
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


’ INA] STERN” AGRICULTURAL ECONOMICS ASSOCIATION 

PROCEEDINGS 
1970 

Forty-Third Annual Meeting 
July 19-22, 1970 

RAMADA INN 
TUCSON, ARIZONA  



      

   ct
 

| 
‘ 4 _ 

' 

| | . 

’ 

na 

{ 

i | E 

© a I 

1 

az 
i 

Boe 
' 
} 
i 

| 
” i 

1 

i 

i } : 

aa 

io - 

aa —-+ 

i 

ae er: 

: i . 
{ 

P| ——— 

so { 

‘ 

a 

a 

i ~, 

| 

. 1 
} 
' 

; ; 
    

103 

SEQUENTIAL SAMPLING AND SIMULATION: AN OPTIMIZING PROCEDURE 

Harry P. Mapp, Jr. and Vernon R. Eidman! 

| Simulation models have been applied in a number of farm management studies during the past several years. 

Because simulation is not an analytic optimizing procedure, the models have typically been used as experimental 

devices enabling the researcher to adjust the level of certain endogenous variables and estimate the effect on the 

resulting distribution(s) of interest. It is difficult (perhaps impossible) given the current development of simulation 

procedures to find an optimum solution to simulation problems. However, researchers may be interested in utilizing 

procedures which move closer to an optimum rather than comparing several plans, none of which may be very desir- 

able. 
| 

The purpose of this paper is to briefly discuss two maximum seeking methods and their applicability to com- 

puter simulation models. The first of these methods, sampling by steepest ascent, has been used empirically and may 

be recommended for certain types of response surfaces. The potential value of an alternative method, sequential 

sampling, is illustrated in the latter portion of the paper. : 

MAXIMUM SEEKING METHODS 

Suppose the response surface for a series of variables is 

y= F(x, XQrXy) 

where y is the response and Xi is the level of the ith factor. Each combination of the x variables represents a 

point on the response surface. If n is small, the response surface can usually be well defined by selecting several 

levels for each x variable and simulating all combinations. However, as the number of variables increases, the 

response surface becomes increasingly complex. If n is large, simulation of every combination of several levels for 

each variable is not a realistic alternative. Thus, there has been much interest in designing methods to investigate 

response surfaces in an attempt to locate their maximum or optimum points in an efficient manner. 

Sampling by Steepest Ascent 

One technique which has been used empirically is sampling by steepest ascent. Brooks (2) evaluated factorial, 

univariate, random and steepest ascent methods of attaining the maximum point on several different response sur- 

faces. He discovered the most efficient method to be sampling by steepest ascent. Each of the surfaces to be 

investigated was smooth and uniform and possessed a single, well-defined maximum. However, if we were investigat- 

ing the net returns surface of a representative farm firm by experimentally altering enterprise and/or factor combina- 

tions, we would not necessarily expect the surface to be smooth and uniform. If the surface is not uniform, sampling 

by steepest ascent may reach a relative rather than a global maximum. 

Box (1) recommended exploring a surface by simulating responses for a number of points and fitting a poly- 

nomial equation to these points.2 The fitted surface is used as an approximation of the real surface in a sampling by 

steepest ascent procedure. Since the fitted surface is smooth, a maximum point is located by the procedure. 

Sampling by steepest ascent utilizes the magnitudes and signs of the slopes of the response surface to determine 

the direction of steepest ascent to the maximum point. Maass (3, p. 400) explains the procedure by assuming that a 

system may be described by a series of n variables at some base point, X49 eeeXD and a corresponding point on the 

response surface, R°. Then R° = (x9 Xp). A change in the level of any x variable will result in a change in the 

level of R. If a small increment Ax; has been added to each variable in turn, then the change tn response is AR. : 

and the rate of change is AR ./Ax;. The movement from the base, x?, to a new base, xt Is given by 

x! ~ x? = c(AR;/Ax;) 

where c is the constant of proportionality. The relationship between the distance, d, between bases and the 
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constant of proportionality is given by the Pythagorean equation 

d= [24 (xj'- x9)71% = cle, (AR,/Ax,)2] 4 
or : 

c= d/[ZP., (AR,/Ax,)?) 

The constant of proportionality is found by dividing the distance between bases by the square root of the sum of squares of the rate of change of response with respect to each changing variable. The constant, c, times the rate of change of response with respect to a change in each variable considered separately, gives the amount by which that variable must be incremented in calculating a new base. Calculations are continued from base to base until incre- menting each factor results in a reduction in response. If the response surface is smooth, this point will be a global maximum. A weakness of the procedure is that if irregularities or discontinuities exist, the point may be a local rather than global maximum. 

The above weakness of steepest ascent sampling is emphasized by Zusman and Amaid (6, p. 590). They 
applied the procedure to a present value surface in search of optimal managerial policies. Only three variables were sampled since a factorial analysis provided sufficient information to determine the optimum levels of all other factors. A maximum point on the present value surface was located, however, they recognized the possibility of converging to a relative maximum rather than to an absolute maximum. 

Sequential Uniform-Grid Sampling 

A uniform-grid sampling procedure may overcome the above limitation of sampling by steepest ascent. The 
basis for the sequential sampling procedure is a uniform-grid sampling design. If the response surface may be 
described by the effects of n variables, X 4 XQrX , then it is possible to locate a series of points on the surface by experimentally altering the combination of variables. If there are n variables and k possible values of each vari- able then a complete factorial design would require k" observations. Approximation of the maximum in an efficient manner would require either n or k to be small. 

In practical applications, the X;'s may represent enterprise levels, amounts of available resources, lending rules 
and other decision variables. The number of variables of interest may be small or large depending on the complexity of the problem. However, the analysis can be simplified by altering the sampling design. Assume that a net returns surface may be described by the main effects of three variables, X4, Xo, and Xx, and that the sum of the X's 
must equal R, where R represents the land available for production. Then to increase X4 by a given amount, A, 
either X5 must be reduced with Xz constant or Xg reduced with X5 constant. These two alternatives provide | 
two sampling points in a uniform-grid sampling design. With three variables, a total of six sampling points is sufficient to completely describe the possible alternatives. | In general, with n variables, a total of. n(n-1) sampling points would complete the sample design. The uniform-grid sampling design suggested for three variables is presented in Table 1. 

| 

Table 1. Uniform-grid sampling design. 

  

  

Base _ X | Xs X3 

1 X,tA | Xo | Xa -A 
2 X,+A Xy-A Xa 
3 X, Xa tA | Xa -A 
4 X41 -A Xo +A X2 
5 X, Xy -A Xat+A 
6 X,-A : Xy XgtA 
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If the x; represents three crop enterprises and the response surface represents net returns, a simulation 

model could generate net returns for each of the combinations of variables presented. That combination of vari- 

ables which increases net returns by the largest amount is then chosen as the new base. This sequential feature 

allows the researcher to analyze the results of each simulation run prior to selection of a new base. Each new 

base is closer to the maximum point of the response surface than the previous base. The possibility of converging 

on a relative rather than absolute maximum is minimized by having a uniform-grid of sampling points around 

every base point. Once every sampling point results in lower net returns than the current base combination, the 

maximum point has been reached. A check may be performed by altering the value of A_ in the experimental 

design. A small value of A will check points in the immediate vicinity of the located maximum and a large 

value of A will provide a check for regions of the response surface some distance from the indicated maximum. 

While this procedure falls short of optimizing in the linear programming sense, it is as effective as sampling by steepest 

ascent, and is less likely to locate a relative rather than a global maximum. | | 

AN APPLICATION 

To add a measure of empirical validity to the above theoretical treatment, a comparison of steepest ascent 

sampling and uniform-grid sampling was made with the aid of a simplified farm firm computer simulation model (4). 

The simulation model is based on a 335-acre loam cropland farm in Southwestern Oklahoma. Crop alternatives on 

the farm are cotton, grain sorghum, wheat, alfalfa and forage sorghum hay. All crops produced are assumed sold dur- 

ing the production period. Compliance with the wheat (130 acres) and cotton (80 acres) programs was assumed. 

Thirty acres of cropland were assumed to be in the conserving base (alfalfa) leaving 85 acres to be allocated to grain 

sorghum, additional alfalfa and forage sorghum. 

Yields and prices of the five crop alternatives were assumed to be normally distributed random variables. 

Thirty random normal deviates were generated for each crop yield and each crop price. The random normal deviates 

were multiplied by the standard deviations of yield and price and added to the mean yield and price to obtain 30 

yield and price observations for each crop. The 30 yield and price observations were used to obtain 30 net return 

figures for each combination of the decision variables. 

In applying sampling by steepest ascent a Fortran IV program calculated rates of change in net returns with 

respect to each variable, the constant of proportionality and the distance between bases. The program moved up- 

ward from base to base until the 85 acres of available land were exhausted. The optimum solution contained, 

besides the 130 acres of wheat and 80 acres of cotton, 29 acres of alfalfa, 23 acres of forage sorghum and 33 acres 

of grain sorghum. The expected net returns for this combination of enterprises was $11,000.06. The standard | 

deviation was $1,858.05. 

The base chosen for the first sequential sampling run was 29 acres of alfalfa, 29 acres of forage sorghum and 

27 acres of grain sorghum, in addition to 130 acres of wheat and 80 acres of cotton. The results of the first run are 

presented in Table 2. 7 

Table 2. Expected net returns and standard deviation of net returns for first sampling 

  

  

design run. 

, Expected Standard 

Alfalfa Forage Grain | Net Returns Deviation 

(acres) (acres) (acres) ($) (S) 

Base 29.0 - 29.0 27.0 10,948.01 1853.10 

1 34.0 29.0 22.0 10,927.70 1853.51 

2 34.0 24.0 27.0 10,971.07 1856.26 | 

3 39.0 — 34.0 22.0 10,904.64 1856.26 

4 24.0 34.0 — 27.0 10,924.95 1856.08 

5 29.0 24.0 32.0 10,991.39 1856.56 
6 24.0 29.0 32.0 10,968.33 1856.36 
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Combinations 1 through 6 should be compared with the base. Combinations 2, 5 and 6 increase expected net - returns over the base with 5 providing the greatest increase. Based on expected net returns, combination 5 is selected as the new base for a second uniform-grid sampling run, 

A total of seven sampling runs were conducted to establish the maximum point on the net returns surface. A summary of the sampling bases is presented in Table 3. 

Table 3. Expected net returns and standard deviation of net returns for seven 
sequential sampling bases. : 

  

  

Expected Standard 
Base Alfalfa Forage Grain Net Returns Deviation 

(acres) (acres) (acres) (S$) ($) 
1 29.0 | 29.0 . 27.0 10,948.01 1853.10 
2 29.0 24.0 32.0 10,991.39 1856.56 
3 39.0 19.0 37.0 11,034.75 - 1866.61 
4 29.0 — 5.0 ~ 61.0. 11,156.20 1928.65 
5 24.0 — — 5.0 | 56.0 _ 11,176.51 1947.58 

—6«~6G 5.0 | 5.0 75.0 11,253.71 - 2073.00 . 7 0 0 85.0 = 11,317.40 2166.60. 
  

The maximum point was generated by production of 85 acres of grain sorghum, 130 acres of wheat and 80 acres of cotton. Expected net returns are $1 1,317.40 and standard deviation was $2166.60. 

In addition to locating the point of maximum returns, sequential sampling provides sufficient information to approximate the efficiency frontier between expected net returns and standard deviation of net returns.” 

SUMMARY AND CONCLUSIONS 
Sampling by steepest ascent and sequential, uniform-grid sampling are presented as alternative approaches to locating optimum simulation solutions. Sampling by steepest ascent has been applied empirically but the possibility of converging on a local maximum is recognized as a weakness. Uniform-grid sampling provides broader, more exten- sive coverage of the net returns surface and minimizes the possibility of locating a relative rather than absolute maximum. The sequential nature of the suggested procedure permits evaluation of progress at each stage of the maximization procedure. 

Both sampling by steepest ascent and sequential sampling were applied to the net returns surface generated by a simplified firm level computer simulation model. The maximum point located by steepest ascent sampling is $11,000.06. The sequential sampling procedure locates a maximum net returns point of $11,317.40. In addition, sequential sampling generates sufficient information to permit plotting of the efficiency frontier between expected net returns and standard deviation of net returns. 
. 

FOOTNOTES 

1. Graduate Research Assistant and Associate Professor respectively, Department of Agricultural Economics, Oklahoma State University, Stillwater, Oklahoma. Journal Article 2057 of the Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma. This research was supported in part by Grant 14-01-0001- 1539 from the Office of Water Resources Research. 

2. Schechter and Heady (5) recently reported results of a response surface analysis of agricultural policy choices within a simulation framework. They utilized a factorial experiment designed to allow estimation of poly- nomial equations to approximate the relevant response surfaces. Then, extreme points were determined by differentiating with respect to the relevant factors. 
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The authors acknowledge that quadratic programming could be used to define the efficiency frontier in this 

example. However, it does not appear that the quadratic programming approach would be an efficient method 

of defining an ‘optimum rule’ in cases where one is altering other types of decision variables, such as borrow- 

ing strategies. | 
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