
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


Working Paper
il

 

ONAPPROXIMATEVECTOROPTIMIZATION

Istvan Valyi

January 1986
WP-86-7    

t ro“ <GIANNITSFOUNDATION OF
AGRICULT—

LIBRARY

4,

SEP 3 0 1987

) International Institute for Applied Systems Analysis
~A-2361 Laxenburg, Austria

a F
a



 



NOT FOR QUOTATION
WITHOUT THE PERMISSION
OF THE AUTHOR

ON APPROXIMATE VECTOR OPTIMIZATION

Istuan Valyzt

January 1986
WP-86-7

Working Papers are interim reports on work of the International

Institute for Applied Systems Analysis and have received only limited

review. Views or opinions expressed herein do not necessarily

represent those of the Institute or of its National Member

Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS

2361 Laxenburg, Austria



  



PREFACE

The roots of current interest in the theory of approximate solutions of optimiza-

tion problems lie in approximation theory and nondifferentiable optimization. In

this paper an approximate saddle point theory is presented for vector vaiued con-

vex optimization problems. The considerations cover different possible types of

approximate optimality, including both the efficient, or Pareto-type, which is more

frequently used in practical decision making applications, and the absolute, or

strict type, which is more of theoretical interest. The saddle point theorems are

used to study duality in the context of approximate solutions. The approach of the

paper aiso provides for a unified view of a number of results achieved either in

approximate scalar optimization or exact vector optimization.

Alexander B. Kurzhanski_
Chairman
Systems and Decision Sciences Area

 



  



CONTENTS-

1. Introduction

2. strict Optima

2.1. Approximate Extremal Points and Approximate Solutions

2.e. tne saddle Point Theorems

2.3. Primai and Dual Problems

3. Non-dominated Optima

3.1. Approximate Non-dominated Kiements

3.2. Saddle Point Tneorems

3.3. Primai and Dual Functions

4. References

12

aL

24

28

34

 



  



ON APPROXIMATE VECTOR OPTIMIZATION

Istuan Valyt

1. INTRODUCTION

The aim of the present paper is to give the proofs of the theory presented at the

IIASA Workshop on Nondifferentiable Optimization held between 17 and 22 Sep-

tember, 1984, Sopron, Hungary. (See Vdlyi (1985a)),but some more recent related

results are also included.

The central results are Hurwitz-type saddle point theorems corresponding to ap-

proximate solutions extending the theory developed by Zowe (1977) for one type of |

optima, or by Tanino and Sawaragi (1980) for another. By these theorems then we

investigate the respective duality type problems. The study of this subject was

started by Hiriart-Urruty (1982) and Strodiot et al. (1983) in the scalar case, and

by Kutateladze (1978) and Loridan (1984) in the vector valued case. |

The paper is divided into two parts according to the type of optimality considered.

Chapter 2. covers the case of strict, or non-Pareto optimality. This type of optim-

ization in ordered spaces is regarded by many as having little practical use. This

criticism, however is of less force in the approximate case, since for some value of

the approximation error we may find solutions even if exact solutions do not exist

(like the so called utopia point so often used in the Pareto case). Anyway, interest

in it appears to be lasting as is shown e. g. by the recent paper of Azimov (1982).

Section 2.1. is devoted to some basic properties of approximate extremal elements

in ordered vector spaces and in Section 2.2. the main results are proved. Applica-

tions expounded in Section 2.3. clarify the relationships between approximate sad-

dle points and approximate solutions of the primal and dual problems associated to

the original problem. In this we also show the connections to analogous results,

namely the corresponding Kuhn-Tucker theorems based on the é-subgradient cal-

culus, obtained by Kutateladze (1978). In such a way the analogy will be complete

with the theory developed for the scaiar case in the paper byStrodiot et al.

(1983). Finally we give a partial generalization to the vector valued case of ©
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Golshtein’s duality theorem dealing with generalized solutions of convex optimiza-

tion problems and of Tuy's result characterizing well posed problems, i. e. those

where the primai and dual vaiues coincide. (See 14H in Holmes (1975)).

Chapter 3. deals with Pareto, or nondominated optimality. Here we define dif-

ferent types of approximate efficient solutions to vector optimization problems and

aeveiop the corresponding saddle point theorems along the logics of Tanino and

Sawaragi (1980) or Luc (1984).

Section 3.1. is devoted to definitions and some basic properties of approximate ex-

tremai elements in ordered vector spaces and in Section 3.2. the saddie point

theorems are proved. As for applications, in Section 3.3. we show the equivalence

between approximate saddle points and the corresponding primal-dual pairs of

solutions.

AS a consequence of the fact that the notion of approximate solution coincides with

that of (exact) solution in the case when the approximation error is zero, our

results reduce to those obtained in the above mentioned papers. Throughout the

paper we rely on a knowledge of convex analysis and the theory of ordered vector

Spaces, and therefore basic notions and facts are used without special explanation. |

If needed see e. g. Peressini (1967), Holmes (1975) or Akilov and Kutateladze

(1978). |

Ali the vector spaces appearing in the paper are real and ordering cones are sup-

posed to be convex, pointed and algebraically closed. In the presence of a topolog-

ical structure we suppose compatibility, i. e. that the ordering cone is closed. We

denote by X and V vector spaces and by (Z,X) an ordered vector space with

core(K)#d¢, where core refers to the algebraic interior. Similarly, rcore denotes

the relative algebraic interior. (Y,C) is an order compiete space, i. e. a vector

lattice where every nonvoid set with a lower bound possesses an infimum. In order

to ensure the existence of infima, resp. suprema for every (i.e. nonbounded) sets,

we supplement the space (Y,C) with the elements » angd —o using the notation

Y=Y\){—, cf, and suppose that the usual algebraic and ordering properties hold.

Hence for the set HCY, which is not bounded from below, we have inf (H)=— and

tnf (d)=e, The dual space of Y is Y while the topological dual is ¥*. The cone of

positive functionais with respect to the cone CCY, or the dual of C is Ct. The func-

tional y* €Y’ denotes an element of Ct. L*(Z,Y)CL(Z,Y), or A*(Z,Y)CA(Z,Y) stands

for the cone of positive linear, or continuous positive linear maps from Z to Y,

respectively.
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We recall now that for the various ordering reiationships between two elements of

an ordered vector space we shall use the following notations for example in (Y,C):

YoRU, Ut Yo-Y¥z,EC

Yo2zyUz fF Yor-y,eCNO

Yor, iff Yyor-yze core(C)

To denote opposite relations we use symbols like + and }. Accordingly

Y2BY1 OF Yee

refer to the fact that y,¢€Y dominates or does not dominate y2¢Y from below,

respectively.

The vectors e, Cn 1C4EY and the scalars ¢,é, GR represent the approximation er-

ror, of them we suppose that e20, e, &0 and e.,20 holds and similarly that ¢,e, are

nonnegative.

Now the usuai definition of the main subject of study in this paper follows, i. e. that

of the convex minimization problen and of the corresponding vector valued

Lagrangian (see e. g. Zowe (1976)).

Definition 1.1.

Let

FS :X aVvufo}

hR:X27Z vu fox}

proper convex functions with A= dom fn dom h, andl EL(X,V). We define the

minimization problem (MP) by way of the set of solutions:

MIN(MP) = {zy €F : f(Zo) €MIN ff F)}} (MP)

where

F=f{eex:2€A,hk(z2) 80,l(z@) =0}

is called the feasibility set of the problem (MP).

The algebraic Lagrangian of the convex minimization problem (MP)

b :X xL(Z,Y)xLW,Y) + ¥

is defined by the equality

 



 
co ifz¢aAa

F(Z) +R R(z)+S-l(z) if zeA and REL*(Z,Y)

~° ifzeA and R¢L*(Z,Y)

o, (xz fe 5)

with the set

dom, = {(z,R,S) EX xL(Z,Y)xLW.yY): zeA, REL*(Z,Y)}

called the domain of 4, .

The element (z9,¥9,59) € dom %, is a saddle point of the Lagrangian %, if the fol-

lowing is met |

(i) Oy (Z9,F29,S9) © MINSO (z,RoSo) 1 = EX}

(ii) S, (29, RoSpo) € MAX}, (29,R,S): (RS) € L(Z,Y) x L(WV,Y)}.

Instead of the symbol MIV or MAX, one has to substitute one of the approximate (or

exact) notions of minimality or maximality from the later following respective de-_

finitions. Depending on this choice, we call the elements of MIN(MP) solutions of

the probiem (MP) of the corresponding approximate (or exact) type.

The continuous Lagrangian 5& A is defined as the restriction of 6 to

X X A(Z,Y) x A(WV,Y) and the notion of saddle point of the continuous Lagrangian ©A

is defined in a corresponding manner.

The above notations and conditions are supposed to be valid throughout the paper

andwill not be mentioned again.

 



2. STRICT OPTIMA

2.1. Approximate Extremal Points and Approximate Solutions

Now we start with the definition of strict extremal and strict approximate extremal

points, and then we formulate some simple relationships between approximate ex-

tremal points corresponding to different values of the approximation parameter.

Definition 2.1.1.

Suppose that H c Y. Then an element y €# is called a strict minimal element of ZH,

or

y €S—-MIN(A) if Hcy +cC

The set

S(e)—-MIN(H) = $y €H: Hcy —e -C}

is called the set of strict e-approximate minimal or S(e)-minimal points of H.

By convention we say that

S —MIN(¢) = S(e)—MIN(¢) = {}

and if H c Y is not bounded from beiow

S—MIN(H) = S(e)—MIN(H) = {-=}

Remark 2.1.1.

By the pointedness of the cone CCY the set S—MIN(H) cannot have more than one

element. If it has one, this obviously means that inf (H) = S—-MIN(A).

The notions of S(e)-maximal and S-maximal elements are to be defined in a

_ corresponding manner.

The statements in the following proposition are straightforward consequences of

the definitions.

 



 
Proposition 2.1.1.

(a) S—-MIN(H) = .S(0)—MIN(H)

(b)IfOs €@, Sé@o2, then S(e,)—MIN(A) CS(@5)—-MIN (#1).

(c) If HCY is bounded from below then S(e)-MIN (A) =(inf (H)+e—-C)nd.

Corollary 2.1.1.

Let (Y,C) be equipped with a topological structure and H C Y closed. Suppose that

a net fe., €C: 7 € I} decreasing toe € Y exists with

(a) S(e.,) MIN (#1) NY#G6 Wve. and

(b) S(e,,) —MIN(7) < Y is compact for some 7p El.

Then S(e)—MIN(H) ¥ @.

Proof.

AS a consequence of the closedness of Cc Y, we have that e €C, and so

S(¢)—-MIN(H) is well defined. S(e,) —MIN(H)#¢ obviously implies inf (H)#0, and

SO we can apply (b) and (c) in Proposition 2.1.1. to conclude that S(e)—-MIN(A) is

the intersection of nonvoid compact sets.

Proposition 2.1.2.

Let (Y,C) be equipped with a topological structure and fe, €C:7€T} a decreas-

ing net that converges to e €Y.

Then

S(e)—MIN(H) = 1 {S(e,)-MIN(H): 7 ET} (2.1)

Proof.

By Corollary 3.2., Chap. 2. in Peressini (1967) we have e = inf fe. ec: 7veElY.

Hence by Proposition 2.1.1. the left hand side in (2.1) is a subset of the right hand .

‘Side.

For the reverse inclusion let y € Y be an element of S(e,) —MIN(Hf) for each y €T.

This means that y € H and for each fixed hk € H, the net th—y+e,eY: vel; is

contained in the closed cone CCY, hence h —y +e €C also holds.

 



Corollary 2.1.2.

Let (Y,C) be equipped with a weakly sequential complete topology, the ordering

cone C CY normal and suppose that fen, EC : nENi{ isa decreasing sequence.

Then

e=inffe, €C:n EN} =limi}e, ECin EN} EY

exists and —

S(e)—-MIN(A) = 9 {S(e,,)-MIN(H): n € N}

Proof.

The statement is a consequence of our Proposition 2.1.2. and the Corollary 3.5.

Chap. 2. in Peressini (1967).

Remark 2.1.2.

As a consequence of Proposition 2.1.1. the case with e=0 provides for conditions

ensuring the existence of exact extremal points based on information about ap-

proximate ones in the previous Proposition and Corollaries.

Now, using Propositions 2.1.1. and 2.1.2. we formulate a few simple properties of

the approximate solutions.

Coroliary 2.1.3.

Suppose, that (Y,C) is equipped with a topoiogical structure.

Then the following hold:

(a) S—MIN(MP) = S(0)—MIN(MP)

(b) Ose, Seo implies S(e,)—-MIN(MP) Cc S'(@5)—-MIN (MP).

(c) If te, ec:vel} is a decreasing net that converges to e€Y, then

n tS (e.,) ~MIN (LP) >y¥ €[T} =S(e) — MIN(MP).

(ad) If the topology of (Y,C) is weakly sequentially complete, the cone CCY is nor-

mal, fe, €C:n €N} is a decreasing sequence with the infimum e€Y, then

NS(e,,)-MIN(MP) : n EN} = S(e)—-MIN (MP).

(e) Suppose that the set fF) €Y is closed, fe, EC:n €N} isa decreasing se-

quence that converges to e€cY, z,€X is an S(e.)-solution of (MP) for each

vel and there is a 7, € I such that the set S(e.,)-MIN{f(z) © Y:z2eEF} CY
0 7
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is compact. Then (MP) has an S(e)-minimal solution.

2.2. The Saddle Point Theorems

' The present section is closely related to Zowe’s results both as far as proofs and

notions are concerned (Zowe (1976) and Zowe (1977)). As there, in the case of ex-

act solutions, one implication between the existence of solutions and saddle points

is valid under fairly general conditions while we need additional assumptions in the

case of the other.

Proposition 2.2.1.

If (Z9,29.S9) €dom b, is a S(e)-saddie point of the Lagrangian ®,, then

—e€e So ° h (Zo) +So ° L(Zo) = 0

Proof.

Follows from 2o€F and (ii) of Definition 1.1. if one considers the case (2 ,.S)=(0,0)

in S(e)—MAX.,

Theorem 2.2.1.

If (Zo, oS) € dom %, is an S(e)-saddle point of the Lagrangian $,, then zy €X is
an S(2:e)-solution of (MP).

Proof.

First we prove that this implies that Zoe.

Zo<D follows from the relation (Zo./29,59) €domo,. Using the choice
. (2,RwS)=(%9, ,S 9) in (ii) of Definition 1.1. we obtain that

R:h(Zo) SRy'h(zo) +e WRELt*(Z,Y) (2.2)

and using (z,4,S)=(z9,Ro,S) that
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Ss: L(Zo) SSo ° LE(Zo) +e WY SELV,Y) (2.3)

If h(zo)¢ —-K, then the strict separation theorem applied to the singleton set

{a (z9)}CZ and the algebraically closed convex cone KCZ with a nonempty core

(Kéthe Sect. 17, 5, (2)) yields a z* €XK* with

sup | <z*,-k>:kKEK}=0 < <2*,A(Zo)>.

Let cEC\ {0} be a fixed vector, to be specified later and let us define R €L*(Z,Y)

with the equation

<z* ,z=>
 

kez = <z* ,h(Z9)> "Ge

By inequality (2.2) now we have

O#c =R-h(xz9) SRo'h(zo) +e (2.4)

Selecting first any c€C\ {0}, we see that Roh (z_)+e #0 holds, therefore we are

allowed to set at a second step

c=2:(Ryo' R(z%o) +e)

leading to a contradiction with (2.4).

A similar argument shows the impossibility of [(z))#0, and so we can conclude that

BqEh’.

Again, by the definition of ®, and the S(e)-saddle point, we have for each

(z,R,S) € dom %,:

f(z) +R h(zo) +S: U(zo) —e Sf(z) + Ro h(x) + Sy l(z) +e

As a consequence of (z9,fo.59) € dom &, the relation Ry€L*(Z,Y) holds and there-

fore a substitution (z,2,S)=(z,0,0) completes the proof.

Using the topological version of the strict separation theorem in the above proof ;

we readily obtain the following for the continuous Lagrangian ®,.

Theorem 2.2.2.

Suppose that (Y,C), (2,X) and V are equipped with a topological structure.
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If (Z9,29,S9) € dom &, is an S(e)-saddle point of the Lagrangian %, then z)€X isa
J(2-e )-solution of (MP).

Definition 2.2.1.

We say that the problem (MP) meets the algebraic Slater-Uzawa constraint qualifi-

cation if either

(i) there exists an z,€rcore(A) with hk (24)€—rcore(K) and £(z,)=0,

or

(ii) no linear constraint is present and there exists an z2,€A with

Rh(Z@y) € -reore fh(z)+kK EZ:2 ECA, k EK}.

Definition 2.2.2.

The problem (MP), where (Y,C), (ZK) and V are topological spaces meets the topo-

logical Slater-Uzawa constraint qualification if there exists an z,€int (A) with

Ah (z1)€-int(K) and 1 (z,)=0.

Now for the convenience of the reader we quote from Zowe (1976) the algebraic
and topological vector valued versions of the Farkas-Minkowski lemma.

Theorem 2.2.3.

Suppose that the minimization problem (MP) meets the algebraic Slater-Uzawa con-

straint qualification.

Then the following statements are equivalent:

(a)f(z)20 Weer
(b) there exist operators REL *(Z,Y), SEL(V,.Y) such that

S(@)+R-h(z)+S-l(z) 20 W Zed.

Theorem 2.2.4.

Let (Y,C) and (Z,K) be equipped with a topological structure, X a completely

metrizable topological vector space and the cone CCY normal. Let further V be a

Hilbert space with [(X)CcV a closed subspace and suppose that the minimization

problem (MIP) meets the topological Slater-Uzawa constraint qualification.

Then the following statements are equivalent:

(a)f(z)2z0 Waer
(b) there exist operators REA*(Z,Y), SEA(V,Y) such that

SCZ) +R h(z)+S-l(xz)20 W Zea.
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Now we are able to formulate and prove the converse statements to Theorems

2.2.1. and 2.2.2.

Theorem 2.2.5.

Under the assumptions of Theorem 2.2.3. the following holds:

If z)eX is an S(e)-solution of the problem (MP), then there exist operators

Ro€L*(Z,Y) and Sp€L(V,Y), such that (z9,R9,S9) € dom %, is an S(e)-saddle point

of the Lagrangian ®,.

Proof.

AS 2, is an S(e)-solution, we can apply Theorem 2.2.3. for the function f,, where

F4iX 7 Y

f3(@) =f(z) —f(zo) +e

instead of the original f. Therefore there exist operators such that

f(z) + Ryo h(z)+Sy:l(z)20 Waxed (2.5)

From Proposition 2.2.1. and (2.5) now we have |

P(z)+Ro  h(z)+rSy lle) +e Sf (Zo) + Fo° R(Zo) +S ° (XQ) W zed,

on one hand, and by

O2R-h(zyo) +S -l(zy) WREL*(Z.Y),SELWY) ,

F(Z) + Ro* R(Zo) +Sq° L(ZQ) 2=f(Zo) +R h(Zo) +S: leo) ~e VW ZEA

on the other, completing the proof.

Repeating the above procedure with the topological Theorem 2.2.4. instead of

Theorem 2.2.3. we obtain:

Theorem 2.2.5.

Under the assumptions of Theorem 2.2.4. the following holds:

If z,eX is an S(e)-solution of the minimization problem (MP), then there exist

operators R)€A*(Z,Y) and Sy€AV,Y), such that (9,959) € dom %, is an S(e)-

' saddle point of the continuous Lagrangian 9,.
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Remark 2.2.1.

AS a consequence of Proposition 2.1.1. (a) our resuits reduce to those of Zowe

(1977) and Zowe (1976) in the case when e=0.

2.3. Primal and Dual Probiems

In this section we place the results of Section 3. in the context of some related

results and apply them to analyze the primal and dual problems associated with the

problem (MP).

Definition 2.3.1.

Consider the following functions:

P:X +¥

P(z) =sup { & (@,R,S) €Y:R €L(Z,Y),S ELWV,Y)}

and
|

D:L(Z.YxLWVY +> ¥

DRS) =inf {%,(z2,R,S)€¥:2 €X}

which we call the (algebraic) strict primal and dual functions of the minimization

problem (MP), respectively. The vectors defined as

v=inf [P(zr)eY:z2z EX}

and

u* =sup {D(R,\S)€Y:REL(Z,Y), SELW.Y)}

are the (algebraic) strict value and dual value, respectively.
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The algebraic strict primal and dual problems are formulated by way of the sets of

solutions:

S(e)-MIN(P) = {2 €X: P(x) €S(e)—-MIN(PC)) }. (P)

and

S(e)—-MAX(D) = § (RS) €L(Z,Y) x LWV.Y):

D(R,S) €.S(e)-MAX(D(L(Z,Y) x LWV,Y))) 3. (D)

The relationship between the original minimization problem (MP) and its primal

problem (P) is shown by the following proposition, namely that the latter is just the

reformulation of a constrained problem into a nonconstrained one.

Proposition 2.3.1.

If the space (Y,C) is Archimedean then the problem (P) is equivalent to (MP), i.e.

|S (x) if zeF
P(z)= | o if zéF

Proof.

If z &F’, then we have

R:h(z)+S:l(e@)s0 WR eL*(Z.¥), S€ELW,Y)

and therefore

0, (z,FS) sf (x),

but the equality is valid in the case (F,S) = (0,0).

If z¢F because of ZA, then 9%, (z,F,S)=~, and hence P(z)=e. If z ¢F because

of A(z)s0, then by the separation argument in the proof of Theorem 2.2.1. ensures

the existence of a z* €K* with <z*,h(z)> >0. This enables us to construct a se-

quence of operators {R, €L7*(Z,Y):n €N} with

sup {®,(z,R,,0):nEeNj=o . | (2.6)

Let, namely be cE€C\ {0} a fixed vector and define A,, <L *(Z,Y) by the equation

Ry 2 =n: <2*,2>°C.

From the Archimedean property of (Y,C) now (2.6) follows, and a similar argument

shows P(z)=m in the case of [(2)x0.
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Proposition 2.3.2.

The primal function P is convex and the duai function D is concave.

Proof.

The first statement directly follows from Proposition 2.3.1. The domain of the dual

function is clearly convex, and concavity follows from the superadditivity of the

tnmf operation.

Proposition 2.3.3.

(a) The primal value is greater or equal than the dual value.

(b) If z)€X is an S(e)-soiution of the primal problem (P) and

(So)€L (Z,Y)xL(V,Y) is that of the dual probiem (D) then

P(Zo) = D(Ro,S9).

(c) Let us have for some ZoEX, (Hy9) EL(Z,Y)XL (VY)

P(Z9) =D(Fo59) + e.

Then 29 is an S(e)-solution of the primal problem (P) and (Rp,5S)

is an S(e)-solution of the dual problem (D).

Proof:

The statement is an obvious consequence of the definitions.

Now we turn to.the consideration of the connection between our Hurwitz-type |

results and those obtained by Kutateladze (1978). In this we shall rely on the no-

tion of perturbation function and approximate subgradients.

Definition 2.3.2.

The function

p:ZxV-9 Y

p(z,v) =inf [f(x)eY: 2eF(z,v) }

where

F(z,v) ={zeEX: h(z)sz, l(z)=v }

 



-15-

is called the perturbation function associated with the problem (MP).

Proposition 2.3.4.

Suppose that REL *(Z,Y), then

inf \p(z,v) +R 2+S:u:(z,v)EeZxvj=DRS)

Proof.

The following equation is a direct consequence of the definitions;

inf }p(z,v)tR-2t¢S:u:i(z,v)EZxvjp=

=inf |f(z@)+R°2+S:u:iz €X,2 Bh(z), v=l(z) }

Therefore we only have to prove that the right hand side equals with D(Fk,S). To

do this consider the inclusion

(fiz) +R 2+S:vu:2 €X,2 Bh(xz), v=l(z) 3d

D{f(z)+R-A(z)+S:l(z):z €X}.

By this and the definition of the dual function D the relation = always holds. On the

other hand # €L*(Z,Y) implies

R:-2z2+¢+S-:ve2eRk:k(z)+S lz)

and hence we also have the opposite relation.

The definition of approximate, or e-subgradient and the foliowing theorem is taken

from Kutateladze (1978).

Definition 2.3.3.

The set

O,f (eo) ={TEL(X,Y): T+ (2-29) Sf (z) —f(eo) +e, TEX}

is called the approximate, or e-subdifferential of f at z)ex.

Remark 2.3.1.

The statement that O€8,f(z)) is obviously equivalent to the relation

Zo=S (e)—MIN (MP) if there are no feasibility constraints.
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Theorem 2.3.1.

Suppose that the problem (MP) meets the algebraic Slater-Uzawa constraint qualif-

ication, then

z)€S(e)—MIN (MP)

if and only if |

there exist Ry€L*(Z,Y), So€L(V,Y) and e,20, e20 with

e 4 +e eth yh (zx 9)se '

such that

0 € 8 f (Zo) + 06 (Roh (zo) +S

Theorem 2.3.2.

Suppose that S(e)—MIN(MP) +6 and for (Fo.S9) EL *(ZY)XL (V,Y)

—(RoSo) € ,p(0,0) (2.7)

holds.

Then

(RowSo) € S(2:¢)—MIN(D) (2.8)

Proof.

As the conditions ensure there isa ZS(e)—MIN(MP).

Now using this and the definition of the e-subgradient we obtain

S(%o) -2°e Sp(z,v) + (RoSo): (z.v) VW(2,v)EZXV

Proposition 2.3.4. yields |

SP(Zo) —2:e¢ SD(Rp,Sp)

and by feasibility the proof is complete.

Theorem 2.3.3.

Suppose that the problem (MP) meets the algebraic Slater-Uzawa constraint qualif-

ication, and suppose that S(e)—MIN(MP) #4.
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If for (RoS9)EL *(Z,Y)XL WY)

(RoSo) € S(e@)—-MIN(D) (2.9)

holds then

—(RoSo) © 84.¢P (0,0) (2.10)

Proof.

By the conditions we have an z)<S(e)—MIN(MP) and hence

f (Zo) —e Sp (0,0).

Theorem 2.2.5. ensures the existence of a pair (RyS EL (Z,Y)XL(V,Y) such that

(29, 4.51) € dom 6, is a S(@5)-saddie point for the Lagrangian o,, that is by the

definition of the probiem (D) and (i) of Definition 1.1. this means that

F(Z) + Ry h(Zo) +S" L(2e9) Ss D(Ry,5,) +e.

Now Proposition 2.3.1. implies

f (Zo) —-2-e S$ D(R,,54)

and as (f9.59)«S(e) -MIN(D), we also have

p(0,0) -3-e Sf(zo) —3:'e SD(Ro,So).

From here by Proposition 2.3.4. the statement follows.

Theorem 2.3.4.

Suppose that the problem (MP) meets the Slater-Uzawa constraint qualification and

consider the following statements.

(a) (%p9,RoS9) € dom %, is an S(e,)-saddle point for ,.

(b) For (z%9,RoS9) € dom 9, we have

Oe Oot (2) + Gon(Roh )(Zo) + Sol (2.11)

with

e’ =0,e”’ 20 andO se’ +e” SRy' h(Zq) + eg (2.12)
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Then (a) impiies (b) with @o=<'e,, and (b) implies (a) with C4 =2'eo.

Proof.

If (a) hoids then according to Theorem 2.2. 1., 29S(2:e)—-MIN(MP) and so Theorem

2.3.1. ensures (2.11) and (2.12). On the other hand, by Proposition 2.2.14. and the

saddle point property we have

and nence

p(0,0) —2° e,s D(Ro.S).-

From here by Proposition 2.3.4. (b) follows.

Suppose now that (b) holds, that is again by Proposition 2.3.4. on one hand we have

p(0,0) -eos D(RoSo)-

As by Theorem 2.3.1. Z 9ES(€5)—-MIN (MP), implying

P, (Zo,RoSo) —2- en Sinf | O,(2,RySo): 2X}.

On the other, by feasibility and (2.12):

o, (Zo, S) Sf(Zo) = o, (Zo, gSQ) + Co | VW REL(Z,Y), SEL VY).

In view of Proposition 2.3.1. the above can be reformulated as:

Corollary 2.3.1.

Suppose that the problem (MP) meets the Slater-Uzawa constraint qualification and

consider the following statements: |

(4) (%o,o.S9) € dom % is an S(e,)-saddle point for the Lagrangian %, associat-
ed with the problem (MP).

(b) For (29,959) € dom ®, we have

(i) ZpEX is a S(€o)-solution of the primal problem (P) and

(ii) (oS9) EL *(Z,Y)XL (V,Y) is a S(e2)-solution of the dual problem (D).

Then (a) implies (b) with @o=4:e,, and (b) implies (a) with €4=5'eo.
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Now we turn to the consideration of generalized solutions.

Definition 2.3.4.

Suppose that (Y,C) is eqiupped with a topological structure, and fe,€eC >:ye isa

decreasing net that converges to O¢€Y. Let further Z yEX be an S(e.,)-solution of

(MP) for each y €T. Then we call the net iz EX : y€ft a generalized strict solu-

tion of the minimization problem (MP).

Suppose, in addition that there exists a net (RLS,)el (Z Y)xZL(V,Y): yel} with

the property that (z okt yy) isan S(e.,)-saddle point for the Lagrangian %,. Then

we call the net (x FyS4) XxL(Z,Y)xXL VY): yer} a generalized strict saddle

point of the Lagrangian 9%,.

Proposition 2.3.5.

_ For the strict vaiue of (MP), vu €Y we have

v=inf } f (x) EY: {z,Ex:7e l? a generalized solution, y € [ }.

Proof.

The equality is a direct consequence of the definitions.

Definition 2.3.5.

Suppose that (Y,C) is equipped with a topological structure. We call the problem

(MP) weli posed if there exists a net {(z,R,,S 5) : yeEl} such that

lim { (z.,RS,) >yeET Psu =v*,.

Remark 2.3.2.

By the definition of infimum and supremum, our definition coincides with the single

requirement of v=v™* in the scalar vaiued case.

Theorem 2.3.5.

Suppose that (Y,C) is equipped with a topological structure and that the cone CCcY

is normal. If the Lagrangian %, has a generalized saddle point, then the problem

(MP) is well posed.

Proof.

As a consequence of Proposition 2.3.3. (a) we only have to prove v Sv™*. By the

definition of the generalized saddle point, there exist a decreasing net

fe,EC : yer}, that converges to O€Y such that
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P(z es o, (Fp Sy) $D(F,,S,) te, Wve.~~

Hence for every fixed 6 € T we have

inf {P(z):7 ET} —e@sssup | D(R,,S,) (YET Y +e,,

and, by the normality of the cone C CY, from here the statement follows.

Corollary 2.3.1.

Under the conditions of Theorems 2.2.5. and 2.3.0. the existence of a generalized

strict solution to the problem (MP) implies that the problem is well posed.

Proof.

Easily follows from the combination of the quoted theorems.

Remark 2.3.3.

It is worth noting that the reverse implication seems not to hold in the vectorial

case while it is trivial for scalars.

Similariy to the preceding, notions and statements of Section 2.3. can also be for-
mulated in a purely topological way. Proofs are anaiogous, but of course relying
on Theorem 2.2.6. instead of Theorem 2.2.5.
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3. NON-DOMINATED OPTIMA

3.1. Approximate Non-dominated Elements

Definition 3.1.1.

The vector y€H is a P(e)-minimal eiement of HcY or approximately Pareto

minimal, in notation

y € P(e)-MIN(H),

if

(y—-e —-C) NHC fy —e},

WP (e )-minimal, in notation

y €WP(e)—-MIN(A),

if

(y —e —core(C)) NA =¢@.

Here, of course, we need the condition that core(C)#@ and speaking about WP-

minimality, we always suppose it.

and P(y*,&)-minimal, in notation

y € P(y*,2)-MIN(H),

if

<y*,youe ss <y*,hk> WREA.

By convention, we say that all kinds of minima of the void set consist of the single

element »¢€Y. The approximately maximal elements are to be defined in a

corresponding manner.

Remark 3.1.1.
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Our definitions, in the case of e=0, or e=0, reproduce the usual exact notions of

minimality. Weak approximate minimality means the corresponding approximate

minimality with respect to the (algebraically non-closed) cone C’={0}{Ucore(C).

The notion of y €Y being P(y* ,€)-minimal means that <y* y>cR is a P(€)-minimal

element of the set y* (H)={<y*,A>ER: he H}.

Remark 3.1.2.

In the scalar case the different notions of approximate solutions for the minimiza-

tion problem (MP) coincide and there we simply speak of e-solutions or e-saddle

points.

Let us formulate some simple facts that are easy consequences of the definitions

but are still interesting because they clarify the relationships between the dif-

ferent notions of minimal solution. Omitted proofs are trivial.

Proposition 3.1.1.

Suppose that e,Se. and &,Se5. Then we have

P(e,) ~ MIN(MP) © P(e.) — MIN(MP)

_WP(e,) — MIN(MP) < WP(e>.) — MIN(MP)

P(y™,&) — MIN(MP) C P(y™,&5) — MIN(MP)

Proposition 3.1.2.

(a) Suppose that we have <y*,e>>0O. Then

P(y™*,&)—MIN(MP) < P(e’)—MIN (MP)

with

So € .

<y*,e>

 

4 e

(b) WP(e)—MIN(MP) = UIP(y*,<y*,e >)—-MIN(MP): y* € ct {03}.

Proposition 3.1.3.
| }

Suppose that (Y,C) is equipped with such a weakly sequentially complete topology

that the ordering cone CCY is normal. Consider a sequence fe, EC :n€e€R} de-

creasing to e€C.
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Then

P(e)—MIN(MP) © n{P(e,,)—MIN (MP) : n © N} ¢ WP(e)—MIN (MP)

and

A\WP(e,,)—-MIN (MP) : n € N} = WP(e)-MIN(MP)

Proof.

The first inclusion is obvious.

For the second let us reason by contradiction and suppose that the element z)¢F' is  
not WP(e)-minimal. This means that we can find another z,¢F’ with

S (%1) <f (%o) — 2. (3.1)

By normality int(C)#¢ and therefore int(C)=core(C). Hence the formula under

(3.1) is equivalent to

S (Zo) ~e —f (21) E tnt (C).

As a consequence of Coroliary 3.5. Chap. 2. in Peressini (1967) for the sequence we

have

lim {f (zo) —e@n —f(zy): n EN) =f(zo) —e —f(zy) €int(C),

and so, there exists an m EN with.

Sf(Zo) ~e@m ~f(zz) € int(C).

This means that ft (x 4) dominates the element f (Zo) —€,, €Y from below.

The proof of the second statementis analogous.

Proposition 3.1.4.

Suppose that the sequence fe, €R* : n EN} decreases to eER*.

Then

niP(y*,é,)—-MIN(MP):n €N} = P(y*,&)—-MIN(MP).
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3.2. Saddle Point Theorems

Proposition 3.2.1.

The element (z 0:oS9)Edom& is a P(e)-saddle point of the Lagrangian ®,, iff

(a) 27 (Zo,Fo.So) © P(e)—MIN §%, (z,RySp) EY: 2 €X}

(b) zo EF

(c)-e # Ry: h(ey) SO.

Proof.

Condition (a) is identical with the first part of the definition. Suppose now that

(Z9,/€9.59) Edom ®, is a P(e)-saddle point. The definition of dom, immediately

yields (b), and we have

7 (Zo. RowSo) =f (9) + Ry h(zo).

From the definition of the P(e )-saddle point we also know that

©, (ZFS) + $ (Zy, Ryo) +e (3.2)

for each (F,S)€L(Z,Y)xL WY). Selecting S=S) and =F, we obtain

(R-Ro) h(epte WREL*(Z,Y (3.3)

and

(SHS) late VWSELUY (3.4)

respectively. Suppose now that hk (Z9)s0 does not hold. Then by the strict alge-

braic separation theorem (see Kothe (1966) Section 17.5. (2)) applied for the sets
fa(zp)icZ and —KcZ, the existence of a functional z* €K?* is guaranteed with0

<z* A(Zo)> > 0.

Let c20, c€Y bean arbitrary, fixed element, and define the map AEL(Z,Y) as

<2* ,2>
R:

2 <2*,h(Zo)>
‘(@ +c) + Roz.

For this operator F we obviously have REL *(Z,Y) and

(R — Ro) ° h(Zo) =e +C.
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in contradiction with (3.3). A similar argument leads to contradiction with (3.4), if

we suppose [(z,)#0. Here we define an operator SeELV,Y) as

<u* ,v>
:U -(e tc) + ,Siv <u* l(@o)> (e +c) + Sou

The last inequality in (c) is a consequence of z,)¢F and AyeL *(Z,Y), while the first

follows from (3.2) if we choose (F,S)=(0,0).

To prove the reverse implication, suppose that (a), (b) and (c) are valid. From the

last two we have the following relations:

for each (R,S)€L*(Z,Y)xL(V,Y) implying the missing relationship for

(Zo.o.So)€dom %, to be a P(e )-saddle point.

Remark 3.2.1.

The property stated in Proposition 3.2.1. is as much negative as positive, and

therefore is a first sign of the problems to be seen in the sequel. Point (c), name-

ly, turns into the weil-known complementarity condition

Ro°' h(Zo) =0

in the case of exact saddle points. In general, however it only means that

Ro h(xp E(-CN fme CH) Yt es,

and the right hand side here is an unbounded set.

The proof of the following two statements is analogous.

Proposition 3.2.2.

The element (Z 9,F 9.59) Edom ®, is a WP(e)-saddle point of the Lagrangian 9%, iff

(a) O; (%o,FoSo) € WP(e) —MIN {b, (x ,RowSo) € Y:z eX}

(b) 2p EF

(c) -e $ Ry‘ h(zo) $0.

Proposition 3.2.3.

The element (2o,p,59) € dom & is a P(y*,e)-saddle point of the Lagrangian ®,

iff

(a) &, (9, Ro.So) € P(y*,£)—MIN {%, (z,FoS9) € Y:2 €X}
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(b)z, EF

(ce) ~EeS<y*,Ry* h(zp9) > SO,

Theorem 3.2.1.

Suppose that the point (Z 9,959) Edom ®, is a P(e)-saddle point / WP (e )-saddle

point / P(y*,&£)-saddle point of the Lagrangian ®,.

Then 29€X is an approximate solution of the minimization problem (MP) in the

respective sense where the approximation error is

e =e —Ry' h(Zo)

in the first and second, and

gee =2:e : | (3.5)

in the last case. _

Proof.

By Proposition 3.2.1. Zo€X is a feasible point. If zeF is another, then for the

Same reason we have

F(Z)SL(E) + Ry R(x) +So°l(z) $F (Zo) + Ry h(zq) +Sq l(xo) —e

and this means

f(%) € f(Zo) —(e — Rg A(zy) — Sq L(zQ))

By feasibility l(z 9)=0, and so the first case is proved.

The proof of the rest is analogous, with the additional use in the last case of the

transitivity of the relation sonR.

- Remark 3.2.2.

Instead of the relation (3.5) for the approximation error e’ €Y we have

Ose’ +2: ¢ and 0se’ $2-e,

as a consequence of the points (c) in Proposition 3.2.1. and 3.2.2., respectively.

However, unlike the scalarized case, transitivity for the relation of non-

domination or weak non-domination does not hold, and so we cannot claim in

Theorem 3.2.1. that ZEX is a P(2:e)-solution or WP(2-e )-solution.
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Theorem 3.2.2.

Suppose that the problem (MP) meets the aigebraic Slater-Uzawa constraint qualif-

ication. If z)€X is a P(y*,&)-approximate solution of the problem, then there ex-

ist operators RyEL+t(Z,Y) and SpeL(V,Y) such that (29,49,S9)€ dom % is a

P(y*,e)-saddle point of the Lagrangian 9,.

Proof.

It is supposed that z)€X is an e-solution of the scalar valued optimization problem  
min | <y*,f(z)> €R:2 €A, h(x) 0, L(x) =0}

By Theorem 2.2.5. in the scalar valued case, there exist functionals r*)€K* and

s*,«V ensuring that (Zo,.7%o.S*%o) is an e-saddle point for the Lagrangian

corresponding to the above scalar problem, 1.e.

<y* ff (2o)> + <r*,R(Zo9)> + <s*,L (Zo)> —-ES

S <y*.f (Zo)> + <r*o,h(Zo)> + <s*o.l (Zo) S

Ss <y* f(z)> + <r*_,A(z)> + <s*o,l(z)> re

If c€C is an element with <y*,c >=1, then defining A)EL *(Z,Y) and S,eL(V,Y) with

the following correspondences,

Ro:2 7% C+ <r*o,z2>

So:v > ¢* <S*o,u>

the theorem is proved.

Theorem 3.2.3.

Suppose that the problem (MP) meets the Slater-Uzawa constraint qualification,

and core(C)#6. If z)€X is a WP(e)-solution of the problem (MP) then there exist

operators RyeL*(Z,Y) and SpeL(V,Y) such that (x y,RyS9)€dom o, is a WP(e)-

saddle point of the Lagrangian %,.

Proof.

By point (c) in Proposition 3.1.2. there exists an y™ €Ct such that z)€X is a

P(y*,<y*,e >)-solution of (MP) and so Theorem 3.2.2. implies that there exist a

P(y* ,<y*,e >)-saddle point for o,. Now, obviously y™* €C* is strictly positive for

the cone C,=core (C)v§{0}. From an argument similar to the one used in the proof of
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(b) in Proposition 3.1.2. we can conclude that this P(y™ ,<y* ,e >)-saddle point isa

WP(e)-saddle point as well.

Remark 3.2.3.

A respective theorem concerning P(e )-solutions cannot be stated as a y* ec",

which is strictly positive for the whole cone C CY, does not always exist.

3.3. Primal and Dual Functions

In this final section we only deal with the scalarized case, i. e. P(y*,e)-type

minimality, as otherwise being the solution of the respective approximate primal

probiem carries little information, as is indicated inRemark 3.3.1.

Definition 3.3.1.

We call the following set valued maps the approximate primal and dual functions of

_ the minimization problem (AP):

P(y*,e):X +2?

P(y*.8): 2 > P(y*,e)-MAX{6, (2.RS) + (RS) €L(Z,Y)xL(V.)}
and

D(y* 2): L(Z,Y)xL(V,Y) > 2

D(y*,&): (RS) + P(y*,e)—MIN{$,(2 RS): 2 €X}.

The approximate primal and dual problems (P(y* 1€)) and (D(y*,é)) are defined in

terms of the functions P(y* £) and D(y*,e). Accordingly ZoEX or

(FR 9.59)EL *(Z,Y)xL (V,Y) is a solution of the approximate primal or dual problems,

if

P(y*,£) (Zo) 0 P(y*,3£)—MIN{ U Ply*,e) (xz): 2 EX) #e¢
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or

D(y* ,2e)(RoS9)NP(y™ ,&) MAX | (y*,€)(R,S):F€L (ZY),SELV,Y){#4

respectively.

Proposition 3.3.1.

P(y*,e) (2) CP (y*,e)-MAXIf(z) -C} WaerF

P(y*,e) (z) = fe} Wa EX\F

Proof.

Forz€F we have

{6 (2,R,S) EY vu {—w,0}:R EL*(Z,Y),S €LVY) j=

={f(z)+R-h(z):RELMZY I cr(z)-C.

Remark 3.3.1.

If we define e.g. the approximate primal problem (P(e)) ina corresponding manner

to Definition 3.3.1. then the analogue of Proposition 3.3.1. is valid, and in such a

way that the set P(e)(z) is not bounded from below if z<¢F and h(z)#0. Asa

consequence, it would have only —~ as a solution. As we know from e.g. Luc (1984)

this irregularity disappears if e=0.

Proposition 3.3.2.

(a) If 2)€X is a P(y*,e)-solution of the problem (MP)

then it is a solution of the problem (P(y* »€)).

(b) If z,€X is a solution of the problem (P(y™ ,&))

then it isa P(y*,4e) solution of the problem (MP).

Proof.

(a) By Proposition 3.3.1. we have for all 2 €F that

F(z) € P(y*,&)(z).

Therefore it is sufficient to prove that

Sf (Zo) € Ply* ,3e)—-MIN} v [P(y*,é)(z): 2 EX } 3 (3.6)

Again by the last proposition:
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U{P(y*,e\(z): 2 €F 1c u {[P(y*,c)—MAX f(z) —-Cijt=

={yeY:dzeFy sf(z), <y*,y>2 <y*ff(z)> — &}.

Hence by the definition of P(y* ,3&)—-MIN, the validity of (3.6) follows from the ine-
quality:

<y*Pf (Zo)> —3es <y*,f(z)>-e We EF

And this is a consequence of the relation we supposed.

(b) Let us suppose now that ZpEX solves (P(y*,&)), i.e. there exists an

Yo © P(y*,e)(Zo) NP(y* ,3e)—-MIN{ U [P(y*,e)(z): 2 EX}}

Belonging to the first set means that

Yo =f (Zo) — cy (3.7)

where c)€C and 0s<y* iCo>sé. As we have for all z EX\F that P(y* ,&)(z)=feo}, it

is enough to consider z €F, implying

f(z) € P(y*,e)(z).

Fience belonging to the second set implies:

<y¥*,Yo> —Ses <y* f(z2)> VW z eX,

and by (3.7)

<y* f(Z9)> —4e 8 <y*,f(z)> Wazex

Definition 3.3.2.

The element (Zo,Roo) XXL (ZY)XZ(V,Y) is called a P(y™,e&)-dual pair of solu-

tions if

(i)

Zo © X is a solution of the problem (P(y* ,e£))

and

(ii)
et

F (Zo) ED(y* ,2e)(Ro So) NP(y* ,€) —MAX{UD(y* ,2)(R,S):R EL (Z,Y), SEL V,Y)}3
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Remark 3.3.2.

The ~~ _ definition could equivalently be formulated as: ZoEX and

(RoSo) EL(Z,Y)xL(V,Y) is a solution of the primal and the dual problem respec-

tively, where the latter is valid by way of f(z9)€Y.

Theorem 3.3.1.

(a) If (Z9,Rp.So) Edom % isa P(y*,e)-saddle point of the Lagrangian @,,  then it isa P(y*,e)-dual pair of solutions.

(b) If (2p,oS9) EXXL(Z,Y)XL (V.Y) isa P(y*,e&)-dual pair of solutions

then it isa P(y*,2e2)-saddle point of the Lagrangian 9,.

- Proof.

(a) On one hand by Proposition 3.3.1. we have

SF (Zo) € P(y*,&)(Zo).

On the other, by Theorem 3.2.1. we know that z,)€X is a P(y*,2e)-solution of the

problem (MP). Together with Proposition 3.3.1. this yields the relation

<y* f(z)> —3es <y*,y> Wy €P(y*,é)(z)

i.e.

f (Zo) € Ply* ,3&)—-MIN{P(y™*,&) : 2 eX}.

This proves the first requirement of (Zo, oS) EO, being a P(y*,&)-dual pair of

solutions. If (%9,¥9.59)€ dom @ isa P(y™*,&)-saddle point then by (c) in Proposi-

tion 3.2.3. we have

<y* f (Zo)> —& S <y™, 8B, (Zo, gSo)>,

and also by the definition of the saddle point |

b, (Zoo) € P(y* ,€)MIN{9, (2 ,RoSo): = € Xi.

If we combine these two relations then we obtain

<y* ,f (Zo)> —2e S <y*,9,(Z,RySp)> Wz EX,

and as a consequence

ST (Zo) € D(y™ ,2&)(Ro,So).
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Wealso have to prove that

F(Z) © P(y™,&)-MAX{D(y*,£) (R,S): R EL(Z,Y), S EL(V.Y)}.

If this is not so then there exist REL(Z,Y), SEL(V,Y) and ¥4€D(y*,e)(R,S) such

that |

<y*,y,> > <y*,f(zo)>+2 (8.8)

Here it is mecessary that PR eL*(Z,Y) be valid because otherwise
D(y*,£)(R,S)={—} and consequently <y*,y,>=—«. Therefore

D(y*,£)(R,S) = P(y*,e)—MIN{f (z) + Reh(z) + Sl(z): 2 €X} (3.9)

i.e.

VY, =f (ey) +R A(z) +S +l (x4)

for some z,€F’. Using (c) in Proposition 3.2.3 and the formula under (3.8), we ob-

tain

This, and y¥,eD(y*,e)(R,S), however, contradict to (3.9). So the second require-

ment is proved.

(b) By the first part of the definition of the P(y™,&)-dual pair of solutions, the

conditions imply that ogP(y*,&)(Z9), and therefore Zo<F. By the second we know

that —»¥¢D(y*,2e)(Ro.So) and therefore RyEL *(Z,Y). Hence, (xo,Ry,S9)€dom 5,
holds. As a consequence of z)€F we have

<y* 8, (Zo,Ro,S9)> S <y* Pf (29)>,

and so

F (Zo) € D(y* ,2e)(RySp) (3.10)

implies

€, (o.RoSo) € P(y*,2e)—MIN {S, (2 ,.RoSo) 1 z €X} (3.11)

From (3.10) it also follows that

<y*Sf (29)> —2es <y*,f (Zo) + Roh (Zo) + Sol(Zo)>
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i.e.

—2e Ss <y* Roh(Zo) +Sol(%o)> (3.12)

By (3.11) (3.12) and the relation z g¢F’, Proposition 3.2.3. holds and therefore

zyeF isa P(y* ,2e)-saddle point of o,.
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