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Pseudo Data as a Teaching Tool:
Application to the Translog,
Multiproduct Profit Function

Thomas W. Hertel and Lance McKinzie

This paper argues that the use of "laboratory" data sets can add substantially to the
teaching of production economics at the graduate level. Optimal experimental designs
for generating pseudo data from a process model are discussed. These are shown to
depend on the functional form to be estimated. We choose the translog form for our
multiproduct profit function and compare alternative approaches to estimation, using
pseudo data from a farm-level linear programming model. Particular restrictions on
this profit function are also considered. Finally, aggregation of output prices is shown
to alter substantially input price elasticities of demand.

Key words: multiple products, profit function, pseudo data, teaching, translog.

Recent developments in duality theory and the
concept of flexible functional forms have led
to a resurgence of interest in production eco-
nomics. Whether the topic is factor substitu-
tion, income distribution, technical change,
economies of scale, or any of the other tradi-
tional problems in production theory, the cur-
rent literature draws heavily on these new
methods. The use of duality in production the-
ory dates back to Shephard's 1953 work. Ap-
plications involving flexible forms have been
available for almost two decades (e.g., Diewert
1969). However, widespread incorporation of
these methods into graduate production eco-
nomics curricula is much more recent. A valu-
able set of papers on this topic is provided in
the December 1982 issue of this journal, titled:
"Relevance of Duality Theory to the Practic-
ing Agricultural Economist."

The challenge in teaching this newer mate-
rial to students in production economics lies
not only in conveying the theoretical concepts
but also in teaching their responsible appli-
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cation. When is it appropriate to apply these
more sophisticated methods, and what can go
wrong when they are applied? The traditional
approach to this type of teaching challenge has
been to give students an empirical problem to
work with. In the case at hand, this would
involve giving them a data set with which to
estimate, e.g., a profit function, which could
in turn be interpreted and perhaps criticized.
A second-best alternative might be to assign a
set of empircal articles to be read and evalu-
ated.

Unfortunately, many of the data sets in use
are not "well-behaved," i.e., estimation of a
dual function using these observations does
not result in a set of parameters which satisfies
the required neoclassical restrictions. This
problem is particularly severe in the multi-
product setting (e.g., Shumway). Strictly
speaking, the duality results do not apply to
these ill-behaved functions, and we are left with
something which cannot be readily interpret-
ed. This problem may, or may not, be ac-
knowledged by the authors of journal articles.
In most cases the amount of information pro-
vided is insufficient for readers to check for
themselves whether or not the function is well-
behaved.

When a profit function is found to be ill-
behaved, explanations generally turn to prob-
lems with the data set (Pope; Lopez 1982;
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Young). Poor quality data and excessive ag-
gregation (over commodities and/or firms) are
commonly cited sources of difficulty. Another
potential pitfall is that the underlying behav-
ioral axioms (e.g., profit maximization or cost
minimization) may not be satisfied. In some
cases the latter are posed as testable hypotheses
(Appelbaum), although they are generally
maintained. Studies which attribute poor re-
sults to one of these causes can serve a valuable
purpose in graduate courses, illustrating the
point that not all research succeeds. However,
they do not provide students with an adequate
feeling for what the methods are good for.

Consistently attributing bad results to poor
data encourages a certain cynicism and some-
times sloppiness on the part of students who
resign themselves to the fact that "this never
works out in practice anyway." What is needed
is a"laboratory" data set which permits teach-
ers to abstract from data deficiencies, thus en-
abling students to focus attention on the meth-
od-how it is used, and what its strengths and
weaknesses are. Of course, such a data set could
also be selectively "disrupted" (e.g., via in-
appropriate aggregation) to illustrate the po-
tential damage which can result.

There are several properties which a labo-
ratory data set should satisfy. These include:
(a) The underlying technology is sufficiently
well understood to permit formulation of pre-
liminary hypotheses. These should in turn fa-
cilitate interpretation and discussion of the es-
timated model. (b) The behavioral axioms
guiding producers are known and conform with
neoclassical postulates. (c) The observed data
are accurate and not aggregated. (d) Price vari-
ability is sufficient to permit measurement of
all distinct substitution effects.

This paper reports the development of a
"pseudo" data set which meets (a)-(d) and il-
lustrates its use in the estimation of a flexible,
multiproduct profit function. While some of
our results are informative in their own right,
their greatest value has been in the teaching of
a graduate-level production economics course.
The second section of the paper summarizes
results for the multiproduct translog profit
function to be estimated. The linear program-
ming model from which pseudo data is gen-
erated is discussed next. The fourth section
addresses the question of optimal experimen-
tal designs for generating pseudo data. Esti-
mation and interpretation of the translog mul-
tiproduct profit function are the subjects of the

next section. The final section provides a sum-
mary and some conclusions.

The Translog Multiproduct Profit Function

We have chosen to illustrate the use of pseudo
data as a teaching tool by applying this concept
to the case of the translog, multiproduct profit
function. As noted above, the multiproduct
case is obviously more general than its single-
product counterpart. Thus, interpretation is
more difficult but also more interesting. The
translog functional form has been selected on
the basis of its popularity. It is the most widely
used of the "second-order flexible" functional
forms. In order to facilitate later discussion,
this section provides a convenient summary
of relevant results pertaining to the translog,
multiproduct profit function. Following Black-
orby, Primont, and Russell, we write this as

(1) In II = Ao + Zi2iln Pi

+ l/2Zi.1n Pijln Pln Pj

where

(2) Ao = - 2;iiln Pi

+ 1/22;i2,jsln Piln Pj,

Hi = ,i - 2;,ijln Pj,

iij= - j ,

(3)

(4)

and P is the netput price vector around which
the true profit function is being approximated.
It contains both output and input prices. This
serves to simplify the notation in the text of
this paper considerably. An alternative expres-
sion for this multiproduct profit function is
provided at the bottom of table 1. There, out-
put prices (pi: i = 1, . . ., m) are distinguished
from input prices (wk: k = 1, ... , n) thus in-
troducing more extensive notational require-
ments.

The parameters ,o, Ai, and ,ij in (2)-(4) are
the zero-, first-, and second-order derivatives
of the true function at the point of approxi-
mation. In the translog case, setting P = 1 }
results in g, = Fo, ,ui = it, so that the estimated
parameters may be associated directly with the
underlying "true" function. Symmetry (,ij =
fji) and linear homogeneity (2i; = 1, Zjj =
i,4ij = 0) restrictions may also be imposed on

(1). Monotonicity and convexity cannot be
easily imposed by a set of linear restrictions
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on the parameters (Lau 1978). Thus, it has
become conventional to estimate the profit
function under the linear restrictions, there-
after checking whether or not the remaining
restrictions are violated.

Deriving Output Supply and Input
Demand Elasticities

Gross elasticities are written in terms of sec-
ond-order coefficients and predicted shares
(Binswanger). At the point of approximation,
the latter are equal to the first-order coeffi-
cients. Thus, at the unit price vector we have

(5) tt, i #j,
I-Li

and

zii = + ,i - 1.
ti

When i denotes an output, than Zi represents
a gross cross-price elasticity of supply with re-
spect to output or input prices and zii is the
gross own-price elasticity of supply. Similarly,
when i denotes an input, Zij and zi represent
cross- and own-price elasticities of demand.
Compensated elasticities for the translog case
can be derived, based on the Sakai/Lopez de-
composition results (Hertel). They are sum-
marized for the base price vector as follows (i,
j E m outputs; k, h E n inputs).

Compensated output supply elasticities:

(6) vcm}= {z}) - {Zik} Zkhl {Zki}
IB ~~Z)(mm) (m ((mx nxnnx (nxm)

Compensated input demand elasticities:

(7) {V} = {k - Zki,,}' {Zj} n{Zik}
(nxn) (nxn (nxm)(mxm) ( mxn)

Testing for Nonjointness and Separability

It is common to test whether or not additional
restrictions on the profit function are violated.
In the case of the multiproduct firm, both out-
put separability and nonjointness are of par-
ticular interest. Separability of outputs from
inputs implies that the ratio of optimal output
supplies does not vary with changes in input
prices. This simplifies the problem of model-
ing a multiproduct firm by permitting outputs
to be aggregated. By contrast, the nonjointness
(in inputs) restriction simplifies matters by le-
gitimizing the use of single-commodity pro-

duction (profit) functions. The implication is
that decisions about the production of any one
commodity are independent of similar deci-
sions about other outputs.

It can be shown (Blackorby, Primont, and
Russell, p. 298) that the output separability
condition is equivalent to the following re-
striction (i, j E outputs, h E inputs, and 1 E inputs
and outputs):

(8) jlljih i- iljh + (Gl
l 'l

ih - jiltJh)ln(Pl)= 0.

This equality holds for all P if and only if

(9)

and

(10)

-j ih i- ijh = 0,

( -jliih - lil/jh) = 0 for all 1.

At this point the question arises: Are we
interested in testing for global separability of
the estimated profit function, or are we inter-
ested in testing for separability in the true but
unknown profit function which is being ap-
proximated? As Blackorby, Primont, and Rus-
sell; and Denny and Fuss have pointed out,
this is an important distinction. At the point
P = 1, with ln(p) = 0, (8) simplifies and (9)
becomes a sufficient condition for separability.
The resulting restrictions are summarized at
the top of table 1, using parametric notation
which distinguishes between input and output
prices.

Global separability requires that (9) and (10)
hold simultaneously. Berndt and Christensen
have identified two alternative sets of sufficient
restrictions in the translog case. The first,
termed "linear separability," involves setting
all parameters associated with input-output
price interactions equal to zero (see table 1).
Thus, not only are outputs separable from in-
puts, the reverse is true as well, giving rise to
the term "input-output separability." The
nonlinear restrictions for global separability are
less restrictive, as inputs are no longer con-
strained to be separable from outputs. As not-
ed in table 1, both of these global separability
restrictions on the translog have strong impli-
cations for functional form.

Lau (1978) has shown that a necessary and
sufficient condition for nonjointness in inputs
is that all cross-derivatives of the profit func-
tion with respect to product prices are equal
to zero. In the case of the translog profit func-
tion, this restriction cannot be globally ap-

Hertel and McKinzie
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Table 1. Summary of Coefficients and Particular Restrictions

Restrictions Comments

Output separability restrictions

Approximate: aih - aiYjh = 0, Holds only at P = 1.
for all i, j E outputs, h e inputs.

Translog profit function reduces to a Cobb-Doug-
Global linear: ih = Yhi = 0, las function of translog aggregates (Denny and

for all i e outputs, h e inputs. Fuss).
Global, nonlinear: a/aj = aim,/a, = Yih/Yjh, Output price aggregate is Cobb-Douglas in form

for all m, i, j e outputs, h c inputs. (Denny and Fuss).

Approximate nonjointness

a, = -aia, i # j E outputs. Holds only at P = 1, global nonjointness is incom-
patible with the translog profit function.

Note: Notation in this table applies to the following translog profit functions, where p,j refer to output prices and Wk,h refer to input
prices:

In I = ao + Z,,ln p, + S2;kln wk + I/222;,Sjln pln pj + 1/2
2 khSlkhln wkln wh + I/22;2;hihln pln Wh + 1/2;k;Zy'kjln wkln pj.

plied. Thus, the translog is in some sense "non-
joint inflexible." However, it is possible to
formulate a test for approximate nonjointness
in inputs at the base point (Denny and Pinto).
This is provided in table 1. Rejection of this
property at P = 1 does not imply anything
about nonjointness at other points on the profit
surface. As such, it is a weaker test than would
be provided by functional forms where a global
restriction is available (e.g., the normalized
quadratic profit function).

The Vehicle: A Process Model

The process model used to generate pseudo
data is a modified version of the Purdue Crop
Budget Model, B-9 (McKinzie, Hertel, and
Preckel). B-9 is among'the most extensively
validated of all process models, having been
used daily by extension and research staff,
graduate and undergraduate students, as well
as by thousands of Midwest farmers over the
course of its fifteen-year evolution. It is a linear
programming formulation of a profit-maxi-
mizing farm firm. The formulation utilizes
highly detailed information including the
farm's machinery working rates, available time
for working in the field during different periods
of the production year, and cultivation prac-
tices.

Timing of production activities is given par-
ticular attention in the B-9 model. Expected
crop yields generally are acknowledged to de-
cline as planting (and harvesting) of the crop
are delayed. However, it is not economical to

maintain the necessary machinery set to plant
(harvest) all of the crop at one time. The B-9
model captures tradeoffs between the cost of
larger, more expensive machinery sets and the
benefits associated with improved yields due
to timeliness of planting and harvesting. The
latter also serves to promote diversification
among crop outputs. While corn is often the
most profitable crop to be planted during late
April and early May, soybeans may be the pre-
ferred alternative in late May. This occurs be-
cause soybean yields decline at a slower per-
centage rate than do corn yields as planting is
delayed.

The first major modification of B-9 involved
permitting all inputs, with the exception of
land, to be purchased or rented at an exoge-
nous price. (The quantity of land was held
fixed in order to maintain a bounded solution.)
Variable inputs now include labor, machinery,
combine, storage, drying, fertilizer, chemicals,
and other inputs. Each of these inputs is avail-
able in continuous quantities.' Several minor

' Abstracting from the discrete nature in which machinery must
be employed will not be restrictive as long as the model is used to
make inferences about the entire sector, as opposed to individual
farms. An alternative justification for this assumption would be
an active rental market. There are eight different machinery choice
variables-four sizes of combines and four sizes of machinery
complements which include all other machinery. The four sizes
correspond roughly to 200-, 600-, 800-, and 1,200-acre operations.
The different working rates for each machinery complement and
combine are taken from Edelman. A typical solution for machinery
might be .3 units of machinery complement no. 2 plus .5 units of
machinery complement no. 3. These solution values are weighted
by the respective annualized costs for each machinery set (Leatham
and Baker) to arrive at a dollar cost for machinery. The combine
decision is handled in an identical manner.
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aspects of B-9 were dropped (e.g., silage) to
simplify things. Substantive changes in the
structure and parameters of B-9 were not nec-
essary.

The second major modification of B-9 in-
volved a more complete treatment of corn-
soybean rotation. Typically, both input re-
quirements and expected yields depend upon
which crop was grown on the land in the pre-
vious year. There are significant economies
from rotating corn and soybeans. Fertilizer and
pesticide costs rise for corn grown continu-
ously on the same land. Yields decline for both
continuous corn and continuous soybean crops.
The effect of including these complementari-
ties from crop rotation is to give the product
transformation curve for corn and soybeans
more curvature in the region of equal acreages.
Thus, holding other things constant, a greater
change in relative prices is required to achieve
a given amount of substitution between these
crops. Rotation corn-soybeans was incorpo-
rated as an additional crop alternative with
greater yields and lower fertilizer requirements
compared to either crop on a continuous basis
(Farm Planning and Financial Management).

In sum, the modified model provides an ex-
cellent vehicle with which to generate pseudo
data for use in teaching production economics.
Benefits from timeliness of operation and crop
rotation make the multiple output approach
particularly interesting. The basic model is
quite detailed and extensively validated. These
features facilitate the formulation of a priori
hypotheses as well as the interpretation of the
resulting profit function.

Generating Pseudo Data

The concept of pseudo data was introduced
into the economics literature by Griffin (1977a,
b, 1978) as a means of summarizing the in-
formation embodied in industry process
models. The resulting cost or profit functions
may, in turn, be employed to summarize an
individual sector's price responsiveness in large
econometric models. Griffin's approach to
generating observations begins with the selec-
tion of a base point consisting of the unit price
vector. This coincides conveniently with the
point at which the parameters of his estimated
translog function may be directly related to the
derivatives of the underlying "true" function.
Griffin then proceeds to generate sample points

Figure 1. Experimental designs for three fac-
tors

by holding all but one price constant (at base
values) while varying the one remaining price
over a predetermined range. This is illustrated
for the three-price case in figure 1. The base
case: C = (1, 1, 1) falls in the interior (in this
case the center) of the sample space, which is
represented here by a cube. Griffin's procedure
results in observations falling along the PI, P2,
and P3 axes. These axes intersect at the base
case (C), which may be viewed as a translation
of the origin.

Critics of Griffin's method (Maddala and
Roberts) point out that the estimated coeffi-
cients may be quite sensitive to sample design
and the number of basis changes which result
from the price configurations chosen. Griffin
himself (1982) has noted the sensitivity of his
results to the frequency and range over which
sample points are selected. It is somewhat sur-
prising, then, that none of these authors make
reference to the extensive literature on exper-
imental design. This literature draws an ex-
plicit link between choice of design and the
form of the regression model. Thus, if the ob-
jective is to estimate a second-order Taylor
series approximation, such as the translog, it
is important to choose a compatible experi-
mental design. For ease of reference, consider
the following response surface with three fac-
tors (x,, x 2, x3) determining the level of the
dependent variable (y): i
(11) y = Ao + AX1

"
+ 22 X2 + 33X3

+ L.1 XI
2

+ 22 2 X2
2

+ A33 X3
2

+ L12XIX2 + ,13X 1X3 + At23X 2 X3 .
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By defining y = In II and xi = In pi, this becomes
a translog profit function.

An important question in designing the ex-
periment is: Over how many levels must each
factor (xi = In pi) be varied (at a minimum)?
Two levels for each price is sufficient to esti-
mate ,,0, the linear terms and the interaction
effects (g1 2, g13, g23) (Anderson and McLean, p.
353). A two-level factorial for three factors
(prices) generates 23 = 8 observations. If each
price takes on values of, e.g., 0.75 and 1.25,
the sample points could be represented by the
corers of the cube in figure 1 with the center
(C) having the coordinates (1, 1, 1).

In order to capture the quadratic effects (G 1,
A22, A33 ) we need to go to three levels for each
price (Anderson and McLean, p. 323). A full
three-level factorial generates 33 = 27 obser-
vations. In terms of figure 1, this would in-
volve sampling the midpoint of each segment.
That is, each price could now take on the val-
ues 0.75, 1.0, or 1.25. The problem with a full
three-level factorial is that, as the number of
factors increases, the number of observations
required becomes rapidly unmanageable. Thus,
for the eleven-price profit function considered
here, 311 = 177,147 data points result.

Fortunately, it is not necessary to carry out
a full three-level factorial in order to estimate
all of the coefficients in the regression model
(11). A composite design will permit mea-
surement of both interaction and quadratic ef-
fects. This design consists of three groups of
observations.

(i) A two-level factorial (the 8 corers of
the box).

(ii) Points at the extreme of each factor,
while at the center of the others (the
center point of each of the cube's six
faces, i.e., Pi = 0.75, 1.0, and 1.25 with
Pj= 1.0, j i).

(iii) The center point itself (point C).

Together (i)-(iii) total 8 + 6 + 1 = 15 obser-
vations.

The required number of sample points for
a composite design rises much more slowly,
as the number of factors increases, than is the
case with the three-level factorial. Thus, for
the eleven-price case "only" 211 + (2 x 11) +
1 = 2,071 sample points are required. This
number may be further reduced by utilizing a
fractional two-level factorial in the composite
design. In this case a / 6th fractional factorial

is employed.2 This results in (211/16 = 128
"corer" points. Adding the 22 factor extrema
(ii) and the center point (iii) yields a sample
of 151 observations.

It is interesting to note that the directions
associated with (ii) and (iii) (Griffin's design)
are sufficient for estimating both quadratic and
interaction terms if, instead of estimating the
profit function directly, we estimate the asso-
ciated system of share equations which is lin-
ear in prices. In effect, use ofHotelling's lemma
permits a further reduction in sample size.
However, in this paper we are interested in
being able to estimate the profit function di-
rectly. Therefore, the sample points associated
with (i) are also required.

Two further design considerations remain to
be discussed. The first is the issue of orthog-
onality. In order to make the proposed com-
posite design orthogonal, the extrema in (ii)
must be moved off of the surface of the cube.
The distance from the center to these points
becomes a function of the number of treatment
combinations. This changes the form of the
polynomial in equation (11) (Anderson and
McLean, pp. 356-59), such that it no longer
corresponds to the translog formulation. As a
result, the design employed here will not be
orthogonal.

A final design consideration relates to the
appropriate distance between sample points.
Griffin (1982) found his results to be quite sen-
sitive to the spacing and frequency of his pseu-
do data points. Unfortunately, there is little
one can say, in general, other than that the
changes should be large enough to cause basis
movements in the underlying process model.

Estimation and Interpretation of Results

When applied to the pseudo data set outlined
in the previous section, the translog profit
function in equation (1) will not hold exactly.
However, unlike conventional econometric
applications where there is a multiplicity of
reasons for an error term to exist, there is only
one in this case-namely, approximation error.
Thus, there is no reason to believe these errors

2 Anderson recommended the ' 6th factorial as the minimum
necessary to measure the required two-way interactions (personal
communication). The reference for such designs is a 1957 mono-
graph (Statistical Engineering Laboratory). Plan 16.11.64 (p. 46)
supplied the design for this research.
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will be normally distributed (Maddala and
Roberts). However, since we already know the
underlying model, statistical inference per se
is not our objective; and so we will avoid for-
mal hypothesis testing in this section. Rather,
emphasis will be placed on point estimates and
their interpretation.

Because of the collinearity of most "real
world" price series, it is rare for researchers to
estimate the profit function as a single equa-
tion. Instead, the system of(m + n - 1) share
equations (sometimes including the profit
function) is estimated. The associated error
terms are conventionally attributed to errors
in profit maximization and are likely to be
contemporaneously correlated. This is used to
justify a seemingly unrelated regression (SUR)
technique. However, all of the regressors are
identical in each share equation, and the SUR
estimator would collapse to OLS were it not
for the cross-equation constraints. Thus, it is
really the latter which justifies estimation of a
system of share equations.

Because one of the share equations must be
dropped, it is often recommended that the re-
searcher iterate over the covariance matrix to
assure invariance of the estimates to the choice
of equations (Berndt and Christensen). How-
ever, there are no known statistical gains with
this procedure. In fact, in their monte carlo
experiments, Kmenta and Gilbert find that the
simple SUR estimator performs equally as well
as the more costly iterative procedures, even
when the model is substantially misspecified.

Using our pseudo data set, we are able to
explore all of these approaches to estimation
of the eleven-price, translog profit function.
We begin by estimating the profit function di-
rectly. The share equation system is then es-
timated, both with and without iteration over
the covariance matrix.3 Estimates from both
of these models are compared. This is followed
by a more detailed investigation of the mul-
tiproduct technology implicit in the process
model. The first step is to impose approximate
nonjointness. This is followed by the imposi-
tion of successively more restrictive separa-
bility conditions. The latter determine the va-
lidity of a single output profit function, the
estimates of which are presented at the end of
the section.

3 Attempts to estimate a system comprised of the profit function
as well as the share equations were unsuccessful, as convergence
was not obtained.

Comparing Alternative Approaches to
Estimation

Direct estimation of the profit function, with
symmetry and positive linear homogeneity
imposed, involves ten linear terms, ten qua-
dratic terms, and forty-five interaction terms.
Since the experimental design has not been
orthogonalized, collinearity is a potential
problem in the ordinary least squares esti-
mation of this equation containing sixty-six
variables, although there is sufficient indepen-
dent variability to estimate the model.4 The
"fit" of the equation resulted in a high R2:
0.988. This is not surprising, based on the ex-
perience of earlier authors with pseudo data
sets (Maddala and Roberts; Griffin). Only nine
of the fifty-five second-order coefficients ex-
ceeded their associated standard error by a fac-
tor of two or more.

Application ofHotelling's lemma to the prof-
it function results in ten independent share
equations which were normalized on "other
inputs":

(12)
a In

= S, = ,i + ,ijPj,,
= In P10.

i= 1,..., 10.

Here Si is positive for outputs and negative for
inputs. These shares sum to one by definition.
In addition to reducing collinearity, this sys-
tem approach has the advantage of creating
(11 x 151) "observations" without increasing
the number of parameters to be estimated. As
a result, system estimation yields forty-five of
fifty-five second-order coefficients which ex-
ceed their standard error by a factor of two or
more. As noted above, iteration over the co-
variance matrix has the advantage of provid-
ing estimates which are invariant to the miss-
ing share equation. In the case of the particular
data set and model utilized here, iteration over
the covariance matrix produced no change in
most coefficients. Only one estimate changed
by more than one percent (1.86%).

A final alternative is to estimate the profit
function and share equations jointly. This

4 In order to make the proposed composite design orthogonal,
the distance from the center point to the extrema in part (ii) of the
design must be adjusted. It becomes a function of the number of
treatment combinations. This in turn changes the form of the
corresponding regression model (1) (Anderson and McLean, pp.
356-59), such that it no longer corresponds to the translog for-
mulation.
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Table 2. Actual and Predicted Profit Shares
for the Base Case: Two Different Estimators

Predicted Values

Actual Profit Share
Values Function Equations

Corn (ai) .997 .480 .962
Soybeans (a2) .786 .893 .834
Wheat (a,) .111 .480 .147

Labor ((,) -. 172 -. 168 -. 180
Machinery (2) -. 02 -. 016 -. 024
Combine (03) -. 033 -. 034 -. 041
Drying ((4) -. 024 -. 014 -. 025
Storage ((5) -. 056 -. 045 -. 054
Fertilizer ((6) -. 263 -.252 -. 269
Chemicals (07) -. 097 -. 099 -. 109
Other (38) -. 229 -. 225 -. 241

brings the maximum amount of information
to bear on the estimation problem. However,
it is also a very difficult and expensive problem
when the number of prices is large, as in the
case at hand. As a result we were not able to
obtain convergent estimates of the joint system
for this particular model.

Table 2 provides a comparison of results
from the estimated profit function and share
equation models. The first column lists actual
profit shares for each of the three outputs and
eight inputs at the point of approximation (P =
1).5 These are derived by dividing net revenues
(or negative costs in the case of inputs) by re-
turns to land and management. Estimates of
these actual profit shares are provided by the
first-order terms in the translog profit function.
The second and third columns of table 2 list
these estimates from the profit function and
share equation models, respectively. Note that
output shares are positive and input shares neg-
ative, thus satisfying the monotonicity prop-
erty (convexity will be discussed below). The
most striking weakness of the profit function
approach is its inability to make reasonable
predictions of the output shares of corn and
wheat in the base case. The OLS estimate of
a1 is far too low, while that for a3 is far too
high. Since elasticities in this model are a func-

5 There is a contradiction inherent in treating these estimated
coefficients as derivatives of the true underlying function at the
point of approximation. This arises due to the nature of the re-
mainder terms in a Taylor-series expansion, which increase as one
moves away from the point of approximation. Unfortunately,
regression attempts to make these errors "equally small" over the
entire range of data. White has shown that least squares can pro-
duce only unbiased estimates of the Taylor-series coefficients if the
estimated and true functions share the same form.

tion of estimated shares, this problem is also
likely to interfere with the profit function's
ability to predict price effects. In short, the
share equation approach, which predominates
the literature, appears to be preferable in the
case at hand.

Interpretation of the Results

Using formulas (5)-(7), gross and net elastic-
ities were computed based on the share equa-
tion estimates of the translog profit function.
These elasticities vary over the entire sample
space and are derived as a function of esti-
mated shares, so that standard errors could not
be computed. We have chosen to evaluate them
at the point of approximation.

Table 3 summarizes our estimates of the net
elasticities in the base case. The input-com-
pensated, output supply elasticities are gen-
erally less than one, with positive own-price
effects and very large cross-price effects. Corn
and wheat are found to be net complements
in production. That is, an increase in the price
of wheat leads to an increase in the optimal
supply of corn, and vice versa. (Remember
that land is being held constant throughout this
analysis.) This can be explained by focusing
on the major reason for crop diversification,
namely, the timing of production activities.
Consider what happens when wheat produc-
tion increases in response to improved wheat
prices while input availability is held constant.
The shift of land into wheat lessens demands
on labor and machinery during the spring and
fall. With these resources less constrained, it
is profitable to shift land from soybeans to the
more input-intensive corn production. The
latter are strong net substitutes, competing
keenly for inputs during the planting and har-
vesting periods.

Output-constant, input demand elasticities
are quite small, indicating that most of the
"action" in this model comes from changes in
output mix. While there are many different
activities with which to produce, e.g., corn,
they involve very similar input mixes. Thus,
the own-price effects are quite inelastic. The
only cross-price elasticity exceeding 0.10 (in
absolute value) is the compensated demand
elasticity for combines with respect to changes
in the price of labor (0.22).

As expected, when all choice variables are
permitted to adjust optimally, the firm's re-
sponses to price changes are more elastic. Thus,
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Table 3. Net Elasticities

Price

Ma- Com- Ferti- Chemi- Other
Quantity Corn Soybeans Wheat Labor chinery bine Drying Storage lizer cals Inputs

Corn .5808 -. 6929 .1116 0 0 0 0 0 0 0 0
Soybeans -. 7988 1.0104 -. 2111 0 0 0 0 0 0 0 0
Wheat .7302 -1.1983 .4678 0 0 0 0 0 0 0 0
Labor 0 0 0 -. 1326-.0116 .0507 .0030 .0034 .0310 .0120 .0442
Machinery 0 0 0 -. 0862-.1182-.0083 .0181 .0156 .0772 .0271 .0753
Combine 0 0 0 .2213-.0049 -. 3201 -. 0006 -. 0096 .0253 .0304 .0592
Drying 0 0 0 .0218 .0177-.0010 -. 1039 .0164 .0220 .0284 .0004
Storage 0 0 0 .0113 .0070-.0073 .0075-.0295-.0149 .0170 .0086
Fertilizer 0 0 0 .0207 .0070 .0039 .0020-.0030-.0333 .0090-.0061
Chemicals 0 0 0 .0198 .0060 .0115 .0065 .0084 .0222-.0425-.0319
Other inputs 0 0 0 .0332 .0076 .0102 .0000 .0019 -. 0069-.0145 -. 0316

the gross elasticities shown in table 4 include
an expansion effect in addition to the previous
substitution effect. All of the outputs are gross
substitutes, and the cross-price effects between
corn and soybeans dominate the soybean own-
price elasticity, indicating strong substitution
possibilities in addition to the larger budget
share for corn. The gross supply elasticity for
wheat is very large, in part due to its relatively
small share in the base case.

Gross input demand elasticities are gener-
ally quite close to their output-compensated
counterparts in table 3. However, a few changes
merit comment. The own-price elasticity of
demand for chemicals is now positive, al-
though not distinguishable from zero. The fact
that this diagonal element of the Hessian car-
ries the wrong sign indicates that the profit
function cannot be convex in prices at the point
of approximation. This is disturbing indeed,
as we know that the underlying "true" profit
function must be convex. However, closer ex-
amination of the laboratory data set indicates
that chemical applications per acre are vir-
tually unchanged across all solutions of the
process model. Thus, the true value of that
gross elasticity is zero. Since the estimated prof-
it function is only an approximation, it is not
surprising that the own-price elasticity carries
an "insignificant" but wrong sign. In such a
case it would seem that imposition of the con-
vexity restriction (following Lau 1978) would
be desirable, given the availability of appro-
priate software.

Another notable point in table 4 is the gross
complementarity between fertilizer and drying
inputs. This arises from the fact that they are
both important inputs in the production of
corn. An increase in the price of fertilizer caus-

es a drop in the optimal supply of corn. This
in turn dampens the demand for the comple-
mentary drying input, which is also intensively
employed in corn production.

Note that all of the inputs are regressive
against soybeans. That is, an increase in the
price of any input results in an increase in the
optimal supply of soybeans. Symmetrically, an
increase in the price of soybeans results in a
drop in the demand for any of the inputs. The
opposite is true for corn and input demands.
These results follow from two facts: (a) total
land area is fixed, and (b) soybeans are rela-
tively less input-intensive than corn.

Particular Restrictions

In this section we evaluate the compatibility
of the process model with the nonjointness and
separability restrictions developed above. As
noted above, the nature of the error term in
pseudo data sets presents problems for clas-
sical statistical inference. Thus, rather than
presenting formal test statistics, we have cho-
sen simply to present system sum-of-squared
residuals (based on FIML residuals) resulting
from the restricted models. These are pre-
sented below.

Sum-of-Squared Residuals for Particular
Restrictions

Restriction System SSR
Symmetry and positive linear

homogeneity (maintained
hypothesis) 77.37

Approximate separability 80.35
Global, nonlinear separability 120.60
Global, linear separability 279.95
Approximate nonjointness 420.58
Cobb-Douglas 964.13
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Table 4. Gross Elasticities

Price

Quantity Corn Soybeans Wheat Labor Machinery Combine Drying

Corn 1.5055 -1.0772 -. 1196 -. 0369 -. 0087 -. 0145 -. 0525
Soybeans -1.2418 .7895 -. 0562 .0625 .0110 .0035 .0426
Wheat -. 7823 -. 3189 1.8754 -. 1526 -. 0291 .0631 .0261

Labor .1970 -. 2896 .1246 -. 1427 -. 0149 .0514 -. 0043
Machinery .3425 -. 3768 .1761 -. 1105 -. 1237 -. 0061 .0059
Combine .3379 -. 0716 -. 2252 .2244 -. 0036 -. 3279 -. 0119
Drying 2.0268 -1.4279 -. 1540 -. 0311 .0058 -. 0198 -. 1745
Storage .6186 -. 6263 -. 1252 .0255 .0061 -. 0202 -. 0150
Fertilizer .5806 -. 6952 .1624 .0047 .0008 .0009 -. 0191
Chemicals .0837 -. 3064 -. 0113 .0431 .0070 .0053 .0025
Other inputs -. 0426 -. 2909 .2686 .0284 .0040 .0146 .0005

As expected, the restrictions for local separ- Aggregating Outputs
ability do far less violence to the data than do
those for global separability. Of the latter re- The traditional approach to econometric mod-
strictions, the linear set are most restrictive. eling of production for a multicrop enterprise
Again, this makes sense because they imply has been to aggregate outputs. We explore the
both output separability from inputs and input implications of this approach using a Toem-
separability from outputs (i.e., input-output qvist index, which maintains consistency be-
separability). The nonjointness hypothesis, tween the form of the output aggregate and the
even though it only applies locally, clearly does translog profit function (Diewert 1976). The
substantial violence to the data. This is hardly resulting gross elasticities are presented in ta-
surprising since a common source ofjointness ble 5. A few points are immediately obvious
in production is the use of an allocatable fixed when comparing the uncompensated elastici-
input (Shumway, Pope, and Nash). (In our case ties in table 5 to those for the multiproduct
this is land, which is a binding constraint at firm in table 4. First, in place of the elastic,
every sample point.) The last entry provides crop-specific supply responses, we have a rel-
the system SSR for a model in which all of the atively inelastic supply function for the crop
second-order coefficients are set equal to zero. aggregate. This is hardly surprising since land
This is just the Cobb-Douglas case. A very area is fixed in this data set. These results also
large SSR confirms our earlier finding that most correspond nicely to Heady's conclusions on
of these terms appear to differ substantially individual crop versus aggregate supply re-
from zero. sponse. A second point worthy of note is that

Table 5. Gross Elasticities for the Output-Aggregated Model

Price

Other
Quantity Output Labor Machinery Combine Drying Storage Fertilizer Chemicals Inputs

Output .3818 -. 0753 -. 0135 -. 0301 -. 0153 -. 0160 -. 0999 -. 0490 -. 0836
Labor .7563 -. 3745 -. 0297 -. 0017 -. 0137 -. 0102 -. 1344 -. 0787 -. 1065
Machinery 1.0403 -. 2277 -. 2655 -. 1065 -. 0709 -. 0203 -. 1380 -. 1002 -. 1113
Combine 1.4227 -. 0079 -. 0654 -. 5484 -. 1283 -.1188 -. 2404 -. 1925 -. 1211
Drying 1.1728 -. 1042 -. 0705 -. 2075 -. 3060 -. 0383 -. 2430 -. 1542 -. 0503
Storage .4865 -. 0554 -. 0085 -. 0812 -. 0158 -. 1725 -. 0979 -. 0489 -. 0063
Fertilizer .6646 -. 0890 -. 0119 -. 0338 -. 0211 -. 0201 -. 3235 -. 0535 -. 1117
Chemicals .8205 -. 1311 -. 0218 -. 0681 -. 0337 -. 0253 -. 1345 -. 2665 -. 1396
Other inputs .6196 -. 0785 -. 0107 -. 0190 -. 0049 -. 0015 -. 1244 -. 0618 -. 3189
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Table 4. Extended

Price

Storage Fertilizer Chemicals Other Inputs

-. 0349 -. 1625 -. 0095 .0106
.0407 .2243 .0400 .0837
.0462 -. 2975 .0084 -. 4387

.0077 .0070 .0261 .0379

.0136 .0084 .0315 .0398
-. 0265 .0060 .0140 .0853
-. 0326 -. 2068 .0108 .0049
-. 0268 .0075 .0541 .1015

.0015 -. 0806 .0391 .0052

.0269 .0966 .0035 .0491

.0229 .0058 .0223 -. 0338

aggregation of outputs also affects the input
demand elasticities. In this case the inputs have
all become substantially more responsive to
own-price changes, and all inputs are now gross
complements. That is, a price increase in one
input results in a decline in the demand for
every other input. Apparently some of the out-
put substitution induced by changes in relative
input prices is now submerged in the estimates
of input responsiveness.

Finally, recall the SSRs resulting from var-
ious output-separability restrictions. The ap-
proximate separability condition did relatively
little violence to the data, whereas the global
restrictions were more damaging. The elastic-
ities in table 5 are evaluated at the point of
approximation and, as such, might be expected
to be somewhat plausible. However, as we
move away from that point we can expect them
to diverge further from those of the multi-
product profit function.

Summary and Conclusions

In this paper we have outlined the develop-
ment and use of a pseudo data set for purposes
of exploring the use of a translog, multiproduct
profit function. The vehicle used to generate
pseudo data is a modified version of the B-9
linear programming model for a representative
Indiana farm producing corn, soybeans, and
wheat. It pays particular attention to the prob-
lem of timing production activities and has
been extensively validated over its fifteen-year
evolution.

A fractional factorial, composite experimen-
tal design was employed in creating the data
set. It provides an efficient design for direct

estimation of the parameters in any of the flex-
ible functional forms corresponding to second-
order Taylor approximations. Single-equation
estimation of the profit function is compared
to estimation via a system of share equations,
and the latter is found to be preferable. Knowl-
edge of the underlying process model permits
an extensive discussion of the resulting com-
pensated and uncompensated elasticities. This
is definitely a valuable feature of using pseudo
data as a teaching tool.

Several sets of restrictions on the multi-
product firm's technology are also illustrated
using the pseudo data set. While classical sta-
tistical inference is not appropriate in this con-
text, the resulting system SSRs provide a useful
indication of the relative violence done by each
of these restrictions. Finally, estimation of an
aggregated output profit function illustrates
how gross elasticities are likely to be altered
when a single-product approach is employed
in analyzing a problem which is inherently
multiproduct in nature.

It is important to note that, by choosing to
pursue a dual approach in this paper, we are
unable to take advantage of information about
the allocation of the fixed (land) input which
is readily available in the process model's so-
lutions. Just, Zilberman, and Hochman have
suggested a primal approach which takes ad-
vantage of this information. Of course, work-
ing through the production function necessi-
tates more restrictive functional forms, and the
appropriate approach will depend on the na-
ture of the research problem as well as the data
set. As such, this may be an issue which could
be usefully explored via the use of pseudo data.

In sum, there are numerous advantages to
using pseudo data as a teaching tool in pro-
duction economics. In particular, we feel that
it enables students to focus on the particular
method being taught, learning its strengths and
its drawbacks. In abstracting from the inevi-
table problems of data quality and aggregation,
it is also hoped that some of the cynicism which
frequently develops with regard to the use of
potentially valuable methods can be avoided.

[Received July 1985; final revision
received December 1985.]
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