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Alternative Estimation Methods of
Nonlinear Demand Systems

Oral Capps, Jr.

Several contemporary models of consumer demand comprise complete sets of nonlinear
demand functions. Estimation methods should take into account parameter nonlinearity, cross-
equation correlation, variance-covariance singularity of the disturbance terms, and various
parameter restrictions. This paper presents a theoretical discussion and some empirical results
using the maximum likelihood (ML) method and the iterative version of Zellner's seemingly
unrelated regression (IZEF) method in the estimation of a nonlinear system of demand equa-
tions (the linear expenditure system) when the disturbance terms are both contemporaneously
and serially correlated. On the basis of the evaluation of parameter estimates and their asymp-
totic standard errors as well as the cost of computation effort, the IZEF technique is preferred
over the ML technique in this empirical problem.

A major topic in the literature of theo-
retical and applied econometrics is the es-
timation of systems of nonlinear equa-
tions. In particular, several basic
contemporary models of consumer de-
mand comprise sets of nonlinear demand
functions.l Estimation methods should take
into account essential parameter nonlin-
earity, cross-equation correlation, vari-
ance-covariance singularity of the distur-
bance terms, and various parameter
restrictions. Consequently, practitioners
are continually faced with theoretically
satisfactory models imbued with practical
difficulties.

Two viable methods for estimating
nonlinear demand systems are the maxi-
mum likelihood (ML) procedure and the
iterative version of Zellner's seemingly
unrelated regression (IZEF) procedure.

Oral Capps, Jr. is an Assistant Professor, Department
of Agricultural Economics and Statistics, Virginia
Polytechnic Institute and State University, Blacks-
burg.

This work was sponsored by the S-165 Regional
Committee on U.S. Food Demand and Consumption
Behavior under Virginia Tech Contract No. 2124270.

1 For a concise survey of this literature, see Barten
(1977), Brown and Deaton, Goldberger, Powell, and
Theil (1975).

This paper describes these estimation
techniques in some detail under the as-
sumption that the disturbance terms are
both serially and contemporaneously cor-
related. In addition, this paper presents
empirical results using these methods in
the estimation of parameters for a partic-
ular system of demand functions-the lin-
ear expenditure system (LES)-using U.S.
personal consumption data.

The organization of the paper is as fol-
lows. The next section provides a descrip-
tion of the ML procedure and the IZEF
procedure. The third section deals with
the LES specification, and the fourth sec-
tion concerns the data. The fifth section
contains the empirical results, and con-
cluding comments follow in the sixth sec-
tion.

Development of the ML and
IZEF Procedures

To formalize the development of the
ML procedure and the IZEF procedure,
assume that each of m nonlinear regres-
sion equations may be written in a con-
venient vector form:

Yi = f(xi, 0) + Ei
i= 1, .. ,m

(1)
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where 0 = (0,, . . ., r) denotes the r X 1
vector of unknown parameters in the sys-
tem of equations, xi = (Xil, xi2, . .. , ip) de-
notes the 1 X pi vector of independent
variables for the ith equation, Yi denotes
the n X 1 dependent variable vector for
the ith equation, and ci denotes the n X 1
vector of disturbances for the ith equation.
n refers to the number of observations in
the sample, and in addition, xij, j= 1, 2,
... , pi is of dimension n x 1. The number
of observations must exceed the maxi-
mum number of parameters that occur in
any equation. Then i = y, - f(xi,0), and ci
is a function of the known xi and yi as well
as the unknown 0. With xi and yi given,
the set of Ei becomes a function of 0 alone,
say G(0).

The ML Procedure

The ML method is perhaps the best-
known and most well-established method
of estimation to deal with systems of non-
linear equations (Barten, 1969; Berndt,
Hall, Hall, and Hausman; Goldfeld and
Quandt, 1972, 1976; Green, Hassan, and
Johnson; and Parks, 1971). Assume that
the disturbance terms are random vari-
ables which possess a joint probability
density function (pdf) p(e) of known
mathematical form, where e denotes the
complete vector of disturbance terms (nm
in all). According to the principle of ML
estimation, values of 0 are sought to max-
imize the likelihood function p or, more
conveniently, the logarithm of p. Thus,
GM.L.() = log p(c), and ML estimators of 0
are such that GM.L .(M.L) = sup GML (0).

Typically, most practitioners use this
type of computation routine under the
following assumptions on the probability
distribution of the disturbance terms:

(i) the disturbance terms have zero
means:

E(ij) 0=
i=1, 2, ... , m; j= 1, 2, . . ., n

(ii) The disturbance terms are not seri-
ally correlated (no autocorrelation):

E[eij] = 0 for j 7: s and all i, t;
i, t 1, 2, ... , m; j, s= 1, ... , n

(iii) the disturbance terms are contempo-
raneously correlated:

E[€ijEtj] = ,it for all j = 1, 2,..., n
and all i, t = 1, 2, ... , m

(iv) the disturbance terms Ej = (elj, E2j, . ,

m)', j = 1, 2, . . ., n are independent
and follow the same distribution,
generally a normal distribution, with
positive definite symmetric variance-
covariance matrix Imxm. For simplic-
ity, E(cjj') = ~ for all j = 1, 2, . . ., n.
Thus, the complete random distur-
bance vector e has E() = 0 and
E(Ec') = Q2 = ® I, where I is the n x
n identity matrix and 0 denotes the
direct- or Kronecker-product opera-
tion.

More recently, however, some research-
ers have taken note of evidence of auto-
correlation in the estimation of systems of
nonlinear equations (Berndt and Savin;
Green, Hassan, and Johnson). Conse-
quently, procedures which take into ac-
count autocorrelation are necessary. Con-
sider the case for which the disturbances
in each equation satisfy E(Eijqe) = 0 for j =#
s and for all i, t and for which the distur-
bances follow a first-order autoregressive
scheme. The structure for ij in this case is
simply Eij = PiEi%-_ + Uij, j = 2, .. , n, i = 1,
2,..., m, where the u = (u1lj , U.2 . ., m)'
are independently, identically distributed
normal random vectors with mean vector
zero and contemporaneous variance-co-
variance matrix S = [oi]. With this for-
mulation (Parks, 1967),

E[fe']

ullPPl'/ 12,PP,2

rmlPmPl/ -m2PmP2

= Q* = P(L (D I)P'

* . 2mP 2 Pm/

O-mmPmPm

(2)
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where P is the block diagonal matrix [Pi],
and

Pi =

(1 - p)-' 2 0 0 . . .

p(l - p2)-/2' 1 0 .. 0

p(1 - p2)- 2 pi 1 ...
pi- (1 - p2)-

2 P 2 pi3 . .
nXn (3)

where pi is the coefficient of autocorrela-
tion in the ith equation and I piI < 1.

In sum, to mechanically take into ac-
count the serial correlation of the distur-
bance terms, the Koyck transformation is
applied. This transformation results in the
tenability of assumptions (i)-(iv) on the
probability distribution of the disturbance
terms. Through the use of the Koyck
transformation, the disturbance terms are
contemporaneously correlated but no
longer serially correlated.

Upon this transformation, the likeli-
hood function, under normality, assumes
the form:

mn n
GM L.(0) = log(2) - log I2 2

-1U (-1 ' I)u (4)
2

since,

P(u) =
(27r)mn/2 | I n/2

*exp 2u'(Z- I)u. (5)

Note that E[uu']= = 2 0 I, where u is
the vector of all mn disturbances such that
Uij = ij - Pi eij-l

The last term of the expression in (4) is
a nonlinear function of the unknown pa-
rameters, and consequently, the set of

0GM.L.
likelihood equations, 0L = 0, is gener-

ally nonlinear as well. If a supremum
OM.L exists, this estimator satisfies the like-
lihood equations. Hence, as a practical
matter, to maximize GM.L (0) it is necessary

to resort to numerical techniques. The
asymptotic variance-covariance matrix of
the parameter estimates comes about via
the inversion of the negative of the matrix
of second partial derivatives (the Hessian),

_ GM L]1

l eda' = mL0M.L.-k 0o0' J0:=6.
(6)

Asymptotically, ML estimators are op-
timal according to the usual criteria in
econometrics (Barten, 1969). The small
sample properties of this method are less
satisfactory, and perhaps another method
of nonlinear estimation is preferable.2 In
addition, with the ML technique, likeli-
hood ratio (LR) tests are the natural meth-
od of inference. Aside from the small sam-
ple properties, the disadvantages of the
ML procedure also include the need to
specify the distribution for the distur-
bance terms in the system and the use of
numerical techniques to maximize GML (0).

In practice, practitioners may maxi-
mize the likelihood function outright or
solve the likelihood equations. Algorithms
for such purposes fall into three basic cat-
egories: (1) algorithms that employ no de-
rivatives in the process; (2) variable metric
methods that employ first partial deriva-
tives and approximations to the second
partial derivatives; and (3) methods that
employ both first and second partial de-
rivatives. No single best algorithm exists
because some algorithms tend to locate in-
appropriate stationary points, some algo-
rithms converge more slowly than others
in terms of the requirement of the num-
ber of iterations, and some algorithms
place a heavy demand on computer time
and effort in programming.

The IZEF Procedure

The IZEF procedure is the iterative
version of the basic approach of Zellner

2 However, research with Monte Carlo experiments
indicates that the ML procedure generally gives rise
to parameter estimates with good finite sample
properties (Goldfeld and Quandt, 1976).
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in handling seemingly unrelated nonlin-
ear regressions. Berndt and Christensen
and Christensen and Manser (1972, 1976,
1977) have used the iterative version of
Zellner's Aitken (ZEF) estimator in em-
pirical applications. With the specification
of the nonlinear system of equations in (1)
along with the same assumptions on the
probability distribution of the disturbance
terms, the first step of the procedure is to
obtain least squares estimators 0 through
the minimization of

Qi(O) = ui'uin

equation by equation. The second step is
to form the residual vectors, ui, land esti-
mate the elements, it,, of the variance-co-
variance matrix z by

1,
'it 

=
-- i "t
n

i,t 1, 2, . . ., m (8)

to obtain the estimator I of Z. The third
step of the procedure is to obtain the Ait-
ken type estimator 0 through the mini-
mization of

T(0) = -u'(I-' 0 I)u. (9)
n

Note that the maximization of GM.L.(0) is
essentially equivalent to the minimization
of T(0) (compare equations (4) and (9)).
The asymptotic variance-covariance ma-
trix of the parameter estimates emerges
via the Aitken estimation phase of the
procedure.

In short, the variances and covariances
of the disturbances are estimated from the
transformed residuals uij derived from an
equation-by-equation application of least
squares. The minimization of Qi(0) to ob-
tain the ordinary least squares estimators
(0) and transformed residual vectors uii
may be carried out using either Hartley's
modified Gauss-Newton algorithm or
Marquardt's algorithm. The parameters of
the system are then estimated simulta-
neously by applying Aitken's generalized
least squares to the whole system of equa-

tions. Obviously, we need not stop there.
The resulting parameter estimates can
then be used for calculating a new set of
residuals leading to a new estimate of - 1
which can be used for obtaining new es-
timates of the parameters of the system
and so on. Interestingly, Zellner only men-
tions this iterative process as a possibility
to estimate systems of equations.

Conditions are set forth such that the
IZEF estimator 0 is weakly consistent for
0, such that, in addition, 6 is asymptotically
normally distributed (Gallant). Hence, the
IZEF estimator 6 has similar asymptotic
properties as the ML estimator 60 L. How-
ever, hardly any information is available
about the small sample properties of these
two estimators. Despite the similarity of
asymptotic properties of 0 and ML., prac-
titioners generally abandon the IZEF pro-
cedure in favor of the ML procedure.

In sum, the ML procedure and the IZEF
procedure employ modern nonlinear al-
gorithms to estimate systems of nonlinear
equations. The algorithms typically but not
always guarantee convergence of the it-
erative estimation processes. The compu-
tational burden for both techniques may
be immense, and in general, problems may
arise with respect to the numerical pre-
cision of the results. These difficulties are
typically a function of the size and com-
plexity of the model. To shed some light
on such circumstances, a presentation of
the two techniques with respect to the es-
timation of parameters from a popular
nonlinear system of demand equations is
in order.

The LES Specification

The linear expenditure system (LES) is
a venerable system of demand (or expen-
diture) equations. For broad aggregate
commodities, the LES provides a reason-
able model for representation of consum-
er response to changes in prices and total
expenditure. Demand equations (expen-
diture equations), with prices and total ex-
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penditure as explanatory variables, are the
traditional tools for analyzing consumer
behavior. The selection of this specifica-
tion for empirical purposes in this paper
rests on the fact that the LES is the most
widely employed complete demand sys-
tem (Goldberger; Pollak and Wales; and
Brown and Deaton). Additionally, the LES
facilitates the estimation of large systems
of equations (Braithwait, 1977, 1980).

For statistical purposes, the LES can be
written in the following form: 3

m

Piji pqij Pi + ti(Yi - PijYi) + Eij,
i=l

i = 1, 2, . .. , m; j = 1,2, . . .n (10)

where qij corresponds to the jth observation
on the quantity of the ith commodity, pij
corresponds to the jth observation on the
price of the ith commodity, yj corresponds
to the jth observation on the total expen-
diture on all commodities, and eij corre-
sponds to the jth observation on the unob-
served random disturbance for the ith

commodity. The y, and (i are unknown
parameters to be estimated, subject to the

m

linear constraint that : fi = 1. Hence, the
i=l

LES requires the estimation of 2m - 1
parameters. In addition, other restrictions
on the parameters of this system are the
following: (1) (i > 0 for all i; (2) yi > 0 for
all i; and (3) qij - yi > 0 for all i and for
all j= 1, 2, ... , n.

In light of such restrictions, a useful in-
terpretation of the parameters of the LES
is available. Given yij and pij, P j , , the
consumer first purchases minimum or ha-
bitual quantities of each good, 1y of com-
modity 1, 72 of commodity 2, . . ., and ym
of commodity m.4 At the given prices, this
expenditure for observation j is simply

3 When parameters of demand systems are estimated
from sample data, additive disturbances are typi-
cally introduced.

4Strictly speaking, each yi need not exceed zero.
However, this economic interpretation of the yi's is
only meaningful for positive parameter values.

m

PrjYr,) the subsistence expenditure for the
r=l

consumer. The supernumerary expendi-
ture for the consumer for observation j is

m

then yj - Pr /r. The consumer finally
r=l

distributes the supernumerary expendi-
ture among the m commodities in the pro-
portions 1, . . , m,.

The specification in (10) is based upon
the assumption of no autocorrelation of
the disturbance terms. Upon the applica-
tion of the Koyck transformation to take
care of the autocorrelation of the distur-
bance terms, the LES may be written as
follows:

Pijqij = PiPij-lqij-1 + i(Pij - PiPij-)

m

+ Ai(Yj - E Pijyi)
i=l

m

- Pi(i(Yj1 - I Pij-lYi) + Uii.
i=l

(11)

From (10), the constraint on the fi's and
the fact that the total expenditure yj

m m

pijqij imply that ii = 0 for all j. This
i=l i=l

latter restriction implies that the coeffi-
cient of autocorrelation in any equation
must be the same (pi = p for all i), and the

m

linear combination ~ uij for all j must sum
i=l

to zero (Berndt and Savin; Green, Hassan,
and Johnson). Interestingly, the linear de-
pendency of the disturbance terms in (10)
imposes a restriction on the parameters of
the autoregressive processes.

The linear restriction on the distur-
bance terms means that the variance-co-
variance matrix of disturbance terms for
the full systems is singular. Since the dis-
turbance terms are linearly dependent, the
ML procedure and the IZEF procedure
may not be employed on all m equations
in the system at once. Thus, one of the
equations in (11) is completely redundant
in the sense that using the information
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contained in any m - 1 of the equations,
the remaining equation can be obtained
by an appropriate linear combination. The
singularity of Q = I 0 I can be handled
by discarding one of the equations.

Barten (1969) has shown that the max-
imum likelihood estimates of the param-
eters for any system are invariant with re-
spect to the equation deleted provided no
autocorrelation exists. Ruble has demon-
strated that unlike Zellner's Aitken ZEF
parameter estimates, the IZEF estimates
do not depend upon the equation omitted.
Further, Kmenta and Gilbert have shown
that the IZEF procedure produces maxi-
mum likelihood estimates for linear equa-
tion systems. Christensen and Manser
(1976) have claimed, by way of empirical
application to estimate indirect and direct
translog models, that this result holds for
both linear and nonlinear models. Al-
though this claim has been substantiated
by Barnett, the theoretical demonstration
holds only under certain regularity con-
ditions (Barnett, pp. 355-56).

In addition, the speed of convergence
of the ML procedure and the IZEF pro-
cedure and the accuracy of the parameter
estimates of yi, /i, and p depend on start-
ing values of the parameters and the tol-
erance level for algorithm termination.
Further, only in the rarest cases can one
ascertain with certainty that a local min-
imum (maximum) is a global minimum
(maximum). A number of shortcomings
may occur to prevent the attainment of
global minima (maxima): (1) extreme flat-
ness of GM.L.() and T(0), (2) inaccuracies
in the numerical evaluation of partial de-
rivatives, and (3) the incorporation of cer-
tain constraints to affect the path of con-
vergence. Hence, an attempt to check on
the attainment of global minima (maxi-
ma) is in order. Such an attempt typically
involves the arduous and inelegant pro-
cedure of employing different starting
values for the parameters subject to the
same tolerance level for termination of the
iterative process.

The Data

The data used for the estimation of the
LES are the U.S. personal consumption
expenditure data for the period 1949-77.
Published by the Commerce Department,
these data are available for twelve major
commodity groups. For empirical purpos-
es, five aggregate commodity groups
emerge from the basic twelve commodity
groups: (1) food, (2) household and per-
sonal items, (3) energy, (4) housing, and
(5) miscellaneous. The food category in-
cludes food at home and food away from
home. The household and personal items
category entails clothing, durable goods,
nondurable goods, and services. The en-
ergy category deals with transportation
and utilities. The housing category in-
cludes owner and tenant-occupied, non-
farm dwellings. The miscellaneous cate-
gory is a residual category and consists of
all remaining items.

The number of observations in the sam-
ple is 29, typical of data series available
to researchers for the estimation of de-
mand systems. All expenditures used are
on a real per capita basis, and total expen-
diture is the sum of the real per capita
expenditures on these five aggregate
groups. The real per capita quantities of
the five commodities are obtained by di-
viding their real per capita expenditures
by their implicit price deflators (1972 =
100). The implicit price deflators are ob-
tained by dividing nominal per capita ex-
penditures by real per capita expendi-
tures.

Empirical Results

This section presents empirical results
of the ML procedure and the IZEF pro-
cedure with respect to the estimation of
the parameters from the LES using the
aforementioned U.S. consumption data.
This presentation focuses on the follow-
ing: (1) evaluation of the parameter esti-
mates and their asymptotic standard errors
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TABLE 1. Starting Values for the Parameters.

Starting Starting Starting
Value Value Value
SET 1 SET 2 SET3

iFOOD .2423 .2908 .1938
fHSPER .0419 .0503 .0335
fENERGY .3673 .4408 .2938
OHOUSING .5267 .6320 .4214
OMISCEL .7169 .8603 .5735
YFOOD 352.237 422.684 281.790
'HSPER 900.28 1,080.336 720.224
YENERGY 200.778 240.934 160.622
YHOUSING 169.919 203.903 135.935
Y'MISCEL 379.843 455.812 303.874
p .7816 .9379 .6252

Source: The author.

and (2) cost in terms of computational ef-
fort necessary to employ the techniques.
In the application, the ML procedure uses
the Quasi-Newton iterative method avail-
able from the Shazam package (White),
while the IZEF procedure uses the mod-
ified Gauss-Newton iterative method
available from the SAS/ETS package (SAS
Institute, Inc.). For econometric estima-
tion, in general, researchers typically em-
ploy either the Shazam routines or the
SAS/ETS routines. Potential differences in
parameter estimates, standard errors, and
computational costs may subsequently be
due to differences in the inherent ML and
IZEF procedures, to differences in itera-
tive methods from the estimation pack-
ages, or to some combination thereof.

Five models are employed to investi-
gate the differences among parameter es-
timates and standard errors with different
equations deleted. To overcome the sin-
gularity of the variance-covariance matrix
of disturbance terms, each model consists
of four equations with the fifth equation
deleted. Model 1 corresponds to the dele-
tion of the miscellaneous category, Model
2 corresponds to the deletion of the food
category, Model 3 corresponds to the dele-
tion of the household and personal items
category, Model 4 corresponds to the dele-
tion of the energy category, and Model 5

56

corresponds to the deletion of the housing
category.

Three sets of starting values for the pa-
rameters are employed to check on the
attainment of global minima (maxima).
The sets of starting values for the param-
eters as well as the lower and upper bounds
for the parameters are shown in Table 1.
The first set of starting values reflects more
or less arbitrary choices for the initial ap-
proximation. The second set of starting
values represents a 20 percent increase
over each starting value in the first set,
and the third set of starting values repre-
sents a 20 percent decrease over each
starting value in the first set.5 The choices
of the starting values for p are based on
the residuals of the system of equations
estimated under the assumption of no au-
tocorrelation of the disturbance terms. The
estimation of the parameters in the system
is carried out by dropping the first obser-
vation of the data set. Different results may
be obtained if the first observation is in-
cluded and the restriction Ipl < 1 is im-
posed (Beach and Mackinnon). A cursory
examination of the residuals of the LES
from the use of the ML procedure and the
IZEF procedure suggests that the assump-
tion of no autocorrelation is not tenable.6
The tolerance level for termination of the
ML procedure and the IZEF procedure is
.0001.

The parameter estimates and their
asymptotic standard errors obtained from

5 The three sets of starting values are consequently
scalar multiples of each other. To more fully ex-
plore the issue of sensitivity to starting values, ad-
ditional distinctive sets of starting values were em-
ployed. The empirical results, regardless of the
choice of starting values, were essentially the same
in all cases.

6 Durbin and Malinvaud have suggested that the con-
ventional single-equation Durbin-Watson Statistic
be used to check for serial correlation of distur-
bances in the multivariate equations setting. The
appropriate number of degrees of freedom is (K,T)
for the IZEF and ML estimates, where K is the
number of regressors for each equation and T is the
number of annual observations.
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TABLE 4. The Estimates and the Asymptotic Standard Errors for the Autoregressive Param-
eter in the LES.

p ML Procedure p IZEF Procedure

SVS1 SVS2 SVS3 SVS1 SVS2 SVS3

1 .95073 .95073 .95073 .95074 .95074 .95075
(.01548) (.01582) (.01576) (.01257) (.01257) (.01257)

2 .95073 .95073 .95073 .95071 .95071 .95071
(.01516) (.01333) (.01500) (.01258) (.01258) (.01258)

3 .95073 .95073 .94864 .95071 .95071 .95070
(.01576) (.01620) (.01495) (.01258) (.01258) (.01258)

4 .95073 .95073 .94862 .95071 .95070 .95070
(.01497) (.01530) (.01366) (.01258) (.01258) (.01258)

5 .95073 .95073 .95073 .95075 .95075 .95075
(.01592) (.01552) (.01521) (.01257) (.01257) (.01257)

Source: Computations by the author.

the ML procedure and the IZEF proce-
dure are exhibited in Tables 2-4. In gen-
eral, for the ML method and the IZEF
method, the parameter estimates of the
LES and their estimated asymptotic stan-
dard errors are almost identical for the
five models for any given set of starting
values. For the two procedures, the pa-
rameter estimates are indeed invariant
with respect to the equation deleted. This
result should not be surprising due to the
transformation process used to overcome
autocorrelation problems. That is, the sit-
uation is consequently the same as that
discussed by Barten (1969).

However, the estimated asymptotic
standard errors of the ML estimates de-
pend upon the equation omitted, while the
estimated asymptotic standard errors of
the IZEF estimates are invariant with re-
spect to the equation omitted. The differ-
ences among the estimated standard errors
of the ML estimates with different equa-
tions deleted, though, are for the most part
negligible. Also, in most cases, the stan-
dard errors of the IZEF estimates for the
7's and p are lower than the corresponding
standard errors of the ML estimates. On
the other hand, except for i1, the standard
errors of the IZEF estimates for the p's
are generally higher than the correspond-
ing standard errors of the ML estimates.

In addition, for any given model, the
ML procedure and the IZEF procedure
generally generate parameter estimates
and asymptotic standard errors which are
invariant with respect to starting values.
However, in two instances, for the ML
procedure the parameter estimates and
standard errors are noticeably different
(particularly for the y's) with respect to
starting values. The differences in the
IZEF parameter estimates and standard
errors with respect to starting values are
almost nonexistent. Consequently, when
using the ML procedure, researchers
should perhaps be particularly cautious in
selecting starting values.

In every case, all the parameter esti-
mates are statistically significant, with
t-values larger than 2, and in agreement
with theoretical expectations, the param-
eter estimates are positive. The statistical
significance of p is in agreement with find-
ings by Lluch and Williams and Green,
Hassan, and Johnson. 7 The magnitude of

7 The autocorrelation hypothesis is tested as follows.
The LES without the autocorrelation correction, p =0,
is a restricted version of the LES properly specified
to include the autocorrelated error structure. Under
the null hypothesis of no autocorrelation of the dis-
turbance terms, it can be shown that n(ln I R
n(ln I iR | - In I uR |) is distributed asymptotically as
a x2 statistic with one degree of freedom. n is the
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TABLE 5. Own-Price and Expenditure Elasticities for the Commodities Obtained Using the ML
and IZEF Procedures.a

Commodity Own-Price Elasticityb Expenditure Elasticityb

Food -0.5716 .7103
Household & Personal Items -0.6900 1.2996
Energy -0.3828 .8423
Housing -0.2036 .6818
Miscellaneous Items -0.4604 .8497
a These measures are based on the following parameter estimates: f- .14847; i2 .51444; f3 .09636;

4 = .09117; f, = .14956; y, = 351.44; 72 = 839.85; y, = 257.13; 74 = 395.67; y = 400.75.
b Evaluated at the sample means.
Source: Computations by the author.

the ML and IZEF parameter estimates are
reasonable in light of the fact that the y's
reflect minimum or habitual quantities of
each commodity and that the f's repre-
sent marginal budget shares of each com-
modity. To illustrate, the consumer allo-
cates at the margin roughly 15 percent of
total expenditure to food (at home and
away from home); 51 percent to clothing,
durable goods, nondurable goods, and ser-
vices; 10 percent to transportation and
utilities; 9 percent to housing; and 15 per-
cent to miscellaneous items. The mini-
mum annual per capita expenditure, in
1972 dollars, is approximately $350 for
food, $840 for household and personal
items, $260 for energy, $395 for housing,
and $400 for miscellaneous items.

Additional magnitudes of interest in the
context of complete demand systems are
typically own-price elasticities and total
expenditure elasticities. Such concepts play
a large role in the comprehension of con-
sumer behavior and the formulation of
economic policy. With reference to the
LES, the expenditure elasticity for the ith

commodity is fiyj/pijqij, and similarly, the
own-price elasticity for the ith commodity
is (yi (1 - i) - qi)/qij. Thus, the ML and

number of sample observations, zR is the restricted
estimator of the variance-covariance matrix of dis-
turbance terms, and ,UR is the unrestricted esti-
mator of the variance-covariance matrix of distur-
bance terms (Theil, 1971). The autoregressive
parameter is significantly different from zero at any
reasonable level of significance in all cases.

IZEF estimates of the parameters of the
LES determine estimates of economically
meaningful magnitudes.

The estimated own-price and expendi-
ture elasticities for the commodities, eval-
uated at the sample means, are exhibited
in Table 5. The own-price and expendi-
ture elasticities for the various commodi-
ties are very plausible. The demands for
the five goods are inelastic, with house-
hold and personal items relatively least
inelastic and housing relatively most in-
elastic. Except for household and personal
items, the commodities are expenditure
inelastic. Food, energy, housing, and mis-
cellaneous items are necessities while
household and personal items are luxuries.

The goodness-of-fit criterion (R2) offers
information complementary to the theo-
retical and statistical support of parameter
estimates. In all cases, the LES specifica-
tion with the autocorrelation correction
accounts for approximately 98 percent of
the variation in real per capita expendi-
ture on food and more than 99 percent of
the variation in real per capita expendi-
ture on household personal items, energy,
housing, and miscellaneous items.8

The estimation of the LES, at least with
reference to this empirical problem, was
rather easy and inexpensive. In all cases,
the algorithms required less than 17 sec-

8 The R2 statistic is computed as one minus the ratio
of the residual sum of squares to the total sum of
squares.
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onds of computation (CPU) time. All
computations occurred on an IBM 370
Model 158 Dual Processor. However, in
terms of CPU time, the IZEF procedure
was two and a half to five times as fast,
depending upon the equation deleted and
the set of starting values. Consequently,
the ML procedure was considerably more
time-consuming than the IZEF proce-
dure.

Concluding Comments

This paper provides a theoretical and
empirical discussion of the ML method
and the IZEF method in the estimation of
a nonlinear system of demand equations
(the LES) when the disturbance terms are
both contemporaneously and serially cor-
related. The IZEF estimator 0 has similar
asymptotic properties as the ML estimator
0ML. These estimators converge in proba-
bility to the true 0, and these estimators
follow asymptotic normal distributions.

In agreement with Christensen and
Manser (1976), sample evidence exists to
indicate that the IZEF procedure gener-
ates parameter estimates and estimated
asymptotic standard errors which are es-
sentially equivalent to those from the ML
procedure. In this study, both procedures
produced invariant and reasonable pa-
rameter estimates with respect to various
equations deleted. Also, the ML proce-
dure (except for two instances) and the
IZEF procedure produced parameter es-
timates which were invariant with respect
to starting values. However, the ML pro-
cedure generates standard errors which
depend upon the equation omitted and
the starting values, while the IZEF pro-
cedure generates standard errors invariant
with respect to the equation omitted and
the starting values. Additionally, the ML
procedure is considerably more time-con-
suming than the IZEF procedure. In sum,
despite their striking similarity, the ML
and IZEF procedures reveal subtle, yet
rather important, differences. Researchers

consequently should exercise caution in the
choice of techniques to be employed in
the estimation of nonlinear systems of de-
mand equations. On balance, from the
sample evidence in this empirical prob-
lem, the IZEF technique is preferred over
the ML technique.

There remains some need for further
research. An empirical presentation of the
ML procedure and the IZEF procedure in
the estimation of other nonlinear systems
of demand equations besides the venera-
ble LES is in order. Additionally, for gen-
eralization purposes, comparisons of the
ML method and the IZEF method via
Monte Carlo experiments using the same
iteration techniques for nonlinear de-
mand systems may be worthwhile. From
an econometric viewpoint, since the esti-
mation of nonlinear systems of equations
is essentially in the early stages of devel-
opment, additional research is very likely
to pay huge dividends.
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