
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


A Flexible Method for
Empirically Estimating
Probability Functions

C. Robert Taylor

This paper presents a hyperbolic trigonometric (HT) transformation procedure for empir-
ically estimating a cumulative probability distribution function (cdf), from which the proba-
bility density function (pdf) can be obtained by differentiation. Maximum likelihood (ML) is
the appropriate estimation technique, but a particularly appealing feature of the HT transfor-
mation as opposed to other zero-one transformations is that the transformed cdf can be fitted
with ordinary least squares (OLS) regression. Although OLS estimates are biased and inconsis-
tent, they are usually very close to ML estimates; thus use of OLS estimates as starting values
greatly facilitates use of numerical search procedures to obtain ML estimates. ML estimates
have desirable asymptotic properties. The procedure is no more difficult to use than uncon-
strained nonlinear regression.

Advantages of the procedure as compared to alternative procedures for fitting probability
functions are discussed in the manuscript. Use of the conditional method is illustrated by
application to two sets of yield response data.

Economists are increasingly aware of
the need to formally incorporate risk and
uncertainty into analyses of agricultural
problems. Failure to account for uncer-
tainty can result in imprecise if not bla-
tantly incorrect empirical estimates (An-
derson, 1982; Just and Pope).

Clearly, formal treatment of uncertain-
ty is called for when risk averse behavior
is anticipated. Furthermore, it is often im-
perative to explicitly consider uncertainty
even under conditions of risk neutrality as
the certainty equivalent requirements (Si-
mon; Theil, 1957), which allow the re-
placement of random variables with their
respective expected values (and thus use
of a deterministic framework), are not sat-
isfied in many risk neutral situations.

At one time it was considered accept-
able to characterize random variables by
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their first two moments (mean and vari-
ance), but it is now recognized that such
second-order approximations may not be
adequate for many empirical studies. Al-
though the first two moments are suffi-
cient to characterize a normally distrib-
uted random variable, there appear to be
few cases in agriculture where one can
appeal to the Central Limit Theorem in
order to theoretically justify a normal dis-
tribution.' The case for non-normality is
supported by several empirical studies
where third and even fourth moments of
output have been found to be functions of
input levels (Antle; Antle and Goodger;
Anderson, 1974; Day).

In general, we cannot provide compel-
ling theoretical arguments that, for ex-
ample, the probability distributions of
weather, crop yield, gross returns, or
equipment failure follows one of the com-
mon theoretical distributions (e.g., lognor-

For a discussion of the applicability of the Central
Limit Theorem to the distribution of total farm gross
margins, see the exchange between Chen and Ha-
zell.
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Empirically Estimating Probability Functions

mal, Gamma, Beta, Poisson or normal).
Also, the class of theoretical distributions
which are analytically, statistically and
computationally convenient is rather lim-
ited, especially for probability density
functions (pdfs) with multiple modes or
pdfs which are strongly skewed. Thus an
important component of many risk anal-
yses is empirical estimation of the form as
well as parameters characterizing the pdf
or cumulative distribution function (cdf).
The problem of estimating the pdf or cdf
is especially critical for safety-first and
stochastic dominance considerations. The
tail of the pdf is of crucial importance
when safety-first decision rules are adopt-
ed, while the entire cdf is critical in sto-
chastic dominance analyses.

This paper begins with a brief discus-
sion of conventional methods for empiri-
cally fitting pdfs or cdfs-most if not all
of which leave much to be desired for ac-
curate, yet practical empirical applica-
tion. Next, a new transformation proce-
dure for estimating a cdf is presented; the
pdf can be obtained by differentiation.
The proposed approximation procedure
uses a hyperbolic trigonometric (HT)
transformation to constrain a polynomial
function to the zero-one range. A poly-
nomial function is suggested for many pdfs
because of its foundation in approxima-
tion theory, and because it is linear in pa-
rameters. Parameters characterizing the
HT transform should be estimated by
maximum likelihood (ML).

An appealing feature of the proposed
transform, as opposed to other zero-one
transformations or constraints, is that or-
dinary least squares (OLS) regression can
be used to obtain starting values for the
ML search procedure thereby greatly fa-
cilitating ML estimation. Use of the con-
ditional HT procedure is illustrated by ap-
plication to two sets of data (Grissom and
Spurgeon) on yield response to nitrogen
that Day used in his application of the
Pearson system of distributions. The focus
of the paper is on conditional cdfs (and

thus conditional pdfs) because of their im-
portance in decision models; however, the
procedure works equally well for uncon-
ditional cdfs.

Review of Existing Methods

This review of existing methods for em-
pirically fitting cdfs or pdfs is divided into
three parts-discrete approaches, simple
continuous approaches, sophisticated con-
tinuous approaches, and recent ap-
proaches involving estimation of condi-
tional density functions.

Discrete Representations

On the surface it might seem reason-
able to use a discrete empirical represen-
tation of a pdf-a histogram. However,
use of a discrete pdf in most economic
models is not entirely satisfactory for three
reasons. First, the statistical literature is
quite vague as to how many intervals to
use in constructing a histogram. With
small samples, specifying a large number
of intervals is akin to separate represen-
tation of each data point, while use of a
small number of intervals generally gives
a featureless picture of the pdf (Tarter and
Kronmal). Second, it may be desirable to
use intervals of the random variable which
are smaller than those for which there are
frequency data. In such cases, some kind
of interpolation is required. Third, in sit-
uations where there is a logical basis for
some order of continuity of the distribu-
tion, use of a histogram does not exploit
the statistical leverage that can be achieved
by introducing continuity. Just as it is often
desirable to fit a production function to
smooth out and nonlinearly interpolate
data points, it is often desirable to fit a
continuous pdf to smooth out and inter-
polate histogram data. We now turn to a
survey of methods that have been pro-
posed to fit continuous pdfs or cdfs.
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Simple Continuous Representations

Relatively simple methods for fitting
commonly used continuous pdfs or cdfs
generally fall into three classes: (a) free-
hand fitting of a cdf; (b) fitting a simple
mathematical function; or (c) estimation
of the moments of a pdf in the Pearson
system of distributions. None of these ap-
proaches are satisfactory for most empir-
ical studies. The simplest technique-free-
hand fitting of a cdf-is not appealing for
most applications2 because of four draw-
backs: (1) it is totally subjective and sta-
tistical properties such as bias and consis-
tency cannot be determined; (2) it is
extremely difficult to employ for fitting
conditional cdfs while exploiting conti-
nuity of the conditional relationship; (3) it
is sometimes difficult to incorporate into
computerized models; and (4) the pdf
cannot be obtained since the equation of
the cdf is unknown.

Some researchers have resorted to fit-
ting relatively simple functions such as an
exponential (Dixon and Sonka), a poly-
nomial (Held and Helmers), or a trian-
gular pdf (Richardson and Condra). As
noted by Dixon and Sonka, the simple ex-
ponential functions are quite restrictive.
The disadvantages of using polynomials to
fit cdfs are that they are not restricted to
the zero-one range and they are not nec-
essarily monotonic. Discontinuities in the
triangular pdf are implausible for many
stochastic processes and assuming this re-
strictive form may lead to serious approx-
imation biases.

As noted previously, selection of a dis-
tribution from the Pearson system is not
always satisfactory. The class is rather re-
strictive for stochastic processes that have
pdfs with multiple modes or strongly

2 For purposes of this paper, fitting a pdf should be
thought of in terms of fitting a cdf because we can
directly relate sample observations to the height of
a cdf but not to the height of a pdf.

skewed pdfs. In addition, the goodness-of-
fit tests used to determine whether a data
set was generated by a particular distri-
bution lack power; that is, the type II
errors associated with the tests may be
quite large with small samples.

Sophisticated Continuous
Representations

Several researchers have resorted to
rather sophisticated methods for fitting
cdfs or pdfs. Prominent classes of flexible
methods which have been reported in sta-
tistical and mathematical literature are: (a)
spline functions obtained by minimizing
error sum of squares plus a prespecified
roughness penalty (Craven and Wahba);
and (b) Fourier series methods which
minimize error sum of squares (Kronmal
and Tarter); or (c) Fourier methods which
maximize a likelihood function less a
roughness penalty (Good and Gaskins). All
of these methods are quite difficult to use.

Spline functions are difficult to esti-
mate, especially when the location of the
knots are also estimated. Zero-one restric-
tions must be placed on the cdf, and it is
usually desirable to require continuity at
least in the first derivatives of the cdf.

The author's experience with the Fou-
rier series methods suggests that they are
so flexible that the cdf essentially goes
through all data points, resulting in an im-
plausibly wavy pdf. To get a plausible pdf,
the analyst must parametrically tighten the
roughness penalty until reasonable results
are obtained. (This problem is graphically
illustrated in Tarter and Kronmal.) After
repeatedly going through an extremely
difficult and expensive computational
procedure, the analyst is left with an es-
timated cdf that seems highly subjective
(Parzen), and is difficult to incorporate into
models because of its complicated trigo-
nometric form, typically characterized by
several hundred parameters. A more de-
tailed review of these sophisticated pro-
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cedures is found in Tarter and Kronmal;
Fryer; and Wegman.

Recent Approaches Involving
Conditional Density Functions

With many agricultural relationships an
independent (decision) variable may in-
fluence the parameters of the pdf of a de-
pendent (state) variable, but not influence
the general functional form of the pdf.
For example, the fertilization rate may in-
fluence the moments of a crop yield pdf,
yet the same functional form may be ap-
propriate for all fertilizer levels; that is,
the parameters but not the form of the
pdf may be conditional on the fertiliza-
tion rate. Even if the same pdf functional
form is not appropriate for all fertilization
rates, we may expect a systematic or
smooth relationship between pdfs for dif-
ferent rates. Separately fitting a pdf to
each fertilization rate, as Day did, will not
make efficient use of the data in either of
the above situations. None of the flexible
methods mentioned earlier were specifi-
cally designed to handle this problem, but
they could be extended in a straightfor-
ward way to handle a conditional pdf.
However, such modifications would make
application of highly complicated proce-
dures even more complicated and expen-
sive.

Just and Pope recently suggested use of
Harvey's heteroscedasticity correction
procedure to account for the effect of an
independent variable (X) on output (Y)
variance. They suggested a three-stage
nonlinear regression estimation procedure
applied to a function of the form

Y = g(X) + [h(X)]E (1)

where g(X) and h(X) are functions to be
estimated and E is an error term with zero
mean and unitary variance. The function
g(X) accounts for the deterministic (i.e.,
expected) component of Y, while the

function h(X) allows the variance of Y to
change in a smooth manner with X. Al-
though this procedure is easy to use rela-
tive to the highly sophisticated procedures
and although it is more flexible than the
simple procedures, it is unduly restrictive
because an analyst seldom knows a priori
that only the first two moments depend
on an independent variable. 3 Moreover, in
some decision models such as safety-first,
accurate estimates of the tail of a distri-
bution is more important than estimates
of higher moments.

Just and Pope also suggested ML esti-
mation of (1). Although the MLE proce-
dure could be specified to allow higher
moments to vary with X, the procedure
requires the analyst to specify a priori the
form of the distribution of E. Hence, the
procedure must be repeatedly applied for
different assumed forms of the pdf of E as
well as different forms of g(X) and h(X).

Antle has proposed a moment-based
method to represent stochastic conditional
relationships. This procedure is an nth de-
gree approximation to a stochastic pro-
cess, achieved by estimating an nth degree
polynomial whose coefficients are func-
tions of the first n moments of the distri-
bution. Coefficients of the polynomial
model are estimated using generalized
least squares (GLS), although it may be
necessary to use nonlinear programming
to incorporate non-negativity constraints
on estimation of even moments. The es-
timators have desirable asymptotic statis-
tical properties. Moreover, if the range of
the random variable is finite, the set of
moments uniquely define the pdf. Al-
though this moment-based method is quite
flexible and has a sound statistical foun-
dation, it is not practical for use in em-
pirical studies that directly require the

3 Only the first two moments are allowed to vary
because lnl , or €i (where it is the set of residuals
from a nonlinear regression of y on g(X)) are used
in estimating h(X).

69

Taylor



Western Journal of Agricultural Economics

w' =sech u
3- .^ ^ w= tanhu

.5

Figure 1. The Hyperbolic Tangent and Its Derivative, the Square of the Hyperbolic Secant.

equation of a pdf or cdf. That is, even
though the moments uniquely define (in
a theoretical sense) the underlying pdf, the
analytical form of this pdf may be diffi-
cult if not impossible to obtain except in
special cases. Thus, Antle's method may
not be useful in safety-first and stochastic
dominance analyses, although it may be
practical when the pdf or cdf is not need-
ed per se.

The preceding discussion suggests that
existing methods of fitting cdfs are either
operationally cumbersome or are unduly
restrictive for some applications. Let us
now consider the HT procedure which,
while not a panacea, is appealing for many
empirical studies. In ease-of-use and flex-
ibility, the procedure lies between the
simple functions and the complicated spli-
ne and Fourier techniques. The proce-
dure is no more difficult to use than Just
and Pope's procedure, and is as flexible as
Antle's moment-based approach. Its ad-
vantage over the Antle approach is that it
yields an explicit expression of the cdf and
thus the pdf. Moreover the HT procedure
approaches the problem of estimating a
pdf head-on as a ML problem rather than
in an ad hoc way as with the approaches
advanced by Just and Pope, and Antle.

Transformation for Estimating a
CDF

Consider a hyperbolic tangent

eu - e-"
tanh u = -

e" + e-"
(2)

where -oo < u < oo and -1 tanh u <
1. Figure 1 illustrates that the hyperbolic
tangent has the right curvature properties
for a unimodal cdf and that its derivative,
the square of the hyperbolic secant, has
the right properties for a pdf.

Now consider the transformation

F(Y IX) = .5 + .5 tanh [P(Y,X)] (3)

where F(YIX) is the cdf of Y conditional
on X, and P(Y,X) is a polynomial function
of Y and X or a polynomial function of a
transformation of Y and X such as In Y
and In X.4 For any value of P(Y,X), trans-

4The function P(Y,X) need not be restricted to a
polynomial specification; the polynomial specifica-
tion is suggested because of its foundation in ap-
proximation theory and because it is linear in pa-
rameters. A polynomial in combinations of X and
In X, for example, can also be used. In a practical
sense, flexibility of the procedure is limited only by
the creativity of the analyst in specifying an appro-
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formation (3) constrains F(Y I X) to the in-
terval zero-one. Since tanh u has one in-
flection point, this transformation allows
for traditional bell-shaped pdfs. The func-
tion P(Y,X) gives flexibility to the trans-
formation, permits additional modes to the
conditional pdf, and will allow for the pdf
to be skewed in either direction, or to be
symmetrical. Including X in P(Y,X) al-
lows for a systematic relationship between
the pdfs associated with different values
of X. Specification of P(Y,X) to include
interaction terms between Y and X will
allow for substantial changes in the basic
shape of the pdf for different X; without
interaction terms, the moments but not the
general shape of the pdf will vary with X.

Consider ML estimation of (3). Differ-
entiation of (3) with respect to Y gives the
conditional pdf.

f(Y X) = .5P'(Y,X)sech 2[P(Y,X)] (4)

where f(YIX) is the conditional pdf and
P'(Y,X) = aP(Y,X)/aY. On the basis of (4)
we can form the likelihood function

L() = I .5P'(y, xi)sech[P(yi, x)] (5)
i=l

where 3 is the vector of m parameter val-
ues characterizing P(Y,X), yi and xi are
paired observations, and n is the total
number of observations.

Since maximizing the logarithm of the
likelihood function is equivalent to maxi-
mizing the function itself, it is useful to
replace (5) by

In L(:) = n ln(.5) + C ln[P'(yi,xi)]
i=l

+ 2 ln[sech[P(y,,xi)] (6)
i=l

priate mathematical form for P(Y,X). Appropriate
specification of P(Y,X) will allow for approximation
of U, J and truncated pdfs in addition to continuous
unimodal and multi-modal pdfs. Of course, in any
application, statistical considerations should dictate
which form of P(Y,X) is selected to approximate
the pdf.

Taking the partial derivatives of (6) with
respect to the parameter vector, A, and
setting to zero gives a set of m equations
that can be simultaneously solved for m
parameters.

_ a/SP'(y,.x, x~)\ / i- {8 (Pyi')~an(y, x)] =01Ai=l\ Ok J P(y i)/

- (i ) )2xitanh[P(yiXi)] = o (7)

for k = 1, 2, . .. , m. The asymptotic co-
variance matrix of 3 is given by the neg-
ative of the expected value of the inverse
of the matrix of second partial derivatives
of (6) with respect to the parameter vec-
tor. Thus, traditional asymptotic t-tests can
be used to determine the significance of
individual polynomial terms in P(Y,X).
Also, a likelihood ratio test (Theil, 1971,
pp. 396-97) can be used to test for signif-
icance of individual polynomial terms or
groups of terms.

Analytical solution of the m equations
in (7) for various P(Y,X) is impossible ex-
cept in trivial cases, so a numerical search
procedure must be used to solve (7).5 Re-

5 A wide variety of numerical search routines can be
used to solve for ML estimates of F. In general,
performance (computational efficiency, global con-
vergence, etc.) of search routines is highly problem
specific. It should be cautioned that the search rou-
tines that usually perform quite well for nonlinear
regression and some types of simultaneous nonlin-
ear equations do not appear to perform well on this
particular problem. For example, the Marquardt
algorithm (Kuester and Mize), which combines the
steepest ascent method with the Gauss method, is
often very slow to converge and often converges to
local optima using OLS starting values. The New-
ton-Raphson technique is not appealing because it
requires analytical specification of the Hessian as-
sociated with (6), which places a very heavy burden
on the analyst and is also a possible source of error
due to the complicated derivatives. Also, the New-
ton-Raphson technique sometimes breaks down be-
cause the Hessian is not positive definite in some
iterations.

A routine that does work well in most if not all
cases is the secant method proposed by Wolfe. A
FORTRAN program that tailors Wolfe's algorithm
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peated solution of (7) for various P(Y,X)
can be quite onerous; however, a partic-
ularly attractive feature of the hyperbolic
tangent transformation, (3), as opposed to
other zero-one transformations, is that its
inverse 6

Z = .In[ 1 F(YX. I)J P(Y,X) (8)
1 - F(YIX)] (

is a closed-form expression that is linear
in parameters if P(Y,X) is linear in param-
eters. With linearity, OLS estimates of 3
can be obtained;7 however, with time-se-

to solving (7) for up to a third degree polynomial
specification of P(Y,X) is available from the author.
The program uses two routines in the IMSL Li-
brary, which is available on most mainframe com-
puters. To use the program, the analyst need only
provide observations on Y and X, specify which of
the ten cubic terms to include in P(Y,X), and OLS
(or other) starting values for f. An optional scaling
feature is built into the program. Output from the
program includes 3, asymptotic t-values for A, the
parameter correlation matrix, the asymptotic vari-
ance-covariance matrix of J, the norm of the system
of equations, (7), (i.e., the sum of squared deviations
from the necessary conditions), and the value of the
log-likelihood function, (6). The program costs only
a dollar or two to run, in most cases.

6 Given w = tanh(u), the inverse hyperbolic tangent
is defined to be u = tanh-l(w). To derive the loga-
rithmic form of tanh-'(w), consider w = (eu - e-u)/
(eu + e-u). Rearranging terms gives e2" = (1 + w)/
(1 - w), and thus u = .5 ln((l + w)/(l - w))=
tanh-'(w). Using the logarithmic form of tanh-1,
equation (8) can be derived from equation (2): rear-
ranging terms in (2) we have tanh P(Y,X)=
2(F(YIX) - .5); thus P(Y,X) = tanh-1[2(F(Y X) -
.5)] =.5 ln[(l+2(F(YIX) - .5))/(1-2(F(YIX) -
.5))] = .5 ln[F(YIX)/(1 - F(YIX))].

In connection with OLS estimation of (8), two data
cases must be considered. One case is where there
are several observations on Y for each value of X.
This case is typically encountered with experimen-
tal data such as on yield (Y) and fertilizer rate (X).
The second case is one for which there is only one
or at best a few values of Y associated with each
value of X. In the latter case OLS estimation, but
not ML estimation, will require grouping some of
the values of X to obtain several values of Y for
each X category, then using the mean of each X
category as the observation on X. To simplify dis-
cussion of estimation of (8), we will consider only
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ries or experimental data, OLS estimates
are biased because a nonstochastic vari-
able-a transformation of F(YIX) whose
value is determined by the sample size-
is treated as a dependent variable and the
stochastic variable, which is treated as an
independent variable, is correlated with
the error term.

Although biased, OLS estimates of d can
be used as initial guesses for the numerical
search technique used to solve (7) for ML
estimates. Since OLS estimates are often
ver to ML estimates, one of the most
difficult problems (having good starting
values) in using ML procedures is over-
come. And, as a practical matter, OLS can
also be used to select a plausible set of
polynomial terms to include in P(Y,X) for
ML estimation.

An Application to Yield
Response Data

To illustrate the flexibility and perfor-
mance of the hyperbolic tangent transfor-
mation for conditional distributions, cdfs
for cottom and corn yield conditional on
nitrogen fertilization rate were estimated.
Data were from a 37-year experiment by
Grissom and Spurgeon and are the same
data used by Day in his application of the
Pearson system of distributions.

OLS and ML estimates of the cotton

the former case and assume that we have the same
number of observations on Y for each value of X.
Given a sample of n > 1 observations on Y for the
rth value of X (r = 1, 2, R), ranked from small-
est to largest, Y1, < Y, .. . < Yi .. . < Yn, we can
assign to each a cumulative frequency F(Y I X,))=
i/n. Then all F(Yir IX) except F(Yn IX,) can be
transformed by (8) to give a finite Zi,; the problem
with F(YnrX,) is that Znr is infinite. As a practical
cure, F(Yn, rXr) can be slightly adjusted downward
to give a finite value for Zn. If P(Y,X) is linear in
parameters, OLS can be applied to the modified
data set (Z,r,Yir,Xr) to obtain an estimate of (3).
Carefully note that in the case where observations

must be artificially grouped, the grouping is used
only to obtain starting values (with OLS) for use in
ML estimation of /. ML estimation does not require
any such grouping.
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TABLE 1. OLS and ML Estimates of the cdf
for Cotton Yield (Y) Conditional on
Nitrogen Application Rate (X).

Coefficient
of: OLS ML

Intercept -. 4369 E + 1 -. 5278 E + 1
(21.65) (9.41)

Y .6728 E - 2 .8209 E - 2
(16.48) (7.99)

Y2 -.2561 E - 5 -.3177 E - 5
(10.35) (5.53)

Y3 .4139 E - 9 .4649 E-9
(8.99) (4.54)

X -. 4840 E - 1 -. 5326 E - 1
(22.54) (5.81)

.X3 .6674 E - 5 .8356 E - 5
(6.99) (2.04)

R2 .9591

Notes: The functional form for the cdf is
F(YIX) = .5 + .5 tanh[f, + P2Y + f3Y

2
+ 14Y 3 +

$5X + $6X3]

Asymptotic t-values are given in parentheses.

yield cdf are shown in Table 1. The like-
lihood ratio test mentioned previously was
used to determine which polynomial terms
to include in P(Y,X). Figure 2 shows ML
estimates of the cotton yield pdf for three
of the seven experimental nitrogen levels.
Day also found distributions skewed to-
ward higher yields; however, Day's results
do not show a tail on the left side of the
distribution, because the Pearson system
is more restrictive than the method used
in this paper.

OLS and ML results for the corn data
are shown in Table 2, with the pdfs for
three nitrogen rates shown in Figure 3.
Interestingly, the data showed that a bi-
modal pdf exists at high, but not low, ni-
trogen rates. Day did not find this bi-mo-
dality. It is not the purpose of this paper
to attempt to explain why bi-modality ex-
ists; however, it should be pointed out that
the interaction terms (Table 2) which give
rise to bi-modality are quite significant.

Note the substantially smaller t-ratios in

TABLE 2. OLS and ML Estimates of the cdf
for Corn Yield (Y) Conditional on
Nitrogen Application Rate (X).

Coefficient
of: OLS ML

Intercept -. 2900 E + 1 -. 2803 E + 1
(15.66) (7.41)

Y .2214 .2050
(11.96) (6.64)

Y2 -. 5390 E - 2 -.4645 E-2
(9.35) (5.11)

Y3 .5758 E - 4 .4594 E - 4
(10.26) (4.97)

X -. 1027 -.1090
(9.71) (4.73)

Y-X .4177 E - 2 .4117 E- 2
(7.43) (3.52)

X.Y2 -.5973 E - 4 -.5219 E - 4
(8.45) (3.54)

R2 .9339

Notes: The functional form for the cdf is
F(YI X) = .5 + .5 tanh[, /+ + 32Y + 2 + 4Y3

+ f5X
+ f 6YX + f7XY 2]

Asymptotic t-values are given in parentheses.

the case of ML as contrasted to OLS es-
timates of individual terms in Tables 1
and 2. It is plausible that these differences
are attributed to the OLS bias resulting
from treating a stochastic variable as an
independent variable.

Estimates of the Production
Function

In many empirical decision analyses, it
is necessary to have the expected value of
Y given X, as well as the conditional pdf.
Once the parameters of P(Y,X) have been
obtained the conditional expectation of Y
can be obtained by

E(YIX)

= Jf y[.5P'(y,X)sech[P(y,X)] dy

(9)
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of the Cotton Yield pdf for Different Nitrogen Fertilization Rates

Unfortunately, the integration in (9) is not
analytically possible except in rather triv-
ial cases. However, numerical integration
is feasible.8

As pointed out by Day, modal values of
Y may also be important in decision anal-
yses. Modal values can be obtained by
solving the following equation for Y
given X

0 = .5P"(Y,X)sech 2[P(Y,X)]

- [P'(Y,X)]sech 2[P(Y,X)]

*tanh[P(Y,X)] (10)

Median values of Y for given X can be
obtained by solving

0 = P(Y,X) (11)

8 An inexpensive numerical integration routine that
is widely available is DCADRE in the IMSL library.
Alternatively, sample FORTRAN programs for nu-
merical integration are given in Chapter 6 of Stark.

74

Analytical solution of (10) or (11) is not
practical for most P(Y,X), but they can be
solved numerically. For many specifica-
tions of P(Y,X), equations (10) and (11)
are not well behaved enough for a deriv-
ative procedure for locating roots, such as
Newton's method, to work well unless the
initial guess is good. Consequently, the
method of false position or a similar meth-
od is recommended for solution of (10) or
(11). 9

Concluding Remarks

Although the hyperbolic tangent pro-
cedure for empirically estimating a cdf is

9A canned routine for the method of false position
is ZFALSE in the IMSL library. Alternatively, a
short FORTRAN program is given in Stark, pp. 92-
95.
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Figure 3. MLE Estimates of the Corn Yield pdf for Different Nitrogen Fertilization Rates (N).

an approximation, it does have several ad-
vantages over other available techniques.
First, it is easy to use compared to pro-
cedures with equal flexibility. Secondly,
the procedure has been shown to have the
flexibility to closely approximate common
theoretical probability distributions (Tay-
lor), as well as fit data for many uncon-
ventional distributions. Thirdly, the pro-
cedure can be used to estimate conditional
cdfs, which is not possible with most other
procedures in their current state of devel-
opment. Finally, with the ML approach,
smoothing of data is controlled by tradi-
tional asymptotic statistical tests. Al-
though the HT procedure may be viewed
as somewhat subjective, its use is no more
subjective than estimating any polynomial
function where the degree of the poly-
nomial is unknown.
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