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1 Introduction

In this paper we quantify the ability of Gross Domestic Product (GDP henceforth) to summarise well-being, as

defined by a broad set of economic, social, environmental sustainability and demographic indicators. One of the main

characteristics that allowed GDP to gain a central role among all the possible economic measures of well-being, is its

quantitative, monetary and synthetic nature. Together with the system of national accounting, GDP can be calculated

across different countries on the same scale, thus allowing comparisons among them (Hoekstra, 2019). However, the

monetary nature of GDP is also its main limitation. It is indeed difficult to assign a monetary value to all the activities

for which a regular market does not exist but affect living standards and well-being. Furthermore, even where markets

do exist they might be imperfect. And prices might not be able to incorporate all the possible effects that the production

and consumption of goods and services generate, especially when these activities generate significant externalities.

For all these reasons a number of scholars and policy making institutions have challenged the idea of relying uniquely

upon GDP as a tool to quantify well-being and to evaluate policies (Michalos, 1982; Stiglitz et al., 2009).

As a consequence, dashboards of indicators have been created to better evaluate well being in a society, by taking into

account dimensions such as environmental sustainability, social equity, cultural development, economic vulnerability as

well as the demographic dimension (see OECD, 2011; Pinar et al., 2014; Roser, 2014; Fitoussi et al., 2018a,b; Ferran

et al., 2018; Bacchini et al., 2020; Kalimeris et al., 2020, among the others). All these works focus on the multifaceted

and complex nature of well being and, at the normative level, do not imply the complete replacement of GDP with the

new metrics. They rather suggest that GDP shall be accompanied by alternative statistics.

We contribute to this literature by quantitatively evaluating the ability of GDP to capture the information embedded

in a large set of social, economic and ecological indicators, which are constitutive of well-being. We make use of a

widely known dimensionality reduction technique, namely generalized Principal Component Analysis (PCA). Moreover,

we combine PCA with the Random Matrix Theory (RMT) approach, which allow us to single out the components that

are statistically significant (see e.g. Onatski, 2010). More precisely, this procedure involves comparing the empirically

estimated eigenvalues with the distribution of eigenvalues that is generated by a Gaussian random model with only

spurious correlations.1 Using the leading component or the GDP as univariate measures of well-being, we reconstruct

two alternative synthetic series for all the indicators. By comparing the synthetic series with the original counterparts,

we quantitatively measure the ability of GDP to summarize the variability of all the indicators. We apply this strategy

to nine advanced OECD economies and our findings suggest that univariate measures, and GDP among them, are

only imperfect proxies of well-being. With respect to the ability of GDP to approximate single indicators, substantial

heterogeneity is found at the country level with the possibility of poor performance, especially over the demographic and

social equity dimensions. Overall, our results, confirm that one shall rely upon multivariate composite indices of well-

being, which are more apt at capturing the interactions between different indicators also pertaining to heterogeneous

domains.
1This technique has also been recently adopted in the business cycle and financial economics literature.(see respectively Guerini et al., 2019;

Barbieri et al., 2021). The main advantage of RMT is that it provides more precise and accurate information about a panel of time-series compared
to basic PCA analysis, which does not allow one to distinguish between factors reflecting spurious correlations obtainable with a finite number of
observations and those that instead contain relevant information about the similarity of the series.
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2 Methodology

We start from N time series of well-being indicators observed for T periods and all sampled at the same frequency

∆t . We denote the matrix of time-series by X̃ (t) and their complex Hilbert transformation by X (t).2

2.1 Dimensionality reduction

According to the generalized PCA (Ng et al., 2001) the time series of the indicators can be expressed as:

X (t) = A(t)V (1)

where A(t) is a T × N loading matrix and V is a N × N matrix of eigenvectors.3 These eigenvectors are associated

to the N-dimensional vector of eigenvalues λ, computed from the spectral decomposition:

CV = λV (2)

where the correlation matrix C can be estimated by Ĉ = 1
N X (t)X (t)′.4 The correlation matrix Ĉ is positive semi-definite

and bears N non-negative and distinct eigenvalues λ with their associated eigenvectors V . According to Principal

Component Analysis (PCA, Vidal et al., 2016), each eigenvalue can be expressed as a linear combination of the original

series and corresponds to a principal component, also explaining a portion of the total variance of the data proportional

to its magnitude. Thus, the empirical density function of the eigenvalues can be expressed as:

ρ̂(λ) = dn(λ)
dλ (3)

where n(λ) indicates the number of eigenvalues larger than λ.

To focus solely on principal components which are statistically significant one can compare the empirical density

function ρ̂(λ) with a theoretical benchmark distribution of eigenvalues that would have been generated under a known

null-hypothesis. The random matrix theory (RMT) provides a well-specified theoretical null-hypothesis for such a

statistical significance test (Onatski, 2010). But for the RMT to hold, it is required that no autocorrelation exists in the

series and that the series are infinitely dimensional – in the sense that both N, T → ∞, with Q = T
N finite. To be free

from these two tight restrictions, one can alternatively rely upon the less demanding rotational random shuffling (RRS)

simulations which, in the limit, converge to the same theoretical distribution of RMT (Iyetomi et al., 2011; Aoyama

et al., 2017; Kichikawa et al., 2020), represented by the Marchenko-Pastur distribution:

ρ(λ) =






1
2πσ 2

√
(λM −λ)(λ−λm)

λ if λm ≤ λ ≤ λM

0 else
(4)

2The Hilbert transformation on the series is useful because it will allow us to also capture the correlation between similar time series displaying
time shifts in their co-movements.

3The t symbol in parenthesis is made explicit for matrices representing time series.
4Without loss of generality we assume all series to be stationary and standardized. This implies X̃ (t) ∼ N (0, 1).
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where λm = σ 2
(

1−
√

Q
)2

Q and λM = σ 2
(

1+
√

Q
)2

Q represent the lower and upper bounds. Deviations between the empirical

distribution ρ̂(λ) and the theoretical one ρ(λ), indicate the presence of some statistically significant components which

can summarize the co-movements between the empirical indicators. This is exactly the reason why PCA is a considered

a dimensionality reduction technique. In particular, the number of significant components is equivalent to the number

of eigenvalues which exceed the theoretical (or simulated with the RRS) upper bound λM (Laloux et al., 2000).

2.2 Construction of Synthetic Indicators

Once the significant principal components have been selected according to the above-described procedure, one can

construct a synthetic indicator of the original time series (“synthetic PC” henceforth) as follows:

X̂ J (t) = AJ (t)V J (5)

where the index J is an integer indicating the number of significant eigenvalues, X̂ J (t) is a T × N matrix with the

synthetic series, as generated using the J leading principal components (thus the index J), V J is a J × N matrix of

the estimated complex eigenvectors associated to the J significant eigenvalues, and AJ (t) is a T × J matrix with the

associated loadings. The synthetic series will be different from the original ones, and they represent the indicators

that would have been observed if the noisy component of each of the original indicators would have been ignored.5

Furthermore, one can evaluate the quality of GDP at summarizing information about well-being (as provided by the

large set of the N original series) by assuming that the GDP is the leading component that summarizes well-being.

Formally, this corresponds to assuming that GDP replaces the component loadings AJ (t), under the condition J = 1.

With this assumption, one can obtain an alternative synthetic indicator (“synthetic GDP” henceforth) of the original

time series as follows:

X̂G (t) = αAG (t)V 1 (6)

where X̂G (t) is the T × N matrix with the GDP-based synthetic series (thus the index G), AG (t) is a T × 1 matrix with

the Hilbert transform of the GDP series, V 1 is the 1 × N eigenvector associated to the largest eigenvalue λ1 and α is

a rescaling factor measuring the deviation scalar from the dominant eigenvector.6

Once the synthetic indicators X̂ J (t) and X̂G (t) are available, one can evaluate the quality of the matching with the

original indicators X (t). For that, we use the root mean squared error (RMSE) and the Pearson correlation coefficient

between the series.7
5The noisy components are here intended to be all the non-significant ones according to the procedure developed in Section 2.1.
6According to the small perturbation theory α = A1(t)AG (t)∗

AG (t)AG (t)∗ and AG (t)∗ is the complex conjugate of the GDP series (Stewart and Sun, 1990; Ng
et al., 2001).

7Other more complicated alternatives are possible, for example the dynamic time-warp (DTW). However, it is not the aim of this paper to evaluate
the quality of different similarity measures.
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3 Empirical Application

We employ 42 different time-series indicators capturing economic, environmental, social equity and demographic

dimensions.8 All the indicators are sampled at annual frequency and cover the 1995-2015 period forming a balanced

panel dataset for each country. Over the cross-section dimension, our analysis is performed on nine different advanced

OECD economies.9 The dataset format ensures a perfect comparability between the sampled countries.

After having transformed the indicators into stationary series by means of the first difference transformation, we

apply the generalized PCA and the RMT procedures to test for the statistical significance of the estimated principal

components. For most countries (all but Great Britain) we find that only the largest eigenvalue exceeds the RMT

upper bound. This implies that one can significantly summarize a certain fraction of the data variance by means of a

single variable. In particular, the fraction of variance captured by the first principal component is called the absorption

rate and is reported in Table 1 (mid column). The leading principal component explains between 32% and 45% of the

variance provided by the original data in the countries considered. Spain (ESP) has the highest absorption rate (45%)

whereas Great Britain (GBR) has the lowest (31%). In addition, Great Britain is the unique country for which the

leading component is not statistically significant.10

Overall, measuring well-being only by means of the best linear univariate predictor, as represented by the leading

principal component, would embed a loss of about 55% to 70% of information from the original series. This is a relevant

amount of the overall variation and is an indication for the failure of univariate measures to account for the complex

and multivariate relationships between all the different indicators.

Table 1: Fraction of variance explained by the dominant eigenvalue of the generalized PCA (absorption rate) and correlation between GDP growth
rate and the principal component. For all countries except GBR (starred), only the leading principal component is significant.

Country code PCA absorption rate Correlation (ρGDP,PC )

DEU 32.19% 88.26%
ESP 44.88% 89.51%
FRA 32.77% 90.31%
GBR⋆ 31.13% 83.90%
ITA 40.37% 96.82%
JPN 35.19% 86.97%
NLD 32.83% 89.88%
SWE 32.16% 93.48%
USA 41.83% 91.01%

The reminder of the paper aims at evaluating the ability of GDP and the leading principal component to reconstruct

the original indicators. We focus our analysis mostly on the USA, while extensive results for the other countries are

presented in the on-line supplementary material.11

Figure 1 compares the evolution of GDP and of the leading principal component (leading PC henceforth). The

correlation between these series is summarized in Table 1 (last column, which also report the correlation values for

the other countries in the sample). The correlation is outstandingly high for the USA (91%), suggesting that the idea

of employing GDP as a first order approximation of well-being might not be completely far fetched. In fact, it is fair to
8The complete list is presented in Appendix A and all series are publicly available at the OECD i-Library.
9The nine countries and their short labels are Germany (DEU), Spain (ESP), France (FRA), Great Britain (GBR), Italy (ITA), Japan (JPN),

Netherlands (NLD), Sweden (SWE) and United States (USA).
10The latter result points to the impossibility to summarize the information stemming from the indicators in a low dimensional space and warning

against the usage of a univariate measure of well-being for this country.
11The on-line supplementary material is available at the authors’ github pages.
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Figure 1: GDP growth and leading principal component time series for the United States (ρ = 0.9101).

affirm that GDP growth mimics the dynamic of the best univariate linear approximation, which maximizes the absorption

rate. However, as already mentioned, even the leading PC accounts for only about one third of the total variance.

Table 2: Comparison of original and synthetic indicators. For each indicator constructed with the leading PC or with the GDP growth, we report
the Root Mean Squared Error in percentage terms with respect to the original indicator, the correlation between the series and the p-value of the
correlation coefficient.

Indicator RMSE (in %) Correlation Correlation p-value

PC GDP PC GDP PC GDP

Industrial Production 7.03% 9.52% 0.94671 0.90082 < 0.001 < 0.001
Greenhouse Gas Emissions 14.23% 15.94% 0.75817 0.68303 < 0.001 < 0.001
Gender Wage Gap 19.89% 20.59% 0.41125 0.33877 0.0640 0.1397
Life Expectancy 21.02% 20.92% 0.26792 0.29519 0.2403 0.2075

To further quantify the loss of information when using a univariate measure of well-being we proceed with the

construction of the synthetic indicators as described in Equations (5) and (6) (respectively “Synthetic PC” and “Synthetic

GDP”) for all the 42 original indicators in our sample. Results about four of these indicators, pertaining to different

domains (economic, environmental, social and demographic) are presented in Figure 2. In addition, in Table 2 we also

report the Root Mean Squared Error (RMSE) for each combination of original and synthetic indicators, the correlation

coefficient between them, and its correspondent p-value. Figure 2 reveals that the two synthetic indicators display a

similar behaviour in all the domains considered. This is coherent with the high degree of Pearson correlation shown

in Table 1 (last column). However, their performance in tracking representative varies wildly across domains. For

instance, the economic domains, represented by the percentage change of industrial production in the manufacturing

sector, is reproduced with high precision (with an error of about 7%-9%). A similar qualitative result (but quantitatively

different, cf. Table 2) is observed in the environmental domain, represented by the percent change of greenhouse gas

emissions.12

In contrast, the synthetic indicators do not track well the evolution of variables selected as representative of social

equity (the percent variation in the gender wage gap, with a RMSE of about 20%) and demography (measured by the

percent variation in life expectancy), as clearly visible from the bottom panels of Figure 2. This can be explained by
12A similar performance holds true also for the CO2 emissions indicator. This is also coherent with the empirical literature reporting a cointegration

relationship (possibly time-varying) between GDP and emission of global pollutants (Mikayilov et al., 2018).
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4 Conclusions

We can draw two main conclusions from our work. First, we find that, among the univariate alternatives aimed at

summarizing a multitude of dimensions related to well-being, the GDP can be considered to be a good choice. It

delivers a similar performance with respect to the leading principal component of the series (i.e. the best linear

indicator). This militates in support of the usage of GDP as unique measure of well-being as also suggested by Malay

(2019). At the same time, however, our results also suggest that one should not rely upon univariate measures of

well-being. This is because the best linear estimator is only able to capture a relatively small portion of the indicators’

variance (about 30% to 45%). Overall, this suggests that univariate measures of well-being are doomed to fail and one

shall rely also upon multivariate composite indices of well-being (Bacchini et al., 2020; Kalimeris et al., 2020) and

sustainability (Pinar et al., 2014; Luzzati and Gucciardi, 2015). These measures are more apt at capturing the complex

interactions between different indicators also pertaining to very heterogeneous domains.

This work could be extended in several ways. First, one might enlarge the number of series in the sample, especially

with respect to the social, equity and environmental dimensions. This might lead to different estimates for the loadings

A(t), assigning different weights to the single indicators when constructing the synthetic indicators based on principal

component analysis. The effect of the inclusion of new variables is a priori unclear. Clearly, the variance explained

by the first factor might increase or decrease, depending upon the degree of correlation between the new indicators

with the one already in our sample. Furthermore, when new indicators are included, the number of significant factors

might also vary, forcing one to account also for the higher order principal components. Second, one might enrich the

analysis by considering economies at a different stages of the country development process. In particular, this type of

research could be useful to detect whether the usage of GDP, interpreted as a univariate indicator of well-being, is

more or less appropriate in developed vs. developing economies. For both these extension, however, the main difficulty

lies in data availability, especially in relation to domains different from the economic one.
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Appendix

A List of indicators

Table 4: List of indicators’ names and labels, as sourced from the OECD i-Library database.

Name Label

Agricultural land (Total), Thousand hectares Land
Average wages (Total), US dollars Wages
Carbon dioxide (CO2), Tonnes per capita CO2
Crude oil production (Total), Thousand of toe Oilprod
Electricity generation (Total), Gigawatt-hours ElectrGen
Employment rate (Total), Thousand persons EmployRate
Fertility rates (Total), Children per woman Fertility
Gender wage gap, Percentage WageGap
Greenhouse gas (GHG), Tonnes per capita GHG
Gross insurance premiums (Total), Million US dollars Insurance
Gross national income (Total), US dollars per capita GNI
Health spending (Total), US dollars per capita Healthspend
Hospital beds (Total), Per 1 000 inhabitants HospBeds
Hours worked (Total), Hours per worker HoursWorked
Household disposable income Net HouseIncome
Household spending (Total), Million US dollars HouseSpend
Housing prices, Real house prices HousePrices
Housing prices, Rent price RentPrices
Industrial production (Manufacturing) IndustrialProd
Infant mortality rates (Total), Deaths live births Mortality
Inflation of consumer price index (Total), Annual growth rate CPI
Labour force (Total), Thousand persons LabourF
Investment (Total), Million Investment
Life expectancy at birth (Total), Years LifeExpect
Municipal waste (Total), Thousand tonnes Waste
Nutrient balance (Nitrogen), Kilograms per hectare Nitrogen
Nutrient balance (Phosphorus), Kilograms per hectare Phospho
Pharmaceutical spending (Total), US dollars per capita PharmaSpend
Population (Total), Million persons POP
Primary energy supply (Total), Million toe EnergySupply
Producer price indices (Manufacturing), domestic market, Annual growth rate PPI
Renewable energy (Total), Thousand toe RenEnergy
Researchers (Total) Research
Share prices (Total) SharePrices
Social spending (Public), US dollars per capita SocialSpend
Suicide rates (Total), Per 100000 persons Suicide
Tax revenue (Total), Million US dollars Taxrev
Trade in goods and services (Exports), Million US dollars TradeExp
Trade in goods and services (Imports), Million US dollars TradeImp
Triadic patent families (Total) Patents
Unemployment rate (Total), of labour force Unemploy
Unit labour costs, by persons employed UnitLabforce

toe = tonnes of oil equivalent
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