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Portfolio Selection Under Exponential
and Quadratic Utility

Steven T. Buccola

The production or marketing portfolio that is optimal under the assumption of
quadratic utility may or may not be optimal under the assumption of exponential utility.
In certain cases, the necessary and sufficient condition for an identical solution is that
absolute risk aversion coefficients associated with the two utility functions be the same.
In other cases, equality of risk aversion coefficients is a sufficient condition only. A
comparison is made between use of exponential and quadratic utility in the analysis of a

California farmer’s marketing problem.

A large number of utility functional forms
have been proposed for use in selecting opti-
mal portfolios of risky prospects [Tsaing]. For
purposes of both theoretical and applied eco-
nomic research, attention has primarily been
directed to the quadratic and exponential
forms. After enjoying widespread use in the
1950s and 1960s, the quadratic form came
under criticism by Pratt and others and lost
much of its reputability. In contrast the expo-
nential form has become increasingly popu-
lar, due in large measure to its mathematical
tractability [Attanasi and Karlinger; O’Con-
nor]. However, Anderson, Dillon, and Har-
daker (pp. 94-95) have recently defended the
quadratic, and it continues in use [Lin,
Dean, and Moore; Hanoch and Levy; Kall-
berg and Ziemba]. The objective of the pre-
sent paper is to explore conditions under
which use of quadratic utility results in opti-
mal choices identical to, or different from,
those resulting from use of exponential utili-
ty. The analysis makes clear that under cer-
tain conditions, the choice between quadrat-
ic and exponential utility makes very little
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difference. Under other conditions, the
choice has a significant impact on optimal
behavior.

Suppose an analyst is studying a continu-
ously divisible set of alternative production
or marketing options offering approximately
normally-distributed returns, and that he
wishes to select the portfolio of these options
with highest expected utility. The analyst is
considering using an exponential utility func-
tion U = —exp(—Ax), A > 0, or a quadratic
utility function U = x—vx2% v > 0, x < Vv,
where U is utility and x is wealth. Corre-
sponding to each of these functions is a
unique absolute risk aversion function r(x) =
—U"(x)/U’(x) from which a risk aversion coef-
ficient can be determined at any level of x.
For exponential utility, risk aversion r is in
fact invariant with respect to x, whereas for
quadratic utility it rises monotonically with x
[Pratt, p. 132]. Thus at one, and only one,
wealth level the two risk aversion functions
will be equated. The wealth level at which a
risk aversion coefficient is properly evaluated
is the decision maker’s initial wealth plus his
expected return from the portfolio con-
sidered; hence the portfolio considered gen-
erally affects the risk aversion coefficient it-
self.

The thesis of the present paper may be
stated as follows: if the optimal portfolios
include each production or marketing option
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at a nonzero level and if the decision maker is
assumed to operate under at most one linear
resource constraint (such as an acreage or
capital constraint), then necessary and suffi-
cient conditions for selecting the same port-
folio using either quadratic or exponential
utility is that the absolute risk aversion coeffi-
cients be equal at the optimal point. If some
options are optimally operated at zero level
or if more than one resource constraint is
employed, then equality of risk aversion co-
efficients is sufficient but not necessary for
selecting the same portfolio. An implication
of this argument is that in many cases the
composition of optimal portfolios depends
upon the utility functional form selected.
Only in special circumstances can identical
behavior in the face of risk be used to infer
identical risk aversion, although the reverse
inference can more frequently be made.

Portfolio Problem Under
Unlimited Resources

The situation first considered here is that
in which an individual contemplates n alter-
native risky prospects R;, i = 1, 2, ..., n,
where R; ~ N(u;, ;2. The individual has
access to an unlimited nonnegative number
P; of units of each prospect. Under these
conditions, portfolio return is z = 21‘, P.R;. If x
is the individual’s pre-risk wealth, total
wealth after realization of the random return
is w = x + z Hence U and r may be
evaluated in terms of expected post-risk or
terminal wealth . Terminal wealth has
mean L, = X + EiPiui and variance 0,2 = ?
P20 + %#% P.Poy.

Optimal Portfolio Selection

If the decision maker has an exponential
utility function with parameter A and returns
are normally distributed, Freund has shown
that the certainty equivalent of expected ter-
minal wealth is CE, = p,, — (\2)0,,2.! Sub-

1Al e subscripts refer to the exponential utility function
and q subscripts to the quadratic utility function. Sub-
scripts w refer to terminal wealth.
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stituting the above mean and variance into
the latter formula gives

x + 2 P — A2 Plo® +
i i
j#i

The optimal quantity P, allocated by the
decision maker to the ith prospect is found by
satisfying the Kuhn-Tucker conditions in
which resource constraints are not specified,
that is by satisfying dCE./dP; < 0,
(3CE./aP)P; = 0, P; = 0 (Intrilligator, p. 50).
It is assumed at the outset that P; > 0, so it is
only required that dCE./0P; = 0, all i. That
is,

dCE/aP; = p; — AP0 + % Pioy;) = 0.
] 1

Solving for the optimal P, gives®

(W/N) — 2 Pioy
@ B = AN
i

Expected utility reaches a maximum at this
point because the matrix of second deriva-
tives || 82CE./dP;0P; ||, which equals
| =Aoy; | for all i, j, has a negative semi-
definite form.

Corresponding first order conditions for
the quadratic utility function are derived by
maximizing the expected utility function EU,
= Wy — V2 — vo,2 with respect to port-
folio quantity P;. If P; is positive, in the
optimum it is required that

GEUq/(")Pl = Mi(l—2vx) - 2V(P1’}Liz + (I él
J
Pj}Lj + Pio'iz + ]El Pj(rl-j) = O,

2Conditions (2) would be solved simultaneously for all P;,
i=1,2 ..., n Itis not necessarily true in (2) that
OP/ON = —u/\* < 0 because quantity P,; in the
numerator of P/, is, at the optimum, also a negative
function of A\. Hence in the simultaneous solution,
AP/ /oN S 0 for any particular risky prospect R;. For the
two-variable case, it may be shown that increases in risk
aversion coeflicient A decrease the proportion optimally
allocated to the prospect with higher mean.
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so that optimal quantity P, is

(%) —x]—(u Z P+ 2 Poy)
. AEal] j#i
(3) Piq=

(n+0a?

Second order conditions for a maximum are
again satisfied because the matrix of second
derivatives | *EU/0P,0P; || is equivalent to
| —2v(pip; +03) || a negative semi-definite
form.

Conditions for Identical
Optimal Portfolios

To derive the necessary conditions under
which the composition of the optimal port-
folio would not depend upon utility function-
al form, optimal quantity P; in (2) is equated
with optimal quantity P:q in (3). To simplify
notation, let o;,, = ‘éi Pioy and p, = ‘%i
P;p;, where o refers to alternatives other than
the ith. Then

(/) —ay, _ Rl (VoY) — x] = (o + 03)

W o (ME + U'iz)

Solving for the exponential utility’s constant
risk aversion coefficient gives

5) A= (L +0?)

[(ev) ~x]o — (0P, ~ WiTio)

It now remains to be shown that the quadrat-
ic utility’s risk aversion coefficient r, equals A
in (5).

To show that this is so, recall from the risk
aversion coefficient formula r = —U"(y)/
U'(yw) that ry = 2v/(1 — 2vp,) = 1/[ (Vav) —
(x + m) | Coefficient r, varies with p, and
thus with the particular portfolio selected.
Define p,* as the mean portfolio return as-
sociated with the optimal portfolio quantity
P:q; that is

(6) p‘z* = Mo + P:qp“i'

The quadratic utility’s risk aversion coeffi-
cient at this optimal point is

Exponential and Quadratic Utility
M g = W) - &+ )]

Substituting from w,* in (6) and from P, in

3):

(7)/ rq* — 1
(l/zv) - (X + p‘o) -
[ Miz[(l/i’v) = x] = pipibo + O10) ]

(n+0?) J

Multiplying numerator and denominator of
(7)" by (w® + o) gives

w? + o

(1 +07) 2v~(x+pg) (W2+02)

= w? [(Vav) = x] + pyliibho + Oo)

Cancelling and collecting terms in the de-
nominator,

(u® + o)
(7)” rq* = 5 S )
[(Fav) =x] 0% = (070 — WiTio)

which is identical to the risk aversion coeffi-
cient (5) for the exponential utility function.
Thus, if resources are unlimited and each
portfolio option is optimally held at a nonzero
level, a necessary condition for the optimal
quantities P* i = 1, 2, ..., n, to be the
same regardless of functional form is that the
absolute risk aversion coefficients be the
same at expected terminal wealth. To prove
that equality of risk aversion coefficients is
sufficient for agreement on P*, it is only
required that \ be set equal to (7) or equiva-
lently to (7)"; this is the same as equation (5),
which is a rearranged form of (4) where the
optimal portfolio quantities are identical.

Portfolio Problem Under
Fixed Resources

The above demonstration may be extend-
ed to the case in which the decision maker
operates under a single linear resource con-
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straint. A typical constraint is that the deci-
sion maker has access to only A units of all
risky prospects R;. This total is allocated to
the proportions P;, i = 1, 2, ..., n, such that
AEi P; = A and P; = 0, all i. The Lagrangian
isL=F({P) —yA—-A El) P;), where y is the
Lagrange multiplier and F is replaced by
CE, for exponential utility and EU, for quad-
ratic utility. Kuhn — Tucker conditions for
the primal problem are 9F/0P; — yA < 0,
(0F/aP; — yA) (P)) = 0, P; = 0, all i. Under
the assumption that all P; are strictly positive,
this reduces to simply 0F/0P; — yA = 0. The
latter criterion may be satisfied by including
the resource constraint as part of the wealth
equation and then optimizing as in the un-
constrained case. Specifically, letting termi-
nal wealth be w' = x + A[PR; + (1 — j%i

P;R;)], new objective functions CE.’, EUg'
are derived and conditions 4CE.'/aP; =
dEU,'/oP; = 0 satisfied to derive the optimal
P!, and P{,. Using the same methods as
employed earlier, the latter portfolio propor-
tions are shown equal to each other iff A =
ry*. This proof is very lengthy for the n-
option case, but proof of the two-option case
is shown in the Appendix.

If the decision maker operates under more
than a single linear resource constraint, or if
some portfolio options are optimally held at
zero level, equality of risk aversion coeffi-
cients is no longer necessary for identical
risky choice. Suppose the optimal solution
oceurs at a corner of the constraint set such
that at least two constraints are satisfied as
equalities. This could occur where one or
more of the nonnegativity restrictions are
satisfied as strict equalities, implying they
are optimally held at zero level. In such a
situation, a wide number of gradients dP;/oP;
on the criterion surface, each corresponding
to different risk aversion coefficients, could
satisfy the optimality condition. However,
even in this case, equality of risk aversion
coefficients is sufficient for identical risky
choice because Pratt (pp. 125, 128) has
proven that equality of risk aversion coeffi-
cients implies equality of certainty equiva-
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lents for a given prospect.® Individuals who
agree upon the certainty equivalent for each
risky prospect will always agree on how to
rank these prospects.

Applications to a
Portfolio Problem

It would seem at first glance that a situa-
tion in which there is only one linear re-
source constraint and in which all activities
are optimally at nonzero levels would rarely
be encountered in research. Certainly the
situation would not be characteristic of
whole-farm planning models; these problems
realistically require a large number of con-
straints and involve many potential produc-
tion activities, some of which are frequently
not adopted in the optimal solution. For such
situations, only the sufficient conditions
stated above are generally applicable. But
analysis of financial or marketing portfolios
often are adequately characterized by the
assumption of a single capital, acreage, or
tonnage constraint. Furthermore, the num-
ber of feasible marketing alternatives is often
severely restricted by available sales or con-
tract opportunities. In these cases, optimal
marketing strategy will, if positive price cor-
relations are not too great, frequently call for
simultaneous use of each alternative. For
such a case, both the necessary and sufficient
conditions outlined above will usually apply.

The latter situation is illustrated here for
the case of a California producer of process-
ing tomatoes who, at planting time, has the
choice of securing a contract to sell all the
produce from a portion of his acreage on cost-
plus terms; produce from the remaining acre-
age would be sold at harvest-time spot mar-
ket prices. A critical factor of the cost-plus

3Given normal distributions, the certainty equivalent of
a random prospect z is W, — r(x + W,)0,%/2, that is the
mean of the prospect minus the decision maker’s risk
premium for the prospect. Since equality of risk aver-
sion coefficients implies equality of risk premiums when
moments i, and @, are constant, the former also
implies equality of certainty equivalents when moments
., and 0,2 are constant.
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contract is the mark-up the buyer offers over
the seller'’s variable costs. Let A be total
acreage planted, R; be per-acre variable
costs, k be the multiplicative mark-up over
variable costs, Rg be per-acre market value of
the tomatoes, P be the fraction of acreage
allocated to cost-plus contracts, and F be per-
acre fixed costs (assumed nonstochastic). Ter-
minal wealth is then w = x + A [PkR; + (1
— P)Ry — R; — F]. First and second order
conditions for an expected utility optimum
are found by selecting a utility functional
form and applying the suitably transformed
versions of equations (3) or (4) in the Appen-
dix. An interesting feature of this example is
that the optimal cost-plus proportion of sales,
P*, is a function of the cost-plus markup k.
Because AP* is the quantity of acreage opti-
mally offered on cost-plus terms and kR, is a
price, the function P* = P*(k) is equivalent
to the individual’s supply of product under
contract.

Figure 1 presents a comparison of such
portfolio supply functions for a particular to-
mato farmer assuming exponential, then
quadratic, utility. Except for the utility func-
tional forms, all probability moments and
covariances used to generate the functions
were the same. Furthermore, both utility
functions were estimated from the same set
of farmer utility response data.* Note that as
per-unit fixed costs F were altered, the quad-
ratic decision maker’s supply curve shifted
but the exponential decision maker’s re-
mained fixed.

When fixed costs were set at a low level,
the supply curve constructed under the as-
sumption of exponential utility did not in-
tersect the supply curve constructed under
the assumption of quadratic utility, meaning
that portfolio agreement was not reached. As
shown in Table 1, the exponential decision
maker allocated approximately 13 percent of
his acreage to cost-plus contracts when the
cost-plus markup was 132 percent of variable
costs. The quadratic decision maker allocated

“The exponential function estimated was U =
—exp [ —.0012w] and the quadratic function was U =
w — .000678w?, where w is expressed in $1,000 units.

Exponential and Quadratic Utility

nearly 25 percent of his acreage in response
to the identical markup. The two sets of
portfolios converged or diverged according as
ry* converged to or diverged from A.

When fixed costs were set at a higher
level, the supply curve of the exponential
decision maker twice intersected the supply
curve of the guadratic decision maker. This
would not be an unusual phenomenon in
portfolio analysis: as markup k increases, ex-
pected return p, first falls, then rises in
response to changing portfolio allocation P*.
Thus also, the quadratic individual’s risk
aversion rq* first falls, then rises, permitting
risk aversion equalities r;* = X\ to occur at
two points. In subsequent solutions using
alternative utility function parameters and
probability moments, portfolio supply curves
constructed under exponential utility con-
tinued to be more linear than those construc-
ted under quadratic utility. No pair of expo-
nential-based and quadratic-based supply
curves intersected in more than two places.

Conclusions

Given normally-distributed returns, the
choice between quadratic and exponential
utility will have no effect on optimal portfolio
selection if (and in certain situations only if)
the corresponding absolute risk aversion co-
efficients at the optimal solution are equal.
Because the risk aversion functions corre-
sponding to exponential and quadratic utility
intersect only once, optimal solutions will
often diverge widely depending upon the
functional form assumed. This will especially
be the case in those (primarily marketing)
situations where risk aversion equality is
necessary as well as sufficient for portfolio
agreement.

This study has excluded several significant
dimensions of risk analysis, including cases of
non-normally distributed returns and of utili-
ty functions other than the exponential or
quadratic. Subjectively-perceived return dis-
tributions of some individuals may be
skewed; at least this might be inferred from
the skewness of certain yield or mortality
variables [Bessler]. And when skewnesses

47



July 1982

Western Journal of Agricultural Economics

1.44
x 1.42-
g
< 1.40-7 quadratic utility
® (high fixed cost)
£ 1.38
)
3
2 1.36
I exponential utility
S 1.34-
O

1.32 -

// (low fixed cost)
1.30 ,’
/

l | i i
10 20 30 40

i ! i i f f
50 60 70 80 90 100

Portfolio proportion, P*, of cost-plus option (%)

Figure 1. Supply of Acreage Contracted on a Cost-Plus Basis: Exponential Versus Quadratic

Utility.

are strong, the results developed above do
not necessarily hold. However, several
reasons justify our continuing to pay some
attention to normally-distributed prospects.
First, there is evidence that many profit dis-
tributions faced by farming and (more espe-
cially) agricultural marketing and trading
firms are negligibly skewed [Mandelbrot; Fa-
ma).? Specifically, there is less evidence for
skewness in market prices than in farm
yields, a significant fact considering that farm
profits are affected by prices as well as yields,

5Mandelbrot observed that distributions of spot market
cotton prices are more thickly tailed than they would be
if they were normally distributed, but that the distribu-
tions are only slightly negatively skewed. The skewness
was so small as to be ignored in Mandelbrot’s later work
and in Fama's extensions to other commodity and se-
curity prices.
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and that marketing firms’ returns are often
directly affected by prices alone. Second,
research resources are sometimes inadequate
for constructing subjectively-based probabili-
ty distributions of returns that are deemed
representative of the decision-making popu-
lation. In these situations, the assumption of
unskewed distributions is no more, and
perhaps less, arbitrary than the assumption
of some particular positive or negative
skewness. Third, the premise of normality
permits us to derive analytical results that are
much more manageable than those derivable
with nonzero skewness, and these results at
least provide a benchmark for understanding
more complicated phenomena. Although sto-
chastic dominance methods, for example, al-
low us to partially rank specific risky pros-
pects, the methods are not suitable for
generalizing about the behavior of an optimal
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Exponential and Quadratic Utility

TABLE 1. Portfolio Supply Curves When the Alternative Marketing Options are Cost-Plus and
Market Price: Exponential Versus Quadratic Utility.?

; ; Standard Absolute
Cost-Plus Portfolio Proportions Expected Deviation of Risk Aversion
Markup Cost-Plus Market Price Return Per Acre Return Per Acre Coefficient®
(%) (%) $) (%)
Exponential Utility
1.31 4.3 95.7 31.33 570.13 .0012
1.32 12.6 87.4 13.03 537.69 .0012
1.33 21.0 79.0 —3.50 500.22 .0012
1.34 29.4 70.6 —-17.11 457.34 .0012
1.35 37.7 62.3 -23.33 408.92 .0012
1.36 46.0 54.0 —29.33 355.25 0012
1.37 54.3 45.7 —24.32 297.25 0012
1.38 62.6 37.4 -9.17 236.73 .0012
1.39 70.8 29.2 17.70 176.67 .0012
1.40 79.1 20.9 57.17 121.65 .0012
1.41 87.3 12.7 108.91 79.17 .0012
1.42 95.5 4.5 171.21 60.53 .0012
Quadratic Utility
1.31 19.8 80.2 154.08 682.51 .00144
1.32 24.3 75.7 96.79 621.86 .00139
1.33 29.5 70.5 51.40 561.34 .00135
1.34 35.4 64.6 17.86 500.96 .00132
1.35 42.1 57.9 —3.88 440.75 .00129
1.36 49.6 50.4 -13.83 380.76 .00129
1.37 57.6 42.4 -12.07 321.09 .00130
1.38 66.1 33.9 1.40 261.90 .00133
1.39 74.7 25.3 25.51 203.55 .00140
1.40 82.8 17.2 63.24 146.97 .00151
1.41 90.3 9.7 111.53 95.21 .00169
1.42 96.2 3.8 171.35 61.68 .00196

#The quadratic decision maker's supply curve represented here corresponds to the low-fixed-cost (dotted line)

curve in Figure 1.
PAssumes money is expressed in $1,000 units.

solution in response to selected parameter
changes.

Similarly, it would be useful to analyze
other utility functions, especially those ex-
hibiting decreasing absolute risk aversion.
But some of these, such as U = ax —
vexp(—8x), a, y, 8>0, cannot be explicitly
optimized when expressed in expected utility
form. Others, such as U = (x + ¢)¢, ¢, x>0,
0<d<l, involve complex expected utility
formulations even when returns are normally
distributed. Exploration of such alternative
utility specifications will require the use of
numerical methods.
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Appendix

Where there are two portfolio options and
a single resource constraint of the form AP,
+ AP, < A, portfolio return z has mean and
variance

1) pz = AP + (1 = Ppps]

2 o2 = A [P0 + (1 — P)?
o® + 2(P; — P%opa] .

To simplify notation, leta = p; — pgand b
= 0, — 05® — 205 As before, expected
terminal wealth is p,, = x + p,. Then, for
exponential utility, the certainty equivalent

CE, of a risky prospect is p,, — (A\/2)0,,2, or
50
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x + A(wg + aPy) — A2\ (o? +
20’12P1 + bPlz)/Q,

CE, =

If nonzero, the optimal proportions are

P = a—AAog
’ AADb
3)

P2Te =1- Pffe

with second order conditions 8?°CE./0P,2 =
— M%) < 0 as required for a utility max-
imum.

Corresponding optimum under quadratic
utility is found by maximizing EUy = py —
Vi — vo,2 Substituting (1) and (2) into
EU, and solving for a maximum with respect
to P; gives the optimal portfolio proportions

pr = a(l—-2xv) — 2vA(o o+ pea)
ba 2vA(Db + a9

)

Poly =1 = Prly.

Second order conditions are $*EU /0P, =
—2vA% (b + a?) < 0, as required for a utility
maximum.

The conditions under which the exponen-
tial and quadratic solutions are identical are
given by equating Py’ and Py*:

a(l—2xv) — 2vA(G2+ Mo)
2vA(b + a?)

a—AAo)s
NAb

Solving for the exponential utility’s risk aver-
sion coefficient in terms of the probability
moments and quadratic utility parameter
yields

2v(b + a?
b(l1 —2xv) — 2vA(bps—ac )

) A=

When operating at the optimum portfolio,
the decision maker with quadratic utility
faces mean terminal wealth p,, = x +
APl + (1 — Pligpe] = x + Alpe +
aP1’y]. At the optimum, his risk aversion
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coeflicient is evaluated at this expected ter-
minal wealth point:

2v
1 — 2v(x+Apg+AaP*)

6) rg* =

Substituting from (4),

2v

| J—
Tq

1 — 2vx — 2vApe
a(l—2xv) — 2vA(o1e + Pod)
- 2vAar( ) =2 -]
L A(D + a?) ]

2v

1 — 2vx — 2vAp,

a%(1—2xv) — 2vAa(oy,+ p,za)]
b + a® _l

2v(b + a?)
(b+a?) — 2vx(b+a? — 2vApy(b+a?)

— a%(1—2xv) + 2vAa(oo+ pea)

2v(b + a?%)
b(1—2xv) — 2vA(bus—agy)

M =

which equals (5), the risk aversion coefficient
corresponding to the exponential utility func-
tion. This establishes the necessary condi-
tions. Sufficient conditions are established by
observing that we could just as well reason
from equation (7) backwards to equation (5).

Exponential and Quadratic Utility
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