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Texas Field Crops: Estimation with

Curvature

C. Richard Shumway, William P. Alexander, and Hovav Talpaz

Some implications of theory are easily maintained in econometric estimation, but
computational costs of maintaining curvature properties (sufficient for existence of an
optimal solution) have often proved prohibitive. They also have been violated
frequently by unrestricted econometric estimates. A computationally manageable
procedure for maintaining and testing curvature is used here to obtain estimates of
product supplies and input demands for Texas field crops consistent with the theory
of the competitive industry. The curvature properties are tested along with several

technology restrictions.

Key words: crops, curvature, demand, duality, supply, technology.

Product supply and input demand functions
are reduced-form equations which are based
on an underlying behavioral model. In addi-
tion to providing economic information, they
permit tests about the economically relevant
boundary of the technology to be conducted
subject to the behavioral assumptions. How-
ever, for the estimated reduced-form equa-
tions to be consistent, even locally, with the
behavioral model from which they were ex-
plicitly or implicitly derived, several restric-
tions implied by that model must be satisfied.

For industries facing perfectly elastic prod-
uct demands and input supplies and which are
comprised of profit-maximizing, price-taking
firms, the dual profit function is monotonic,
linear homogeneous, and convex in prices. For
a twice-continuously differentiable aggregate
production function with weak regularity
properties (Lau 1978a), an optimal economic
solution exists, and the Hessian of the dual
profit function is positive semidefinite in prices
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and symmetric. The product supply and input
demand equations are the first derivatives of
the profit function. They must be homoge-
neous of degree zero in prices and have sym-
metric partial derivatives across equations that
form a positive semidefinite Hessian.

Whether the parameters of the profit func-
tion are estimated directly or are derived from
estimated systems of product supply and input
demand equations, the properties of homo-
geneity and symmetry are often relatively easy
to impose or to test. This can be accomplished
with linear restrictions and/or normalization
for many flexible functional forms. Mono-
tonicity over the data period typically is sat-
isfied by empirical estimates without addi-
tional restrictions. It is also possible to
determine whether the estimated parameters
yield a positive semidefinite Hessian, but un-
constrained estimates often do not satisfy this
property.

To test the statistical significance of a theory
by means of likelihood ratios, all implications
of the theory must be imposed in one set of
estimates. Since curvature properties frequent-
ly are not automatically satisfied, they must be
imposed in estimation.! But, this requires non-
linear inequality restrictions and substantially
increases the computational burden.

! Curvature properties also must be satisfied for estimated cost,
production, utility, or indirect utility functions to imply that a
solution exists which achieves the presumed behavioral objective.
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Even for relatively small systems of equa-
tions, computational costs of maintaining cur-
vature properties in least squares estimation
have been prohibitive for many research bud-
gets. As a result, few analysts (e.g., Behrman
and Murty; Berndt and Wood; Jorgenson and
Fraumeni) have maintained curvature. Con-
sequently, many econometric models with
specifications motivated by profit-maximizing
or cost-minimizing behavioral assumptions
have yielded empirical estimates inconsistent
with the specification assumptions. See, for ex-
ample, recent studies by Antle; Babin, Willis,
and Allen; Dixon, Garcia, and Mjelde; Lopez;
McKay, Lawrence, and Vlastuin; Ray; Rossi;
Shumway. The problem has been especially
acute for multiple-product production prob-
lems.

The objectives of this article are (a) to use
a computationally manageable procedure for
curvature maintenance in order to obtain es-
timates of Texas field crop supply and input
demand equations fully consistent with the
theory of the competitive industry, (b) to com-
pare policy-relevant implications of these es-
timates to those without curvature mainte-
nance, and (¢) to test for satisfaction of two
important technology hypotheses that are fre-
quently maintained in empirical application—
short-run nonjoint production and Hicks-neu-
tral technical change (Lau 1978a).

Empirical Problem

In pursuing these objectives, curvature is
maintained on a dual model which was pre-
viously estimated by Shumway without cur-
vature being maintained or satisfied. The same
data are used. As before, the state is modeled
as a competitive industry represented by an
aggregate, twice-continuously differentiable,
multiple-product production function and fac-
ing perfectly elastic product demands for six
outputs (hay, rice, wheat, sorghum, cotton, and
corn); perfectly elastic input supplies for three
inputs (machinery operating inputs, fertilizer,
and hired labor); and perfectly inelastic input
supplies for two additional inputs (family labor
and land).?

2 The assumed existence of an aggregate state-level production
function bypasses (or begs) the issue of what specific assumptions
justify the aggregation of firm-level production functions to an
industry-level production function. A sufficient aggregation con-
dition for competitive firms is that each has the same production
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The dual model was specified by Shumway
as a normalized quadratic restricted profit
function, which may be written compactly as:

1) #*=p, + CP + SPDP

where #* is profit divided by price of netput
L, P=1[Ps .. P Xms1s - - - » Xnl 1S the vector
of normalized prices (7; = p/p,) and quantities
of fixed inputs and other exogenous variables
(Xt 1» - - - » Xu); D; 1s the price of netput i; the
scalar b,, the vector C, and the symmetric ma-
trix D represent parameters. Following the net-
put convention (Varian, p. 8), output quan-
tities are positively measured and variable
input quantities are negatively measured.
The system of m — 1 linear product supply
and input demand equations obtained as par-

tial derivatives of (1) in f,, . . ., P
2 Xp=¢ t 2 dby + 2 dx, + e
j=2 j=m+1
i=2,...,m,
t=1,...,T,

(where ¢ is the error term and ¢ is time), were
estimated by Shumway as a seemingly unre-
lated regression system by Zellner’s general-
ized least squares (GLS).? Eight equations were
estimated, one each for the six crop supplies
and for fertilizer and hired labor demands.
Other exogenous variables were the fixed in-
puts (positively measured), time as a proxy for
technical change, an index of actual divided
by expected crop yield to represent the ex post

function. However, all that is assumed here is that producers in
the state act collectively as though they were a single firm using
total input quantities to produce the total quantities of outputs
reflected in the state data. Further, because the higher of lagged
annual market price or current effective support rate was used to
represent expected commodity price, no simultaneity was consid-
ered in the estimation of output demand and supply relationships.
Some simultaneity likely exists in state-level variable input supply
and demand relationships, but it is expected to be relatively small.
The markets for all three variable inputs are clearly national in
scope. Hired labor is the most likely input to be subject to unique
local or state markets. Even at the national level, the effect on
implied output supply elasticities of upward-sloping, variable-in-
put supply curves has been found to be modest when land and
family labor are treated as fixed inputs (Shumway, Saez, and Got-
tret). Thus, the empirical results reported in this article are not
expected to be affected seriousty by this assumption.

3 A system of m derivative equations (including the profit func-
tion or the quadratic demand equation for the numeraire input,
x,1) could have been estimated as long as sufficient data were avail-
able. Unlike the translog, the covariance matrix of the full set of
derivative equations is not identically singular for the normalized-
quadratic profit function. Neither the profit function nor the nu-
meraire equation was included in this estimation system because
each greatly exacerbated collinearity problems among the inde-
pendent variables.
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effect of weather (Stallings), and diversion pay-
ments to represent government commodity
programs. The last two variables were crop
specific and appeared only in the supply equa-
tion of the respective crop. The data consisted
of an annual time series for the years 1957-

" 79. Homogeneity in prices was maintained by
normalization by the price of machinery op-
erating inputs, and symmetry was maintained
by linear restrictions.* GLS estimates obtained
for this system of equations without imposing
the convexity restrictions are reported in
Shumway (p. 755).

Maintaining Convexity

Several procedures for maintaining curvature
properties in econometric estimation have been
proposed (Lau 1978b; Hartley, Hocking, and
Cooke; Hazilla and Kopp; Gallant and Golub;
Talpaz, Shumway, and Alexander). The prob-
lem has been handled most often by using the
Cholesky factorization to reparameterize the
D matrix (Lau 1978b). This procedure and the
eigenvalue decomposition procedure of Tal-
paz, Shumway, and Alexander were applied to
our empirical problem using several optimi-
zation algorithms.

Using the most efficient of three nonlinear
optimization algorithms, the Cholesky meth-
od dominated the eigenvalue procedure both
in sum of squared error (SSE) and CPU time
required for convergence with each of three
data sets.’ The Cholesky method has since been

4 The normalizing price is for the numeraire input, x,; its qua-
dratic demand equation was omitted from the system of estimation
equations.

5 Since both procedures are reparameterizations of the problem,
the same estimates for the parameters in the original parameter
space are theoretically attainable. The differences experienced are
due to the necessity of using numerical solution methods. The two
procedures were first programmed in the SAS programming lan-
guage, PROC MATRIX, using the Davidon-Fletcher-Powell vari-
able metric optimization algorithm (Fletcher and Powell) modified
with the golden section line search (Talpaz). The eigenvalue de-
composition procedure required fewer iterations for convergence
on a three-equation sample problem and gave convex parameter
estimates with lower SSE than the Cholesky factorization proce-
dure (Talpaz, Shumway, and Alexander, p. 663). Using the re-
duced-gradient nonlinear programming procedure in the algorithm

code, MINOS version 4.0 (Murtagh and Saunders 1978, 1980),

the Cholesky procedure converged more rapidly with lower SSE
on two orthogonal sample data sets (five and eight equations) than
the eigenvalue procedure. However, it failed to converge on the
Texas field crop data. MINOS version 5.0 (Murtagh and Saunders
1983) was the algorithm code used here. It converged on the Texas
field crop data and required 21-97% less CPU time than the ei-
genvalue procedure for each of the three data sets.
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applied to several additional output supply—
input demand systems (all with at least eight
equations and often including a quadratic nu-
meraire equation). It has converged in all cases
and was the method used in this study. Uti-
lization of this or other methods with suitable
software now makes maintenance of curvature
properties a manageable task in much empir-
ical research.® Details of the Cholesky proce-
dure used here are reported in Talpaz, Alex-
ander, and Shumway.

Implementation—System Covariance Matrix

Coordinated computer programs were written
in PROC MATRIX of SAS and in FORTRAN
to permit estimation via the Cholesky factor-
ization of complete systems of equations.
Seemingly unrelated regression estimates of the
system of equations (2) subject to the cross-
equation symmetry restrictions were estimat-
ed using SAS. These estimates were then used
as a starting point in a FORTRAN program.
The purpose of the latter program was to per-
form the Cholesky factorization on the matrix
of price parameters and, by utilizing MINOS
(version 5.0), to obtain nonlinear least squares
estimates of the system subject to the sym-
metry and convexity restrictions. Alternative-
ly, the system could have included the linear
supply and demand equations (2) along with
either (1) or the quadratic equation for the nu-
meraire netput (x;) derived from (1) (e.g.,
Shumway and Alexander). Or, it could have
included the translog profit function along with
m — 1 share equations with curvature main-
tained at selected points.” In either case, with
time-series datd, there are often too few ob-

$ On the Texas A&M University Amdahl V-8 mainframe com-
puter, CPU time required to maintain curvature on this system of
equations was 88 seconds. Since its Hessian matrix is a matrix of
constants, the normalized quadratic is the simplest functional form
to which the Cholesky decomposition can be applied. The repa-
rameterization required by this method for other common forms
of the profit function, such as the translog, is also straightforward
although somewhat more involved and renders curvature restric-
tions only as local properties. With other more complicated func-
tional forms, the method may be impossible to apply.

” Diewert and Wales note that a number of recent curvature-
imposing applications maintain sufficient conditions for curvature,
sometimes reduce the flexibility of the functional form, and gen-
erally maintain curvature only locally. The restrictions maintained
in this study are both necessary and sufficient, do not reduce flex-
ibility, and maintain curvature globally for the normalized qua-
dratic functional form. They would maintain curvature locally for
the translog or for any of several other functional forms.
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servations to estimate the quadratic numeraire
or translog profit equation by OLS.

Given the validity of the restrictions, two
procedures give GLS estimators with the same
asymptotic properties for our system of seem-
ingly unrelated regression equations: (a) esti-
mate each equation by OLS, compute the co-
variance matrix across equations, use it to
transform the observation matrix, and reesti-
mate with symmetry restrictions maintained
by GLS; or (b) stack the system of equations
and estimate the entire system by OLS with
symmetry restrictions maintained, compute
this covariance matrix across equations, trans-
form the observation matrix, and obtain GLS
estimates.® The first procedure was used by
Shumway. The second was used here both to
derive the covariance matrix and to obtain a
starting point for the nonlinear least squares
(NLS) estimation which maintains curvature
properties. Although asymptotic properties are
the same (assuming the symmetry restrictions
are valid), the two sets of GLS estimates differ
because different system covariance matrices
are used to transform the observation matrix.
Neither gives results for our data set that are
consistent with a convex restricted profit func-
tion.

The NLS estimation requires iterative search
to obtain parameter estimates. Iterating also
on the system covariance matrix, as recom-
mended when obtaining GLS estimates of a
translog system, is not advisable here for sev-
eral reasons. First, it would greatly increase
computational burden. Second, it would not
yield estimates for the normalized quadratic
profit function (unlike the translog) invariant
to choice of numeraire; this is because (a) the
covariance matrix of the full system of the nor-
malized quadratic derivative equations is not
singular, and (b) changing the numeraire
changes the entire specification since the nu-
meraire equation is quadratic while the rest of
the derivative equations are linear.® Third,

8 With as few observations as we have, small sample properties
also are important. Unfortunately, only the asymptotic properties
of these estimators are known.

° The machinery operating inputs category was chosen as the
numeraire because quantity data for this input were less reliable
than for other inputs or outputs. The empirical results are not
independent of this choice. Even if the numeraire equation had
been included in the system of estimation equations, the results
still would have been dependent on the choice of numeraire. Got-
tret’s examination of the impact of numeraire choice on U.S. and
regional agricultural production estimates revealed no sensitivity
of several theoretical and technical hypothesis test conclusions but
considerable sensitivity of own-price output supply and input de-
mand elasticities.
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since noniterative GLS gives the same asymp-
totic distribution as the maximum likelihood
estimator, which is obtained by iterating, the
only benefit from iterating would be a (possi-
ble) gain in efficiency. Hence, the system co-
variance matrix computed from the OLS es-
timates of the stacked system was used to
transform the observation matrix throughout
both the GLS and NLS estimations.!?

With regard to properties of the GLS and
NLS estimators, it should be noted that the
dimension of the parameter space is not re-
duced by maintaining the inequality convexity
constraints. When the null hypothesis that the
profit function is convex is true, the uncon-
strained GLS estimator is consistent and
asymptotically equivalent to the constrained
NLS estimator. That is, the probability that
the convexity constraint is binding tends to-
ward zero with increasing sample size.

Estimation Results

Although the own-price supply and demand
parameters estimated by Shumway all had the
expected signs, the estimated profit function
was not convex since the matrix of price pa-
rameters was not positive definite. Neither was
the matrix of GLS price parameters estimated
by stacking the equations in the first (OLS)
step. See table 1 for price elasticities from both
sets of estimates. Because the covariance ma-
trices used to transform the observation ma-
trix differ between these two methods, the GLS
estimates and corresponding elasticities also
differ. The extent to which parameter esti-
mates can differ for asymptotically equivalent
estimators is readily apparent from these elas-
ticities. For example, eight of our own-price
elasticities have the expected sign as compared
to all nine in Shumway’s estimates. Own-price
elasticities for machinery operating inputs, rice,
and corn are, respectively, .63, 1.27, and 1.24
from our estimates and —.37,.72, and .07 from
Shumway’s. Some cross-price elasticities also
had different signs and others differed greatly
in magnitude. Parameters at least 1.96 times
as large as standard errors include 39% of the
price parameters and 36% of all parameters in

10 Theil and Clements (p. 116) recently have cautioned that,
relative to a known true covariance matrix, symmetry-constrained
estimation of the covariance matrix can yield final parameter es-
timates with “impaired efficiency” and approximate standard errors
that “give an overly optimistic picture of their precision.”
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Table1. Product Supply and Input Demand Elasticities, Two Generalized Least Squares (GLS)

Estimates, 19792

Elasticity with Respect to the Price of

Ma-
chinery
Operat-

ing Ferti- Hired Sor-
Output or Input Inputs lizer  Labor Hay Rice Wheat ghum  Cotton Corn
Machinery Operating -.37 -.15 —.01 .07 -.17 .75 -.09 .26 -.30
Inputs .63 —.14 .24 .07 -.32 .04 -.58 -.09 15
Fertilizer —-.15 -.70 .20 13 .38 .05 .05 .03 .01
—.14 -.83 .14 23 51 .01 .09 .03 -.03
Hired Labor -.01 .39 —.43 11 21 .03 —.84 .19 .34
.44 .26 —.38 -.22 —.06 41 -.75 11 .19
Hay -.07 -.13 —.06 .10 .26 .01 -.01 .06 —-.16
—.06 -.22 1 .28 .55 -.05 —-.10 —.002 -.52
Rice 24 —55 -.16 .39 72 .16 .36 -.28 —.88
45 -.74 .05 .84 1.27 -.05 31 -.82 -1.32
Wheat -.57 -.04 —-.01 .01 .09 43 —.18 .01 .26
-.03 -.01 -.17 —-.04 -.03 .30 -.05 -.14 15
Sorghum .05 -.03 27 -.01 15 -.14 .62 -.74 -.17
.34 -.05 24 - —.06 13 —.04 74 -.90 -.39
Cotton -.05 —-.01 -.02 .01 —-.04 .003 -.26 25 A1
.02 -.01 -.01 —.0004 -.12 -.04 -.31 .29 17
Corn .29 —.01 -.18 —-.16 -.59 33 -.27 .52 .07
~.14 .03 —-.10 -.52 —.88 .19 —.63 .80 1.24

* Top elasticities are GLS with first-stage covariance matrix computed from unrestricted OLS estimates of eight equations (Shumway,
p. 756, corrected for column- and row-label error). First-stage covariance matrix of bottom GLS elasticities was computed from OLS
estimates of the stacked system of equations with symmetry maintained.

our estimates compared to 50% and 53%, re-
spectively, of Shumway’s.

Collinearity among the independent vari-
ables in this eight-equation system is fairly
strong. A condition index of 347 was com-
puted for the centered and scaled stacked ma-
trix of independent variables.!!

The hypothesis of no first-order serial cor-
relation in our GLS estimates was tested and
not rejected at the 5% level for any equation.
Durbin-Watson statistics ranged from 1.72 for
rice supply to 2.61 for sorghum supply, all
within the inconclusive range.

The NLS estimates (with convexity main-
tained) are reported in table 2. These estimates
globally maintain three properties of the re-
stricted profit function for a state industry that
behaves like a competitive firm with a twice-
continuously differentiable aggregate produc-
tion function—homogeneity, symmetry, and
convexity. The fourth property, monotonicity,

" While this condition index suggests fairly strong collinearity
(Belsley, Kuh, and Welsch; Hocking and Pendleton), it is lower
than frequently observed in such systems (e.g., Shumway and Alex-
ander).

was checked at all data points and was not
violated at any point for any equation. Thus,
these estimates are fully consistent with the
competitive theory for a price-taking, state-
level industry.

Consistency of the curvature properties with
the data was tested by determining whether
the estimated nonconvex parameter estimates
fell within a 95% confidence ellipsoid around
the convex parameter estimates. The logic for
the test statistic used here, which is distributed
approximately as an F, is developed in the
appendix. The observed F was 1.04. Thus, the
curvature properties are not rejected by these
data at the 5% level of significance (critical
value Of F.7085,106 = 1.43).

Nearly as many NLS parameter estimates
(33%) as our GLS estimates (36%) were
asymptotically significant at the 5% level.!2
However, only a little more than three-fourths
as many NLS as GLS parameters on the price

/

12 The absolute magnitudes of the estimated parameters reported
in this article are not directly comparable to those reported by
Shumway because the data have been scaled here to promote con-
vergence in the nonlinear estimation.
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Table 2. Nonlinear Least Squares Estimates of Texas Field Crop Supplies and Input Demands

Param-

Param- Param- Param-
eter Estimate eter Estimate eter Estimate eter Estimate
c —.0744 dys .0000460 dy, .000398 daa —.0134
(.0613) (.0000513) (.001509) (.0025)
Cs .00879 dse —.000177 dy —.00318 ds1n —-.000103
(.00938) (.000223) (.00397) (.000335)
Cs —.00116 dss .00205 dg, 0126 dya —.0000044.
(.00181) (.00077) (.0090) (.0000649)
s —.0157 dy —.0188 dyo .00181 dsi» —.0000322
(.0105) (.0080) (.00684) (.0003454)
Cs —.0962 dy, .0000537 daio —1.28 ds1z —.000468
(.0181) (.0007277) (1.85) (.000669)
¢ —.0459 dy .0000245 dy0 -.791 s —.000165
(.0524) (.0001139) (.248) (.001311)
Cy —.854 dsy .000468 diro —.031 ds1z .0246
(172) (.000459) (.049) (.0068)
Co -.170 ds; —.000397 dsio —-.063 dsyz .00341
(.074) (.001190) (.264) (.00250)
dy, 5377 dn 0116 dso —1.24 dys .0000151
(.062) (.0041) (.52) (.0000064)
dys —.00194 dy .0178 dro .194 dsis .000116
(.00207) (.0151) (.915) (.000032)
dys .0000075 s —.0000577 dso 4.10 de1s .000416
(.0002345) (.0018742) (5.20) (.000044)
dy, —.00112 dis .0000050 dso 1.36 dys .00102
(.00029) (.0003704) (1.69) (.00015)
dss .0000041 dss —.000566 dy, 1.33 dy1s .00756
: (.0000310) (.001437) 9.17) (.00049)
d .0000033 des .00177 dsy, —.0928 17/ -.000122
(.0000073) (.00321) (1.4278) (.000144)
dys —.0132 dys —.0548 di, .195 dos —.0000045
(.0013) (.0064) (.265) (.0000020)
dys .0000443 dss 271 dsn, 2.09 s —.0000155
(.0001230) (.037) (1.38) (.0000128)
dys .0000216 dy .0255 sy 13.3 dys —.00157
(.0000247) (.0095) 2.9) (.00033)
dss .000319 dy —.0000847 d, 10.3 dyss .0000315
(.000126) (.0008334) (5.0) (.0000320)
s —.000168 dy —.0000408 a1y 21.1
(.003256) (.0001587) (24.6)
dss .0000023 dso —.000620 doyy 11.1
(.0003255) (.000671) (7.3)

Note: Standard errors are in parentheses. See equation (2) for parameter identification. Parameter subscripts identify variables: the first
identifies variable i and the second and third identify variable j. Variable numbers: 1 is machinery operating inputs, 2 is fertilizer, 3 is
hired labor, 4 is hay, 5 is rice, 6 is wheat, 7 is sorghum, 8 is cotton, 9 is corn, 10 is family labor, 11 is total acres planted to the six
crops, 12 is time, 13 is the crop-specific weather proxy, and 14 is crop-specific effective diversion payments. Prices p, through p, are

normalized by p,. s

variables were significant at this level. Weight-
ed diversion payments were significant in the
NLS supply equations for wheat and cotton
but only for cotton in the GLS equations.
Quantity of family labor was a significant vari-
able in the NLS equations for hired labor de-
mand and wheat supply but only for hired la-
bor demand in the GLS equations. In both sets
of estimates, total acreage planted was signif-
icant for wheat and sorghum supplies, time
was significant for fertilizer demand and cot-
ton supply, and the weather proxy variable was

significant for all output supplies except corn.
Five own-price parameters were significant in
the NLS equations and four in the GLS equa-
tions. Only five cross-price parameters were
significant in the NLS equations compared to
10 in the GLS equations.

Elasticities
Although convexity was not rejected, main-

tenance of the curvature restrictions can sub-
stantially alter policy-relevant implications. To
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Table 3. Product Supply and Input Demand Elasticities, Convexity Maintained, 1979

Elasticity with Respect to the Price of

Machin-
ery
Operating Hired Sor- .
Output or Input Inputs Fertilizer Labor Hay Rice Wheat ghum Cotton  Corn
Machinery Operating
Inputs -.93 -.003 .001 .19 -.12 46 —.60 .79 22
Fertilizer —.003 —.85 .06 32 .65 .003 22 —.05 -.34
Hired Labor .001 11 -.01 -.04 —.08 —.001 -.02 .01 .04
Hay —.18 -.31 .02 .18 - .20 13 .05 .003 -.10
Rice 17 -.95 .06 30 76 -.13 .26 -.08 -.39
Wheat -.35 —.002 .001 11 -.07 27 -.04 .04 .04
Sorghum 36 0 -3 .01 .03 .11 -.03 62 =77 -.20
Cotton -.16 .01 . —.001 001 . -.01 .01 -.27 35 .07
Corn -.21 33 —.02 -.10 -.26 .05 -31 33 .20

illustrate, price elasticities from the NLS es-
timates are reported in table 3. All own-price
elasticities have the expected sign (since con-
vexity requires it), but most are lower in ab-
solute value than the elasticities from the GLS
estimates. This latter finding is opposite to the
result obtained by Diewert and Wales for U.S.
manufacturing using the translog functional
form; this difference partly may be due to our
imposition of curvature restrictions which are
both necessary and sufficient while Diewert and
Wales’ restrictions are only sufficient. The only
own-price elasticity that changed sign is for the
numeraire input, machinery operating inputs.
The parameters of the numeraire equation were
not estimated separately but were derived un-
der the homogeneity and symmetry restric-
tions.

One-fourth of the cross-price elasticities
changed sign. They also tended to be lower in
absolute magnitude with convexity main-
tained — 50 were not greater than .2 (compared
to 44 in the GLS estimates), 16 were between
.2 and .4 (11 GLS), and only six were above
.4 (17 GLS).

Technology Tests

Shumway conducted several indirect tests
(some approximate) on the structure of the
multiple-product production technology, in-
cluding nonjointness, homotheticity, and sep-
arability. The test for short-run nonjointness
in all outputs was repeated here along with
tests for Hicks-neutral technical change.

The asymptotic distributions of the uncon-
strained test statistics are unaffected by the in-

equality nature of the curvature restrictions,
when valid, since they reduce the allowable
region for the estimates but not the dimensions
of the region. They do not alter the minimum
variance bounds of the parameter estimates.
Thus, it is unnecessary with large samples to
repeat the structural tests with convexity
maintained (Jorgenson and Lau, pp. 71-72;
Rothenberg, pp. 49-58). However, since the
parameter estimates do change for our small
sample when convexity is imposed, the tests
were conducted with both sets of estimates in
order to provide a comparison of actual test
statistics with a limited number of observa-
tions (tabie 4).

Table4. Nonjointness and Technical Change
Tests

De-
grees Chi-Square
of Statistic®
stic
Free-

Test dom  GLS NLS
Nonjointness in all outputs 15 162.8 129.0
Global Hicks-Neutral Technical Change:

In Fertilizer and Hired
Labor 2 50.4 31.0
In all outputs 6 17.2 20.6
Local Hicks-Neutral Technical Change:
In Fertilizer and Hired )
Labor 1 21.3 26.3
In all outputs 5 18.1 16.9

= For nonjointness and global technical change tests, critical values
of the Wald Chi-Square statistic at the .01 level are 9.2, 16.8, and
30.6 with two, six, and 15 degrees of freedom, respectively. For
local technical change tests, critical values at the .01/23 level are
12.0 and 22.0 with one and five degrees of freedom, respectively.
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Consistent with the findings of Shumway,
short-run nonjointness in all outputs was
soundly rejected at the 1% level by both tests.
We cannot conclude that the supply of each
output is independent of the price of all other
outputs (i.e., d;= 0, for alli # j, and j outputs)
(Lau 1978a, p. 183). \

Technical change is indirectly Hicks neutral
in the variable inputs of fertilizer and hired
labor if all demand ratios are independent of
time (Lau 1978a, p. 202), i.e., if

3 da13Xs — daypx, = 0.

By the same condition on output supplies,
technical change is indirectly Hicks neutral in
outputs if

4 dpx, — dipx; = 0, foralli, j=4,...,9.

Technical change is globally indirectly Hicks
neutral in variable inputs (outputs) if all pa-
rameters in (3) (or (4)) are zero. Global indirect
Hicks neutrality was rejected in the variable
inputs and in outputs at the 1% level by both
the GLS and NLS estimates.

Since global neutrality was rejected, local in-
direct Hicks neutrality was tested by (4) for
outputs and by (3) for variable inputs at the
data points. Chi-square statistics were com-
puted at each observation, and the largest for
each form of neutral technical change consti-
tutes the test statistic. Using a test size of .01/
23, where 23 is the number of observations,
the probability of a joint Type I error was at
most 1% by Bonferroni’s inequality (Bickel and
Doksum, p. 288). By both the GLS and NLS
estimates, local Hicks-neutral technical change
was rejected in variable inputs but not in out-
puts. The failure to reject local Hicks neutrality
in outputs (which would not have been re-
jected even at the 5% level) contrasts sharply
with the recent tests by Shumway and Alex-
ander for the ten U.S. Department of Agri-
culture farm production regions. In that case,
local Hicks neutrality in outputs was rejected
at the 5% level in all regions for the data period
1951-82.

Although the actual x? statistics for these
technology tests differ between the GLS and
NLS estimates, the conclusions rendered are
consistent.

Conclusions

Product supply and input demand equations
for Texas field crop production are reported

Western Journal of Agricultural Economics

in this article and are constrained so that their
estimates are fully consistent with the theory
of the competitive industry with a twice-con-
tinuously differentiable aggregate production
function. Symmetry, homogeneity, and con-
vexity of the profit function in prices were
maintained in the constrained estimation.
Monotonicity was satisfied by all equations at
all observations.

Curvature (convexity) properties were
maintained using a Cholesky factorization.
Utilization of this method with suitable soft-
ware has made this previously burdensome
problem computationally manageable. Solu-
tion took 88 seconds on an Amdahl V-8 main-
frame computer and cost less than $10 at ed-
ucational rates. With such feasibility, convexity
now warrants widespread testing in empirical
research along with other implications of the-
ory.

Maintaining curvature properties substan-
tially increased mean-squared error but did not
impose major restrictions on our data. When
tested, convexity was not rejected by these data
at the 1% level.

Product supply and input demand elastici-
ties were altered substantially when curvature
properties were maintained. They also were
highly sensitive to choice among asymptoti-
cally equivalent procedures for obtaining the
covariance matrix in the first step of GLS es-
timation.

Technology test results were consistent across
estimation approaches. Short-run nonjoint-
ness in all outputs was again soundly rejected,
implying that it would not be legitimate to
model the production of each of these six crops
as single-product decision problems. Local in-
direct Hicks-neutral technical change in out-
puts was not rejected by either the GLS or NLS
estimates. Consequently, it would appear jus-
tifiable to model output supply ratios over the
data period without major concern about bias
introduced by disembodied technical change.
Since Shumway failed to reject homotheticity
of the production technology in these six out-
puts and in the variable inputs, this would also
imply that changes in marginal rates of sub-
stitution among the outputs and among the
variable inputs have been largely independent
of disembodied technical change (as repre-
sented by the time variable).!3

13 Indirect Hicks neutrality implies and is implied by direct Hicks
neutrality only if either the production function is homothetic or
it is additive in time (Lau 1978a, p. 202).
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This article addressed two issues: (a) the fea-
sibility of imposing curvature properties in
econometric estimation by the Cholesky fac-
torization, and (b) their impact on a specific
set of empirical estimates. Tests of hypotheses
using the curvature-constrained parameter es-
timates have been performed, but no statistical
interpretation of the method for maintaining
curvature has been provided. For the latter
purpose, the sampling-theoretic approach to
inequality constraints of Kodde and Palm and
the Bayesian approach of Chalfant and Gray
might be considered.

[Received February 1989; final revision
received November 1989.]
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Appendix

It is not possible to test the null hypothesis of convexity
of the profit function by the standard methods of linear
models. Such methods require that the null hypothesis be
stated in terms of linear equality restrictions on the pa-
rameters. One suggestion is to construct a confidence el-
lipsoid for the parameters and to reject the null hypothesis
if and only if this ellipsoid does not contain parameter
values which lead to a convex profit function.'

Let G be a subspace of the parameter space which is
defined by

G = {0 € R*: 0 yields a convex profit function}.

An approximate 1 — « confidence ellipsoid for 0 is given
by

E = {t:F(t) = Fy4},

where F(f) = [@ — fy(WQ ' W)§ — o/k/MSE; § =
(W’Q“W)“W’Q“Y is the GLS estimate of 8; W is the
matrix of stacked independent variables for the system of
equations; Y is the stacked vector of dependent variables;
O = $ ® I, 2 is the contemporaneous covariance matrix
estimated from the OLS residuals; k is the number of
parameters estimated; d = (m — 1)T — k; T'is the number
of observations; m — 1 is the number of equations esti-
mated; MSE is the mean-squared error for the GLS es-

14 Our appreciation is extended to Robert L. Basmann for this
suggestion. It is similar to the test recently proposed by Wolak.
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timate; and F, is the 100(1 — «) percentage point of the
F,,; distribution. The null hypothesis of convexity is re-
jected if and only if the intersection of G and E is empty.

This test is conservative in the sense that the probability
of a Type I error is no greater than «. To see this, let 6, €
G be the true value of the parameter vector 8 and note
that

o= Pl6, € E] = PIE C Rx — ;] = P[E€ G° U Gyl
= P[E € G| + P[E € G|]
+ PIEZ G, EZ G, EC G UG
= P[E C G9] = P[Type I error],

where G¢ is the complement of G and G, = G — 6,.
Determining whether the intersection of E and G is

empty may seem to be a difficult problem to solve. Given
the constrained NLS estimators, it is not. It can be shown
that the vector of constrained NLS parameter estimates,
8, is also a solution to

min F(¢).

eG

Hence, E and G have a nonempty intersection if and only
if ’

F() < Fz,

The value of F(f) is interesting in its own right as it is a
measure of squared statistical distance from the uncon-
strained to the constrained parameter estimates.

Under a condition like W'Q-1W/T — Qas T — co, where
Q is positive definite, one expects this test to be consistent.
That is, the probability of rejecting the null hypothesis
when it is false tends to one as T increases. The size of
the test will tend to zero, however, if there is an open
neighborhood about 6, contained in G. This doesn’t seem
of great concern since one would not need to conduct the
test if the GLS and NLS estimates are the same.

Summarizing, the test of convexity-of the profit function
is conducted as follows:

(@) Find the OLS estimate, $, of = from the OLS residuals.
The estimate of © is

0=%01L
This estimate of  is used throughout.
(b) Find the GLS estimate, 6, of 6 as
§=(Wa W)y wQ-y.
(¢) Using the methods discussed, find the constrained NLS
estimate, 0, of 8 by minimizing the function
Y — wWoyQ-\(Y — wo)

with respect to § subject to 6 yielding a convex profit
function.
(d) Calculate

F(@) = [ — 6y(w Q- w)§ — 0/KYMSE
and reject H, if and only if F(§) > Fy,.



