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Reduction of State Variable Dimension
in Stochastic Dynamic Optimization
Models which Use Time-Series Data

Oscar R. Burt and C. Robert Taylor

Statistical procedures are developed for reducing the number of autonomous state
variables in stochastic dynamic optimization models when these variables follow a
stationary process over time. These methods essentially delete part of the information
upon which decisions are based while maintaining a logically consistent model. The
relatively simple linear autoregressive process as well as the general case is analyzed
and the necessary formulae for practical application are derived. Several applications
in agricultural economics are discussed and results presented which quantify the
relative amount of information sacrificed with the reduction in number of state
variables.

Key words: dynamic programming, dynamic optimization, time series, curse of
dimensionality.

Empirical stochastic dynamic optimization
problems frequently become unwieldy with too
many state variables required to fully sum-
marize the entire history of the decision pro-
cess. Bellman has called this problem the "curse
of dimensionality." Although continuing ad-
vances in computing power and available
memory cause this curse to fade appreciably,
empirical practitioners must still use consid-
erable ingenuity as well as good judgment in
arriving at computationally operational yet ac-
ceptably accurate models. Burt discussed var-
ious ways of reducing the dimensionality prob-
lem, one of which was to deliberately discard
part of the information contained in the full
set of state variables. This paper provides a
practical methodology for implementing a re-
duction in the number of state variables when
a subset of these variables emanates from time-
series data.

In many actual and potential applications of
dynamic optimization to problems in agricul-
tural economics, there are some sets of state
variables that are unaffected by the decisions.

Oscar R. Burt and C. Robert Taylor are professors of agricultural
economics at the University of California, Davis, and Auburn
University, respectively.

Giannini Foundation Research Paper No. 903.

For example, prices are obvious state variables
in most firm level decision models, yet in com-
petitive markets we do not expect an individ-
ual firm's decisions to affect price. Thus, prices
can be viewed as "autonomous" state vari-
ables in the decision model. It is not uncom-
mon to find that autonomous state variables
such as prices appear to be generated by sec-
ond- or higher-order autoregressive (AR) pro-
cesses. In such cases, the number of state vari-
ables pertaining to this component of a fully
specified decision model is equal to the order
of the AR process. Often, computational con-
siderations dictate use of fewer state variables
in the decision model and thus possible use of
a lower-order AR process in the model.

The following pest management problem
taken from Danielson illustrates the ideas in-
volved. A soil-born disease (Cephalosporium
stripe) in winter wheat is controlled by not
planting winter wheat for one or more years.
Alternative land uses are summer fallow or
barley, so it is clear that expected wheat and
barley prices are important information in the
decision process. Necessary state variables for
the dynamic decision process are the number
of years since winter wheat was grown, the
level of infection in that last crop of winter

Western Journal of Agricultural Economics, 14(2): 213-222
Copyright 1989 Western Agricultural Economics Association



Western Journal ofAgricultural Economics

wheat, and however many lagged wheat and
barley prices are needed to forecast these two
prices. A statistical analysis of the bivariate
time series of these two prices suggested that
the best model was a separate equation for each
price, namely, second- and first-order AR pro-
cesses for wheat and barley prices, respective-
ly. Two questions naturally come to mind in
this case: (a) Can we use a first-order process
to approximate the time-series structure of
wheat prices without losing much informa-
tion? (b) How do we estimate the unknown
parameters for the first-order process when the
actual process is second order?

This article presents the statistical procedure
for reducing the order of a Markov process'
for use in a decision model as well as providing
a useful quantitative answer to the first ques-
tion posed above. Our approach works only
in those cases where the decision variables do
not affect the subset of state variables to be
reduced in dimension either directly or indi-
rectly; that is, the approach works for a subset
of autonomous state variables. The focus of
the paper is on Markov processes estimated
with time-series data and decision models that
will be solved using stochastic dynamic pro-
gramming (DP); nevertheless, many of the der-
ivations are appropriate for dimensional com-
promises necessitated by other solution
techniques. 2

Four cases are treated in the article. The first
case is for a linear stochastic difference equa-
tion (AR process) with an intertemporally un-
correlated and homoskedastic disturbance
term. This case applies to the example of wheat
prices given above. The second case is for two
interdependent linear difference equations with
intertemporally uncorrelated, but contempo-
raneously cross correlated, homoskedastic dis-

A generalized Markov process refers to any stochastic process
in which a random variable is related to a finite number of previous
levels of that random variable. Markovian relationships can, but
need not, be conditional on exogenous variables. Thus, Markovian
processes embrace random walk, rational expectations, autore-
gressive, and many other conditional models that are often used
to model economic and technical variables of interest in agricul-
tural economics.

2 Although the phrase "curse of dimensionality" was coined in
the context of using DP to numerically solve problems, the curse
also manifests itself with dynamic programming or control theory
used to analytically solve problems. In the numerical case, the
curse refers to the computational and storage problems, while in
the analytical case, the curse refers to the problem of analytically
solving a set of difference or differential equations. In the analytical
case, reducing the number of state variables thus reduces the num-
ber of dynamic equations to be simultaneously solved.

turbance terms. This case would have applied
to the example above if the disturbance terms
in the barley and wheat price regression equa-
tions had been correlated significantly. The
third case is for a single continuous random
variable with a general second-order Markov
probability distribution, and the fourth case is
for a single discrete random variable following
a general finite Markov process. These last two
cases encompass general nonlinear relation-
ships among time dated values of the random
variable. We begin with a detailed statement
of the problem.

The Problem

Reducing state variable dimensions in sto-
chastic dynamic optimization models is large-
ly an art as opposed to a science in formulating
and solving stochastic DP models (Dreyfuss
and Law, p. xi). The problem is largely one of
structuring the discrete stochastic dynamic de-
cision process so that the most useful infor-
mation is used for a given level of computa-
tional difficulty. The quantity and quality of
information used determines the maximized
value of the expected value criterion function
used in stochastic DP. When the naturally oc-
curring state variables are continuous, infor-
mation is lost in the transformation to a dis-
crete approximation for computational
purposes as well as from reduction in the num-
ber of state variables by approximating a given
order Markov process by one of a lower order.

For given computational time and storage,
the issue is often whether it is best to have n
discrete classes on each of say Yt-1 and Yt-2 as
state variables, thus giving a total of n2 discrete
states, or have n2 discrete classes on Yt-1 as a
single state variable for this component of the
model. Since we usually have additional state
variables to represent other dynamic process-
es, we are often restricted to small values of n.
It is often the case that using a finer grid on
Yt-_ only rather than using a coarse grid on Yt-1
and Yt-2 would lead to a more nearly optimal
solution of the stochastic dynamic optimiza-
tion model, especially when the second-order
effect is in some sense small relative to the first-
order effect. Thus, reducing the order of Mar-
kov processes as a means for state variable
reduction in stochastic dynamic optimization
models is pertinent to many empirical appli-
cations in agricultural economics.
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A Linear Stochastic Difference Equation

The typical problem in practice will be a pro-
cess described by a second-order linear differ-
ence equation which implies two state vari-
ables in a dynamic optimization model. This
stochastic process is represented by

(1) t = bo + byt, + b2yt-2 + e,,

where Yt and et are random variables measured
at time t, and bo, b , and b2 are fixed param-
eters. Of course, the units of y can just as well
be after a logarithmic transformation if such
a model better fits the empirical situation. This
is the classic second-order autoregressive pro-
cess in univariate time-series models for which
the following assumptions are made: (a) et is
independently and identically distributed with
expectation zero, and (b) the roots of the char-
acteristic equation, x 2 - bxx - b2 = 0, lie inside
the unit circle. The latter condition can be
summarized by the three inequalities

b, + b2 < 1,
b2 - b, < 1,

Ib21 < 1,

which are useful for verification of the stability
of a fitted equation.

The above two assumptions guarantee that
the process is stationary in the sense that the
joint distribution of yt and yti depends only
on i and not on t. Also, et is independent of
Yt-I and Yt-2, which can be demonstrated by
expressing Yt in its equivalent so-called mov-
ing-average representation where it can be seen
that Yt is correlated with current and past but
not future values of e (Nelson).

Before proceeding, it is important to note
that where the underlying economic or tech-
nical process is second order, it is statistically
inappropriate to simply reestimate a linear dif-
ference equation with the second-order term
deleted from the model. This approach is un-
desirable because the associated parameter es-
timators of bo and b, do not have desirable
properties such as unbiasedness and consis-
tency. Thus, basing transition probabilities on
a model obtained in this manner will result in
biased and inconsistent probabilities for use in
the stochastic DP model. Also, the problem is
not overcome by using a first-order process in
Yt-I with a first- or higher-order moving-av-
erage error structure as an approximation, be-

cause the presence of the error structure would
imply that the error term, say ut-1, as well as
Yt-i should be treated as state variables in the
decision model.

Conditional Distribution for the
Second-Order Process

Before turning to reducing the order of the
Markovian process, it is instructive to first
consider derivation of the conditional distri-
bution of the second-order process for the lin-
ear model, (1), estimated by regression. For
the second-order process, we are viewing Yt-1
and Yt-2 in (1) as conditionally fixed, and yt is
a random variable linearly related to the ran-
dom error, et. From (1) we can obtain the con-
ditional expectation of y t, which is

(2) E(yt I Yt-_, yt-2)= bo + by,_, + b2Yt-2,

where E(.) is the expectation operator. Simi-
larly, we can obtain the conditional variance
of yt from (1) as

(3) Var(yt I Yt-l Yt-2)= Var (e) = a2 .

By assuming a particular form for the prob-
ability distribution of et, such as the normal,
one can calculate the discrete conditional
probabilities of yt over a rectangular grid for
the two state variables, Yt-i and Yt-2. This is
the type of data required in the stochastic DP
model. More specifically, let F(yt I Yt-_, Yt-2)
be the cumulative distribution function, and
the cells of the grid on yt- and Yt-2 are denoted
by coordinates of the center of a cell (a,, aj).
For one of the discrete outcomes onyt, we use
ak as the midpoint and ak_ and ak+ for the lower
and upper boundaries of the class interval, re-
spectively. Then the transition probabilities for
the second-order process are given by the ap-
proximation,

(4) pr(ak-< Yt < ak+ I Yt-1 = aj, Yt-2 = ai)
= F(ak+ I aj, ai) - F(ak_ I aj, a,).

Conditional Distribution for the
Reduced Process

From a conceptual standpoint, we are throw-
ing away information by transforming the state
vector into a lower dimension, and to some
extent, we are creating an artificial Markov
process for the decision model. It is artificial

Burt and Taylor



Western Journal of Agricultural Economics

in that we must visualize a random drawing
at each stage of the decision process from some
underlying event space (time series) which only
exists in principle. The created process is not,
strictly speaking, capable of tracking the sys-
tem from stage to stage as a Markov process
to meet the definition that the current state
summarizes all the history of that process with
respect to making optimal decisions from this
stage forward. Instead, the current state sum-
marizes all the information which will be used
to make the current and future decisions in a
decision criterion restricted to that informa-
tion set.

The Markov requirement is met by thinking
of a sampling experiment over a population of
all possible historical outcomes which could
have given rise to the current state as described
by the limited information being used (reduced
state dimension). For time series such as prices,
the population would be over all possible se-
quences of years in some ensemble of possible
time-series samples with the same structure
being assumed as that given by the empirically
estimated equation. Using (1) as an example
with Yt-1 taken as given information, but not
Yt-2, we are interested in the conditional joint
distribution of y, and y,-2 as a means to ulti-
mately get the marginal distribution of y, con-
ditional on y,_- only.

The linearity of (1) and associated assump-
tions of the second-order autoregressive pro-
cess let us directly derive the conditional mean
and variance of yt, given yt-. Taking the con-
ditional expectation of (1) gives

(5) E(y, I yt,) = b, + b b2E( t-2 I Yt-).

Stationarity in the time series makes E(y_ 2 I
Yt-i) = E(yt I Yt-1) because in each case, the
subscript of the random variable y is one pe-
riod removed from the same given value, Yt-,,
albeit reversed in the time sequence. There-
fore, (5) reduces to

(6) E(y, I y,) = (bo + byt_,)/(1 - b2).

Proceeding directly with the formula for the
variance of linear combinations of random
variables,

Var(yt I y-,) = b2 Var(yt 2 I yt-) + Var(et).

There is no covariance term because et is in-
dependent of yt-2, and by the stationarity of
the process, Var(yt_2 I Yt -) = Var(yt I Yt-1).
Therefore, we can write
(7) Var(y, I yt ,) = a2/(1 - b).

Using (6) and (7) for the first two moments
of y, conditional on Yt-,, a unique probability
distribution is determined if we assume et is
normal. With the implied cumulative distri-
bution, the same procedure as (4) can be used
to calculate discrete probabilities for y, but with
one small change. Now only a value of y,t_ =
ai defines the given condition instead of a joint
condition involving both Yt-, and y,-2.

In the above discussion, the unknown pa-
rameters, bo, bl, b2, and a2 , have been treated
as known values, but in applications they will
be estimated values from sample data. It is
assumed that these estimates will be treated as
if they were the parameters in the stochastic
optimization problem under consideration. To
do otherwise would require a Bayesian ap-
proach and much more complicated analysis.

The above analysis assumes a stable struc-
ture on the difference equation in (1), but the
results can be extended to the case where the
characteristic equation has a unit root. It is
well known in the time-series literature that
differencing such an equation yields a stable
first-order process if there is a single unit root
(Nelson). In this case (1) is replaced by

(8) (yt - t-1)= c(Yt- 1 -Yt-2) + e,

which can be written as

(9) y =( + c)yt- CYt-2 + et,

where we have dropped the constant term bo
because there is no convergent steady state for
this process.

Although the unconditional variance of y, is
undefined in (9) because of the unit root for
the characteristic equation, the conditional
variance given Yt-1 is defined. In fact, the der-
ivation to get (6) and (7) is unchanged except
for b 0not appearing in the conditional expec-
tation. Therefore, (6) and (7) are replaced by

(10) E(y, I yt- ) = Yt -l,
Var(y, I Yt-_) = 2/(l - c2),

as the dynamic relationships for a stochastic
DP model.

This single-unit root model is quite fre-
quently applicable, e.g., in a time-series rep-
resentation of farmland prices. Although
Phipps used a second-differenced model with
a first-order moving-average disturbance to
represent aggregate U.S. farmland prices, anal-
ysis by one of the authors suggested that a first-
differenced model in a first-order autoregres-
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sive process is about equally plausible for ag-
gregate data and more plausible for individual
state data. State variables to represent farm-
land prices are important in stochastic DP
models of farm firm growth and finance
(Schnitkey).

Quantification of Discarded Information

It would be useful to have at least a rough idea
of the amount of information lost by the re-
duction of a second-order to a first-order pro-
cess. This can be done by a comparison of the
residual variances in an analogous way to the
construction ofR2 in a multiple regression con-
text. The "total" variance as a basis for com-
parison is the unconditional variance of the
series, that is,

(11) Var(y,) = (1 - b2)e/(1 + b2)[(1 - b2)2 - b,

which can be derived directly from the Yule-
Walker equations (Box and Jenkins, p. 62).
The two conditional variances for comparison
are given in (3) and (7), and each of these can
be viewed as a "residual" variance. A measure
of the variance removed by means of the con-
ditional distribution is total minus residual
variance, and the analogue ofR2 would be that
difference divided by the total variance.

These R2 analogues are denoted R/2 and R2
for Yt-i given and both Yt,- and Yt-2 given, re-
spectively. The formulae are derived directly
from (3), (7), and (11) to get

(12) R2 = b2/( -b) 2,
R2 = b2 + b2(1 + b2)/(1 - b2).

But we are primarily interested in the relative
amount of variance removed by the two con-
ditional distributions, second- versus first-or-
der difference equations. A relative measure
bounded between zero and one is the ratio
R1/R2 which simplifies to

(13) 0 = b/[(1 - b2)
2b + b(1 - b2)].

A high value of 0 implies little information
would be lost by the first-order approximation.

In many of the cases where a second-order
process fits an empirical situation, b, > 0 and
b2 < 0. An explanation of this phenomenon
is suggested by the following reparameteriza-
tion of(l),

(14) y, = fo + /lYt-l + r2(Yt-I - Yt-2) + e,,

Table 1. Comparison of Conditional Vari-
ances in Second-Order Difference Equations

P, P, b, b, r 0

.5 .3 .8 -. 3 .38 .44 .87

.5 .5 1.0 -. 5 .44 .58 .76

.6 .4 1.0 -. 4 .51 .59 .87

.6 .6 1.2 -.6 .56 .72 .78

.7 .3 1.0 -.3 .59 .63 .94

.7 .5 1.2 -. 5 .64 .73 .88

.7 .7 1.4 -. 7 .68 .84 .81

.8 .2 1.0 -. 2 .69 .71 .98

.8 .4 1.2 -. 4 .74 .78 .95

.8 .6 1.4 -.6 .77 .85 .90

.8 .7 1.5 -.7 .78 .89 .88

.8 .8 1.6 -.8 .79 .92 .86

.9 .3 1.2 -.3 .85 .87 .99

.9 .4 1.3 -.4 .86 .88 .98

.9 .5 1.4 -. 5 .87 .90 .96

.9 .6 1.5 -. 6 .88 .92 .95

.9 .7 1.6 -.7 .89 .94 .94

.9 .8 1.7 -. 8 .89 .96 .93

.9 .9 1.8 -.9 .90 .98 .92

where we would expect /1 > 0 and P2 > 0. The
intuitive interpretation of (14) is that 31 ex-
trapolates the level of y, and 12 extrapolates
the changes in y. A typical application with
this structure is annual prices of cattle. In terms
of the parameters in (1), bl = il + 12 and b2
=-2.

Results are reported in table 1 for an array
of combinations for 1i and 12 with the restric-
tion fi < 12, which was thought to be the more
common situation. The last three columns are
R2, R2, and 0, respectively. Notice that 0 is
seldom below .9 when 31 > .7. Also, 0 is mono-
tonically decreasing with an increase in 12 while
holding fi constant, and the R2 s are mono-
tonically increasing with fi and 12-

Three Applications

The first case is the one discussed in the in-
troduction dealing with disease control in win-
ter wheat. The statistically estimated second-
order difference equation with wheat prices
(1984 dollars) in natural logarithms was (num-
bers in parentheses are t-ratios)

t= .47 +1.151y,_
(7.2)

.457y-2 ,
(2.9)

with fe = .152. Application of (6) gives the
first-order equation

9, = .33 + .79y,_1,

and (7) yields /var(yt I Yt-i) = .171 which is

Burt and Taylor
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only 13% larger than e'. From (13), 0 is cal-
culated to be .89.

The second case is an empirical dynamic
hedging model for Montana winter wheat pro-
ducers (research still in progress).3 Important
state variables in this stochastic DP model are
lagged basis variables for May and December
futures contracts (futures price at Kansas City
minus cash price in Montana). Statistical cri-
teria for the December contract suggested a
second-order stochastic difference equation,
containing time to contract maturity as an ex-
ogenous variable. The estimated equation for
monthly data (1977-87) was

t = .0090 + .646yt_1 + .226yt _2 + .015TM,,
(7.1) (2.4) (2.4)

where TM denotes time to maturity. The May
contract had essentially the same regression
coefficients on lagged basis. The first-order
equation given by (6) is

yt= .0116 + .835yt ,

and 0 is .978. This very favorable result for the
first-order approximation tends to hold when-
ever both bl and b2 are positive.

The third case is a firm growth model for an
Illinois feeder pig operation (research still in
progress).4 One of the primary economic mea-
sures is monthly gross margins (revenue minus
variable cost) per hog barn. The time-series
statistical structure of this variable determines
a subset of state variables in the DP model. A
monthly data series for 1974-87 was analyzed
and the structure selected on statistical criteria
was second-order AR,

)t= 2.43 + 1.177y,_ - .439Y-2.
(16.5) (6.3)

The coefficient on y,_t for the first-order ap-
proximation using (6) is .82, and 0 equals .91.
These results are surprisingly close to those for
the first case involving wheat prices.

Higher-Order Processes

The same procedure as used to analyze the
linear second-order process can be applied to
third- or higher-order processes, but the al-
gebra gets cumbersome. An empirically op-
erational method to handle such extensions is

3 Russell Tronstad, personal communication.
4 Frank Novak, personal communication.

to assume normality and exploit the matrix
methods of multivariate normal theory (An-
derson). Reduction of the order of a process
by one, such as a third to second order, is
straightforward from the results presented
above.

Interdependent Linear Stochastic
Difference Equations

Now consider two linear, second-order inter-
dependent processes, say price of corn, y,, and
the price of soybeans, Y2t. The general second-
order bivariate autoregressive process is

(15) Yt = Y1 + allYl,t-i + a12Y2,t-1
+ /11Yl,t-2 + 

-
12Y2,t-2 + eut,

Y2t = Y2 + t21Yl,t-1 + a22Y2,t-1
+ /i21Y,t-2 + 22Y2,t-2 + e2 t,

or in matrix notation,

(16) Y = y + AYt-I + BYt-2 + et,

where

Yt = f,' = ' ' t = eit

A- [ayi 2 B- [113121

[Y^] -iJ ^= [^11]' e e2tj'

A [21 a22] [L21 022f

The vector e, is assumed to have zero mean
and covariance matrix Q2. Each term eit is as-
sumed to be independent over t and the pairs
(ei, ejk) are independent for t # k. Given these
assumptions,

(17) E(Y, I Yt-1, Yt-2) = ' + AYt-l + BYt_2,

and the conditional covariance matrix of Yt,
given Yt,_ and Yt2, is

(18)

As in the single variate case, to reduce the
order of the process from second to first order,
we must view Yt and Y,-2 as jointly distributed
vector random variables with Y,_1 fixed (non-
stochastic). Recognizing the stationarity as-
sumption and the equality of moments which
have all subscripts equidistant in time,

(19) E(Yt I Yt-) = 7 + AYt_i + BE(Yt-2 I Yt-1)
= y + AY, + BE(Yt I Yt-1)
= (I- B)-'(y + AYt ).

In analyzing the conditional variance, we

218 December 1989
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use the well-known result that if z is a vector
random variable with covariance matrix 2, and
A is a matrix of fixed coefficients, then the
covariance matrix ofAz is AMA'. To obtain the
conditional covariance matrix of Yt, given Yt,,
observe that y + AYt_1 will be treated as a
vector of constants in (16) and thus not affect
the outcome. Also, e, is independent of Yt-2
for any Y,_1 and thus is independent of Y,2 in
the conditional distribution. Therefore, using
an obvious notation,

(20) V(Y, I Yt-1)= V(BYt-2 I Yt,) + V(e),

where V(.) denotes the covariance matrix. Sta-
tionarity of the vector process implies

V(BYt_2 I Yt-) = V(BYt I Yt- 1),

which lets us write (20) as

(21) V(Yt I Yt 1) = BV(Yt I Yt_)B + 2.

Let W denote the unknown conditional co-
variance matrix V(Yt I Yt-), then W is the un-
known in the system of linear equations,

(22) W - BWB' = .

Symmetry of a covariance matrix makes the
number of unknowns in the {w,} equal to
N(N+ 1)/2 when the vector Y, has N compo-
nents, e.g., the two-equation system of (15)
implies three unknowns, wl,, w22, and w 2 =
w21. With the assumption of normality, the
transition probabilities for the bivariate first-
order process can be obtained in a conceptually
straightforward way,5 but note that the first-
order system will exhibit dependence across
equations even if 2 = I. The number of si-
multaneous equations in the {wi} to be solved
in (22) grows rapidly with the dimension of
the vector Yt in (16), i.e., the number of joint
second-order autoregressive equations com-
parable to the pair in (15).

General Case for Continuous
Random Variables

Using probability theory, the general case of
reducing the second-order Markov process to

5 As in the univariate case, there is no closed-form expression
in the bivariate normal distribution function. Hence, transition
probabilities for an empirical problem cannot be obtained by dif-
ferences in the distribution function as in (4), but instead, empirical
transition probabilities must be obtained by numerical integration
of the bivariate conditional probability density function with the
mean given by (19) and covariance matrix W.

the first order under any distributional form
can be developed for both the case of contin-
uous and discrete random variables. The con-
tinuous case appears to offer pedagogical ad-
vantages, while the discrete case offers
computational advantages. Consequently, the
continuous case is developed before presen-
tation of the discrete case.

Consider the identity that a conditional
probability distribution function (pdf) is given
by the ratio of a joint pdf and a marginal pdf,

(23) h(yt, I y,-) w(y, Yt-l)/ 1(Yt-l),

where w(.) is the joint pdf of yt and Yt-_, h(.)
is the pdf of Yt conditioned on Yt-, and ¢(.) is
the marginal pdf of Yt-. From the definition
of marginal probability, we know that

(24)

Substituting (24) into the right-hand side of
(23) for 0(-) gives

(25) h(yt Yt-, )tYt-1)

W(Yt, Yt-1) dyt

Note that if we are given w(-), the desired
pdf h(.) can be obtained using identity (25).
Taking this approach, the question is how to
obtain w(.) from f(t I yt-, Yt-2) which is the
pdf associated with a second-order Markov
process.

As a means of obtaining w(-), consider the
following identity

(26) g(Yt, Yt, Y-2) = f(Yt I Yt-1, Yt-2)w(t-1, Y-2),

where g(.) is the joint pdf of yt, Yt-, and Yt-2,
andJfl) and w(.) are as defined previously. We
assume time invariance of all density func-
tions; therefore, the functional forms of
w(yt,Ytl) and w(ytl,Yt-2) are the same (al-
though they have different arguments), and the
functions fJ(t I yt-1) and f(,- I Yt-2) are the
same but with different arguments.

Where three random variables are involved,
the joint pdf for two of the three random vari-
ables can be obtained by integrating the joint
pdf over the range of the third random vari-
able; hence,

(27) w(y,, yt-1) y= g(y,, Y-, Yt-) dY-2

Substituting (26) into the right-hand side of
(27) for g(.) gives

Burt and Taylor

()t-l) = w(Yt, Y,-I) dYt.
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(28) w(yt, yt-)-

f f(Yt I Yt-,, Yt-2)w(t-1, Yt-2) dyt 2,

which is a functional equation that can, in
principle, be solved for the unknown function
w(.) when f(t I Yt-1, Yt-2) is known. Once the
function w(.) is obtained, the pdf of interest,
h(), can be obtained using identity (25).

With most mathematical forms forf(.), an-
alytical solution of functional equation (28) for
w(.) is quite difficult if not impossible. Thus,
we see that working with the continuous ran-
dom variable version of the model is often
impractical. 6

General Case with Discrete
Random Variables

In empirical applications of nearly all sto-
chastic dynamic optimization techniques,
computational considerations dictate discrete
valued approximations of the state space.
Hence, the discrete equivalent of (28) is per-
tinent for empirical application. The first step
is to show how to obtain the analogue of the
functional equation in (28) as a system of equa-
tions in discrete probabilities. The following
discrete probabilities are defined as approxi-
mations to the continuous random variables
in the last section,

(29) pr(y, I yt-1) = pr(ak_ < yt < ak+ly, - = a),

(30) pr(y,, Yt-1) = pr(a,_ < y, < aj+ and
ai- < Yt- < a+),

(31) pr(yt yt -, Yt-2)
pr(ak_ y < ak+ Yt-1 = aj, Yt-2 = a,),

where pr(-) denotes probability of the out-
come; k, j, and i are indices for the discrete
states assumed by y; ai is the midpoint while
ai and a,+ are the lower and upper boundaries
of state i, respectively. We use midpoints in-
stead of the intervals as an approximation for
given states of the process at a point in time
because that is commonly done in computing
transition probabilities in applied work. If the
intervals are not "too large," this approxi-
mation is satisfactory, but a serious bias can
be introduced when the intervals become so

6 Subtle problems of existence also have to be considered with
respect to w(.). This is handled in the next section for discrete
processes by assuming ergodicity.

large that there is a high probability of staying
in the same interval (see Burt, p. 390, for a
method to overcome this problem).

Note that (31) can be obtained from the con-
tinuous representation of the conditional pdf
for the second-order process from

rak+

(32) pr(yt I Yt-, Yt-2) = f(Yt I Yt-1, Yt-2) dy,.

The discrete representation of (28) is

(33) pr(yt, yt-)=

pr(y Yt-1, yt-2)pr(y,-1, Yt-2),
Yt-2

where

pr(yt, y,-) = pr(yt-1, yt-2)

by virtue of stationarity in the stochastic pro-
cess.

A special characteristic of Markov chains
allows us to obtain pr(yt, Yt-i) by solving a set
of simultaneous linear equations for the dis-
crete case as contrasted to solving the func-
tional equation (28) in the continuous case.
Before considering the set of linear equations,
it is instructive to consider the classical "tran-
sition matrix" representation of a second-or-
der Markov process.

The transition matrix of probabilities for a
first-order process gives the conditional prob-
abilities of going from the ith to the jth state,
with the passage of one unit of time. If the
continuous variable y is divided into Ndiscrete
intervals, the transition matrix will be of di-
mension N. For a second-order process, the
given outcomes are described by a pair of in-
tegers, one each for Yt-1 and Yt-2 where t is the
year of interest for a random outcome. We now
need a triple subscript on the elements of the
transition matrix, say Pjk, where Yt-2 = ai, Yt-1
= aj, and Yt = ak, and the transition matrix is
of dimension N2. With the progress of one more
time unit, let Yt+l = am. The transition prob-
abilities, with actual outcomes substituted for
the sequence of events, for periods t and t+ 1
are Pik and Pjkm, respectively. Note how the
first subscript is dropped, the second and third
become the first and second, and the third sub-
script takes on a new integer in going from
period t to t + 1. However, the basic structure
of the transition matrix is not dependent on
time per se, which reflects the stationarity of
the stochastic process.
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Elements of the transition matrix P are de-
fined by

(34) pjk = pr(ak-_ yt < ak+ I yt- = aj, yt-2 = ai).

Note that the transition matrix of the second-
order Markov process, P, can be constructed
from fyt I Yt-1, Yt-2) using (32). We are now
ready to derive the set of unconditional prob-
abilities, pr(yt, t- 1), by solving (33). For a com-
pletely ergodic process,7 we can obtain this set
of joint probabilities as follows. Following the
standard Markov chain theory (Howard), we
define a state probability, rJ(t), for a second-
order process as the probability that the system
will occupy the state given by the combination
Yt-2 = ai, Yt = aj, after t transitions, given that
its state is known at t = 0. It follows from this
definition that

(35) %7rij(t)= 1,
i j

It is crucial here to note that the vector of
limiting or steady-state probabilities does not
depend on the starting state of the system. Thus,
it can be seen that n is a vector of uncondi-
tional state probabilities, while the original
transition matrix, P, gives conditional state
probabilities. Since n is unconditional, it can
be seen that the elements of n are the joint
probabilities, (30).

Conditional probabilities for the process re-
duced to first order are

(39)
pr(yt,, yt-,)

pr(yt , y,-l)
Yt

which is the discrete counterpart of (25) in the
continuous variable case.Using the notation
pjk for the conditional probability of outcome
k in period t, given the outcome j in period
t - 1, (39) can be written

and that

(36)

(40)

Fjk(t + 1)= ) rij(t)Pjk .
i

If we define a row vector of state probabil-
ities, 1(t) with element r,(t), then in matrix
form we have the recursive relationship

(37)

For a completely ergodic process, the vector
II(t) can be shown to approach a limit as t
approaches infinity (Howard). In Markov chain
literature, this limiting vector, say II, is re-
ferred to as the limiting or steady-state prob-
ability vector. From (37), it follows that this
limiting vector is given by the equation

(38) = IIP,

which is equivalent to (33) in a different no-
tation.

Equation (38), along with the constraint that
the elements of the vector II sum to one, can
be used to solve for the limiting state proba-
bilities. It can be shown that the matrix (I -
P), where I is the identity matrix, has rank one
less than the dimension of P. Therefore, one
arbitrary row of (38) can be replaced by (35)
and the unique solution for II calculated nu-
merically from the system of linear equations.
The steady-state equation, (38), is the discrete
variable analogue of (28).

7 An ergodic process is defined to be any Markov process whose
limiting state probability distribution is independent of starting
conditions (Howard, p. 6).

Pik = 7rijk/ 2 k ,
k

where the {(rk} are elements of the steady-state
probability vector II.

Computational steps for reducing a discrete
second-order process to first order are: (a) cal-
culate the steady-state probability vector I for
the second-order process, and (b) apply (40)
for j = 1, 2, ..., N, where N is the number of
discrete intervals on y used in the discrete ap-
proximation to the continuous variable pro-
cess. These results readily extend to higher-
order processes as well.

For example, consider a third-order process
where the transition probabilities have four
subscripts, ijkm, and the steady-state proba-
bilities have three subscripts, rijk. Reduction
from a third-order process to a second order
is accomplished by means of the formula,

Pijk = rijk/ 7rijk ,
k

where Pjk is the conditional probability of out-
come k in period t, given outcomes j and i in
periods t - 1 and t - 2, respectively. Reduc-
tion to a first-order process uses the formula

(42) Pjk = (2 /rik)l/ (2 7iJk)
i k i

because the numerator is the joint probability
of outcomes j and k in periods t - 1 and t,
while the denominator is the marginal prob-
ability of outcome j in period t - 1.

Burt and Taylor

Tn(t + 1) = n(t)P.

(41)
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Concluding Remarks

The methods of discrete distribution approx-
imations for reduction of higher-order pro-
cesses to lower order are particularly useful if
one does not wish to assume normality of the
stochastic process. In such cases, the hyper-
bolic tangent method of Taylor can be applied
to estimate a closed functional form for the
conditional cumulative distribution function
of the process. This flexible approach permits
the order of the process to be arbitrary, and
computation of the matrix of transition prob-
abilities is practical, thus permitting applica-
tion of the results above to get a lower-order
process (first order in particular).

As stated earlier, the order of the process
must be specified correctly in performing the
statistical estimation of unknown parameters,
whether using the linear stochastic difference
equation model or an alternative like the poly-
nomial imbedded hyperbolic tangent method.
However, the linear difference equation frame-
work might be used advantageously jointly with
the hyperbolic tangent method because of the
ease with which the former can be used to
identify the maximum order of the stochastic
process. The latter would serve as the final
model after the order of dependence had been
determined, at least tentatively so.

Estimates of the amount of information sac-
rificed in reducing the process to a lower order
in the discrete variable case can be estimated
by ratios of variances as was suggested for the
linear difference equation model. Variances can
be calculated from the alternative reduced-or-
der processes for comparison with the variance
of the highest-order process. Using the third-
order Markov chain in the last section, the
least residual variance is associated with the
set of probabilities {Pijk} which utilize the full
set of information on the history of the process,
while the least information (most residual
variance) is associated with the first-order set
of probabilities in (42). Each conditional prob-
ability distribution permits calculation of the
conditional mean and variance of the sto-
chastic process, and the "total" variance is giv-
en by the steady-state probabilities. These dif-
ferent measures of variance can be used to
construct variance ratios paralleling those de-
veloped for the linear difference equation
model.

It is noted that the assumption of an infinite
ergodic stochastic process does not prohibit
application of these procedures to a finite ho-
rizon DP problem. The infinite process only
has to exist in principle to justify the methods
used to discard information and derive "less
conditional" probability distributions. An in-
traseasonal component imbedded in the pro-
cess should not cause a problem, but it effec-
tively introduces another state variable because
the seasonal period must be identifiable at each
stage.

[Received February 1989; final revision
received May 1989.]
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