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A Modified Partial Adjustment Model ot
Aggregate U.S. Agricultural Supply

Jeffrey T. LaFrance and Oscar R. Burt

Aggregate U.S. agricultural supply response is modeled through a modified partial adjust-
ment model; where the effects of weather and other temporal stochastic effects are structured
to be purely static, while the effects of price and technology, or trend, are dynamic. The model
is applied to a time series of aggregate U.S. farm output, aggregate U.S. crop production, and
aggregate U.S. livestock and livestock products production for several sample periods within
the period 1911-1958. The three aggregate output indexes are tested for irreversibilities in
supply response, and no evidence of a definitive-irreversible supply function is found for any
of the dynamic supply models. The use of a nonstochastic difference equation to model the
aggregate farm output and crop production equations results in short-run elasticity estimates
that are somewhat smaller than previous studies suggest while the long-run elasticities are

somewhat larger.

Although there are serious limitations to
an aggregate measure of agricultural out-
put in a supply response framework, the
concept is frequently used in agricultural
economics, and a few attempts have been
made to empirically estimate equations
from time series data (Griliches; Tweeten
and Quance). This paper examines some
alternative specifications from the basic
Nerlove model used by Griliches and the
consequences to empirical estimates of
‘supply elasticities. The various specifica-
tions focus on the way in which stochastic
components of a dynamic regression
equation are treated, and they have im-
plications for time series estimation of
supply response equations for individual
farm commodities as well as aggregate in-
dices.

Nerlove (1956, 1958) presented the fol-
lowing output adjustment model and ap-
plied it to corn, cotton and wheat produc-
tion in the United States. Consider an
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individual producer with output level Y,
in period t and a “desired” or “long-run
normal” level of output Y* which is a
function of price P, and technology T,,

Y* = a + 8P, + 0T, (1)

Because of adjustment costs and fixed as-
sets, the output adjustment achieved in any
period is assumed to be a (constant) frac-
tion of the difference between the desired
output and the previous period’s output,

(2)

Y- Y., = 6<Y*t - Yt—1)>

0<d<1.

Direct substitution for Y*, in (2) and solv-
ing for Y, gives the dynamic supply equa-
tion

(3)
Y, = ab + BoP, + 06T, + (1 — §)Y. .

The usual estimation procedure is to add
a disturbance term to (3) and apply the
model to aggregate data.

The first attempt to empirically esti-
mate a dynamic aggregate U.S. agricul-
tural supply function was Griliches’ study
in which he applied ordinary least squares
to a structural equation of the form

Western Journal of Agricultural Economics, 8(1), 1983, pp. 1-12
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InY,=a+blnP,+cln W,
+dln Y. +gt+u,

(4)

where Y, is the index of farm output; P, is
the March index of prices received for all
farm products deflated by the March in-
dex of prices paid for production items,
farm wages, taxes, and interest; W, is
Stallings’ index for the effects of weather
on farm output; u, is a random distur-
bance, and a, b, ¢, d and g are constants.
Griliches analyzed aggregate farm output
and two subaggregates: all crops, and live-
stock and livestock products.!

This model can be interpreted as a
modified partial adjustment model in
which the adjustment is linear in loga-
rithms. The use of a linear trend in a log-
arithmic relationship to approximate
technological change can be interpreted
as a tacit assumption that the supply curve
has shifted to the right at a constant (com-
pounded annually) percentage rate.

Two aspects of the approach of Grilich-
es warrant closer attention. First, the im-
plied adjustment equation is in actual out-
put rather than planned or expected
output, i.e., the level of output that would
prevail given average conditions on the
variables not subject to control by farmers.
Griliches (p. 291) discussed the problem
as follows:

Measured output is not necessarily equal to
planned output, due to ‘weather’ and other
random effects. This . . . factor would lead
to a downward bias in the estimate of the
coefficient of lagged output since the ad-
justment assumed by the model proceeds
from the previously ‘planned’ output, of
which actual output is not an error-free
measure.

Because of the dependence of ultimate
farm output upon weather and other ran-
dom factors, it appears that farmers can
at best plan for an expected level of out-
put, given an average season in terms of

' The price variable for the livestock model is the
previous year’s average annual price index, rather
than March of the current year.
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these uncontrollable factors. Such an “ex-
pected” output level is a conceptual,
unobservable variable, and the relevant
problem is how to specify an empirically
estimable adjustment equation in this
variable.

The second characteristic of the Gril-
iches model that must be considered is the
fact that the introduction of the lagged
dependent variable on the right hand side
of the regression equation, without fur-
ther restrictions on the exogenous vari-
ables, imposes the same geometric lag pat-
tern on all exogenous variables. While this
is inconsequential if the only regressors are
price and linear trend, we would expect
that this period’s weather would tend to
have only a contemporaneous effect. Giv-
en this assumption the dynamic effects of
the weather index should be eliminated.

The third problem arises when ordi-
nary least-squares regression techniques
are applied to a time-series model with
the lagged dependent variable included as
one of the predetermined explanatory
variables. It is well-known that ordinary
least-squares estimates obtained from
models with lagged dependent variables
and serially correlated errors result in
biased and inconsistent estimates. In any
time-series model, we would expect the

"residuals to be autocorrelated because of

left out explanatory variables that are cor-
related over time. An approach to han-
dling these last two problems is developed
below where it will be seen that they are
both part of the same overall problem of
dynamic specification.

It is our opinion that rigid behavioral
hypotheses about producer behavior are
at best crude approximations to aggregate
behavior, especially when posited in the
usual linear form with aspirations for em-
pirical testing. A priori reasoning pro-
duces several equally plausible models,
and the data base is incapable of discern-
ing the correct model with a high proba-
bility, even if it were within the set tested.
Thus, the approach adopted here is to use
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the rational distributed lag model as a
rather general additive approximation to
the unknown structure of the aggregate
supply function, without formally speci-
fying a behavioral model and deriving a
system of product supply and demand
equations.

Alternative Specifications

One question raised in the previous sec-
tion is whether the adjustment process is
in actual quantities produced or in what
would be “average” quantities associated
with the period. Lagged output under av-
erage conditions for random effects on
output would be preferable to Y., in (2),
implying that Y, , in the right-hand side
of (8) is an independent variable subject
to measurement errors. Note that
“planned” output would differ from
“long-run normal” output as a result of
adjustment costs and fixed assets, and a
dynamic adjustment equation is still war-
ranted.

A second issue raised above is the ques-
tion of purging the effects of a weather
variable from the dynamic aspects of sup-
ply response. Assuming that we have an
index for the effects of weather, W,, which
enters additively with parameter v, then
by defining the variable ¥, = Y, — yW,, we
can rewrite the adjustment equation (2) in
terms of output net of weather effects

?l - Yt—l = 5<Y*t - Yt—-l)' (23)
The dynamic supply equation (3) then be-
comes

Y, = o + BOP, + YW, + 65T,
+ <1 - 5)(Yt—1 - 'YWtﬂ)'

The weather variable in (3a) enters with-
out any distributed lag response; a simple
proof is by induction. Clearly, 9Y,/dW, =
v, and

(3a)

(5)
aYt/awt 1 ( )aYt 1/3Wt 1 ]
(I =y —~=0.

A Model of U.S. Agricultural Supply

Since 8Y,/dW,_, = 0, it follows inductively
that 9Y,/dW,_; = 0 for j = 1, so that elim-
ination of weather effects from the partial
adjustment equation simultaneously re-
moves the weather variable from any dis-
tributed lag response in the derived
regression equation (3a).

An operational statistical model is ob-
tained by adding a disturbance term to
(3a), but the equation is nonlinear in pa-
rameters.2 Practical estimation could be
with nonlinear least squares or a condi-
tional linear least-squares search on 4.

‘There are many sources of random
variation other than weather effects which
lead to a disturbance term in (3), includ-
ing aggregation over individual farms,
omitted variables, and other minor speci-
fication errors. If the disturbance term
added to (3) or (3a) to get a statistical
model is dominated by factors that do not
reflect changes in output capacity, then
the lagged dependent variable would be
better defined as the lagged expectation
of the regression equation. This statistical
model for (3a) would be

Y, = ad + B6P, + YW, + 05T,
+ (1 =8 —YWe) tu,  (6)

where 7, = E(Y,|W,) and Y, =5, + u. The
partial adjustment model associated with
(6) is

7~7( - 77]171 = 5(Y*\

where %, = 5, — YW..

The three versions of partial adjust-
ment, (2), (2a), and (2b), represent differ-
ent numbers of random components
purged from the measure of output used
as the dependent variable in a dynamic
regression equation. Nothing is removed
in (2); weather effects are purged in (2a);
while in (2b), both weather effects and the
entire disturbance term of the regression
equation are purged.

A priori reasoning suggests going at least

=) (2h)

2 There is, however, sufficient identification to esti-
mate «, 8, and 8 from a linear regression by com-
bining estimates of 8, &' = «d, 8’ = 89, and 6" = 65.

3
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as far as (2a) by purging weather effects
from output, but moving all the way to
(2b) might remove some components that
indirectly reflect the fixed assets and man-
agement inertia which are important in
specification of the partial adjustment hy-
pothesis. The essential question is just what
the disturbance term comprises, and it
must be recognized that this term is a con-
struction of the statistician with many va-
garies as to its actual source.

In an aggregate supply equation, we
would expect much of the disturbance
term to stem from aggregation problems
in the dependent variable and from the
single aggregate price index used to sub-
sume all individual commodity prices. It
makes sense to purge the former com-
ponents, but not the latter from the partial
adjustment equation. In a sense, the lim-
itations of using a single price index can
be viewed as specification error, given the
definition of the dependent variable, in
that a more complete vector of prices
would better explain aggregate output.
Some of our empirical results suggest this
to be the case.

If u, in (6) has the classical properties,
then replacing #,, with Y,_, would pro-
duce a disturbance following a first-order
moving average process, u, — (1 — 6)u,,.
Ordinary least squares estimates would
then produce biased and inconsistent es-
timators.® The disturbance term is likely
to be autocorrelated in any specification,
but there is no a priori reason to suppose
that it will be restricted to a first-order
Markov process with parameter —(1 — 6).
The structure of dynamic models must be
discovered from the data with the help of
economic theory in most applications, and
in these situations there is a distinct ad-
vantage in not having the lagged depen-
dent variable serving as an independent

3 Of course, a search over § with the structure of the
error term accounted for, using a criterion of con-
ditional OLS given 6 produces asymptotic maxi-
mum likelihood estimators which are the same as
nonlinear LS estimators from (6).
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variable in the regression model. If the
disturbance term in (6) is misspecified, and
the remainder of the equation is correctly
specified, least-squares estimates are still
consistent, which is not the case when 7,_,
is replaced by Y, ;.

Least-squares estimates of the unknown
parameters in (6) can be calculated with
nonlinear least-squares algorithms by
treating the {5} as unobservable variables,
but nevertheless, as subject to least-squares
estimation because each is implicitly a
function of the parameters («, 8, v, 8, 9)
plus the initial condition parameter n,. This
latter parameter can be given an a priori
estimate of Y,.* The computational algo-
rithm used in this study is a modified Mar-
quardt nonlinear least-squares routine
much the same as that commonly used in
time-series packages to deal with a mov-
ing average error process. The estimation
procedure yields estimates that are
asymptotically equivalent to maximum
likelihood under normality, and with one
independent variable is equivalent to the
method of Maddala and Rao except for
the handling of initial conditions. Addi-
tional details on the practical estimation
of models of this type in (6) are given in
Burt.

Another advantage in using (6) is the
simplicity with which general distributed
lags on the independent variables can be
approximated by the rational lag model
and superimposed on the partial adjust-
ment model of (2).5 Let L be the lag op-
erator where LX, = X, , and

4 A Monte Carlo study by Schmidt found that using
Y, for 5, was about as efficient as estimating 7, si-
multaneously with the other parameters.

5 Technology is ignored momentarily to simplify the
discussion.. A separate lag structure on T, could be
included in the same fashion as for price. If T, is
approximated by a linear trend as in most empirical
models, the dynamic specification is of no conse-
quence except for the small effects of initial con-
ditions. This assertion follows from the special
nature of the linear trend and the linear lag oper-
ator L.
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BL)y=g,+BL+... +8L
wl)=1—wL —...

- w, L™

Dropping the technology variable for sim-
plicity, (1) is generalized to

Y* = a+ B(L)P/w(L) (7)

which on substitution into the partial ad-
justment equation (2b) in “expected” out-
put levels, net of weather effects, yields

n = ad + B(L)oP,/w(L) + YW,  (8)
+ (l - 6)(77t—1 - 'thfl)-

Multiplying by (L) and rearranging
yields
)
n=o + BLWP, + v, W, + ...+ W_,
+ Al'r]tfl + v + Annl*n;

where n = m + 1 and the {v;} and {\} are
functions of 6, v, the {8}, and the {w}.
Although it is not obvious in (9) that there
are no dynamic weather effects, an induc-
tive proof like that given below (3a) is
straightforward.

The Data and Some Limitations

In view of the obvious limitations of us-
ing aggregate output and price indices,
the statistical models used here must be
recognized as rather crude and subject to
considerable specification error. This
problem is compounded by various gov-
ernment programs designed to alter agri-
cultural production and income which are
too numerous and varied to handle with
concomitant variables in the regression
equation. Rapid technological change
during the post World War II period also
greatly complicates modeling supply re-
sponse when a smooth trend is used to
measure the effects of technology.

Output is measured by the USDA index
of farm output for the aggregate farm
output model, the index of output of all
crops for the all crops model, and the in-
dex of output of livestock and livestock
products for the livestock model. The out-

A Model of U.S. Agricultural Supply

put price variables used are the March
price index for all farm output, the March
price index for all crops, and the annual
price index for livestock and livestock
products lagged one year.® The aggregate
output price and the all-crops price were
deflated by the annual index of prices paid
for production items, farm wage rates, in-
terest and taxes lagged one year. The live-
stock price was deflated by the annual av-
erage price paid by farmers for feed,
lagged one year.” The weather variable is
Stallings” index for the appropriate aggre-
gate index, a series available for the years
1900-57. The only serious attempt to up-
date the deflator was by Kost, but the ex-
tension was only through 1962.

Although the data are available back to
1910, our results suggested that there was
probably a serious deficiency in the
weather index somewhere before 1913.
This conclusion was reached on the basis
of model sensitivity to inclusion of these
earliest three years in the sample with and
without the weather index as an explan-
atory variable. Specifications emanating
from (6) were particularly helpful in this
regard because 7, can be estimated as a
parameter and compared to Y, as an a
priori approximation to 7, This is essen-
tially a least squares “backcast” to check
for specification error.

The importance of weather on agricul-
tural output, the considerations in the
above paragraph, the problems of gov-
ernment programs, and a surge in tech-
nological change in the 1950s lead us to
lean heavily on the sample period 1914~
51, using 1913 as an initial condition ob-

& The choice of periods for prices was nearly the same
as that used by Griliches; the only exception was
that we used a lagged annual deflator on March
price instead of the current March deflator.

" Data for 1910-36 are summarized in USDA Agri-
culture Handbook No. 118, Vol. 1, 1957. Sample
means of the variables for 1914-51 are: weather
index .996, trend 32.5, aggregate price .957, crop
price .943, livestock/feed price 1.113, total output
.568, and crop output .644.



‘puaJy 1deoxe swyieBo| [einieu Ul S|geLBA |V q
‘suonenba |je ul Be| pengulsSIp 8U} WO, PSPnIOXa St 9|GBILBA J8UIEaM BU] «
'$10448 pepuels onoldwAse ale seseyiualed Ul S/8QUINN 810N

Western Journal of Agricultural Economics

(e61) (o11) (61007 (9207 (es0’) 860| pue
Ge 00 1856 9/8— 008’ 1200° 690° ST A 151261 L'l
(egt) (e2007) (reo’) (2507 «8bo| pue
0 80" 29%6’ 165" 1900’ 280° eee A 161261 9l
(2907 (6g1) (sv07) (1207 (1eo’)
€8’ gL €26 oL6 614 rAdN £Y0° 91 (A3 LSV 161 gl
(Z21) (920) (90007 (520 (Leo) (ec0?)
68 AN 016" €8l — 6lG 8200° zstL se0° 2z (A3 161261 ar't
(gs1?) (290" (s0007) (920°) {6007) (9207)
S 0z 2696 fordAl 0ss’ 6200° 4] b0’ 891" (7A3 LG-¥161 eyl
(£12) (8607 (60007 (¥€07) (5107 (sg07)
sz gL 6996 60— L0t 900" £z G0 Leg A 161261 ag’t
(748 207 (9000°) (1£0) (10) (£20)
v 6l 9/96° Sly'— VAL A 0v00° ord £50° o8l A 1S-V161) egt
(Lz1) (601") (60007 (2207 (sv0)
44 60" 1996 gle S08° ¥100° G50 10e A3 1S-1261 az't
{eg1) 1) (60007 (6107 (ve0)
e 80" 19%6° 128 09/ 2200’ FA AN (A3 16-¥1i61 ez
(or2) (ere?) (1io07) (1207 (se07)
se 80° 0S¥6° 168 — 08z 2100° 050° 164 N 161261 ar’t
(¥81) (£60°) (80007 (9107 (s20)
0g 60° 0056 268 — 0cL S200° 050’ syl A 1S—¥161 el
Ayon Auon zd 10113 ndino puai] wo_i posd a%ld 9old BEINIETYY [9POIN poLied ‘ON
-se|g -se|g anissalbal pabbe Jeaur] /MO01S9AIT doin a1ebaib6by uon
uny uny -ony -enb3g

-Buo -loys

July 1983

-asuodsay Ajddng |eimjjnouby arebalbby 10) suontenby pajewnisy | 319vL



LaFrance and Burt

servation. We also estimated the sample
period 1921-51 and 1921-57 for compar-
ison with Griliches’ results and because of
some question about the accuracy of out-
put and price indices prior to 1920.

Results
Aggregate Qutput Response

Results of fitting several first order dif-
ference equations to aggregate farm out-
put are given in Table 1 (numbers in pa-
rentheses are asymptolic standard errors).
The two sample periods for each equation
are paired, one above the other, with an
a-b designation on the equation number
to denote the periods beginning in 1914
and 1921. The model designation Y,_, ver-
sus E(Y,)) refers to the assumptions asso-
ciated with partial adjustment equation
(2a) and (2b), respectively. Reported elas-
ticities are at sample means, and adjusted
R-square includes the explanatory value
of the autoregressive error structure.

Equations using E(Y,_,) as the lagged

output measure were estimated with
E(Y,) = n, treated as an additional param-
eter, but the estimate is not reported. The
estimate of », was always very close to Y,
and the first observation was saved in first-
order autoregressive error specifications
because u, =Y, — 7, provides an initial
condition for the error process.

In equations 1.3 and 1.4 in Table 1, we
use an index of total farm output for the
dependent variable and separate price in-
dices for the crop and livestock sector re-
sponses. The improved fit, as measured by
adjusted R-square, and the reduced stan-
dard errors on the regression coefficients
imply that separate price indices reduce
the specification error associated with the
weakness of a single aggregate price in-
dex. The better fit of equations 1.4 com-
pared to 1.3 suggests that the partial ad-
justment equation (2b) is superior to (2a)
when the regression equation is well spec-

ified.

A Model of U.S. Agricultural Supply

Coefficients estimated for each separate
price index must be interpreted as partial
effects on the total aggregate output in-
dex, holding the other price index con-
stant. Reported elasticities for equations
1.3 and 1.4 were computed from an ag-
gregation formula as follows. Two main
assumptions were used to derive the for-
mula: (1) the index of prices paid for
feed used to deflate the livestock price in-
dex can be interpreted as an exogenous
input price, and (2) the net effect on total
output of each separate price index is re-
stricted to its own component of output.®

By definition of the index of prices re-
ceived for all farm products,

P, = w,P¢, + w,P,
w, +w, =1,

where P, is the index of prices received
for all farm products in year t, P, is the
index of prices received for all crops, Py,
is the index of prices received for livestock
and livestock products, w, is the relative
importance of crops, and w, is the relative
importance of livestock and livestock
products during a given weight-base pe-
riod for the constructon of the aggregate
prices received index. Feed consumed is
calculated as a fixed proportion of live-
stock production (USDA, Handbook No.
118, Vol. 2, p. 34), and seed crops are cal-
culated as a percentage of the average val-
ue of all crops during a given weight-base
period. Therefore, total output is defined
as

Ql =v,Q¢ + VoQies

OSVDVQS]-,

where Q, is total farm output in year t,
Q. is all crop production, Q,, is total live-
stock production, v, is the percentage of

¢ The logical basis for calculating a single price elas-
ticity is compromised somewhat by the prices paid
for feed index appearing in the livestock price vari-
able, creating a negative correlation between the
two price variables. This negative correlation will
tend to bias the elasticity upward when using the
formula derived here.
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all crop production not used for seed, and
v, is the percentage of livestock produc-
tion net of feed consumed.

For aggregated indices not usually much
different in magnitude, it seems reason-
able to assume that for small changes in
the price indices,

9Q./9P¢, = 0Qq/ 0P,

0Q./0P, = 9Q,,/dP,,,

allowing the approximation

aQt/aPz = v,8, + vy,

where 8, and 8, are coefficients on the crop
and livestock price indices, respectively.
This leads to an estimated aggregate price
elasticity of

e= (v8 + V262><W1PCt + WZPLt)/Qt'

The weights used to calculate the elastic-
ities in Table 1 are based on 1937-41 and
1935-39 for prices and quantities, respec-
tively. The actual weights are w, = 422,
w, = .578, v, =.9935, and v, = .4018.

In an attempt to delineate an upper
bound on the long-run price elasticity,
equation 1.5 in Table 1 was estimated with
trend omitted, which imputes the effects
of technological change to price effects.
Since this is a two-price equation, the elas-
ticity has an additional upward bias from
the aggregation procedure (see footnote
8).

The impact of the error specification is
illustrated by a log-linear equation for
1921-57 (basically Griliches’ equation 1.5)°
which are equations 1.6 and 1.7 in Table
1 with and without an autoregressive error.
The long-run elasticity estimate increased
from .20 to .35 by introducing the auto-
regressive error.

Many of the same equations were esti-
mated with the variables in logarithms ex-

and

9 Griliches’ equation estimated by OLS did not ex-
clude the weather index from the distributed lag
and resulted in an even smaller estimate of the coef-
ficient on Y, ,, i.e., 0.298, and a smaller long-run
elasticity of 0.14. ’

8
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cept for trend, but the linear models con-
sistently gave a better fit, and the
parameter estimates were more stable
across sample periods. We also tried an
exponential trend in the linear models, but
it did not improve the fit or change the
parameter estimates much except for
samples going through 1957.

Several rational lag specifications were
tried on the price variable jointly with the
partial adjustment equation. For example,
a partial adjustment/adaptive-expecta-
tions model was considered quite plausi-
ble on a priori grounds. A second-order
difference equation resulted in a margin-
ally significant coefficient on E(y, ), but
the significance was traced to observations
for 1934 and 1936, which are the worst
drought years in the series; consequently,
the second order model was not given se-
rious credence. Aggregation over all prices
probably removes the opportunity to
model any distributed lag price expecta-
tions, even if they are important {or some
individual commodities.

The primary differences in the specifi-
cations presented here and those of Gril-
iches are: (1) the deflator for March price,
(2) exclusion of weather from a distrib-
uted lag response, (3) a first order auto-
regressive error structure, and (4) linear
instead of log-linear equations.

Aggregate Crop Response

Results for the crops index are quite
similar to aggregate output with approx-
imately the same long-run price elastici-
ties as the single price models in Table 1.
Several first order difference equations for
the 1914-51 period are given in Table 2.

Equations 2.1 and 2.2 illustrate the sen-
sitivity of the lag structure to specification
of the error term when the lagged depen-
dent variable is a regressor. Equations 2.1
and 2.3 yield almost identical long-run
elasticities, and there is little basis for
choosing between the stochastic versus
nonstochastic difference equation models.
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A Model of U.S. Agricultural Supply

TABLE 2. Estimated Equations for Aggregate Crops Response (1914-51).

Short-  Long-
Equa- Auto- Run Run
tion Crop Linear Lagged regressive Elas- Elas-
No. Model Weathera  Price Trend Output Error Rz ticity ticity
2.1 Yot 214 .066 .0023 .669 —.583 872 10 29
(.031) (.017) (.0006) (.098) (.157)
2.2 Yeq .234 .097 .0043 .337 .845 14 .22
’ (.043) (.023) (.0009) (.130)
23 E(Y..,) 231 .055 .0019 739 —.049 .862 .08 .31
(.044) (.016) (.0005) (.095) (.162)
2.4 E(Y..) 371 .077 .0027 .730 —.049 .842 .08 .28
and logs® (.069) (.024) (.0008) (.102) (.162)

Note: Numbers in parentheses are asymptotic standard errors.
2 The weather variable is excluded from the distributed lag in all equations.

® All variables in natural logarithms except a linear trend.

As in Table 1 for aggregate output, the
former tends to have a smaller coefficient
on the measure of lagged response. Equa-
tion 2.4, which is linear in logarithms of
all variables except trend, has nearly the
same dynamic structure as the linear
model in 2.8, but the fit is not as good.

Aggregate Livestock Response

Since the weather index is unimportant
in livestock output, it might be expected
that our results would be close to those in
Griliches’ study because much of the dis-
crepancy found in the aggregate output
and crops models seems to be due to dy-
namic specification on the weather index.
But another important aspect is specifi-
cation of the structure of the disturbance
term; recall the estimated negative first-
order autoregressive structure for the
lagged dependent variable equations in
Tables 1 and 2.

In the livestock equation the autore-
gressive parameter estimate is positive, and
with the lagged dependent variable in the
equation, it is not significant for samples
truncated before about 1960. The equa-
tions estimated with the lagged expecta-
tion of the dependent variable suggested
a stochastic difference equation with a
small positive autoregressive error param-

eter for samples within the period 1911~
58. A recent Monte Carlo study of models
with a “trended” variable and lagged de-
pendent variable as regressors suggests that
ordinary least squares is superior to gen- .
eralized least squares when the autore-
gressive error parameter is between zero
and 0.5 [Maeshiro].

We concluded that little improvement
could be made over Griliches’ estimates
of aggregate livestock response during
1911-58. Attempts to estimate a relation-
ship for the post World War II period were
discouraging. Regression coefficients on
trend and the lagged dependent variable
were too confounded to draw conclusions
about long-run price response in recent
years. Apparently, technological change
has been too sporadic to capture with a
smooth trend. Although we do not report
any equations here, the most consistent es-
timates in our analysis across various
models were for the period 1921-51 with
a short-run elasticity of 0.8 and with 0.7
to 0.8 for the long-run.*

Irreversibility Tests

The Wolffram technique for estimating
irreversible functions in time series, which

19 Detailed results including the fitted equations are
given in LaFrance.
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TABLE 3. Comparison of Griliches’ Price Elasticities with the New Approach.

Griliches LaFrance and Burt
Short-Run Long-Run Short-Run Long-Run
Output Aggregate Elasticity Elasticity Elasticity Elasticity
Total Qutput 0.10 0.15 0.08 0.3 £ 0.10°
All Crops 0.16 0.23 0.08 0.28 = 0.13°
Livestock and Products 0.20 0.70 0.30 0.70-0.80

2 Taking 0.30 as a basic “‘unbiased’’ estimate of the long-run elasticity, this is an approximate 95% confidence
interval based on asymptotic distribution theory and the two-price model.
® This is an approximate 95% confidence interval based on asymptotic distribution theory and equation 2.4,

was later simplified by Houck for its op-
erational application, was applied to the
three output indices. In all cases, the trend
variable was confounded with the two
price variables, one each for increasing and
decreasing prices. A positive trend in the
reversible specification changed to a neg-
ative trend when the single price was re-
placed by the two separate price series
to allow for irreversibilities. Adjusted R-
square was essentially the same in the
irreversibility specification with trend de-
leted as in the reversible equation with
trend included. These results suggest that
the two variables for rising and falling
prices are almost a perfect substitute for
a single price variable jointly with linear
trend.

The model developed by Traill, Cole-
man and Young for irreversible supply re-
sponse was also tested, but their method
turned out to be rather infeasible because
the absolute maximum price appears very
early in the data for the total output and
crops indices. This confounded their
“maximum price” variable with the in-
tercept. We tried to remedy this by sub-
jecting the previously experienced maxi-
mum price to an exponential decay,

PA, O <A<,

where P, is price in period t and t + j is
the period in which a maximum with re-
spect to t is sought for the variable P A
search was made on A using a conditional
least squares criterion, but the revised
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method did not improve the earlier re-
sults.

We concluded that there is little evi-
dence of irreversibilities in aggregate sup-
ply response insofar as current economet-
ric methodology can detect. Although
these methods did not reveal a definitive
irreversible supply function, we suspect
the outcome is a weakness in the methods.
The simple deductive economic argument
for irreversibilities in agricultural supply,
especially in the aggregate, is most con-
vincing (Johnson and Pasour).

Conclusions

A comparison of Griliches’ elasticity es-
timates with those obtained in this study
is presented in Table 3. The refinements
in specification of partial-adjustment
equations for supply response tend to pro-
duce higher long-run and lower short-run
price elasticities than a straightforward use
of the lagged output variable, as in Gril-
iches’ model. However, the differences in
elasticities are small when an autoregres-
sive error is specified in the equations con-
taining the lagged dependent variable and
the weather variable is excluded from the
distributed lag. Differences between the
linear and log-linear specifications ac-
count for some of the discrepancy in es-
timated elasticities; our logarithmic equa-
tions gave long-run elasticities about 20
percent below the same linear equations.
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With the caveat that an average price
elasticity over the entire domain of a sup-
ply equation is at best a crude indicator
of supply response behavior, our results
suggest point estimates of .1 and .3 in the
short-run and long-run, respectively, for
each total output and crops indices over
the period 1914-51. We could not im-
prove upon Griliches” estimates of price
elasticities for livestock and livestock
products which were .2 and .7 in the short-
run and long-run, respectively.

The lagged expectation measure of out-
put yields an error term which appears to
obey the classic assumptions for the crop
index, while actual lagged output gives
such an error term for the livestock and
livestock products index. These results are
consistent with lagged output being an in-
direct estimate of the investment in fixed
assets specialized to crop production while
it is more of a direct estimate of such as-
sets used in livestock production. The
dominant role of breeding stock in live-
stock production (particularly beef) sug-
gests that lagged output would be a more
direct measure of fixed assets in livestock
production than in crops production. We
note that the livestock output index is for
production, not marketings, and reflects
changes in inventories. These results sub-
stantiate Griliches’ assertion that the par-
tial adjustment model he used employed
a lagged output variable for the partial
adjustment equation which was subject to
measurement error, at least in the aggre-
gate output and all crops models.

Partitioning various terms in the dy-
namic regression equation out of the mea-
sure used for lagged output should be use-
ful in modeling supply response of
individual commodities. The specification
of (2b) where the regression disturbance
term is purged from the lagged depen-
dent variable appears to be most appro-
priate in well specified models, which are
more likely for individual commodities
than for an aggregate index of output.

A Model of U.S. Agricultural Supply
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