown a striking increase since the early 1980's, particularly in Northeast and Middle Atlantic states: in the Northeast the reported isolation rate for this serotype increased from 1.12/100,000 population in 1976 to 7.16/100,000 population in 1986 (16). Epidemiologic studies have shown a strong link between *S. enteritidis* infections and consumption of Grade A eggs (16,17). *S. enteritidis* has been isolated from bulk raw eggs, and from egg contents (primarily yolk) of individual eggs. The organism has also been isolated from ovarian tissue of hens, and there have been experiments suggesting that transovarian transmission of *S. enteritidis* can occur (personal communication, Paul Blake, Lisa Lee, CDC). These data are quite disturbing, and, if transovarian transmission of *S. enteritidis* can be conclusively demonstrated, suggest that existing efforts (disinfecting, grading) to control *Salmonella* contamination of eggs may be inadequate to prevent spread of the infection.

#### **B. Control of Foodborne Diseases**

Control of foodborne disease can be accomplished at two levels. At the producer level, efforts can and should be made to minimize contamination of food with potentially pathogenic microorganisms. The National Academy of Sciences/National Research Council has published a series of reports that deal with this problem: "An Evaluation of the *Salmonella* Problem" (18); "An Evaluation of the Role of Microbiologic Criteria in Foods and Food Ingredients" (19); "Meat and Poultry Inspection: The Scientific Basis of the Nation's Program" (20); and "Poultry Inspection: The Basis for a Risk-Assessment Approach" (14). Recommendations in these reports should be reviewed and serious consideration given to their implementation. As already pointed out, there is also a need for continuing government and industry sponsored research on the incidence and control of specific microorganisms such as *Salmonella* and *Campylobacter*.

Assuming that total elimination of pathogenic organisms from the nation's food supply is not a realistic short-term goal, there is also a need for continuing consumer education on appropriate food preparation practices. Contaminating microorganisms are in most instances destroyed by cooking: the risk of illness is negligible if food is adequately cooked, cross-contamination of foods within the kitchen is avoided, and food is handled properly after cooking (i.e., there is no time-temperature abuse). Again, both government and industry should be active in educating consumers about the risk and means of preventing foodborne disease.

In summary, foodborne illness is a significant and continuing problem in this country. There is no indication that the incidence of foodborne disease is decreasing, and, if anything, there may be a slow increase in the incidence of infection with organisms such as *Salmonella*. At the producer level, efforts need to be made to minimize carriage and transmission of potentially pathogenic microorganisms; at the same time, consumers should be made aware of the importance of good food preparation practices in minimizing the risk of foodborne illness.

## References

1. Archer DL, Kvenberg JE. Incidence and cost of foodborne diarrheal disease in the United States. *J Food Protect* 1985;48:887-94.
2. Bennett JV, Holmberg SD, Rogers MF, Solanom SL. Infectious and parasitic diseases. In: Amler RW, Dull HB (eds). *Closing the Gap: The Burden of Unnecessary Illness*. Oxford University Press: New York. 1987.
3. Blaser MJ, Reller LB. *Campylobacter enteritis*. *N Engl J Med* 1981;305:1444-52.
4. Seattle-King County Department of Public Health. Surveillance of the flow of *Salmonella* and *Campylobacter* in a community. Prepared for the Bureau of Veterinary Medicine, U.S. Food and Drug Administration. Contract No. 223-81-7041. Communicable Disease Control Section, Seattle-King County Department of Public Health, Seattle.
5. Blaser MJ, Taylor DN, Feldman RA. Epidemiology of *Campylobacter jejuni* infections. *Epidemiol Rev* 1983;5:157-76.
6. Goldberg MB, Rubin RH. The spectrum of *Salmonella* infection. *Infect Dis Clinics N Amer* 1988;2:571-98.
7. Green SS, Moran AB, Johnston RW, Uhler P, Chiu J. The incidence of *Salmonella* species and serotypes in young whole chicken carcasses in 1979 as compared with 1967. *Poult Sci* 1982;61:288-93.
8. Stern NJ, Green SS, Thaker N, Krout DJ, Chiu J. Recovery of *Campylobacter jejuni* from fresh and frozen meat and poultry collected at slaughter. *J Food Protect* 1984;47:372-4.
9. Wempe JM, Genigeorgis CA, Farver TB, Yusufi HI. Prevalence of *Campylobacter jejuni* in two California chicken processing plants. *Appl Environ Microbiol* 1983;45:355-9.
10. Kinde H, Genigeorgis CA, Pappaioanou M. Prevalence of *Campylobacter jejuni* in chicken wings. *Appl Environ Microbiol* 1983;45:1116-8.
11. Harris NV, Thompson D, Martin DC, Nolan CM. A survey of *Campylobacter* and other bacterial contaminants of pre-market chicken and retail poultry and meats, King County, Washington. *Am J Public Health* 1986;76:401-6.
12. Campbell DF, Johnson RW, Campbell GS, McClain D, Macaluso JT. the microbiology of raw, eviscerated chickens: A ten year comparison. *Poult Sci* 1983;62:437-44.
13. Surkiewicz BF, Johnston RW, Moran AB, Krumm GW. A bacteriologic survey of chicken eviscerating plants. *Food Technol* 1969;23:1066-9.
14. National Research Council. *Poultry Inspection: The Basis for a Risk-Assessment Approach*. Report of the Committee on Public Health Risk Assessment of Poultry Inspection Programs. National Academy Press, Washington, D.C. 1987. 167 pages.
15. Centers for Disease Control. Summary of Notifiable Diseases, United States, 1987. *Morbid Mortal Weekly Rep* 1987;36(54).
16. St. Louis ME, Morse DL, Potter ME, DeMelfi TM, Guzewich JJ, Tauxe RV, Blake PA. The emergence of grade A eggs as a major source of *Salmonella enteritidis* infections. *JAMA* 1988;259:2103-7.
17. Lin FYC, Morris JG, Trump D, Tilghman D, Wood PK, Jackman N, Israel E, Libonati JP. Investigation of an outbreak of *Salmonella enteritidis* gastroenteritis associated with consumption of eggs in a restaurant chain in Maryland. *Am J Epidemiol* 1988;128:839-44.
18. National Research Council. *An Evaluation of the Salmonella Problem*. Report of the Committee on Salmonella, Division of Biology and Agriculture. National Academy of Sciences, Washington, D.C. 1969. 207 pages.
19. National Research Council. *An Evaluation of the Role of Microbiologic Criteria in Foods and Food Ingrediants*. Report of the Subcommittee on Microbiologic Criteria, Committee on Food Protection, Food and Nutrition Board. National Academy Press, Washington, D.C. 1985. 436 pages.
20. National Research Council. *Meat and Poultry Inspection: The Scientific Basis of the Nation's Program*. Report of the Committee on the Scientific Basis of the Nation's Meat and Poultry Inspection Program, Food and Nutrition Board. National Academy Press, Washington, D.C. 1985. 209 pages.