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COOPERATION IN SOCIAL DILEMMAS WITH

CORRELATED NOISY PAYOFFS: THEORY AND

EXPERIMENTAL EVIDENCE

Alecia Evans and Juan Sesmero

Abstract

In infinitely repeated social dilemmas, forces that cloud knowledge about past behavior may

induce subjects to incorrectly infer their opponents’ past actions, possibly inhibiting cooperation.

Random shocks affecting players’ payoffs constitute one such force. We develop a framework

to study this environment and predict that correlation across shocks can restore cooperation by

enhancing knowledge about past behavior. We then test this prediction in a laboratory experi-

ment. On average, we fail to confirm our prediction. Nevertheless, we find that correlation across

shocks fosters (inhibits) cooperation among subjects that choose to cooperate (defect) during the

initial stages of the game. We complement our experiments with simulations based on a genetic

algorithm and find that correlation makes conditional cooperation strategies more successful,

prompting these strategies to survive the evolutionary process. As a result, in an evolutionary

framework, correlation unambiguously enhances cooperation.

JEL Codes: C73; C92; D81; D82



1 Introduction

Many important economic activities are carried out in groups where agents interact repeatedly over

time. These groups are often formed to overcome market failures that inhibit socially desirable trading.

For instance, agents organize in groups to facilitate informal risk-sharing (e.g. Fitzsimons, Malde, and

Vera-Hernández (2018)), provide access to information, insurance and credit (e.g. Bloch, Genicot, and

Ray (2008)), improve productivity and profitability of farmers (Agarwal 2018), and prevent resource

exhaustion (e.g. Ostrom et al. (1999)). The success of these groups, however, crucially depends on

the ability of members of the group to cooperate with each other.

But many of these settings have the structure of a social dilemma – a situation in which rational

agents may fail to cooperate even when cooperation is mutually beneficial. This problem is exacerbated

by uncertainty about past behavior – for example, arising from agents’ inability to perfectly monitor

each other – which may induce subjects to incorrectly infer others’ past actions. Imperfect monitoring

can be induced by random shocks that alter agents’ payoffs (Bendor, Kramer, and Stout 1991; Bendor

1993). Such environments are empirically pervasive. As such, in this paper we focus on imperfect

(private) monitoring and investigate how the structure of correlation across random shocks that alter

players’ payoffs affects the strength of monitoring and, ultimately, cooperation in infinitely repeated

social dilemmas.

The outcome of infinitely repeated social dilemmas greatly depends on the strategic environment

(see Dal Bó and Fréchette (2018) for a recent review). An important distinction between the structure

of correlation across shocks and other features of the trading environment that can spur or hinder

cooperation, is that correlation also affects risk-sharing; and risk-sharing is at the core of many

economic activities that are carried out in groups. In developing countries, where formal insurance

and credit markets are underdeveloped and economic well-being is very sensitive to random shocks

(including income and health shocks), informal risk-sharing arrangements serve as a safety net. A

prominent example of this environment is the extended family. In this context, risk-sharing takes

the form of reciprocal credit systems where some siblings assist others who later reciprocate (Baland

et al. 2016), or a buffer to smooth consumption in the event of crop losses (Fitzsimons, Malde, and

Vera-Hernández 2018). In these settings, negative correlation across shocks facilitates risk-sharing

while positive correlation inhibits risk-sharing (e.g. Fafchamps (2011)).

But in addition to the correlation structure facilitating risk-sharing, cooperation is necessary for

the success of risk-sharing groups. Yet, cooperation often fails in these environments. Members of

the family sometimes avoid sharing wealth by taking out loans to feign liquidity constraints (Baland,

Guirkinger, and Mali 2011), or try to obscure their true endowments from others in the family (Jakiela

and Ozier 2016). When agents interact repeatedly, cooperation is more likely, but hardly a foregone

conclusion. While the effect of the correlation structure on risk-sharing is straightforward, its effect

on cooperation remains unclear.

The primary question we raise in this study is whether the structure of the correlation across

noisy payoffs affects cooperation among subjects. But we are also interested in understanding the

mechanisms underlying this effect. One possibility is that correlation strengthens monitoring, thereby

allowing subjects to lower inferential error. This lower inferential error could also prompt a change in

1



the strategies used by players.

We investigate these issues in three steps. First, we develop a theoretical framework and generate

testable predictions regarding the effect of correlation on inferential error and, ultimately, cooperation.

We then test these predictions in a laboratory experiment and examine other mechanisms arising in

the experimental setting. Finally, we complement the experiment with simulations based on a genetic

algorithm. This allows us to examine which strategies observed in the experiment are likely to survive

from an evolutionary point of view.

We build on Bendor, Kramer, and Stout (1991) and Bendor (1993) and develop a framework to

formally model behavior in an infinitely repeated prisoner’s dilemma with noisy payoffs. We extend

this framework by 1) allowing players to choose the benchmark against which a private signal is

defined, and 2) allowing shocks affecting subjects’ payoffs to be (positively and negatively) correlated.

Based on this framework we predict that correlation will strengthen monitoring (that is, will lower

inferential errors by subjects) thereby enhancing cooperation.

We test the predictions generated from of our theoretical framework in a laboratory experiment.

A laboratory experiment is appropriate because the private information needed to understand how

monitoring impacts cooperation is not usually available from observational data. Additionally, and in

contrast to field experiments, a laboratory experiment allows us to have full control of the strategic

environment. We can exogenously manipulate the correlation structure and prevent communication

outside of the strategic environment which allows us to establish clear causality and identify subjects’

inferences and strategies within a large set of possible options.

In our experiment, subjects play an infinitely repeated prisoner’s dilemma (PD) with a continu-

ation probability of δ = 0.9. In the stage game of the PD, an agent’s payoff is affected by a random

shock that is uniformly distributed with mean zero. Each player receives a private noisy signal about

the realized payoff of the other player in relationship to a benchmark value set by the subject. The

subject can combine this information, with information on her own payoff, to infer whether the other

agent has deviated or defected. We then expand this by including correlated shocks. We implement

four treatments that vary the correlation level from high (ρ = 0.9,−0.9) to moderate (ρ = 0.4,−0.4),

to compare against a baseline case of no correlation (ρ = 0).

Our main result is that correlation, either positive or negative, does not improve cooperation

relative to the baseline of ρ = 0, on average. A closer look at mechanisms clarifies this seemingly

puzzling result. Stronger correlation does tend to lower inferential error. But this does not persuade

“not nice” subjects (not nice subjects are those that defect in the very first round) to engage in

cooperation, unconditional or otherwise. Therefore, in games where a “not nice” player is involved,

correlation helps unveil defection which precipitates the unraveling of cooperation. This is confirmed

by experimental results which show that, when both players are “not nice”, correlation is associated

with lower inferential error and lower cooperation. Conversely, and by the same mechanism, when

both players are “nice”, correlation is associated with lower inferential error and higher cooperation.

Across observations, most of the interactions involve “not nice” players. This fact underpins

the muddled relationship we find between correlation and cooperation, on average. We complement

our laboratory experiment with a computational experiment based on an evolutionary algorithm to
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provide further intuition on how cooperation can be maintained overtime under such environment.

In this process, certain types of players, those implementing the most successful strategies, are more

likely to survive (Axelrod 1980). Indeed, we find that higher degrees of correlation did result in high

levels of cooperation.

The rest of the paper is organized as follows. In Section 2, we discuss the nature of our contribution

in the context of the broader literature. In Section 3, we present the theoretical background. In

Section 4, we give the details of the experimental design. In Sections 5 and 6, we outline the questions

our analysis will answer and the main results from our experiment. In Section 7, we present a

computational experiment that test behavioral aspects of our experimental design. In Section 8, we

conclude with a discussion of our main results.

2 Related Literature

We contribute to the literature on cooperation in infinitely repeated PDs when knowledge about past

behavior is limited, leading to inferential uncertainties about other players’ actions (players are forced

to guess their opponents’ past behavior). A part of this literature introduces inferential uncertainty by

considering noise in the form of implementation error, experimentally and theoretically (Fundenberg

and Maskin 1990; Miller 1996; Fudenberg, Rand, and Dreber 2012; Imhof, Fudenberg, and Nowak

2007; Ioannou 2014a, 2014b; Zhang 2018). With implementation errors, there is a probability that the

action the players implement is different from the one they intended. This obscures knowledge about

past behavior in the sense that players know the action their opponent took but are unsure about

their intentions. Furthermore, players are aware of this probability. We can consider this as a signal

each player receives about the probability that their opponent actually intended the observed action.

This signal delivers information, albeit incomplete. Consequently, players may incorrectly infer the

intent of others. Papers in this strand of literature find that incomplete information regarding intent

can, though not always , reduce cooperation.

A key feature of the literature on implementation error is that the environment is characterized

by imperfect information (where past actions are observable, but the intention is unclear) rather than

imperfect monitoring (where past actions are unobservable). This is a subtle, yet important distinc-

tion. Both frameworks are appropriate for distinct empirical settings; and they are not observationally

equivalent, that is, one does not tend to mimic the other. As pointed out by Ioannou (2014b), imper-

fect monitoring (which causes individuals to draw incorrect inferences about others past actions) is

more detrimental than imperfect information (where individuals are prone to errors in implementing

their own actions). This is because implementation errors can introduce cooperative actions even in

the presence of unconditional uncooperative strategies (for example, Always Defect), thereby facili-

tating cooperation. While this would also imply possible deviations from unconditional cooperation

strategies (thereby hindering cooperation), these kinds of strategies are not as ubiquitous as their

unconditional defection counterparts. In this study, we employ an imperfect monitoring framework

because it better captures key features of the empirical settings that motivate our analysis.

We examine the literature on imperfect monitoring in two broad strands. One strand of the

literature on imperfect monitoring studies deterministic PDs where the players do not directly observe
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their opponent’s past action, but receive a private signal with a set accuracy about such action (Aoyagi,

Bhaskar, and Fréchette 2019; Kayaba, Matsushima, and Toyama 2020). The signal is either good or

bad, and a good signal is more likely to occur when their opponent is cooperative. The monitoring

accuracy is the probability of receiving the correct signal, and a lower accuracy translates into a

higher probability of inferential error (that is, a higher chance that a player will incorrectly guess their

opponent’s past action). Aoyagi, Bhaskar, and Fréchette (2019) vary the monitoring environment and

find that subjects can sustain cooperation under imperfect private monitoring (at rates comparable to

perfect monitoring but lower than imperfect public monitoring). Kayaba, Matsushima, and Toyama

(2020) vary the accuracy of the signal and find that cooperation increases as monitoring strengthens,

that is, as the signal becomes more accurate.

The empirical settings that motivate our study, such as the extended family, collective agrarian

societies, and micro-finance groups, involve random shocks that affect subjects’ payoffs (for example,

weather events, unexpected health issues). Therefore, while the deterministic PD framework employed

by Aoyagi, Bhaskar, and Fréchette (2019) and Kayaba, Matsushima, and Toyama (2020) captures the

key issue of imperfect monitoring, it does not fit situations where random shocks affecting payoffs

constitute the source of imperfect monitoring. The other strand of literature on imperfect monitoring

introduces uncertainty regarding past behavior through noise in the form of random payoffs (Bendor,

Kramer, and Stout 1991; Bendor 1993). We build on the framework developed by Bendor, Kramer,

and Stout (1991) and Bendor (1993), but our analysis differs from those papers in important ways.

First, our primary objective is to understand how correlation across shocks affecting payoffs

alters inferential error (monitoring strength) and, ultimately cooperation. We study this because in

the empirical settings where payoffs are affected by random shocks, these shocks are often correlated.

In many cases, shocks are positively correlated. For instance, in many microfinance institutions,

in order to overcome moral hazard and adverse selection, groups are composed of agents living in

the same geographic space and probably conducting similar economic activities such as farming. In

other cases, shocks are negatively correlated. For instance, in many extended family settings (informal

insurance), players engage in fundamentally different activities such as farming and urban employment;

activities that are often negatively correlated, or uncorrelated. To better understand cooperation in

these settings, we extend the framework in Bendor, Kramer, and Stout (1991) and Bendor (1993) to

accommodate correlation across shocks. We then systematically vary the correlation structure and

compare inferential errors and cooperation across structures.

Like in Bendor, Kramer, and Stout (1991) and Bendor (1993), players in our framework receive

a signal about their opponent’s payoff. The signal is defined in relationship to a benchmark value,

that is, the signal indicates whether the opponent’s payoff is above or below that benchmark. A

salient feature of our framework is that we allow subjects in the lab (and automata in the genetic

algorithm) to choose the benchmark. The informational value of the signal (the extent to which

the signal helps players infer their opponent’s action) depends upon where the benchmark is set.

Moreover, the correlation structure affects the informational content of the signal, but the degree to

which this information is exploited depends on, once more, where the benchmark is set. Therefore,

in our framework, the accuracy of the signal is endogenous – it depends upon the subjects’ ability

to set the benchmark at a level that minimizes inferential error. We now turn to a more formal

characterization of our framework.
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3 Theoretical Background

We study a situation in which two players play an infinitely repeated prisoner’s dilemma game. The

deterministic payoff is that of a standard prisoner’s dilemma (see Table 1) where, T > R > P > S

and 2R > T + S. However, for the stage game, the payoff to each player is affected by a uniformly

distributed shock. With this shock, the realized payoff (stage game payoff plus random shock) becomes

T̂ , R̂, P̂ and Ŝ. This payoff is X̂ = X + V , where X = {T,R, P, S}, and V is the random shock with

mean zero, and it is uniformly distributed between a lower bound VLB and an upper bound VUB .

That is, VLB ≤ V ≤ VUB . Two shocks are generated, one for each agent, which we denote by V1 and

V2. The shocks are independent across rounds but can be positively or negatively correlated between

them.

Table 1: Deterministic payoff for the prisoner’s dilemma

C D

C R, R S, T

D T, S P, P

Similar to Bendor (1993), for a range of payoffs, the random shock introduces uncertainty and

limits a player’s ability to infer their opponent’s actions. In this range of payoffs, which we call the

region of uncertainty, if a player plays cooperate, it is possible to incorrectly infer that the other player

defected when they had in fact cooperated (Type 1 error). Also, they could incorrectly infer that the

other player had cooperated when they had in fact defected (Type 2 error). This region of uncertainty

exists as long as S + VUB > R+ VLB .
1

Figure 1 gives the distribution of the realized payoff of player 1 when she cooperates. For any

realized payoff to the left of the region of uncertainty, player 1 knows without a doubt that they

received the sucker payoff, Ŝ (the payoff is too low to be anything else). And for any region to the

right, player 1 knows without a doubt that they received the reward payoff, R̂ (conditional on the

subject having cooperated, the payoff is too high to be anything else). Within the region of uncertainty,

player 1 is unsure and there is a probability p > 0 that they will make an incorrect inference about the

other player’s action. We call this an inferential error. The reason for player 1’s uncertainty within

this range of payoffs is that two scenarios are probabilistically possible. It is possible that player 2

defected, but that player 1 received a large and positive shock, making the payoff that of a “lucky

sucker”. It is also possible that player 2 cooperated, but that player 1 received a large and negative

shock, making the payoff that of an “unlucky reward”.

We assume that shocks are uniformly distributed. This departs from the treatment in Bendor

(1993) which assumed that shocks are normally distributed (see Appendix A). To better fit the em-

pirical settings that are of primary interest to us, we introduce correlation across these shocks. This

also departs from Bendor (1993) who assumed that shocks are independent across players. We do,

however, maintain that shocks are uncorrelated over time. As previously established, when people

are engaged in social dilemma type groups, correlation among shocks is the norm, rather than the

1. If the player plays defect, the region of uncertainty exists as long as P + VUB > T + VLB
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Figure 1: Player 1’s realized payoff when cooperation is played. The height of the distribution is the

probability of the realized payoff X̂

exception. As such, we conjecture that knowledge of the correlation structure may help reduce a

players’ inferential error. In particular, we theorize that knowledge of the correlation structure can

reduce inferential error by allowing for some degree of monitoring.

To see how this happens, imagine that player 1 cooperates and receives a payoff slightly above

R + VLB (see Figure 1). That is, she receives a payoff that is low within the region of uncertainty.

Because player 1 is in the region of uncertainty, without any other information, it is hard for player 1

to know whether player 2 cooperated and she got unlucky (received a bad shock), or whether player

2 defected and she got lucky (received a good shock). Now, let us assume that player 1 knows that

player 2 received a payoff above some benchmark value (Bendor’s critical cutoff value from Appendix

A). For the sake of argument, let this benchmark value be greater than R in Figure 1. This indicates

that player 2 did well in that they received a high payoff. This could have resulted from two likely

situations: (1) player 2 defected or (2) player 2 cooperated and she simply got lucky while player 1

did not. But, if player 1 knows that shocks are positively correlated across players, then a scenario

in which player 2 defected is more likely than one in which player 2 cooperated and received a bad

shock, while player 1 received a good shock.

We formalize this as follows. Consider two states of nature θ ∈ {C,D}, indicating that the other

player has cooperated (C) or defected (D). Each player starts with an uninformed prior that these

events are equally likely. Then, each player receives a signal, s ∈ {0, 1} that allows them to update

their belief using simple Bayesian techniques. The signal tells a player that the other player’s payoff is

above or equal to (s = 0) or below it (s = 1) a benchmark chosen by her. The signal is the imperfect

information the player has regarding the payoff of the other.

We now formalize a decision rule using the noisy signal. Assume that player 1 gets a signal that

tells her where player 2’s realized payoff lies in relation to this benchmark value. She then uses this

signal to update her belief on C and D. The simple Bayesian process is outlined in Appendix B.
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The probability that the opponent will be above the benchmark, conditional on the player having

cooperated, P (s = 0/θ = C), is denoted by πC . Similarly, the probability that the opponent will be

below the benchmark, conditional on the player having defected, P (s = 1/θ = D), is denoted by πD.

The signal player 1 receives about player 2’s realized payoff gives additional support about θ = C if

πC > 1− πD. Due to symmetry, a similar argument holds for player 2.

Notice that s = 0 is equivalent to P > B, where P is the other player’s realized payoff and B is the

benchmark chosen. Similarly, s = 1 is equivalent to P < B. Therefore, the expression πC > 1− πD is

actually a function of the benchmark chosen by the player. If the player sets a very high benchmark (a

value close to the upper bound of the possible realized payoffs of the other player), then πC < 1−πD.

In this case, the player will always infer defection regardless of the realized payoff of the other player.

In turn, this implies high levels of Type I error and low levels of Type 2 error. Conversely, if the

player sets a very low benchmark (a value close to the lower bound of the possible realized payoffs of

the other player), then πC > 1 − πD regardless of the other player’s realized payoff. Therefore, she

will always infer cooperation by her opponent, which in turn implies high levels of Type 2 error and

low levels of Type I error. In both of these cases, inference will be incorrect close to half of the time.

Therefore, if the benchmark is set close to the upper or lower bound of the other player’s possible

realized payoffs, the signal regarding the other player’s realized payoff contains very little information

and may not lead to better inference.

On the other hand, if the player sets a more intermediate level for the benchmark, then Type

I and 2 errors will be balanced (similarly frequent), and overall errors will be minimized. But the

level will depend on how much of an overlap there is with these two distributions. These distributions

and consequently their overlaps are shaped by both the correlation between shocks and the actions of

player 1. This is illustrated numerically in Appendix B and C. In Figures 6 and 7 we simulated the

realized payoff for player 2, for different combinations of player 1’s realized payoff (within the region

of uncertainty) and correlation between shocks, conditional on player 1 cooperating.

As shown by the numerical simulations in Figures 6 and 7 (Appendix C), a higher correlation

(either positive or negative) between shocks shifts the distributions apart, thereby reducing inferential

errors, all else constant. This is a mechanical effect and is independent of where the player sets the

benchmark based on which the signal is defined. Wherever the benchmark is set, if player 1 infers

defection (cooperation) when player 2’s payoff is above (below) the benchmark, higher correlation

between shocks will make it more likely to that this is in fact true.

But the degree to which correlation translates into a reduction in inferential errors also depends

upon where player 1 sets the benchmark. If player 1 sets the benchmark at the payoff where both

distributions intersect and correlation is high, the signal will convey information highly indicative

of player 2’s actions which results in low inferential error and, moreover, a situation where Type I

and 2 errors are equally likely. In other words, by choosing the correct benchmark, player 1 can,

with a given signal, refine her Bayesian updating of the prior inference regarding player 2’s actions.

Therefore, there is also a behavioral channel through which higher correlation reduces inferential error.

Higher correlation reduces inferential error the most when the agent has the ability to choose the right

benchmark based on which the signal is defined.

We illustrate the effect of correlation on inferential error in Figures 8 and 9 in Appendix C,
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where we present the probability distributions of player 2’s realized payoffs. We assume that, after

the signal, Bayesian updating proceeds based on the benchmark value that equates Type 1 and Type

2 errors (from Player 2’s distribution) when ρ = 0. In Table 14 in Appendix B we present Type 1

and Type 2 errors along with πC and πD using these benchmark values. Using Bayesian updating we

put forward a simple decision rule for player 1. If ρ ≥ 0 and player 2’s realized payoff is above the

benchmark value, assume that player 2’s mostly likely action was defection. Likewise, if player 1 is

signaled that player 2’s realized payoff is below the benchmark value, assume that their most likely

action was cooperation. The opposite holds for ρ < 0 . Simulations reported in Table 14 show that

higher correlation, under this choice of benchmark, translates into a significant reduction of both type

I and 2 errors, but the reduction is larger when correlation is positive.

We hypothesize that players in an infinitely repeated prisoner’s dilemma will use the signal

more effectively when correlation is higher, that this will strengthen monitoring between players (by

reducing inferential error), and that this will in turn enhance cooperation. To test these hypotheses

we implemented an experiment, which we now proceed to discuss.

4 Experimental Design

The experiment is designed to test if a stronger correlation between shocks affecting players’ payoffs

reduces inferential error and by extension fosters cooperation in an infinitely repeated prisoner’s

dilemma. To induce the infinitely repeated game, subjects were informed that after each round, there

was 0.9 probability that a supergame will continue for another round. We pre-drew the random game

length of each supergame to ensure that in each session, each supergame lasted for same number

of rounds. For each treatment, subjects played 84 rounds over 10 supergames (See Table 2 for the

treatment summary).2

Table 2: Treatment, sessions, and subjects in the experiment

Treatment No. of Sessions Total Subjects

ρ = 0.9 3 34

ρ = 0.4 3 36

ρ = 0 3 36

ρ = −0.4 3 36

ρ = −0.9 3 36

Table 3 shows the stage game of the prisoner’s dilemma, denoted in points. In each round, each

subject’s payoff was affected by random, uniformly distributed shock in the range [-24, 24]. Subjects

were only told their realized payoff (payoff inclusive of random shock faced) and the correlation level

between their random shock and the random shock of the other player. All these details were included

in the instructions that the subjects read on their computer monitors at the beginning of each session.

The subjects also had access to the same instructions in written form throughout the entire session.

An example of these instructions is included in the Appendix D. We implemented five treatments: a

2. Across all 5 treatments, subjects made a total of 14,952 decisions.
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very high positive and negative correlation (ρ = 0.9 and ρ = −0.9), moderate positive and negative

correlation (ρ = 0.4 and ρ = −0.4) and the baseline case of no correlation (ρ = 0).

Table 3: Payoff of the stage game

C D

C 48, 48 13, 60

D 60, 13 25, 25

Before each supergame, each subject selects two benchmark values, one to be used if they select

cooperate and the other if they select defection. The benchmark values were restricted to the range

of possible realized payoffs of their opponent. That is, subjects were restricted to the range [24, 84]

if they choose cooperation and a range of [-11, 49] if they choose defection. To assist subjects in

understanding how the benchmark values work, we included an interactive feature in the instructions.

This is a simulation in which the subject and the computer simultaneously make a choice, then the

subject receives a feedback on their realized payoff. Also, there is a slider that allows subjects to play

around with setting different benchmark values to see what feedback they will receive (above, below,

or equal to) about the other player’s realized payoff.

At the beginning of each round, subjects choose between cooperation and defection (in the exper-

iment, we used neutral language of “A” and “B”, instead of “Cooperate” and “Defect”). Immediately

after this choice they receive feedback on the resulting realized payoff and also a private signal about

the realized payoff of the other subject. This signal tells if the other subject’s realized payoff is above,

equal to, or below the benchmark value each subject selected at the beginning of each supergame.

In our design, we opted to allow subjects to select their own benchmark to mimic noisy signals in

real-world group interactions. In real-world groups, for example the extended family or other similar

settings, individuals use spending habits of others to determine their well-being (Baland, Guirkinger,

and Mali 2011; Jakiela and Ozier 2016). Individuals may vary on the thresholds above which they

infer defection. For example, an individual may consider that the other person’s paying rent or debts

is sufficient proof that they are shirking on risk-sharing agreements. In contrast, others may set a

higher bar and consider traveling or similar bigger spending event as sufficient proof of defection.

After each round, we also used a Binarized Scoring Rule (BSR) to elicit incentivized beliefs from

each player about the actions of the other player. This was necessary to help us estimate inferential

errors and also to estimate the strategies that are being played by subjects across supergames. In each

round, after subjects make a decision and their realized payoff is revealed, they were asked how likely

they believed that the other subject cooperated. The BSR is incentive compatible in that, as long as

subjects prefer getting a reward as opposed to no reward, to maximize the probability of getting the

reward, the best action is for them to truthfully report their beliefs about the other subject’s action

(Hossain and Okui 2013). In our context, the reward was an additional 2 points. That is, over 84

rounds, a subject could earn a maximum of 164 additional points for truthfully reporting their beliefs

about the likely action of the other player. The BSR is also independent of risk attitudes and whether

the subject is an expected utility maximizer or not. In Appendix E, we describe the belief elicitation

process. In the instructions, we did not give subjects the full details of the belief elicitation process.
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They were informed that the details were available after the session.3 This design feature is consistent

with the results of Danz, Vesterlund, and Wilson (2020), who, in an experiment using BSR, found

that transparent information on incentives gave rise to error rates in excess of 40%.

On the decision screen for each round, each subject saw a summary of the decision and outcome

from the previous round. Also, there was a brief summary of the correlation structure for the treat-

ment. There was also a reminder of the two benchmark values that they selected. At the end of a

supergame, before they are randomly rematched, subjects received a detailed account of the actions

they made and their realized payoffs, as well as the actions and payoff of the other subject. See

Appendix F for a screenshot of this.

A total of 178 subjects participated in 15 sessions at Purdue University’s Vernon Smith Experi-

mental Economics Laboratory (VSEEL). Each treatment had either 10 or 12 subjects and lasted for

90 minutes.4 Subjects accumulated points during each session, and these were converted at an ex-

change rate of $1 = 300 points. On average, subjects earned $21.58 including a show-up fee of $5. We

used a between subject design, where each subject participated in only one session. For the session,

subjects first read the on-screen instructions, then they completed quiz. Following this, they played

five unpaid practice rounds against the computer. For additional practice in setting the benchmark,

in the practice rounds subjects were allowed to select the benchmark after each round. But for the

paid repeated games, the benchmark values were set at the beginning of each supergame. They were

informed of all of this in the instructions at the beginning of each session. For the paid repeated

prisoner’s dilemma, after each supergame, subjects were randomly rematched with another subject in

the room.5 The experiment was programmed in oTree (Chen, Schonger, and Wickens 2016).

5 Questions and Predictions

Based on the theoretical analysis in Section 3, numerical simulations (reported in Appendix B and

discussed in Section 3), and insights from previous literature, we predict that a stronger correlation

between shocks that affect players’ payoffs, fosters cooperation. We further hypothesize that corre-

lation fosters cooperation by reducing inferential error, that is, by strengthening monitoring. With

lower inferential error, we theorize that subjects will depend on more lenient strategies with stronger

correlation. We start by stating our primary question:

Question 1: Is cooperation higher with stronger correlation?

Based on insights from previous studies (Kayaba, Matsushima, and Toyama 2020) we make the

following prediction:

Prediction 1 : Cooperation will increase with stronger positive correlation across shocks. The effect

of stronger negative correlation is non-monotonic and, thereby, ambiguous. In other words, stronger

positive correlation will foster cooperation, but stronger negative correlation may foster or hinder

3. No subject asked for this information after the session.

4. COVID-19 regulations stipulated a maximum of 13 subjects per session. For some sessions, we had no-shows that

resulted in only 10 subjects per session.

5. This was not a perfect random rematching. There was a possibility that a subject could be re-matched with

someone they played with in a previous supergame.
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cooperation.

We now turn our attention to the mechanism underlying Prediction 1. First, we focus on the link

between correlation and monitoring strength or, in other words, inferential error:

Question 2: Is inference error lower with stronger correlation?

We will focus on the degree of inferential error across the various correlation structures. This

includes total error rate, as well as Type 1 and Type 2 errors. From our numerical simulations based

on Section 3 (see Appendix B), we predict that the correlation structure will affect inferential errors

through a mechanical channel and a behavioral channel. We first focus on the mechanical channel,

whereby a stronger correlation reduces inferential error even without the subjects using the signal to

update their beliefs about the other player’s action. Based on our theoretical analysis, we make the

following predictions:

Prediction 2: Stronger positive correlation reduces inferential errors, thereby improving the ability

of subjects to monitor each other. It does so by lowering Type 1 and 2 errors.

Prediction 3: The effect of negative correlation on inferential error is non-monotonic. Weak negative

correlation raises inferential error (both Type 1 and 2), but strong negative correlation reduces it (both

Type 1 and 2). Therefore, as negative correlation becomes stronger, it first impairs and then improves

the ability of subjects to monitor each other.

Predictions 2 and 3 constitute one channel through which correlation affects cooperation in the

way described by Prediction 1. This follows from previous studies, which suggest that stronger

monitoring (lower inferential error) has a positive effect on cooperation (Kayaba, Matsushima, and

Toyama 2020). These findings suggest that positive correlation is likely to foster cooperation because

it lowers inferential error. Our simulations suggest that, in turn, negative correlation has an ambiguous

effect on cooperation because it has an ambiguous effect on inferential error.

We now discuss the behavioral channel, whereby subjects can use a combination of the correlation

structure, and a noisy private signal about their opponent’s payoff to update their beliefs on the likely

action of their opponent. The noisy signal is determined relative to a benchmark set by the player.

The benchmark is some payoff on the domain of the opponent’s payoffs. As portrayed in Figures 6

and 7, conditional on a player’s action, payoff received, and a correlation structure, there are two

payoff distributions for her opponent: one when the opponent cooperates, and one when she defects.

These two distributions can overlap; the overlap becomes smaller as the correlation between shocks

strengthens and eventually disappears when correlation is sufficiently strong. If the benchmark is

set at the center of the overlapping region, Type I and II errors are roughly equalized, and the total

inferential error is minimized. Based on the patterns of the overlapping distributions (e.g., Figures 8

and 9), when shocks are positively (negatively) correlated, the opponent is likely to have cooperated

(defected) if her payoff is above the threshold. Therefore, we make the following predictions regarding

the players’ inferential process:

Prediction 4: Subjects will set a benchmark near the center of the overlapping region of the oppo-

nent’s payoff distributions.

Then, if the player’s payoff falls within her region of uncertainty, she will use the following decision
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rule: when ρ ≥ 0, a signal that the other player is above the benchmark value supports the inference

that the other player defected in the previous round. And, when ρ < 0 such a signal supports the

inference that the other player cooperated.

In summary, we predict that positive (negative) correlation will reduce (have an ambiguous impact

on) inferential errors regardless of the player’s inferential process (Predictions 2 and 3). But we also

predict that players will adjust their inferential process to minimize total inferential error and equalize

Type I and Type II errors (Prediction 4). If Prediction 4 is correct, the players can more effectively

use the information contained in the signal, conditional on the correlation. In other words, correlation

is more likely to reduce inferential error if players follow the inferential process described in Prediction

4.

We now look at the effect of correlation on the type of strategies used by subjects, which will

influence the prevalence of cooperation. We raise the following question:

Question 3: Do subjects play more lenient strategies when random shocks are correlated?

Drawing on conjectures in Aoyagi, Bhaskar, and Fréchette (2019), we make the following predic-

tion about dominant strategies under alternative correlation structures:

Prediction 5: If a player thinks, with more confidence, that his opponent cooperated, they will be

more lenient. This is to reduce the likelihood of retaliation. Combining Predictions 1-4, we expect

that strong positive correlation will lead subjects to employ more lenient strategies.

6 Results

To analyze the results, we first examine the link between the correlation structure and cooperation.

This allows us to test Prediction 1 and, ultimately, offer an answer to Question 1 in Section 5. We

then turn to the mechanisms through which correlation affects cooperation. First we examine the

relationship between the structure of correlation and inferential error rates, which allows us to test

Predictions 2-4 and answer Question 2 in Section 5. Finally, we test Prediction 5 regarding the link

between the structure of correlation and strategies played by subjects, which allows us to address

Question 3 in Section 5.

6.1 Correlation and Cooperation

Figure 2 shows the evolution of cooperation for all shock correlation structures: uncorrelated (ρ = 0),

strong negative correlation (ρ = −0.9), moderate negative correlation (ρ = −0.4), moderate positive

correlation (ρ = 0.4), and strong positive correlation (ρ = 0.9). Average cooperation measures the

proportion of rounds in which subjects cooperated in a supergame. We report results on cooperation

for different correlation structures over subsequent supergames. We compare cooperation in the first

stage of each supergame (Figure 2a) with cooperation in over all stages of those supergames (Figure

2b).

There is some level of cooperation for all correlation structures. A comparison between the top
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(a) Round 1 Only

(b) All Rounds

Figure 2: Frequency of cooperation across supergames for all correlation structures
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and bottom panels shows that cooperation seems higher in the first round than in subsequent rounds

of a supergame, indicating that cooperation tends to unravel towards later rounds of the supergame.

The evolution across supergames when all rounds are considered (Figure 2b) show a decline, albeit

weak, in cooperation. Results in Figure 2 show that strong positive or negative correlation does not

seem to induce more cooperation, relative to the baseline of no correlation. A pattern that contradicts

our Prediction 1.

We report more formal measures of cooperation patterns across treatments (correlation struc-

tures) in Table 4. Once more, to better understand the evolution of cooperation, we examine cooper-

ation in supergame 1, early stage supergames (1-3) and late stage supergames (7-10). For each block

of supergames, we further disaggregate the results by first round and all rounds. Results in Table 4

confirm that, on average, cooperation is lower under strong correlation (both positive and negative)

than when shocks are uncorrelated. They also confirm that cooperation generally unravels across

rounds within a supergame and over subsequent supergames. The statistical significance reported in

Table 4 refers to whether cooperation is statistically significantly different from zero.6

Table 4: Average Cooperation

Supergame 1 Supergame 1-3 Supergame 7 - 10

Rounds: First All First All First All

-0.9 0.472** 0.321*** 0.435** 0.356*** 0.444** 0.222**

(0.056) (0.003) (0.061) (0.02) (0.062) (0.043)

-0.4 0.444*** 0.309*** 0.417** 0.335** 0.361 0.223**

(0.028) (0.027) (0.085) (0.05) (0.135) (0.046)

0 0.611** 0.420** 0.602*** 0.451*** 0.556** 0.367**

(0.073) (0.064) (0.037) (0.040) (0.092) (0.057)

0.4 0.472*** 0.330* 0.500*** 0.347** 0.542** 0.406***

(0.028) (0.086) (0.042) (0.038) (0.064) (0.019)

0.9 0.441*** 0.451*** 0.510** 0.425*** 0.463* 0.333

(0.031) (0.023) (0.068) (0.036) (0.143) (0.156)

Notes: Robust standard errors (in parenthesis) are clustered at the session level. * Indicates

statistical significance at the 10% level (0.05 ¡ p-value ¡ 0.1). ** Indicates statistical significance at

the 5% level (0.01 ¡ p-value ¡ 0.05). *** Indicates statistical significance at the 1% level (p-value ¡

0.01)

Results in Table 4 do not offer information on the difference in cooperation rates across corre-

lation structures. We present such information in Table 5. Table 5 shows the difference between

cooperation with correlation and cooperation without correlation, as well as whether such differences

6. Unless otherwise stated, statistical significant is established by using a probit regression where errors are clustered

at the session level.
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are statistically significant. We report differences in cooperation rates for all rounds. Results in Table

5 show that negative correlation hinders cooperation, while positive correlation neither fosters nor

hinders cooperation. The results are in stark contrast to Prediction 1.

Table 5: Difference in Average Cooperation (All Rounds)

Supergame 1 Supergame 1-3 Supergame 7 - 10

-0.9 -0.099* -0.094** -0.146**

(0.054) (0.038) (0.060)

-0.4 -0.111* -0.116** -0.144**

(0.059) (0.055) (0.062)

0.4 -0.089 -0.103** 0.038

(0.091) (0.047) (0.051)

0.9 0.031 -0.026 -0.034

(0.058) (0.046) (0.1403)

Notes: This table gives the difference in average cooperation for each treatment from no correlation.

Robust standard errors are in parentheses and are clustered at the session level

Given that our results indicate some learning over subsequent supergames, we focus on results

from the last four supergames. These figures yield the main result of this paper, which answers

Question 1 in Section 5:

Result 1: On average, correlation does not improve cooperation.

The average results conceal substantial heterogeneity across supergames. As discussed by Ostrom

in her review of the literature (Ostrom 2000) a key force influencing cooperation in social dilemmas is

the type of players involved in them and, specifically, the players’ willingness to engage in reciprocity

that would lead to conditional cooperation. To investigate this in the context of our experiment, we

tagged players in a way that is indicative of their willingness to initiate cooperation: whether they

cooperated in the first round of each supergame or not. If a player cooperated in round 1, we labeled

them as “nice” and they were labeled as “not nice” otherwise.7

Using our classification, we calculated the cooperation rate across supergames 7 – 10 for interac-

tions between: (1) two nice players (‘nice-nice’), (2) two not nice players (‘not-not’), and (3) a nice

player and a not nice player (‘nice-not’). Results are reported in Table 6. From these results we can

see that when players are nice, positive correlation fosters cooperation from the baseline of ρ = 0

(ρ = 0.9 p−value = 0; ρ = 0.4 p−value > 0.1). This is consistent with Prediction 1. This is not true

when at least one not-nice player is present. And when both players are not-nice, correlation hinders

cooperation (ρ = −0.9 p− value > 0.1; ρ = −0.4 p− value > 0.05).

7. We borrow this language from Bendor, Kramer, and Stout (1991), but our definition differs slightly from his.

Bendor classified subjects as not-nice if they defected without a cause, i.e., without believing that their partner defected.

However, we define not-nice as defecting in the very first round.
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Table 6: Cooperation by Niceness for Supergames 7 - 10

Treatment Nice-Nice Not-Not Nice-Not

-0.9 0.581** 0.079* 0.175

(0.097) (0.020) (0.069)

N = 308 N=458 N=962

-0.4 0.497* 0.154*** 0.186**

(0.066) (0.005) (0.020)

N = 296 N=846 N=586

0 0.696** 0.095* 0.282***

(0.112) (0.028) (0.027)

N = 504 N=326 N=898

0.4 0.726** 0.145 0.178*

(0.074) (0.068) (0.042)

N = 752 N=566 N=410

0.9 0.955*** 0.024** 0.244

(0.009) (0.005) (0.112)

N = 332 N = 410 N=890

Notes: Robust standard errors are in parentheses and are clustered at the session level

The results reported in Table 6 warrant a more qualified characterization of the relationship

between correlation across shocks and cooperation. We provide such qualification in the following

statement:

Result 1’: When agents are nice (i.e., when agents are prone to cooperation in the initial rounds

of the supergame), positive correlation fosters cooperation while negative correlation does not. When

agents are not nice, strong correlation (either positive or negative), hinders cooperation.

We now turn to the mechanisms underlying the link between correlation and cooperation to

further elucidate the reasons why our Prediction 1 only seems to hold when players are nice.

6.2 Correlation and Inferential Error

In the previous section we reported evidence that, on average, higher levels of correlation does not fos-

ter higher levels of cooperation. We now further investigate the channel through which we anticipated

the correlation structure influencing cooperation rates.

We used beliefs elicited from subjects using the BSR to estimate how inference error evolves from

early supergames to later supergames. In our framework, after each round, subjects selected the prob-

ability with which they believed that the other player had cooperated. If they indicated a probability
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greater then 0.5, we assigned their belief to cooperation (we assume they inferred cooperation). For

probabilities less than 0.5, we assigned their belief to defection. We interpret a probability of 0.5 as the

subject giving equal weighting to the probability to cooperation and defection. As such, we randomly

assigned the subject’s belief to cooperattion or defection with a 0.5 probability.8 An inferential error

occurs when there is a mismatch between the subject’s belief about their opponent’s action and the

actual action taken by their opponent.

Table 7 shows the inferential error rates across correlation structures. Given that subjects do

make errors outside of the region of uncertainty, we present the error rate across all actions (“All

errors”) and the error rate when the player’s payoff falls within the region of uncertainty (“ROU

errors”). We further disaggreated “All error” into Type 1 (incorrectly infering defection) and Type 2

error (incorrectly infering cooperation), and across early supergames (1-3) and late supergames (7-10).

As indicated in Table 7, subjects incur inferential errors across treatments and supergames (vir-

tually all error rates are statistically significantly different from zero). They also incur errors when

their payoff falls outside of the region of uncertainty. Given that subjects did incur errors outside of

the region of uncertainty, albeit small relative to the region of uncertainty on average (8% outside

versus 32% within the region of uncertainty), we focus on the total inferential error; that is, both

within and outside of the region of uncertainty. Overall, across all treatments, inferential error is

statistically greater than zero. However, inferential error is lower in late supergames than in early

ones, which suggests learning by the subjects. Consequently, we base our discussion on results from

later stage supergames where subjects have gained some experience.

Inferential error was smallest under ρ = 0.9 (column 5 of Table 7), which is consistent with

Prediction 2. The link between inferential error and negative correlation is non-monotonic. Moderate

negative correlation raises inferential error (second row of column 5) and strong negative correlation

reduces it (first row of column 5) relative to the baseline of no correlation. This is also consistent with

Prediction 3. Therefore, strong correlation (either positive or negative, but especially the former)

lowers inferential error.

To examine whether these differences in inferential error rates across treatments are distinguish-

able from chance, we calculated the difference between inferential error under each treatment (positive

and negative correlation) and inferential error under the baseline (no correlation), as well as the stan-

dard deviation and statistical significance of these differences. Results are reported in Table 8. The

results indicate that the effect of (strong) positive correlation on inferential error is distinguishable

from chance, while the effect of negative correlation is not.

Negative correlation is less effective in strengthening monitoring (that is, reducing inferential er-

ror) than positive correlation because it expands the opponent’s domain of possible payoffs conditional

on their actions, making it harder for a player to infer those actions (see distributions of player 2’s

realized payoffs in Appendix C). To illustrate this, consider the following situation. If two players’

payoffs are positively correlated, and player 1 received a low payoff while player 2 received a high

payoff, player 1 will have more confidence that the most likely action of player 2 was defection than if

these payoffs were negatively correlated. If the payoffs are negatively correlated, this same situation

8. There were 439 such observations (out of a total of 14,952). After the random assignment, 50.57% of these were

assigned as defection. Also, 27.3% of the observations fall within the region of uncertainty.
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Table 8: Differences in Total Inferential Error (Supergames 7-10)

Difference in error (SD)

-0.9 -0.020

(0.037)

-0.4 0.015

(0.037)

0.4 0.004

(0.278)

0.9 -0.084***

(0.026)

Notes: This table gives the difference in total error rates for each treatment relative to no

correlation. Robust standard errors are in parentheses and are clustered at the session level

could arise for a variety of reasons. It could be that player 1 received the sucker payoff. Or it could be

that player 2 had in fact cooperated but received a positive shock, while player 1 received a negative

shock – a likely combination given that shocks are negatively correlated. This makes inference harder

and raises the likelihood of inferential error. This is encapsulated in the following statement:

Result 2: Stronger positive correlation reduces inferential error.

The strength of monitoring itself, as measured by total inferential error, matters for cooperation.

But this is not the only dimension of inferential error that matters. The composition of total inferential

error is also crucial. As discussed in the development of Prediction 4, conditional on a player’s action,

payoff received, and a correlation structure, there are two payoff distributions for her opponent: one

when the opponent cooperates, and one when she defects. If these distributions overlap, the location

of the benchmark within the overlapping region will determine the prevalence of Type I and II errors.

This matters because if the benchmark is set at a level where most errors are Type I (Type II)

errors, then the player will be less (more) likely to cooperate, perhaps inducing her opponent to defect

(cooperate) more often. A high prevalence of Type I (Type II) errors will hinder (foster) cooperation.

Given its importance for the level and composition of inferential errors, we now examine the extent

to which players use the inferential process outlined in Prediction 4.

When a player cooperates, the center of the overlapping region of her opponent’s payoff distri-

butions is around 54. And when she defects, it is around 19. Therefore, in line with Prediction 4, we

expect that those are the payoffs the player will choose as benchmark values. While roughly in line

with our Prediction (especially when considering variation across players), players tend to choose a

lower value (on average) when they cooperate (46 with a standard deviation of 14) and a higher value

(on average) when they defect (25 with a standard deviation of 12.5).

As also stated in Prediction 4, under the Bayesian updating rule outlined in Section 3, with posi-

tive (negative) values of ρ, subjects will more likely assume that their opponent defected (cooperated)
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if they are signaled that their opponent’s payoff is above their benchmark value. For negative ρs,

the opposite applies. We find little evidence that subjects are updating their beliefs based on their

private noisy signal. This rule explains subjects’ actions around 50% of the time, on average, across

all treatments. The performance of this rule does not improve between supergames 1-3 and 7-10.

These results suggest a very limited role for the behavioral channel (agents use the signal to refine

their inference) in the link between correlation and inferential error. Consequently, our results indicate

that the reduction in inferential errors under stronger correlation is mostly driven by the mechanical

channel, whereby correlation reduces inferential error without the subjects using the signal to update

their beliefs. We summarize this in the following statement:

Result 2: Subjects appear not to use their private signal to update their beliefs.

Having found little evidence in favor of our predicted Bayesian updating process, we explore

alternative ways in which subjects could be updating their beliefs. We explored a simple rule where

subjects are more likely to assume cooperation if their own payoff is high enough and defection

otherwise. Table 9 shows the average payoff within the region of uncertainty when subjects assume

that the other player is defecting or cooperating.

Table 9: Average Payoff when Assuming Cooperation or Defection

Assumption

C D

C 31.2/31 42.9/43

(3.56) (3.72)

Action

D 29.6/29 41.9/42

(3.68) (3.76)

Notes: This table shows the mean/median payoff of player when they assume cooperation or

defection of the other player. Standard deviation is in parenthesis.

The payoffs in Table 9 approximately coincide with the midpoint of the region of uncertainty of

the player making the inference, as opposed to the center of the overlapping region of the opponent’s

payoff distributions. The midpoints are 30.5 when cooperation is played and 42.5 when defection is

played. This suggests the following inference rule. A subject will most likely assume cooperation if

their payoff is substantially (more than 1 standard deviation) above the midpoint of their own region

of uncertainty. Alternatively, a subject will most likely assume defection if their payoff is substantially

(more than 1 standard deviation) below the midpoint of their own region of uncertainty.

However, if the player’s payoff is within 1 standard deviation (above or below) of the midpoint

of their own region of uncertainty, they will most likely make the same assumption about the other

player’s action as they did in the previous period. That is, there is a grey area where players will make

inference based on how the history of play (or propensity to give others the benefit of the doubt if

there is no history of play) shaped their perception of the other player’s type (either good or bad). We

examine the extent to which this inferential rule (as opposed to the one advanced in Prediction 4) can

rationalize inference drawn by subjects in the laboratory. Results of our analysis are reported in Table
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10. This simple decision rule matches the data, on average, 88% of the time. For supergames 1-3, the

match is 85%, and this increases to 90% in supergames 7-10. The match is high across treatments,

which lends credence to this inferential process.

Table 10: Percentage Match of Simple Updating Rule

All Supergame 1-3 Supergame 7-10

Mean SD Mean SD Mean SD

-0.9 0.885 0.319 0.858 0.349 0.903 0.296

-0.4 0.865 0.342 0.824 0.381 0.881 0.324

0 0.891 0.311 0.886 0.318 0.890 0.313

0.4 0.867 0.340 0.830 0.376 0.891 0.311

0.9 0.908 0.290 0.859 0.348 0.927 0.260

6.3 Correlation and Strategies Used by Subjects

In this section, we examine the relationship between correlated shocks and the nature of strategies

used by players. Note that this mechanism can also be distinct from the effect of correlation on the

inferential process. This is because a change in the correlation structure may prompt players to follow

a more (or less) lenient strategy, conditional on whatever they infer about their opponent’s actions.

In Section 5, we predicted that a stronger positive correlation would raise the confidence with

which players make inference and make them prone to employ more lenient strategies (Prediction

5). To elicit the most likely strategies played by subjects in the laboratory, we used the Strategy

Frequency Estimation Method (SFEM) of Dal Bó and Fréchette (2011). In other words, we use a

maximum likelihood estimation (MLE) approach to calculate the frequency of each strategy under

consideration along with β that gives the model fit (see Appendix G for a detailed discussion). For

this, we considered a subset of eight strategies from the twenty outlined in Fudenberg, Rand, and

Dreber (2012). In Appendix H, we give a description of each. The strategies we consider consist of

the eight top strategies identified by SFEM from data in Dal Bó and Fréchette (2018) (see Gill and

Rosokha (2020)). The description of each strategy is similar to Fudenberg, Rand, and Dreber (2012).

We classified strategies into three categories: lenient, provocable and unfriendly. A lenient strat-

egy (TF2T, AC, GRIM2) starts with cooperation and does not defect immediately when the opponent

first defects. Provocable strategies (GRIM, 2TFT, TFT) start with cooperation but immediately de-

fect when the opponent first defects. Unfriendly strategies (AD, DTFT) defect in the first round.

The MLE estimation identifies that most prominent strategies and results are reported in Table 11.

We focus our analysis on supergames 8-10, where subjects would have gained experience. Subjects

predominantly used simple, memory-1 strategies. With memory-1 strategies, subjects only respond

to their opponent’s action from the very last round. Memory-1 strategies include AD, DTFT, GRIM,

TFT and AC.

Across all treatments, and on average, AD was the most frequent strategy, accounting for about

half of the strategies used. Note that, the sum of the two most prominent provocable strategies, TFT
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and GRIM, is actually higher than AD when ρ = 0. Yet, AD becomes more prominent (even more

than the sum of provocable strategies) when correlation got stronger. This rejects our Prediction 5

that subjects will play more lenient strategies as positive correlation becomes stronger. This result,

however, is in line with the fact that cooperation was, on average, lower under stronger correlation.

Also, in line with cooperation patterns, AD is more prominent under negative correlation. These

results are summarized in the following insight.

Result 4: Subjects played mostly unfriendly strategies, regardless of the correlation structure.

Results 1-4 offer mixed evidence regarding our predictions. Predictions 2 and 3 are supported

by the data, while Prediction 4 is not. And Prediction 1 is rejected, but a qualified version of it is

supported by the data (Result 1’). In the next section, we combine these pieces of evidence to better

elucidate the nature of the relationship between correlation and cooperation.

6.4 Mechanisms and the Effect of Correlation on Cooperation

A crucial aspect of our results is that a strong positive correlation leads to enhanced monitoring

on average, as revealed by lower inferential errors (Table 8). And this does not translate into more

cooperation, on average (Table 5). However, it decidedly fosters cooperation when both agents are nice

(that is, when they cooperate in the early stages of the game) and hinders it when both agents are not

nice (Table 6). One possible explanation for this result is that, once we disaggregate by type of players,

strong positive correlation lowers inferential error only when players are nice, thereby strengthening

monitoring and, consequently, cooperation. Another possible explanation is that enhanced monitoring

only fosters cooperation if players are nice.

To explore the first possible explanation, we examine inferential error under alternative correlation

structures; but this time we disaggregate results by the type of players involved in the game. The

results are reported in Table 12. When we compare our results with those for the average situation

(Table 8), we can see that virtually the same patterns emerge – strong (but not moderate) positive

correlation lowers inferential errors when players are both nice and when they are both not-nice. It

also lowers inferential error but to a lesser extent when one player is nice and the other is not. In

contrast, negative correlation (either moderate or strong) does not lower inferential error in a way

that is distinguishable from chance. This is with the exception of high negative correlation when both

players are not nice.

Results in Table 12, leaves us with the second possible explanation – that enhanced monitoring

only fosters cooperation if players are nice. The results seem to strongly support this explanation.

This follows from the observation that the reduction in inferential error is largest when correlation

is strong and positive. In fact, inferential errors when correlation is 0.9 is almost indistinguishable

from zero. Coincidentally, cooperation is also most prevalent (in fact, highly prevalent at 95%) when

correlation is 0.9. This strongly suggests that players’ ability to monitor their opponent (and players’

knowledge about their opponents’ ability to monitor them) disciplines the subjects into cooperation.

But this insight is much more nuanced that may seem at first glance. As correlation raises from 0 to

0.9, cooperation decidedly drops from 10% to 2.5% (Table 6), despite inferential error dropping from

24% to 6% (Table 12).
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Table 12: Error Rates by Niceness for Supergames 7 – 10

Treatment Nice-Nice Not-Not Nice-Not

-0.9 0.107** 0.107 0.146**

(0.015) (0.05) (0.032)

-0.4 0.118** 0.199*** 0.135*

(0.005) (0.012) (0.032)

0 0.113* 0.239** 0.135***

(0.030) (0.04) (0.012)

0.4 0.122* 0.208* 0.127***

(0.031) (0.056) (0.007)

0.9 0.018 0.059** 0.084**

(0.012) (0.008) (0.017)

Observations N = 332 N = 410 N = 890

Robust standard errors are in parentheses and are clustered at the session level

Our results suggest that a strong positive correlation improves monitoring, like we predicted. But

in contrast to our prediction, improved monitoring does not necessarily foster cooperation – it simply

better reveals to players the actions of their opponents. If those actions happen to be non-cooperative,

as it tends to be the case at first if their opponent is not nice, then they move more quickly towards

defection to avoid being the sucker. On the other hand, if the actions revealed by improved monitoring

happen to be cooperative, as it tends to be the case at first if their opponent is nice, then they move

more decisively towards cooperation.

In summary, our results indicate that a strong positive correlation removes the veil of ignorance

regarding the actions of the opponent; but its effect on cooperation depends on whether that reveals a

cooperative or non-cooperative opponent. If stronger monitoring reveals an opponent that is reluctant

to cooperate, then it will prompt cooperation to unravel. Of course, a player should know that

improved monitoring will make her actions more visible as well, and that consistent defection will

induce her opponent to retaliate, thereby condemning her to a low payoff. So, why are “not nice”

players not anticipating this? If the player thinks her opponent will not give her the opportunity to

build trust and cooperation, she may swiftly move to defect in anticipation of a bad equilibrium. As

long as “not nice” players are in the mix and they are revealed by improved monitoring, there is a

chance that players will defect to avoid a sucker payoff.

24



7 The Computational Experiment

In Section 6.2. we conjectured that, as long as not nice players are in the mix, improved monitoring

(from strong positive correlation) may lower cooperation. This is because players may be pessimistic

about the prospects of cooperation when improved monitoring reveals a not nice opponent, and defect

preemptively to avoid becoming the sucker in the prisoner’s dilemma game. We are not the first ones

to identify the composition (that is, types) of players involved in a repeated game as an important force

underlying the prevalence of cooperation. The presence of not nice players may increase the prevalence

of a bad (defection) equilibrium. Ostrom (2000) made this point in her review of the literature on

cooperation in social dilemmas. But she, along with Axelrod (1980), also surmised that repeated

interactions may stimulate an evolutionary process by which not nice players are selected out of the

pool. To investigate this further, we complement our laboratory experiment with a computational

simulation of such evolutionary process.

We use a genetic algorithm (Holland 1975) for the evolutionary process. The genetic algorithm

starts with a pool of candidate strategies, called automata. The interaction among automata mirrors

the experimental framework closely, but there are some notable differences. First, instead of playing

ten supergames, automata interact over hundreds of generations. In one generation each automaton

is matched to every other automaton, including itself, and they play a supergame. Second, from one

generation to the next, the environment dynamically changes given that only strategies with the best

performance survive (that is, advance to the next generation).

Strategies also undergo a process of mutation. This process is not removed from reality. One can

consider this as a process of exploration and learning, where the agents interacting in the environment

try new strategies. If successful, then these strategies are mimicked by other players. If a strategy is

unsuccessful, it is abandoned and no longer part of the strategy pool in subsequent generations. Lastly,

the automata update their beliefs on the likely action of their opponent according to the decision rule

we characterized in Section 3. This is another way in which automata differ from subjects in the

laboratory since, from the experimental results, we found that subjects did not seem to follow this

rule closely.

Despite these differences, we belief that this is an appropriate framework to gain insights into how

cooperation can evolve over many repeated interactions under various correlation structures. Genetic

algorithms have been widely used to show how strategies evolve under various environments. We use

the tournament style pioneered by (Axelrod 1980) that have since then been used to examine the

evolution of strategies in repeated noisy PDs. Similar computational exercises, by and large, have

focused on implementation and perception errors (Ioannou 2014b; Miller 1996; Zhang 2018). Other

repeated PD applications include examining the impact of costly strategy adjustments (Romero and

Rosokha 2019).

7.1 The Computational Experiment

Our evolutionary process is similar to Miller (1996) and Ioannou (2014b). Strategies are implemented

as finite state automata, with a fixed number of states. Each internal state is accorded cooperation
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(C) or defection (D). Conditioned on what the other player does, each state has transition rules

that dictate what state the automaton should next transition to. Given that subjects mostly used

memory-1 strategies, and to reduce computational time, we focus only on finite automata with at

most two states. Memory-1 strategies only consider the immediate past move of its opponent. In

our environment, each automaton carries information about not only the strategies, but also, the

benchmark values relative to which the signal is defined. The two benchmark values that are needed

if the automaton is in a cooperation or defection state are endogenously determined; that is, the

benchmark values must survive the evolutionary process just like the strategy must. As such, each

automaton is represented by a 21-bit binary string. The first 7-bit translates into an integer in the

range [24, 84] and the second 7-bit an integer in the range [-11, 49]. The final 7-bits represent the

strategy. For this last 7-bit, the first bit represents the starting state, and the rest gives the transitional

states. While there are 128 representations of 7-bit strings, these map into 26 unique strategies. We

provide more details on the representation of the automata in Appendix I.

For the evolutionary process (summarized in Table 13), we begin with a population of thirty

randomly generated 21-bit binary strings. In every generation, an automaton is paired with every

other automaton, including a copy of itself, to play the repeated PD for eighty rounds on average

(we use a continuation probability of 0.9875). In the first generation, the automaton also randomly

selects two benchmark values, one is used when it cooperates and the other when it defects. At the

end, a performance score is calculated based on average payoff across all interactions. If there are ties,

one is randomly selected. To populate the next generation, the top twenty performers are selected

(the parents). These parents create ten children through a process of mutation. A pair is randomly

selected from the parents, and the top performer of this pair undergoes mutation. Mutation involves

changing every bit of each string with a probability of 0.04. Mutation occurs on both the strategy and

the two benchmark values. Therefore, the automaton updates both its strategy and its benchmark

values. This method of mutation does not guarantee that all the best of the best strategies will be

selected, or that all the worst of the best will be eliminated. The evolutionary process is simulated

for 1000 generations. Then the entire process is repeated 100 times.

Table 13: The Evolutionary Process of Genetic Algorithm

Step 1: Initialize Generation T0 of 30 randomly generated automata

Step 2: Initiate round-robin tournament

Step 3: For t = 0 to T:

For each automaton:

For round 1 to length of round:

Play all other automata and self

Determine average payoff using PD matrix

Step 4: Select 20 automata with highest payoff

Step 5: Create 10 - pairs:

Select from each pair, automata with highest payoff

Step 6: t = t + 1 Mutate every bit with probability of 0.04
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7.2 Results of Computational Experiment

Across all levels of correlation, cooperation begins at approximately 50% (Figure 3). This is expected

given that the automata are randomly selected in the first generation. In fact, out of the 126 possible

strategies, 40 are AC and 40 are AD. Immediately, cooperation suffers a sharp reduction. But as

generations progress, cooperation rises and stabilizes at higher levels. Higher levels of correlation,

both positive and negative, induce higher levels of cooperation. Initially, and for a large number

of generations, cooperation under ρ = −0.9 is lower than under ρ = 0.9 . However, cooperation

levels under ρ = −0.9 and ρ = 0.9 converge by generation 1000. Notably, all levels of ρ yield higher

cooperation rates than ρ = 0, except for ρ = −0.4 . These results are consistent with our Predictions

1-4. Correlation structures that lower inferential error (both moderate and strong positive correlation,

as well as strong negative correlation), also foster cooperation, albeit in the long run, and as a result of

the evolutionary process. Negative moderate correlation, which we both predicted and found evidence

to support that it raises inferential error, hinders cooperation.

Figure 3: Evolution of cooperation over 1000 generations

As discussed before, the correlation structure may affect cooperation through the inferential

error, and subsequently influence strategies employed by players. Figure 4 shows the evolution of

strategies for each correlation structure. We display the memory-1 strategies that the MLE indicated

best matched the subjects’ data. Mostly two strategies, TFT and AD, explain the differences in

cooperation rates observed. For ρ = 0.9, where the highest cooperation rate was observed, AD

very quickly dies out in the population, leaving TFT as the most frequent strategy. The lower the
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cooperation rate, the slower AD disappears from the population. This suggests that with sustained

interaction, cooperation can be maintained. For high levels of ρ, agents will converge to high levels of

cooperation quickly. This process is slower for moderate levels of correlation and ρ = 0.

Figure 4: Evolution of strategies under each correlation

The evolution of the benchmarks offers additional insight into the effect of correlation on coop-

eration. We report those results in Figure 5. The benchmark value ascribed to cooperation under

positive correlation and under the baseline increased to around 70 by generation 500. The benchmark

value falls quickly to 35 under strong negative correlation, but only to 45 under moderate negative

correlation. Recall that the decision rule prescribes cooperation if there is a signal that the other

player’s realized payoff is below (above) the benchmark value for ρ ≥ 0 (ρ < 0). Therefore, a (low)

high benchmark value under positive (negative) correlation implies, all else constant, that it is more

likely the automaton will cooperate in error, rather than defect in error.

The pattern of the rate at which the average benchmark converges to its long-term value, matches
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the cooperation rate patterns. Under a positive (negative) and strong correlation the benchmark

converges more quickly and to a higher (lower) long-term value, and this coincides with a quicker

convergence to cooperation (Figure 3).

Figure 5: Evolution of benchmark values under each correlation

A closer look at results in Figures 4 and 5 points to an important interaction between both

mechanisms underlying the effect of correlation on cooperation: the strategy mechanism and the

inferential error mechanism. At the long-term benchmark values observed in Figure 5, conditional

strategies become somewhat unresponsive to inferential error. When an agent’s realized payoff falls

within the region of uncertainty, they are more likely to cooperate than defect under the long-term

benchmark values. This is only reinforced when the dominant strategy is TFT. If the automaton

employs a TFT strategy and selects a high (low) benchmark under positive (negative) correlation,

it is more likely to cooperate in error, than to defect in error. This fosters cooperation even further

and offers an additional explanation to the high level of cooperation in the computational experiment

relative to the laboratory experiment.

8 Discussion

In this study, we examined the impact of correlation on cooperation in an infinitely repeated pris-

oner’s dilemma. In the stage game, players’ payoffs are affected by a random shock that is uniformly

distributed. This shock is independent across rounds but correlated across players. We explored five

correlation structures, two positive correlation levels (moderate and high), two negative correlation

levels (moderate and high), and a baseline of no correlation. We found that, on average, correla-

tion does not enhance cooperation. While negative correlation weakly lowers cooperation, positive

correlation has no impact on cooperation.
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We offered two explanations for this observation. First, we anticipated that higher levels of

correlation would improve cooperation through two mechanisms: a reduction in inferential error when

correlation is positive or negative and strong (including a purely mechanical channel and a behavioral

channel), and a change in strategies towards more lenient alternatives. We found evidence supporting

the first mechanism, albeit weaker than predicted because subjects in the lab failed to fully exploit

the behavioral channel. Second, and also on average, more lenient strategies did not become more

prevalent under stronger correlation.

At first glance, it seems puzzling that improved monitoring delivered by positive and strong

negative correlation structures does not translate into more cooperation on average. However, the

reason for this becomes apparent when we explore the heterogeneity concealed in the average effect.

We found that improved monitoring associated with certain correlation structures may have simply

revealed the uncooperative nature of many players in the subject pool. In sessions where players were

prone to cooperate (defect) at the beginning of the supergame, positive and strong negative correlation

structures led to lower inferential error and higher (lower) cooperation. This observation lends support

to the argument that cooperation in social dilemmas depends greatly on the environment. In our case,

we see that allowing for better monitoring does not automatically lead to cooperation when monitoring

is imperfect.

Our results give preliminary insights into the prospects of cooperation in groups with correlated

outcomes. Noisy payoffs that are uncorrelated introduce an environment of imperfect monitoring. This

imperfect monitoring environment seems to create a veil of uncertainty that encourages free-riding. It

appears that individuals are inclined to act in their self-interest if they believe that their uncooperative

behavior can go unnoticed. As better monitoring partially removes this veil of uncertainty, cooperation

strengthens (unravels) if players are prone (reluctant) to cooperate at initial stages of the game. As

pointed out before, there are many environments where the correlation structure of shocks is important

to effectiveness of economic groups – perhaps more prominently environments of mutual insurance.

Our results suggest that risk-sharing and cooperation can interact in complicated ways depending on

the composition of the subject pool.

We also found some evidence that negative correlation weakens cooperation in comparison to the

baseline of no correlation. This is true even in the presence of an evolutionary process that tends to

select uncooperative players out of the pool. This seems problematic for economic groups that provide

mutual insurance. Negatively correlated shocks mean that whenever someone in the group has had a

bad shock, another member has had a good shock to offset this. This sounds ideal for risk-sharing.

However, we found that moderate negative correlation introduces additional noise, as players found it

more difficult to unravel the information contained in the correlation structure, relative to positively

correlated shocks. In these circumstances, there appears to be a trade-off between cooperation and

risk-sharing. In light of this trade-off, it seems preferable to include agents with uncorrelated payoffs

into the group, instead of agents with negatively correlated payoffs. Future work should explicitly

consider the impact of correlated shocks in a risk-sharing environment.
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Appendix A The Player’s Own Payoff Distributions

This is the distribution of realized payoff for player when she cooperates according to Bendor (1993).

The shocks faced by each player is independent. The size of the region of uncertainty is determined by

the variance of the shock faced by the player. In Bendor (1993), each player sets critical cutoff values

such that Type 1 and Type 2 errors have the same probability p of occurring, where 1
2 > p > 0. Also,

each player knows where the realized payoff of their opponent lies in relation to the critical cutoff

value.

Appendix B Bayesian Updating Process

Signal

s = 0 s = 1

State of Nature
θ = C πc 1− πc

θ = D 1− πD πD

Let s = 0 be that player 1 received a signal that player 2’s realized payoff is above the benchmark

value and s = 1 be that it is below.

Using a Bayesian approach, player 1 will update her prior after she receives a signal according to:

P (θ = C/s = 0) =
P (θ = C ∩ s = 0)

P (s = 0)

P (θ = C/s = 0) =
P (s = 0/θ = C)P (θ = C)

P (s = 0)

Directly from Bayes’ rule:

P (θ = C/s = 0) =
πCP (θ = C)

πCP (θ = C) + (1− πC)(1− P (θ = C))
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Where P (θ = C) = 0.5. This is player 1’s prior belief on the probability of cooperation. πC (P (s =

0/θ = C)) can be thought of as player 1’s belief of the type of signal that is possible when the other

player cooperates. With these information, player 1 can calculate P (θ = C/s = 0), the probability

that the true state is cooperation given that there is signal that player 2 is above the benchmark

value.

The decision rule:

A signal is informative, or support your belief about the state, if and only if P (θ = C/s = 0) >

P (θ = D/s = 0) and P (θ = C/s = 1) < P (θ = D/s = 1). That is πC > 1 − πD and 1 − πC < πD .

Using the former expression, a signal is informative about a state if it is more likely to occur in the

cooperation state and not very likely to occur in the defection state.

If player 1 is cooperating and gets a signal that player 2 is above a benchmark value, Table 14

shows Player 1’s beliefs about Player 2’s most likely action.

ρ RP T1 T2 πC 1− πC πD 1− πD Error P2’s most likely action

0.9 24 0.00 0.03 0.00 1.00 0.03 0.97 0.03 D

0.4 24 0.06 0.25 0.06 0.94 0.25 0.75 0.31 D

0.0 24 0.36 0.35 0.36 0.64 0.35 0.65 0.71 D

-0.4 24 0.23 0.55 0.77 0.23 0.45 0.55 0.78 C

-0.9 24 0.00 0.34 1.00 0.00 0.66 0.34 0.34 C

0.9 25 0.00 0.02 0.00 1.00 0.02 0.98 0.02 D

0.4 25 0.10 0.25 0.10 0.90 0.25 0.75 0.35 D

0.0 25 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 25 0.31 0.55 0.69 0.31 0.45 0.55 0.86 C

-0.9 25 0.00 0.26 1.00 0.00 0.74 0.26 0.26 C

0.9 26 0.00 0.01 0.00 1.00 0.01 0.99 0.01 D

0.4 26 0.13 0.24 0.13 0.87 0.24 0.76 0.37 D

0.0 26 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 26 0.36 0.52 0.64 0.36 0.48 0.52 0.88 C

-0.9 26 0.00 0.21 1.00 0.00 0.79 0.21 0.21 C

0.9 27 0.00 0.01 0.00 1.00 0.01 0.99 0.01 D

0.4 27 0.14 0.23 0.14 0.86 0.23 0.77 0.37 D

0.0 27 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 27 0.40 0.51 0.60 0.40 0.49 0.51 0.91 C

-0.9 27 0.01 0.18 0.99 0.01 0.82 0.18 0.19 C

0.9 28 0.00 0.00 0.00 1.00 0.00 1.00 0.00 D

0.4 28 0.16 0.21 0.16 0.84 0.21 0.79 0.37 D

0.0 28 0.35 0.36 0.35 0.65 0.36 0.64 0.71 D

-0.4 28 0.41 0.50 0.59 0.41 0.50 0.50 0.91 C

-0.9 28 0.02 0.16 0.98 0.02 0.84 0.16 0.18 C

0.9 29 0.00 0.00 0.00 1.00 0.00 1.00 0.00 D

0.4 29 0.17 0.21 0.17 0.83 0.21 0.79 0.38 D
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0.0 29 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 29 0.44 0.49 0.56 0.44 0.51 0.49 0.93 C

-0.9 29 0.03 0.10 0.97 0.03 0.90 0.10 0.13 C

0.9 30 0.00 0.00 0.00 1.00 0.00 1.00 0.00 D

0.4 30 0.19 0.20 0.19 0.81 0.20 0.80 0.39 D

0.0 30 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 30 0.46 0.48 0.54 0.46 0.52 0.48 0.94 C

-0.9 30 0.05 0.06 0.95 0.05 0.94 0.06 0.11 C

0.9 31 0.00 0.00 0.00 1.00 0.00 1.00 0.00 D

0.4 31 0.20 0.19 0.20 0.80 0.19 0.81 0.39 D

0.0 31 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 31 0.47 0.45 0.53 0.47 0.55 0.45 0.92 C

-0.9 31 0.07 0.05 0.93 0.07 0.95 0.05 0.12 C

0.9 32 0.00 0.00 0.00 1.00 0.00 1.00 0.00 D

0.4 32 0.21 0.17 0.21 0.79 0.17 0.83 0.38 D

0.0 32 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 32 0.49 0.44 0.51 0.49 0.56 0.44 0.93 C

-0.9 32 0.09 0.03 0.91 0.09 0.97 0.03 0.12 C

0.9 33 0.01 0.00 0.01 0.99 0.00 1.00 0.01 D

0.4 33 0.22 0.16 0.22 0.78 0.16 0.84 0.38 D

0.0 33 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 33 0.50 0.41 0.50 0.50 0.59 0.41 0.91 C

-0.9 33 0.14 0.02 0.86 0.14 0.98 0.02 0.16 C

0.9 34 0.01 0.00 0.01 0.99 0.00 1.00 0.01 D

0.4 34 0.23 0.15 0.23 0.77 0.15 0.85 0.38 D

0.0 34 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 34 0.51 0.39 0.49 0.51 0.61 0.39 0.90 C

-0.9 34 0.18 0.01 0.82 0.18 0.99 0.01 0.19 C

0.9 35 0.01 0.00 0.01 0.99 0.00 1.00 0.01 D

0.4 35 0.23 0.13 0.23 0.77 0.13 0.87 0.36 D

0.0 35 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 35 0.53 0.36 0.47 0.53 0.64 0.36 0.89 C

-0.9 35 0.21 0.00 0.79 0.21 1.00 0.00 0.21 C

0.9 36 0.02 0.00 0.02 0.98 0.00 1.00 0.02 D

0.4 36 0.25 0.10 0.25 0.75 0.10 0.90 0.35 D

0.0 36 0.36 0.36 0.36 0.64 0.36 0.64 0.72 D

-0.4 36 0.53 0.31 0.47 0.53 0.69 0.31 0.84 C

-0.9 36 0.25 0.00 0.75 0.25 1.00 0.00 0.25 C

0.9 37 0.03 0.00 0.03 0.97 0.00 1.00 0.03 D

0.4 37 0.25 0.06 0.25 0.75 0.06 0.94 0.31 D

0.0 37 0.36 0.35 0.36 0.64 0.35 0.65 0.71 D

-0.4 37 0.55 0.20 0.45 0.55 0.80 0.20 0.75 C

-0.9 37 0.29 0.00 0.71 0.29 1.00 0.00 0.29 C
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Table 14: RP: realized payoff of Player 1; T1: Type 1 Error; T2: Type 2: Error; Error: Inferential

Error; P2: Player 2

Appendix C Opponent’s Distribution

Figures 6 and 7 give the distribution of payoffs for player 2 for different values of realized payoff for

player 1 under different correlation structures. For each scenario, two distributions are generated

assuming that player 1 is cooperating: (1) the distribution of player 2 realized payoffs when she

cooperates as well (CC), and (2) the distribution of player 2 realized payoffs when she defects (CD).

One million simulations are done for each. For each simulation, all possible realized payoff for player

2 for a specific realized payoff for player 1 is plotted. A simulation is done for each distribution under

every scenario. While we only display realized payoff of 29, 30, 31, 32, 33 (Figure 6) (we used the

corresponding region for player 1 defecting: 41, 42, 43, 44, 45 (Figure 7) for player 1, we simulated

all possible payoffs in the region of uncertainty including the boundaries.
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Figure 6: The distribution of player 2’s realized payoff for various values of ρ and realized payoff of

player 1, when player 1 plays cooperate.
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Figure 7: The distribution of player 2’s realized payoff for various values of ρ and realized payoff of

player 1, when player 1 plays defect.
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Figure 8: The distribution of player 2’s realized payoff for a realized payoff of 31 for player 1, along

with the benchmark value set by player 1. Player 1 will always get a signal that tells if player 2’s

realized payoff lies above or below this benchmark value. Player 1 is cooperating.

Figure 9: The distribution of player 2’s realized payoff for a realized payoff of 43 for player 1, along

with the benchmark value set by player 1. Player 1 will always get a signal that tells if player 2’s

realized payoff lies above or below this benchmark value. Player 1 is defecting.

Figure 8 gives an example of the signal player 1 receives about the realized payoff for player

2. Player 1 sets a benchmark value (the red vertical line) such that Type 1 and Type 2 errors are

the same when ρ = 0 This benchmark value will also be used for every other values of ρ. Player 1

will receive a signal that tells if player 2’s realized payoff is above or below this benchmark value. If

we focus on the scenario where player 1 has a realized payoff of 31, if shocks are positively highly

correlated, the mass of the CC distribution lies below the benchmark value, and the mass of the of

the CD distribution lies above the benchmark value. If player 1 is told that player 2’s realized payoff

is above the benchmark value (in other words, player 2 got a relatively big realized payoff), if they

assumed player 2 defected, the probability of being correct is very large (area of the CD distribution

above the benchmark value) and the probability of being wrong (area of the CC distribution above

the benchmark value) is very small. The probability of being incorrect increases as ρ decreases. The

analysis is similar if player 1 is defecting. Figure 9 shows the distributions when player 1 defects.
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Appendix D Experimental Instructions

Instructions for the Noise Treatment

Welcome!

Today’s experiment will last about 60 minutes. You will be paid a show-up fee of $5 together

with any money you accumulate during this experiment. The money you accumulate will depend

partly on your actions, partly on the actions of others, and partly on chance. Therefore,

please read the instructions carefully. This money will be paid at the end of the experiment in

private and in cash.

Your returns will be recorded in points. At the end of the session, the total number of points in

your account will be converted into cash at an exchange rate of 300 unit = $1. It is possible for you

to get negative points in a round. If at the end of the session you have negative units in your account,

you will be paid the show-up fee.

It is important that during the experiment you remain silent. If you have any questions or need

assistance of any kind please raise your hand, but do not speak, and an experiment administrator will

come to you and you may then whisper your question.

In addition, please turn off your cell phones and put them way now. Please do not look into

anyone’s booth at any time.

Please read the following instructions carefully. You will be given a quiz at the end to test your

understanding and you earn $0.50 for each correct answer.

Agenda:

• Experimental instructions

• Quiz

• Experiment

How a match works

This session is made up of 10 matches between you and other participants in the room. In each

match, you play a random number of rounds with another participant. The length of a match is

randomly determined in that, after each round, there is a 90% chance that the match will continue

for at least another round. Once the match ends, you will be randomly re-grouped with another

participant to play another match. Whenever a match ends, you will be informed of this before you

are re-grouped.

Decisions and Payoffs (Before Random Draw)

In each match, you will make a series of investments in a project with the same participant. For

each round of a match, you can invest in either Project A or Project B. The participant you are

playing with has the same two options. You each choose your project at the same time. The returns
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on investment depends on the project you choose, the project the other participant chooses and a

random draw. That is, the returns you get depend on:

• the investment you made (Project A or Project B)

• the investment made by the other participant

• a random draw

The following table summarizes the return you get based on your decision and the other partici-

pant’s decision:

Other participant’s choice

A B

Your choice
A 48,48 13,60

B 60,13 25,25

The first red bolded entry in each cell represents your returns before accounting for the random

draw, while the second entry in blue represents the returns of the participant you are grouped with

(how the random draw affects you and the other participant’s returns will be explained below).Ignoring

the random draw, if:

• You invest in Project A and the other participant invests in Project A, your both earn 48 points

• You invest in Project A and the other participant invests in Project B, you earn 13 points and

the other participant earns 60 points

• You invest in Project B and the other participant invests in Project B, you both earn 25 points

• You invest in Project B and the other participant invests in Project A, you earn 60 points and

the other participant earns 13 points

Your project returns may change depending on a random draw

In each round, after you have invested in a project, your return may change by a random draw.

Let’s call this random draw v1. This means that, your return may increase, decrease, or stay the

same by an amount v1. The computer will randomly select this number in each round. This random

draw does not depend on the project that you or the other participant choose or the random draw in

previous rounds. This draw is completely random.

This random draw will always be a number from -24 to 24. Each number, of the 49 integer values

between -24 and 24, is equally likely to occur.

The other participant’s return, after they have invested, will also change by a random draw. Let’s

call this amount v2. This means that, the returns from their project may increase, decrease, or stay the

same by an amount v2. The computer will generate these integers for you both. These integers will
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be completely independent. This means that your random draw is completely unrelated

to the random draw of the other participant.

In the diagram below, there are 500 examples of random draws for you and the other participant,

where each dot represents a random draw. If you hover your cursor over one of these dots, you will

see a pair of numbers where the first integer (labelled ’yours’) represents your random draw and the

second integer (labelled ’theirs’) is the random draw for the other participant.

Now, the total return you receive is dependent on your random draw AND the choices made by

the other participant. The other participant’s random draw does not affect your return. With the

random draw, the rule for your investment returns now becomes:

Other participant’s choice

A B

Your choice
A 48 + v1,48 + v2 13 + v1,60 + v2

B 60 + v1,13 +v2 25 + v1,25 +v2

Pay close attention to the following information.

For both you and the other participant, taking into account the return and the random draw:

• the minimum return that can be received is -11 (the lowest possible return 13 plus minimum

possible random draw of -24)

• and the maximum return that can be received is 84 (the highest possible return 60 plus maximum

possible random draw of +24).

After you have made an investment choice in A or B, the range of the returns after accounting

for the random draw is:

1. If you invest in Project A and the other participant invests in Project A:

• Your return will range from 24 (48 plus worst random draw -24) to 72 (48 plus best random

draw +24)
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• The other participant’s return will range from 24 (48 plus worst random draw -24) to 72

(48 plus best random draw +24)

2. If you invest in Project A and the other participant invests in Project B:

• Your return will range from -11 (13 plus worst random draw -24) to 37 (13 plus best

random draw 24)

• The other participant’s return will range from 36 (60 plus worst random draw -24) to 84

(60 plus best random draw +24)

3. Note that if YOUR return falls between 24 and 37, you CANNOT know for sure

whether the other participant invested in Project A or B. If YOUR return is less

than 24 or greater than 37 you CAN know for sure what project the other partici-

pant invested in. (see Scenario 1 in the diagram below).

1. If you invest in Project B and the other participant invests in Project B:

• Your return will range 1 to 49

• The other participant’s return will range from 1 to 49

2. If you invest in Project B and the other participant invests in Project A:

• Your return will range 36 to 84

• The other participant’s return will range from -11 to 37

3. Note that if YOUR return falls between 36 and 49, you CANNOT know for sure

whether the other participant invested in Project A or B. If YOUR return is less

than 36 or greater than 49 you CAN know for sure what project the other partici-

pant invested in. (see Scenario 2 in the diagram below).
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You will get a signal

You will not be told the return of the other participant, but you will always get a signal about their

return. This signal will tell if the other participant’s return is above, below, or equal to a benchmark

value. This benchmark value can help you rule out ranges of values of the other participant’s return.

You will set one benchmark value that will be used if you select Project A and another if you select

Project B. These benchmark values have to be within the range of possible return for both projects

for the other participant. That is, 24 to 84 for Project A and -11 to 49 for Project B.

At the beginning of each match, you will be prompted to select these benchmark values. For

example, if you set a benchmark value of 50 for Project A, you will be signaled that the other

participant’s return is above, below, and equal to 50. You only set this benchmark value at the

beginning of each match. The same benchmark will be used for all the rounds in a match. When a

new match begins, you will be prompted to set the benchmark value again.

Here you can simulate how the benchmark can be used. First select a project, then the computer

will randomly select a project as well. Move the slider to see what information you receive about the

other participant based on the benchmark you select.
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After Each Round

On the result page, we will ask you what you think the chances are that the other

participant chose Project A.

Depending on your guess, you can earn 2 points or 0 points. We are interested in learning about

your best and honest guesses. You will be paid according to a formula which is specifically

designed to maximize the chances that you will win the 2 points if you submit your best

guess.

Your guess will be converted into a chance-to-win. This is calculated by the computer

according to a formula that is explained on separate page that you can request after the experiment.

On the computer interface, you will be able to see the chance-to-win for each outcome directly below

your guess.

You will not be paid for your answer until the end of the experiment. Your answer will not be

shown to any other participant. Your answer will not affect the experiment in any way.

The Interface of the Experiment

Before each match, your computer screen will look like this:
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Figure 10: Set Your Benchmark Values

After you select these benchmark values, the round will begin. In each round, the screen to select

a project for you and the other participant looks like this:
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Figure 11: SYour Selection Screen
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This screen also displays a summary of the outcome of all previous rounds including: the project

you chose; your return (inclusive of the random draw you faced); and if the other participant’s return

is above, below or equal to the benchmark value you set at the beginning of the match.

After you and the other participant have made a decision, your result screen will display:

• The decision made BY YOU

• YOUR realized returns (inclusive of your random draw).

• If the other participant is above, below or equal to the benchmark

• A slider for you to guess the probability that the other participant selected Project A

This is an example of what the computer screen may look like after you have made your choice:

Figure 12: Your Result Screen
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Once a match ends, you will be randomly re-grouped with a different participant in the room

for another match. Each match has the same setup. You will play a number of such matches with

different people in the room.

Reminders

To summarize, the number of rounds in a match is randomly determined. After each round, there

is a 90% chance that the match will continue for at least another round. You and the other participant

will get a random draw. Whatever random draw you get is completely independent of the random

draw faced by the other participant. This means that your random draw is completely unrelated to

the random draw of the other participant.

You will not know the return of the other participant, but you will be able to select a benchmark

value to signal to you the possible range of returns for the other participant. After you both have

invested in a project, you will be told if the other participant’s return was above, below or equal

to this benchmark value. At the end of this session, you will receive $1 for every 300 point in your

account. You will now take a very short quiz to make sure you understand the setup. You will earn

$0.50 for each correct answer.

After the quiz, you will play 4 practice rounds to get you familiarized with the game. For the

practice rounds, you will play against the computer and NOT the other participants. The computer

will randomly select responses. Also, you will be able to select benchmark values for each round. This

ONLY happens for the practice rounds. After the practice rounds, you will begin playing with the

other participants in the room.

49



Appendix E Description of the Belief Elicitation strategy

For this, you will receive either 0 points or 2 points. Your chance to win 2 points depends on both

your guess and if the other participant invested in Project A. Specifically, your chance of receiving 2

points is determined in the following way:

1. First, you will guess the probability that the other participant invested in Project A. You will

guess a number from 0 to 100, that we convert to a decimal.

2. If the other participant invested in Project A, your chance-to-win 2 points will be:

2z − z2

where z is the probability you selected, that the other participant selected Project A

3. If the other participant invested in Project B, your chance-to-win 2 points will be:

1− z2

4. To determine whether you receive 2 points, the computer will randomly draw a number between

0 and 100. Each number between 0 and 100 is equally likely to be picked

5. If the number drawn by the computer is less than or equal to your chance-to-win, then you will

receive 2 points. Otherwise, you receive 0 points
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Appendix F Feedback After Supergame

Appendix G The Maximum Likelihood Estimation Method

We use the Strategy Frequency Estimation Method (SFEM) from Dal Bó and Fréchette (2011) to

estimate the fraction of strategies employed in each treatment. This methodology uses a Maximum

Likelihood Estimation (MLE) to estimate the frequency with which each strategy from a set of pre-

determined set of strategies is found experimental data. This methodology has since been employed

Fudenberg, Rand, and Dreber (2012), Rand, Fudenberg, and Dreber (2015), Dal Bó and Fréchette

(2018), Aoyagi, Bhaskar, and Fréchette (2019), Dal Bó and Fréchette (2019) and Romero and Rosokha

(2019), for example. This method assumes that each subject uses the same strategy across supergames.

However, they can make mistakes. These mistakes are not the errors that are generated from the

experimental design, but rather, it is assumed that subjects can make mistakes when choosing their

intended actions for the particular strategy they are following.

Using the notations of Dal Bó and Fréchette (2011), assume that the probability with which

subject i makes mistakes is 1 − β and the probability that her chosen actions correspond with a

strategy k is β. The likelihood that her observed choices were actually generated by strategy k is

Pri(s
k) = ΠMiΠRim(β)I

k
imr (1 − β)1−Ik

imr . Ikimr is an indicator function that takes the value 1 when

the choice that was actually made in round r and supergame m is the same as what the subject would

have made if she were following strategy k. It is coded 0 otherwise. M and R are the sets of supergames
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and rounds. β is estimated within the model. It can also be interpreted as the probability that an

action is taken given that it is prescribed by a strategy k. Therefore β is the basis for evaluation of

model fit, that is, as the model fit improves β approaches 1.

Therefore, the MLE process entails choosing both the probability of mistakes and the frequency

of strategies that maximizes the likelihood of the sequences of choices. That is, the log-likelihood

is ΣI ln(ΣKϕkPri(s
k)), where K is the subset of strategies being considered and ϕk is a vector of

parameter estimates that represent the frequency of strategies.

We bootstrapped the standard errors in a way that respects the data generating process of our

experimental data. We randomly draw the appropriate number of sessions, then for each session

the appropriate number of subjects, then supergames. All with replacement. The bootstrapping

process was done 1000 times. The standard deviation of the bootstrapped MLE estimates provide the

standard errors.

Appendix H Description of Strategies

Strategy Description

AD Always defect

DTFT Defect in the first round, then play TFT

DGRIM2 Defect in the first round, then play GRIM2

GRIM Cooperate until the other player defects, then defect forever

TFT Cooperate unless other player played defection in the last round

2TFT Cooperate unless other player defected in either of the last two rounds

GRIM2 Cooperate until the other player defects in 2 consecutive rounds, then defect forever

GRIM3 Cooperate until the other player defects in 3 consecutive rounds, then defect forever

TF2T Cooperate unless other player defected in both of the last two rounds

AC Always cooperate
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Appendix I Details on the Automata

There are 128 combinations of automata using 7-bit strings (27). However, different automata can

represent the same strategy. As such, there are 26 unique strategies. Of the 128 strategies, forty of

them represents AD and forty represents AC. The other 24 unique strategies have two different 7-bit

string representation.

To facilitate the noisy signal – two benchmark values – like subjects in the lab, strategies select

these at the beginning of each generation. While we cannot theorize the process through which

subjects select these benchmark values, the automata are programmed to randomly select these. With

is method, we can see what benchmark values survive the evolutionary process. To accommodate the

strategy and benchmark values, a 21-bit string is generated for each strategy. In Figure 13, we show

an example of a representation for TFT. The first 7-bit string translate into a benchmark value of

44 if C is played. The second 7-bit string translated into 15 if D is played. The third 7-bit string

represents the strategy.

Figure 13: TFT Representation

Figure 14 shows how the strategies are coded along with the representation for TFT and DTFT.

The strategies are coded as having an initial state and internal states. The first bit indicates that

the automaton begins in state 0. The other two bits (first bit for state 0 and second bit for state 1)

prescribes the action for each state. The next two gives the transition rule if cooperation is observed

in each state and the final two bits give the transition for each state if defection is observed. For

example, for TFT, the final 6 bits suggest the following action. The first two [0 1] says play C in state

0 and play D in state 1. The second two [0 0] prescribes the action in each state if the other player

is observed to have cooperated. It says that if you are in state 0, transition to state 0. And, if you

are in state 1, transition to state 0. The final 2 bits [1 1] prescribes the action in each state if the

other player is observed to have defected. If you are in state 0 transition to state 1 and if you are in

state 1 transition to state 1. Note that, in the diagrammatic representation, the transition states are

represented by the labelled arcs and a vortex shows the internal state. The player’s prescribed action

is represented by the letter in the middle.
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Figure 14: Coding of the Strategies
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Figure 15: The 26 Unique Automata
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