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DETERMINING OPTIMAL
FERTILIZATION RATES UNDER

VARIABLE WEATHER CONDITIONS

Hovav Talpaz and C. Robert Taylor

This paper presents a theoretical framework for incorporating the following sources
of risk into the determination of optimal fertilization rates: (a) the influence of weather
and other stochastic factors on the marginal product of fertilizer, and (b) uncertainty
about the coefficients of the response function. The decision criterion considered is the
maximization of profit subject to a risk constraint on the probability of not recovering the
cost of the fertilizer. The theoretical framework is applied to the fertilization of dryland
grain sorghum in the Texas Blacklands. Results indicate that the risk averse producer
should substantially lower his fertilization rate if soil moisture at fertilization time is low.

The decision criterion commonly used in
making fertilizer recommendations is ex-
pected profit maximization. However, the
risk averse producer who bases his fertiliza-
tion program on this criterion may experi-
ence a serious misallocation of resources if he
is uncertain about the influence of weather
on the marginal productivity of fertilizer and
about the response function.

In a pioneering article, de Janvry pre-
sented a model that accounted for risk due to
weather variability. However, he implicitly
assumed that the response function was
known with certainty. This article extends
the de Janvry framework to include uncer-
tainty in the response function. This ex-
tended model is applied to the fertilization of
dryland grain sorghum in the Texas Black-
lands. Weather risk is appraised with histori-
cal records, while the response function is
appraised with experimental data on the yield
response to different fertilizer rates.

Hoval Talpaz and C. Robert Taylor are Associate Profes-
sor and Assistant Professor of Agricultural Economics,
respectively, Texas A&M University. Seniority of au-
thorship is equally shared.
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The Decision Model

In a recent article, R. H. Day, et. al.,
provide an excellent discussion about firm
behavior under risk. In particular, they ex-
plore variations of the "safety-first principle"
originally developed by Roy. One variation is
the "strict safety-first principle" advocated by
Shackle and applied by Telser. This criterion
assumes that the decision maker will apply
his resources to maximize expected profits
subject to a constraint on the probability (8)
of experiencing a loss. Day, et. al., show that
this criterion involves a minimum acceptable
safety margin. If the safety margin is less than
the decision maker's subjectively specified 8,
resource use is constrained at a level just se-
curing the acceptable safety margin. The ap-
peal of this criterion becomes apparent by
recognizing that it "...represents a com-
promise between expected profit maximiza-
tion and safety margin maximization" [Day,
et. al., p. 1296]. Robinson and Day have
shown that this principle reflects a utility
function with a lexicographic ordering in the
expected value-risk space. Therefore, this
principle can be rationalized by a set of con-
sistent axioms of behavior.

This strict safety-first decision criterion is
used to evaluate optimal fertilization rates
under variable weather conditions. Formally,
the objective is to maximize the profit to fer-
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tilizer for a crop producer who operates in
competitive markets, subject to a risk con-
straint defined as the probability of not re-
covering the cost of fertilizer. Stated
mathematically, the decision model is:

1) MAX E [P-Y(N,W)] - mN

subject to

2) Pr[P-D(N,W)> mN] > 6

where: E = expected value operator; P =
unit price of the product; Y = yield response
function; N = fertilization rate; W = weather
variable; m = fertilizer price; Pr = probabil-
ity; D = Y(N,W) - Y(N=O,W) = increment
in yield attributed to fertilizer; and 8 = sub-
jective loss probability threshold (maximum
risk).

To find the fertilization rate that satisfies
this decision criterion, we must first find the
probability distribution given by expression
(2). The stochastic variables in the above
model are weather (W) and the increment in
yield attributed to fertilizer (D) which are ex-
pressed by the following conditional proba-
bility density functions:

3) f (DIN,W)
4) f2(WIA)

where W is specified as the number of stress
days after planting and fertilization, -a, A is
available soil moisture at fertilization time.'

From the definition of conditional proba-
bility, it is known that the joint conditional
probability distribution of D and W is:

5) f3(D,WIN,A) = f (DIN,W) f2 (WIA)

'The amount of water deficit experienced by the crop is
described by the number of "stress days" during the
growing season. Formally, the number of stress days,
W, was calculated by Kissel, Ritchie, and Richardson as

n* En
W= (1- )

n=l Eo
where n* is the number of days from crop emergence to
harvest, Enis daily evapotranspiration, and Eo is daily
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Now note that integrating this distribution
over all values of the weather variable gives:

6) f4(DIN,A) = fo f3(D,WIN,A)dW

= f fl (DIN,W) f2(WIA)dW

which is the conditional probability distribu-
tion for the increment in yield attributable to
fertilizer. Since the total fertilizer cost, mN,
is known with certainty, the problem reduces
to finding the probability distribution of the
net revenue (R), where R = P D. For this
application of the model, it is assumed that
price (P) is known with certainty. This as-
sumption is approximately valid for a farmer
who has a forward market contract for the
product or copes with price risks by other
means. With price known, the probability
distribution of R is obtained by transforming
the probability distribution (6). Applying a
theorem from mathematical statistics for ob-
taining the probability distribution of a func-
tion of a random variable [see, for example,
Meyer, p. 88] gives:

7) f (RIN,A) = f4 (DIN,A)

By integrating this probability distribution
from an infinite loss (R = -oo) to the cost of
the fertilizer (R = mN), the probability of not
recovering the cost of the fertilizer as ex-
pressed in equation (2) is obtained

8) Pr(R < mNIN,A) = rN fs (RIN,A)dR

=-1 f f4 (DIN,A)dD

Referring back to (6), it can be seen that an
alternative expression is:

9) Pr(R < mNIN,A) - [o f (DIN,W)

f2 (WIA)dW] dD.

As de Janvry has shown, the solution to
this type of decision model is characterized

evapotranspiration, and Eo is daily poten-
tial evaporation rate above the plant canopy. For further
discussion of the stress day concept, see Kissel, et. al.
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by two regions. The characteristic of one re-
gion is that Pr(mNe INe,A) > 8, where Ne =
the fertilization rate (N) that maximizes ex-
pected profit. In this region, the "strict safety-
first" level of fertilization (N*) is N ; that is,
N* = Ne. The characteristic of the other region
is that Pr(mNe I Ne,A) < 6. Here the minimum
acceptable safety margin is not met by apply-
ing the expected profit maximizing rate, Ne.
For this region, the strict safety-first level
of fertilization (N*) is below Ne, and N* is
found by setting expression (9) equal to 8
and solving for the N that gives the highest
expected profit.

An Application

This section presents the results of apply-
ing the model to evaluating fertilization rates
for dryland grain sorghum in the Texas Black-
lands. Both weather and the response func-
tion are assumed to be random variables. In
the sections that follow, response uncertainty
is considered first, then the weather uncer-
tainty, and finally the two types of probability
information are combined with the use of
equation (9) for joint evaluation.

Response Uncertainty

it can be shown that for a finite sample,

fi (D N,W) is distributed as Student's-t:

11) fl (D N,W)= F[(k (1
F(k/2)/7rk

t2 -(k+l)/2

k

--oo<t<oo

where:

(D- )k
a

k = degrees of freedom

L = p1 N + P2WN + 3 N2

r[ - 1/2

a= Ns V( 1) + W2 V() + N2V(3) 1/

+ 2W'CV(1 ,,2) + 2N-CV(p, ,3)

+ 2WN-CV( 2,j3 3)

with

s = standard error of the estimate
V() = variance

CV(.,) = covariance.

This gives the probability distribution re-
lating to the uncertainty about yield re-
sponse.

Using experimental data presented by Kis-
sel, Ritchie, and Richardson, the following
response function for dryland grain sorghum
is estimated with ordinary least squares re-
gression:

10) Y = 2674.46 + 27.88N -. 323WN- .0804N 2

(16.99) (5.51) (5.73) (3.07)
k =32 R2 = .71

where Y = grain sorghum yield in pounds
per acre; N = nitrogen rate in pounds per
acre; W = number of stress days in the grow-
ing season; k = degrees of freedom; and the
values in parentheses are the t-statistics.

Under the standard regression assump-
tions made in estimating a response function
of the form (Y = o0 + / 1N + / 2WN + /3N 2),

Weather Uncertainty

Weather uncertainty in the Texas Black-
lands is appraised with estimates of the
number of stress days for three ranges of soil
moisture (Kissel, Ritchie, and Richardson).
While it would be desirable to have more
than three ranges of soil moisture, it was im-
possible to obtain the necessary data for the
Texas Blacklands. To allow for more precise
probability estimates, a continuous probabil-
ity function was fitted to the stress-day data
for each range of soil moisture.

Climatic and biological factors suggest that
the probability density function be continu-
ous, nonsymmetric in general, and concave

47

Talpaz and Taylor



December 1977

or convex based on the value of its param-
eters. Nonsymmetry is needed because dif-
ferent biological effects are naturally linked
to low W's compared to those linked to large
W's. Photosynthesis, respiration availability
of soil nutrients, probability of diseases, and
pests are likely to be related to W in a non-
symmetrical way. Howell, et. al., computed
empirical probability distribulions of grain
crop yields as a function of soil moisture.
They showed that under different levels of
soil moisture, the distribution function is
generally nonsymmetric, concave, or convex.

The Gamma density function possesses
these characteristics, given by

12) f(W)= ()ba (a e W/b forW > 0

0 for W < 0

with E(W) = ab and Var(W) = abi, where a
and b are parameters to be estimated, and
F(a) is the Gamma function (note that the
Gamma density function is concave for a>l
and convex for a<1). 2

The data in Kissel, et. al., are given in
terms of cumulative distributions; hence,
equation (11) must be integrated in order to
estimate its parameters. This integration is
carried out numerically by using an adaptive
Romberg extrapolation discussed by de Boor.
Parameters a and b were estimated by
minimizing the sum of squared deviations
using a non-linear optimization algorithm
based on the Levenberg-Marquandt algo-
rithm discussed by Brown. Since the number
of stress days (W) is conditional on the avail-
able soil moisture (A), it was possible to esti-

2 Additional plausible justification for the application of
the Gamma is two-fold. First, it can be shown that as a
special case the Gamma distribution is symmetrical;
hence, it is more general than the normal distribution.
Second, a special form of the Gamma distribution (the
Erlang distribution) is simply a summation of indepen-
dent negative exponential random variates with param-
eter (1/b). The negative exponential was extensively
used to describe random events corresponding to dur-
ations, which is what W essentially is [Phillips, et. al.,
pps. 218-220].
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mate the following three conditional proba-
bility functions:

13) f2 (W10<A< 3.9) = Gamma (a=2.45; b=14.52)
with E(W)=35.6, and mean squared error = 0.00089

14) f2 (W13.9<A<6.5) = Gamma (a=3.38;b=6.54)
with E(W)=22.14, and mean squared error = 0.00215

15) f2 (WIA>6.5) = Gamma (a-=0.5 39; b=18.71)
with E(W)=10.09, and mean squared error = 0.00451.

If a no risk situation is assumed, equation
(10) is known with certainty. This means that
the maximization of equation (1) is no longer
subject to equation (2), and the expected
value of W could be used with certainty.
Then, differentiating equation (1) with re-
spect to N, and equating the derivative to
zero provides the optimal value for N. These
values are: for E(W) = 35.6, the no risk N* =
72.26 bs/acre; for E(W) = 22.14, N* = 99.30
lbs/acre; and for E(W) = 10.09, N* = 123.50

To obtain the loss probability for this em-
pirical problem, the response probability dis-
tribution (11) is combined with each of the
weather probability distributions (13), (14),
or (15) using rule (9). With the general
weather distributor (12) we get:

16) Pr(R < mNIN,A) = N/P [(k+/2
P - f(k/2)N/Wk

(D-p)k

(1 + k
)2 (k1)/2W(al) /dWdDb

p(a)ba

The complex mathematical form of this dis-
tribution requires that the integrations be
done numerically using a procedure devel-
oped by Greville.

The optimal fertilization rates as related to
soil moisture and the loss probability are
shown in Figure 1. By specifying the value of
8 acceptable to a farmer and by determining
the level of soil moisture, one can use this
figure to find the optimal fertilization rate.
For example, suppose that soil moisture is
between 3.9" and 6.5" and that 8 is specified
to be .50. From Figure 1, it can be seen that
the "strict safety-first" level of fertilization
(N*) is about 99 lbs/acre, which is also the
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Optimal N Rate [Ibs./acre]
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Figure 1. Optimal N rates where there is uncertainty about weather and yield response.
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Figure 2. The relationship between expected profit and risk aversion for the case where there is un-

certainty about weather and yield response
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expected profit maximizing rate. Note that
for this level of soil moisture, the expected
profit maximizing rate should be used as long
as the specified loss probability (8) is greater
than .27; that is, the loss constraint is not
binding unless 8 is less than .27. As another
example, suppose that 8 is specified to be .10
and soil moisture is between 3.9" and 6.5". In
this case, the "strict safety-first" level of fer-
tilizer is about 75 lbs/acre.

Figure 1 can also be used to find the loss
probability associated with a specific fertiliza-
tion rate. For example, if soil moisture is be-
tween 3.9" and 6.5" and 60 lbs/acre of fer-
tilizer is applied, the associated loss probabil-
ity is 0.05.

Figure 2 depicts the relationship between
the expected return to fertilizer and the
probability of a net loss for the three soil
moisture conditions when "strict safety-first"
fertilizer rates are applied. As an example,
suppose that soil moisture is between 3.9"
and 6.5" and that the acceptable loss proba-
bility (6) is specified by the farmer to be .30.
Under these conditions, the expected return
to fertilizer is about $33.00 per acre. And if
the loss probability is .05, the expected re-
turn is about $28.00 per acre. So, for soil
moisture between 3.9" and 6.5", the farmer
who wants to recover the cost of fertilizer 95
percent of the time rather than 70 percent of
the time will give up an expected return of
about $5.00 per acre per year. Trade-offs for
other loss probabilities and soil moisture
levels can be obtained from Figure 2.

Summary and Discussion

In this paper, the de Janvry model for find-
ing the optimal fertilization level under risk is
extended to include uncertainty about the re-
sponse function. The critical assumptions for
applying the model were complete knowl-
edge on (a) the probability distributions for
weather, (b) the mathematical form of the re-
sponse function, and (c) prices of products
and resources. If a long time-series of data
were used to estimate the weather distribu-
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tion (as in this paper), the first assumption is
likely inconsequential. One way to overcome
the weakness implied by the second assump-
tion is to estimate various functional forms
with a subjective probability assigned to
each. If a fairly general form is used, the as-
sumption would not appear to pose a serious
problem.

The extension to two sources of risk may
pave the way for dealing with the more
generalized case of multiple sources of risk.
Price uncertainty can be incorporated by ex-
tending the model. However, using probabil-
ity distributions that are not easily integrated
by analytical means will significantly increase
the computational burden.
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