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Estimating Productivity Changes with
Flexible Coefficients

Jeffrey H. Dorfman and Kenneth A. Foster

Technical progress in U.S. agriculture is evaluated using a new measure of
productivity growth, flexible technical change. This measure allows for nonconstant
returns to scale, market structures other than perfect competition, and time-varying
coefficients. An integral part of the procedure is the estimation of the production
function by Flexible Least Squares. Flexible technical change results are compared
with two traditional measures of productivity growth and found to be more stable and
more precise in a statistical sense. The results suggest that previous studies which
employed total factor productivity measures may have overstated the impact of
technology in agriculture.

Key words: flexible least squares, productivity, technical change, time-varying
coefficients.

The substantial growth in post-World War II
U.S. agricultural production is often attributed
to significant technological advances. How-
ever, it is difficult to disentangle the effects of
two simultaneous processes: changes in tech-
nology and increases in input levels. Further,
technological change can be of two types. Antle
and Capalbo define disembodied technical
change as the utilization of existing resources
in a manner which achieves higher rates of
output per unit of input and embodied tech-
nical change as improvements in input quality
which lead to higher rates of output per unit
of input. These factors are difficult to measure
and certainly both have contributed to the in-
crease in U.S. agricultural productivity.

The estimation of the rate of productivity
growth has a long history in the literature, with
interest in the topic accelerating in the 1960s.
Interest has peaked again recently due to claims
that U.S. agriculture is losing its comparative
advantage in world markets. In an economy-
wide setting, Wright rejects the notion of lag-
ging U.S. productivity and suggests that the
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appearance of a U.S. productivity slowdown
relative to other countries has been created by
structural changes in the global nonrenewable
resource base.

Perhaps the most commonly applied mea-
sure of productivity growth has been the no-
tion of total factor productivity (Solow; Jor-
genson and Griliches). The assumptions about
the production process that are implicit in the
measure of total factor productivity have been
examined in a number of articles in the last
decade. The assumption of constant returns to
scale is relaxed by Capalbo and by Baltagi and
Griffin. Denny, Fuss, and Waverman allow for
nonconstant returns to scale and for market
structures that are not perfectly competitive.
Cas, Diewert, and Ostensoe relax the assump-
tion of constant coefficients. Swamy, Conway,
and LeBlanc provide a theoretical justification
for the use of a production function with time-
varying parameters when employing aggregate
data. They show that the aggregation of mi-
crolevel, constant parameter production func-
tions leads to an aggregate function with time-
varying parameters. Swamy, Lupo, and Sneed
develop a theoretical model which relaxes all
three assumptions.

This article also develops a general ap-
proach, avoiding all three assumptions, and
introduces a new measure, named here flexible
technical change. The method is applied to the
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measurement of U.S. agricultural productivity
and compared to two alternative methods. By
employing a production function approach, no
assumptions are needed concerning the market
structure of the industry, and the problem of
the possible endogeneity of input prices is
avoided. Constant returns to scale are simply
not imposed on the estimated production
function. Time-varying coefficients are intro-
duced by employing a new technique devel-
oped by Kalaba and Tesfatsion called Flexible
Least Squares (FLS).

The use of a production function approach,
which avoids the use of input prices,1 mitigates
some of the problems associated with produc-
tivity measurement in the face ofdisequilibria,
but not all. The most common disequilibrium
mentioned in the area of productivity mea-
surement has been underutilization of capital
(Berndt and Fuss; Hulten; Morrison 1985,
1986; and Slade).

If the capital input to the production func-
tion is the entire capital stock and only part of
the total capital stock is currently being em-
ployed in the production process, estimated
productivity will be biased downward (under-
stated). For the U.S. manufacturing sector,
Berndt and Fuss suggest that the downward
bias from the failure to correct for capacity
utilization is approximately 33% when gross
output is the dependent variable (as in our
production function). Morrison (1986) shows
that while adjusting for capacity utilization can
be important, the bias introduced by imposing
constant returns to scale is even larger. Ca-
palbo also found that imposing constant re-
turns to scale led to a downward bias in the
estimate of productivity growth in U.S. agri-
culture of approximately .5% per year over the
period 1950-82. The traditional total factor
productivity measure suffers from both types
of bias.

The methodology of FLS is ideally suited
for the new measure. If productivity is chang-
ing through time, it is logical to assume that
the entire production function is "evolving"
through time.2 The FLS estimators of the pro-

Agricultural production is carried out with the levels of variable
inputs selected by solving a suitable optimization problem em-
ploying the expected level of output as a function of input levels.
Hoch demonstrates that under these conditions simultaneity be-
tween input and output levels disappears and a single-equation
estimator of the production function parameters is consistent.

2 Several justifications for such an assumption are offered in the
Results section of this article. The major justification is based on

duction function coefficients are allowed to fol-
low a gradual dynamic process, thereby allow-
ing for the time element to enter the production
function in a new manner far more general
than simply as another right-hand-side vari-
able. This article uses aggregate data on U.S.
agriculture compiled by Capalbo, Vo, and
Wade to compute three measures of produc-
tivity growth or technical change including to-
tal factor productivity and the new flexible
technical change measure.

Theoretical Development of
Productivity Measures

Beginning as generally as possible, let

(1) Q =f(xl, . ., Xk, t)

be the production function in question where
Q is the output and {xi, i = 1, k} represents
the k inputs to the production process. The
variable t represents time and enters the pro-
duction function in several ways. First, pro-
duction is assumed to be stochastic in nature
due to the weather and physiological phenom-
ena characteristic of agriculture. Thus, at the
simplest level the time element off(e) can be
thought of as representing a stochastic error
process inherent in production (e.g., an addi-
tive error term when estimating f(e) econo-
metrically). Second, it is possible that the ac-
tual parameters of the function change with
time (e.g., random coefficients models or struc-
tural change hypotheses). This second case in-
volves a much more complex time element in
the production function and is examined in
this article through the application of the FLS
methodology.

Three measures of productivity are exam-
ined: total factor productivity, simple techni-
cal change, and a new measure, flexible tech-
nical change. Total factor productivity (TFP)
has a long history in the literature as a residual
growth of output not explained by the growth
of inputs (thus encompassing both embodied
and disembodied technical change). A review
of related articles is provided by Nadiri, and
a recent application to agriculture can be found
in Ball. A narrower productivity measure,
termed simple technical change (STC) here, is
the elasticity of the production function with

the theory of technological adoption in agriculture (cf., Griliches;
Jarvis).
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respect to a unit of time. The third measure,
flexible technical change (FTC), will be defined
simply as the equivalent to the STC when the
coefficients of the production function are al-
lowed to vary over time. Thus, FTC allows for
a fuller interaction of the time variable with
the other arguments of the production func-
tion, the inputs.

None of the measures corrects for capacity
utilization, but both STC and FTC allow for
nonconstant returns to scale, thereby avoiding
one potential source of bias (Morrison 1986;
Capalbo). Capacity utilization is a difficult is-
sue in agriculture. In the manufacturing sector,
for example, it is easy to see how many hours
a factory is used and to measure when workers
are laid off. In agriculture many capital items
such as harvesters are purchased for use in a
specific task and long idle periods are antici-
pated when the purchase price was set. There-
fore, it may be difficult to determine what the
producer's expected utilization rate is, let alone
the percent of that expected utilization which
occurs. Moreover, many of these items have
no alternative uses during idle periods. Land
is another such input, where mandatory set
asides incorporated into the commodity pro-
grams force underutilization. Many farmers
fulfill their set-aside requirements with mar-
ginal land which, again, may have had low or
zero expected utilization rates. Because of these
difficulties, we have decided to correct the
problems caused by the restrictions of constant
coefficients and constant returns to scale. While
underutilization of capital (including land) may
cause our results to be downward biased, they
still represent a significant improvement over
the traditional TFP measure.

In defining these three measures, a variable
with a tilde represents the proportional rate of
change of that variable with respect to time.
For example,

(2) t= at ) (t '

Total factor productivity is defined (in terms
of proportional changes) very simply as

(3)
k

TFPt = t- sitit ,
i=l

where sit is the cost share of the ith input at
time t.

A simple application on equation (2) of the
chain rule of differentiation leads to an implicit
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definition of simple technical change, STC, =
(9f/lt)/Qt:

(4) 6t = (it (a t (

Solving the expression for STC and simpli-
fying gives:

(4') STC Qt- LQ xi )Qtit
i=1 \ ^t t

The tilde is employed because STC is also a
proportional change since it can be written as

STC = (af)/t)/f. By comparing (3) and (4'),
it is obvious that the only difference between
the total factor productivity measure and the
simple technical change measure is the weights
employed in the aggregation of the changes in
input use. In fact, Capalbo shows in a few sim-
ple steps that the two measures are identical
assuming cost minimization if the elasticity of
total cost with respect to output is unitary. In
this production function world, the equivalent
condition is that the production function be
homogeneous of degree one. Note that we are
not imposing such an assumption (of constant
returns to scale) here, so that the two measures
will differ.

To derive the third measure, the measure of
flexible technical change, all that is necessary
is to recognize that with time-varying coeffi-
cients interacting with the inputs in the pro-
duction function the marginal products have
another dimension of variation. In the con-
stant coefficient world, df/dx, can vary if f()
has nonlinear terms in xi and the xis vary
through time. Most production functions pos-
sess this property, and certainly most input
levels are time varying. However, with time-
varying coefficients even the parameters off(*)
that appear in the derivative will be changing
through time. This represents an alternative
manner for biased technical change to manifest
itself. Swamy, Conway, and LeBlanc show that
the aggregation of microlevel production func-
tions leads to an aggregate production function
with time-varying parameters. Note that the
only difference between the measures of simple
technical change and flexible technical change
is that the coefficients of the production func-
tion are time varying. To emphasize the time-
varying coefficients, define the proportional

change in FTC, FTC, by:
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(5) FTCt = Q -k / OfF\Xjt.
i= I Xit / Q, "

In (5),fF(*) represents the production function
estimated using FLS, so that the parameters
involved in the calculations of the marginal
products change each period. This is a some-
what more general use of time-varying param-
eters to measure productivity changes than a
new approach by Baltagi and Griffin which
uses time-period-specific dummy variables to
estimate an index of technical change that they
embed in a translog cost function.

Up to this point all three measures have
been discussed in a continuous time frame, but
production in agriculture is discrete in general,
and the data on production are definitely dis-
crete in their availability. Therefore, the three
productivity measures must be converted to
their discrete approximations. This is done us-
ing the Torqvist-Theil discrete approxima-
tion to a Divisia index because the production
function is modeled as a translog function. See
Caves, Christensen, and Diewert; and Cas,
Diewert, and Ostensoe for demonstrations of
why Tomqvist-Theil indices are theoretically
"exact" when used in conjunction with a trans-
log function. Using the same notation for the
three measures (since only discrete results will
be produced, confusion should be minimal),
the discrete approximations to TFP, STC, and
FTC are:

(6) TFP,

= In(Q)

(7) STC,

1 
k

- 2 (i=
i=l

+ s,_,)ln(X -
Xit- 1/

=l n( Q)

-1 [ aOf t)cx-i) ,,
2 i=l Xxit )/Qt

+ af(t - 1)>Xitl -lIn( Xit
-- x it lQt- l /,

and

(8) FTCt

= ln(Q
Qt-l

_ 1 [ t) Xit)
2 i=l ax,,/)QI

+(fF(t 1)'(Xi, 1)I l n( x
i t

Again, note that the production function in (8)
used to define FTC, is subscripted with an F
to emphasize that the production function has
been estimated by FLS.

Flexible Least Squares

A common assumption in the modeling of eco-
nomic systems is one of constant coefficients.
This assumption can, of course, be easily re-
laxed through the application of various tech-
niques such as Swamy random coefficients.
However, many people want to believe that
there is a true model underlying the observed
data which has a set of deterministic param-
eters. In the present application, this would be
a belief in a constant coefficient production
process generating the stochastic supply out-
comes we observe. A compromise position is
one which states that perhaps the underlying
process is not stable in an ordinary constant
parameter sense but is instead an evolving pro-
cess with parameters that follow some gradual
adjustment paths. A technique recently pro-
posed by Kalaba and Tesfatsion, FLS, allows
for the simple estimation of the parameters for
a linear model of this "slowly dynamic" form
and represents a compromise between con-
stant coefficient and fully random coefficient
models.

Let the process to be modeled be represented
by the linear function
(9) yt= Xt 3t + Et, t = 1, 2,..., T.

Here, {Yt} is the process to be modeled, xt is a
(column) vector of explanatory variables, ft is
a vector of the model's parameters, and Et is
the result of a stochastic process which will be
referred to here as the observation error. Fur-
ther, assume that the parameters of the model,
ft, only change from their values in the pre-
vious period by some small amount, vt, called
the dynamic error. Making this explicit math-
ematically, let

(10) ft = ft-1 + Vt, t= 2, 3, ... , T.

Two possible interpretations to the model
outlined by (9) and (10) add some intuition to
this approach. The first is the obvious: a model
with parameters that change slowly through
time as described is believed by the researcher

Dorfman and Foster



Western Journal of Agricultural Economics

to be the true model for a given application.
The second interpretation is that the param-
eters are believed to be constant by the re-
searcher, but to guard to some extent against
misspecification error, a stochastic restriction
of constant parameters is placed on a random
parameter model. This is done by stochasti-
cally restricting the set of vt to be small. A slight
variation of this second story is a Bayesian
approach. A Bayesian might have a subjective
prior belief that the parameters were constant
with probability p and time varying with prob-
ability (1 - p).

The model described by (9) and (10) allows
both this Bayesian interpretation and the sto-
chastic restriction approach to be implement-
ed by a procedure that attempts to minimize
the sets of estimated Et and vt according to some
weighting scheme. The FLS estimator is de-
fined in such a manner. Denote the FLS esti-
mates of the set of ft as (bt, t = 1, 2, ... , T}.
Then the set of b, is defined as the solution to
the minimization problem:

T

(11) minL= .(b, - bt,,)'(bt - bt,,)
t=2

T

+ (Yt - X'bt)t(Yt - .xtbt)

T T

= A V V t1 , + t^E
t=2 t=l

The hats over the errors are used to stress that
they are only estimates of the true set of dy-
namic and observation errors, resulting from
the selection of the set of estimates of the pa-
rameter vectors and the choice of g.

The parameter At which appears in the op-
timization problem makes explicit the weight-
ing scheme for trading off observation and dy-
namic errors. While it is taken as a scalar here,
there is no particular difficulty in generalizing
this to a matrix weight. In fact, Kalaba and
Tesfatsion already have developed a FOR-
TRAN program that allows such a generaliza-
tion. The parameter represents the inverse
of the prior precision in a manner directly anal-
ogous to the case of least-squares estimation
subject to a stochastic restriction set. As a in-
creases, the researcher is demanding a closer
adherence to constancy from the bt parameter
vectors. In the limits, A = oo is equivalent to
OLS estimation and 11 = 0 is equivalent to a

random coefficients model.3 In practice, a re-
searcher may desire to try several values of gt
and then assess the various performances of
the estimates by plotting what Kalaba and Tes-
fatsion call the residual efficiency frontier. This
frontier shows the tradeoff between the sum of
the squared observation errors and the sum of
the squared dynamic errors. It is convex and
often can give a useful guide to how an amount
of"randomness" in the coefficients leads to a
drop in the (sum of the squared) observation
errors. In many cases a large decrease in the
sum of the squared observation errors can be
achieved by allowing only a small amount of
dynamics to enter into the parameter vectors.

If the vt are assumed to be nonstochastic (i.e.,
the ft evolve in a deterministic but unknown
manner) and the Et are assumed to be normally
distributed, it is possible to show that all of
the FLS estimates of the ft are distributed as
Student t random variables, each with the usu-
al (T - k) degrees of freedom. This assumption
that the true coefficients are nonstochastic sim-
plifies the calculation of the covariances of the
estimated parameters but adds the provision
that the estimated covariances will be condi-
tional on the choice of t.

For details of the algebra involved in ob-
taining FLS coefficients and for a demonstra-
tion of the distribution of the estimates, see
the appendix.

Data

The data employed to empirically estimate the
production function were derived from the data
described in Capalbo, Vo, and Wade for ag-
ricultural production in the U.S. This data
source includes Divisia quantity and implicit
price indices for six output and 10 input cat-
egories for the period 1948-83.

For the purposes of the present study, the
outputs were aggregated to a single total using

3 Although reference has been made to how well the FLS meth-
odology models processes which are "slowly dynamic," this should
not be taken to imply that the procedure cannot allow for rapid
structural shifts in the underlying relationship. Kalaba and Tes-
fatsion include simulation experiments in which the FLS coeffi-
cients track true parameters moving in sinusoidal and elliptical
patterns. Tesfatsion and Veitch show the ability of FLS to track
structural shifts in the underlying parameters. They further show,
in an empirical example involving a money demand function, that
FLS coefficients can follow processes which might be characterized
as "nonsmooth" or "rapidly dynamic."
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the Torqvist-Theil approximation to the
Divisia index. The weights in this procedure
are the value shares of each commodity. The
implicit assumption embedded in such an ag-
gregation is input-output separability. While
this may be somewhat unrealistic in principle,
it is unavoidable here because the aggregate
input quantities cannot be separated according
to their employment in the production of the
various outputs.

The production function was specified to
have three inputs: labor, capital, and materials.
Labor includes both family and hired labor.
Capital includes land, structures, inventories,
equipment, and breeding stock. Included in
materials are the inputs energy, fertilizer, pes-
ticides, feed and seed, and a miscellaneous cat-
egory. The aggregation from 10 to three inputs
was also performed using the Torqvist-Theil
approximation to the (chain) Divisia index.
The base year for all of the aggregation com-
putations was set at the sample midpoint, 1966.

Implicit in the input aggregation is the as-
sumption that the inputs are additively sepa-
rable. In light of this, care was taken to aggre-
gate in a manner consistent with previous
research in productivity and according to the
authors' prior beliefs about agricultural input
separability. In any case, a certain amount of
input aggregation becomes necessary to ac-
commodate degrees-of-freedom considera-
tions and to avoid excessive multicollinearity.

Results

The production function was estimated as a
translog with the single output and three inputs
described above. The translog was chosen, as
mentioned previously, to match the choice of
indexing method employed in constructing
both the data set and the three productivity
measures (the Divisia index). As the coeffi-
cients are of little interest here, they are not
reported. It is worth noting, though, that the
FLS estimates of the production function are
related to the OLS estimates. Kalaba and Tes-
fatsion prove that the OLS estimates are a (ma-
trix) weighted average of the set of the FLS
estimates of a given model.

To confirm the necessity of time-varying co-
efficients, an empirical test for constancy of
the coefficients of the translog production
function was performed. The procedure is one

recently developed by Ploberger, Kramer, and
Kontrus. The test is based on fluctuations in
the parameter estimates as successively larger
subsamples of the data set are employed to
produce OLS estimates. The basis of the test
is that if the OLS estimate of any coefficient
varies by more than a specified amount as the
number of observations used to estimate it
changes from k to T (number of parameters to
entire sample), then the null hypothesis of con-
stant parameters is rejected for that model and
data set. The critical value of the test given by
Ploberger, Kramer, and Kontrus for k = 10 at
the 99% confidence level is 1.95 and the cal-
culated test statistic was 1,179. This strong
rejection of the null hypothesis of constant co-
efficients provides a clear justification for the
use of the FLS algorithm in the estimation of
the translog production function for this ag-
gregate U.S. agricultural data set and agrees
with the theoretical results of Swamy, Conway,
and LeBlanc.

FLS estimates were produced for 14 differ-
ent values of A. These sets of FLS estimates
were used to produce an estimated residual
efficiency frontier (as discussed previously)
which was employed in determining the de-
sired value of I for this application. The re-
sidual efficiency frontier that was produced is
shown in figure 1. The parameter 1t was set at
1.5 after examining the sets of estimates and
the residual efficiency frontier (denoted with
an * on figure 1). It was felt that this provided
the optimal tradeoff between observation error
and dynamic error. Allowing for this amount
of dynamics in the production function coef-
ficients produced a 71% decrease in the sum
of the squared measurement errors. Yet the
sum of squared dynamic errors is only 16% of
what it would be for a random coefficients
model. Thus, as the figure shows, allowing a
little dynamics in the parameters can greatly
reduce the observation errors of the model.
While the choice of A is somewhat arbitrary,
it is directly analogous to the prior precision
employed in stochastic restriction estimation.
An alternative interpretation is that of a loss
function which reflects the loss felt by the mod-
el's users from squared dynamic errors relative
to squared observation errors. In this context,
,t is the relative loss parameter. Essentially, the
loss function approach is the method used by
the authors to select the value of .

After estimating the production function by

Dorfman and Foster
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Table 1. Average Values (%) of the Changes
in TFP, STC, and FTC

1950s 1960s 1970s 1980-83 1949-83

TFP 1.077 1.344 1.731 -0.299 1.078
STC 0.280 0.142 0.177 0.309 0.0778
FTC 0.363 -0.287 0.740 0.373 0.214

Note: TFP is total factor productivity, STC is simple technical
change, and FTC is the measure of flexible technical change. These
measures are defined in equations (6)-(8), respectively.

the production function on the productivity
measures. The results show that, in fact, the
FTC measure is the least variable of the three
mAonllr o All xnwinrn fnr e livrnmirn n trarm ttrc in

0.005 0.01 0.015 0.02 lll±aDLo. ll ivwLL I V L xxix paVL laxV L. alJ

m of Squared Measurement Errors the production process results in a more stable
estimate of technological growth. The mea-

idual efficiency frontier sures TFP, STC, and FTC, when expressed in
percent changes, had sample variances of
10.905, 11.012, and 6.946, respectively. A

OLS, the proportional changes possible, and intuitive, explanation of this sta-
roductivity measures could be bility in the FTC is that the dynamic coefficient
g equations (6)-(8). The average specification is a better model of the true pro-
tde for the three measures are duction process than a constant coefficient one
able 1. Note that these are the (at least for the specification tried here).
.s in the measures themselves, Research has provided a basis for antici-
)rtional changes generated by pating, a priori, a fairly smooth process oftech-
(8). The measure of total factor nical change. Certainly new developments oc-
learly paints the rosiest picture cur in discrete increments, but implementation
al growth. Unfortunately, it is and adaptation to real-world conditions occur
ppealing theoretically. Capalbo continuously. Studies by Griliches and by Jar-
;. agriculture did not display the vis suggest that adoption of new technology
is to scale that would make TFP follows a logistic pattern. If one graphed the
neasure of technological gains. percent of adopters versus time for some new
of STC and FTC produced con- technological improvement, the result would
r estimates of the productivity likely be an S-shaped curve similar to the cu-
igriculture, with the FTC mea- mulative distribution function of a normal
higher. Particularly interesting random variable. This would lead the coeffi-

at the FTC measure diverges cients of the production function to time vary,
he STC during the 1970s, show- but in a "smooth," albeit nonlinear, manner.
her technological growth. This Restricting the coefficients from being com-
ndings in Morrison (1986) that pletely random protects against truly stochas-
of assumptions made in pro- tic changes in the marginal products of the

sures (such as constant returns inputs, changes which are not due to technical
stant coefficients) tended to raise change. The greater stability of this measure
ductivity growth during the sev- may well come from the effects of a key missing
iat the TFP growth rate also in- input: weather. Annual weather variations cer-
, 1970s, although by a smaller tainly affect the marginal products of other in-
n the FTC growth rate. The year- puts for many agricultural products. The FLS
,s are highly variable and are list- methodology allows the production function
Lnd graphed against time in fig- parameters to adjust to this phenomenon, while

the usual OLS (or GLS) methodology cannot.
Lng question to answer concerns Thus adverse (favorable) weather conditions
llowing dynamic Parameters in would tend to bias the TFP and STC measures
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Table 2. Annual Changes (%) in Productivity

Year %ATFP %ASTC %AFTC

1949 -2.603 -3.910 -2.169
1950 -2.288 3.732 -2.279
1951 2.790 0.436 1.346
1952 4.430 -1.486 -0.991
1953 3.524 0.843 0.776
1954 -0.312 -1.300 -0.997
1955 -0.866 -0.517 0.250
1956 7.591 4.562 4.707
1957 -2.478 -2.911 -4.010
1958 1.884 0.937 1.841
1959 -3.505 -1.493 -1.574
1960 2.854 0.800 1.268
1961 0.869 0.656 0.175
1962 1.894 0.017 -0.062
1963 1.709 -0.697 -0.731
1964 2.316 2.802 0.231
1965 -1.025 -6.254 -3.332
1966 1.022 0.057 -1.747
1967 2.472 2.524 1.255
1968 0.152 -0.055 0.090
1969 1.174 1.573 -0.015
1970 -2.605 -4.285 -1.915
1971 5.161 4.995 3.778
1972 1.100 1.064 1.123
1973 1.602 -4.028 -0.800
1974 3.515 1.156 1.036
1975 2.134 -1.797 0.362
1976 -0.011 2.899 1.355
1977 3.810 3.933 3.025
1978 -2.411 -7.194 -4.595
1979 5.017 4.429 4.030
1980 -0.582 -5.047 -3.195
1981 7.947 6.733 7.770
1982 0.669 2.874 1.341
1983 -9.2317 -3.323 -4.424

Note: TFP is total factor productivity, STC is simple technical
change, and FTC is flexible technical change.

downward (upward). A model with random
coefficients would be affected by weather con-
ditions in a reverse manner, with good weather
resulting in an overestimate of productivity
growth. For this reason, FLS seems especially
well suited to agricultural applications.

The FTC measure was also significantly more
precise in a statistical sense than the STC mea-
sure. The TFP measure is simply a construc-
tion from the data and has no statistical prop-
erties. The FTC and STC measures, because
they are based partially on estimated coeffi-
cients, can have confidence intervals placed
around them and other statistical tests per-
formed given some parametric assumptions.
If the et are assumed to be independently and
identically distributed normals with an un-

known variance, the FTC, (as discussed pre-

% Change
10

-5

-5n
1949 1954 1959 1964 1969 1974

Year

TFP - STC --- FTC

1979

Figure 2. Annual productivity growth

viously) and the STC, are distributed as Stu-

dent t random variables. The STC, are
distributed as t random variables since they
are linear functions of the estimated OLS co-
efficients of the production function. The var-
iances of both the FTCt and STCt measures
were calculated being careful to account for all
covariances, especially between b, and b,_ for
the FTCt measure. The variances allowed both
measures to be tested for statistical significance
relative to a null hypothesis of zero produc-

tivity growth (e.g., FTCt = 0). The results were
striking: 33 of the -35 estimates of FTCt were
statistically different from zero while only eight
of 35 estimates of STC, were significantly non-
zero. While there is no reason to believe that
this makes the FTCt a superior measure (since
zero is a completely arbitrary value to test the
measures against), the results do indicate the
overwhelming increase in precision gained by
employing the FTCt. The variances of the

FTCt were generally two orders of magnitude
smaller than the corresponding variances of
the STCt. This accuracy is a direct result of the
decrease in the sum of the squared observation
errors achieved by allowing the parameters to
time vary. Because the variances are estimated

for the FTCt and STCt measures in their pro-
portional change form (rather than the easier
to interpret percent change form), the t-values
and the proportional changes in the measures
are presented in table 3. Note a zero propor-
tional change is, of course, a zero percent change
and that any hypothesis concerning percent
changes could be tested by converting the val-
ue desired into the equivalent number suitable
for testing the proportional changes.
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Table 3. FTC and STC Measures and Their t-Values

Year FTC STC Year FTC STC

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

-3.157
(-41.70)
-. 1312

(-26.84)
-.3414

(-37.76)
-.2792

(-53.70)
-. 0736

(-21.35)
.0009
(.5267)
.0474
(20.43)
.0476

(11.62)
-. 0005

(-.1297)
.0177

(6.342)
-0.559

(-49.44)
-. 0043

(-3.664)
-.0058

(-4.304)
-.0025

(-2.803)
-. 0449

(-25.93)
-.0205

(-16.09)
-. 0571

(-90.42)
-.0248

(-33.17)

-. 1372
(-.6135)

.3453
(2.554)
.0311

(.1823)
-. 3068

(-1.390)
-. 0871

(-.8299)
.0332
(.2788)
.4077

(5.995)
.0342
(1.333)
.1724

(.6093)
.3246

(4.352)
.1715

(2.422)
.0114

(.1425)
.0458

(.4226)
-. 0198

(-.2495)
.0135

(.1897)
.0117

(.0662)
-.0279

(-.2412)
.0024

(.0137)

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

.0143
(55.73)
-. 0107

(-260.9)
-. 0042

(-9.718)
-.0268

(-66.38)
.0207

(44.78)
-. 0085

(-162.1)
.0112

(33.08)
.0903
(301.7)
.0066

(56.42)
-.0037

(-29.65)
.0399

(77.21)
-.0907

(-581.3)
.0282

(65.35)
.0664

(133.1)
.0572

(136.6)
.0203
(40.86)
-. 0778

(-41.37)

.0237
(.1687)
-. 0402

(-.5292)
-.0159

(-.1171)
-. 0612

(-.4373)
-. 0375

(-.4309)
-.0702

(-3.125)
-.0370

(-.3153)
.2619

(6.910)
-.0475

(-1.133)
-.0220

(-.2288)
.0221

(.3275)
-.3105

(-2.622)
-.0662

(-1.544)
.2387

(5.985)
.0431

(.3967)
.0152

(.0976)
.1021
(.9942)

Note: Numbers in parentheses are the t-values of the measures. STC and FTC are defined in equations (7) and (8), respectively.

Conclusions

In this article a new measure of productivity
growth was introduced, flexible technical
change. The proportional changes in this new
measure were defined to be the time elasticity
of a production function that has been esti-
mated employing the new methodology of
Flexible Least Squares. A simple formula for
calculating these proportional changes based
on the marginal products of the inputs and the
changes in the output and input levels was
presented. The approach is very general and
can be applied to any functional form desired.

Analogies to cost and profit function ap-
proaches are obvious.

The new measure, flexible technical change,
was shown to be more stable in the sense of
having a smaller variance around a constant
percentage growth rate. It was also shown to
produce considerably lower estimates of pro-
ductivity growth than the traditional notion of
total factor productivity. These values were
also lower than those found by Ball and by
Capalbo for U.S. agriculture in earlier studies.
In contrast to Capalbo's results with a cost
function approach, we found that relaxing the
incorrect assumptions in the traditional TFP
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measure leads to a lower estimate of produc-
tivity growth.

These lower estimates of productivity growth
would cause a downward revision in estimates
of the returns to agricultural research, since the
benefit from research is usually measured as
increased productivity. Other policy implica-
tions arising from these lower estimates are
difficult to identify. This is because all three
measures--TFP, STC, and FTC-seem to
show an absence of any trend in the produc-
tivity of U.S. agriculture. Unlike the U.S. man-
ufacturing sector where the great productivity
decline has sparked much debate, agricultural
productivity growth appears to have been rea-
sonably constant (on average) over the last 30
years. Therefore, while the new FTC measure
suggests a lower rate of productivity growth,
it suggests no recent downturn (or upturn) in
the rate of progress. This suggests that the shift
in the global resource base has not affected the
comparative advantage of U.S. agriculture,
probably because the U.S. is still well-endowed
with the resources necessary for agricultural
production. However, the new FTC measure
does suggest that the development of the re-
source base and quality improvements in in-
puts have played a large role in the growth and
competitiveness of U.S. agriculture.

[Received February 1990; final revision
received March 1991.]
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Both of the matrices A and X' have full column rank
and therefore rank greater than or equal to T. Thus, from
(A.1)

(A.4) cov(bLs) = cov(A-'X'y) = (A-X')cov(y)(A-IX')'.

Given the assumption that the true OFLS is nonstochastic,
if we also assume that the e, are independently and iden-
tically distributed normal random variables with variance
a2, then the covariance matrix of the bFLS is

(A.5)

Appendix

To demonstrate that the distribution of the b, is indeed a
t-distribution will require some of the algebra used in cal-
culating the estimate. Kalaba and Tesfatsion produce the
FLS coefficients in two steps, first calculating sequential
parameter estimates based only on the observations up to
the period and then recursively creating smoothed esti-
mates that depend on each period's sequential estimate
and the next period's smoothed estimate. Thus, the final
smoothed estimates depend on the entire set of observa-
tions. These smoothed estimates are the ones employed
in this article, and the method for calculating them can
be written in matrix form as

(A. 1) bFLS = A- X'y

where bFLS is the (Tk x 1) vector of the b,, (bFL)' = (b',
... , bT)', y is the (T x 1) column vector of y,, and the
matrices A (Tk x Tk) and X (T x Tk) are defined as

cov(bFLS) = o2A-'XXA-1.

All the components of A and X are direct transformations
of the xs and ,t. Thus, for a known a2, bFLS would be
distributed as a multivariate normal, conditional on A. In
actual applications, with an unknown a2 and the usual
estimate of the variance of the errors substituted, bFLS is
distributed as a multivariate Student t random variable
with an estimated covariance matrix equal to the expres-
sion in (A.5) with the a2 replaced by its estimate.

The FLS estimates of the production function that are
employed here to calculate the measure of flexible tech-
nical change were produced using a FORTRAN program
slightly modified from the one presented in Kalaba and
Tesfatsion. The program uses a sequential solution tech-
nique to produce the set of estimators that minimize the
objective functions presented in (11). For further details,
see Kalaba and Tesfatsion. While the matrix notation pre-
sented here is useful for understanding the process and
analyzing the estimators' statistical properties, the inver-
sion of the (Tk x Tk) matrix A can be a computationally
inefficient solution method. Therefore, the sequential
method of Kalaba and Tesfatsion (which avoids taking
the inverse of A) is recommended for large data sets.

[I + xx0 -0I 0 ... ... 0

-,I 2,I + x2x2 -iI 0 .

0 -I 2uI + X3X3 -UI O0
A = 0 . . -. .. 0

. .'. 0 -,uI 2,uI + XT-IX'T-I -I

0 ..* * 0 -t O I + XTXT

x 0 ... ... 0

x2 0 *..

X'= . *. .
" * . 0 XT-I 0
0 .. ... O XT

(A.2)

and

(A.3)
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