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EXECUTIVE SUMMARY 

To improve the computational efficiency in developing an editing and imputation (E/I) error 

localization module for the U.S. Census of Agriculture and other large surveys conducted by 

NASS, we addressed the methodological issue of variable elimination by equality edit in linear 

editing. This will simplify the linear edit system and reduce the magnitude of computation. 

Though, in linear programming, the Fourier elimination method for linear inequalities has 

long been used, the role of equality edits in linear editing has not been fully explored. All the 

automatic computer E/I systems for numerical data have generally treated equality edits as a 

special case of inequality edits. A common practice has been to represent an equality edit by two 

inequalities of opposite direction. However, an equality edit defines a more informative 

relationship than an inequality edit. Therefore, the contribution of an equality edit to an editing 

problem should be more than that of an inequality edit. 

Our research results, extending some of Fellegi and Holt (1976) results on linear edits, 

establish the methodology of variable elimination by equality edit in linear editing, which leads 

to a simplified linear editing problem in reduced dimension. 

The methodological establishment of this paper can be particularly useful for the U.S. Census 

of Agriculture editing and imputation, for which a considerable number of the linear edits are 

equality ones. It is expected that the implementation of this methodology, in conjunction with 

other computational improvements, may enable Fellegi-Holt methodology to be implemented 

into the editing systems for future censuses and sample surveys with improved efficiency and 

accuracy. 

RECOMMENDATIONS 

The Census of Agriculture requires a very extensive editing system, featuring a large number 

of equality edits. As a result, the variable elimination methodology provided by this paper can be 

especially useful in the context of researching the possible incorporation of error-localization into 

the editing system for the 2007 Census of Agriculture. The following steps for further research 

are recommended: 

1) Develop an automated approach for implementing the proposed variable elimination 

approach from an initial set of linear edits. 

2) Calculate the computational gains from implementing this methodology on the linear edits 

prepared specifically for the Census of Agriculture. 
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ELIMINATION IN LINEAR EDITING AND ERROR LOCALIZATION 

Stanley S. Weng 

This paper presents some theoretical findings from our recent methodological research addressing the issue 
of variable elimination by equality edit in linear editing. The research was motivated by seeking improvement 
of computational efficiency for error localization, when implementing an error localization module for the 
editing and imputation of NASS’ large surveys. Our results, extending some of Fellegi and Holt (1976) 
results on linear edits, establish the method of elimination by equality edit in linear editing, which leads to a 
simplified linear editing problem in reduced dimension. 

The methodological establishment of this paper can be particularly useful as applied to the U.S. Census of 
Agriculture editing and imputation, for which a considerable number of the linear edits are equality ones. It is 
expected that the implementation of this methodology, in conjunction with other computational 
improvements, may enable Fellegi-Holt methodology to be implemented into the editing systems for future 
censuses and sample surveys with improved efficiency and accuracy. 

KEY WORDS: Automatic editing and imputation; Fellegi-Holt methodology; Implied edit; Fourier 
elimination; Elimination by equality edit. 

1. INTRODUCTION 

For the error localization (EL) problem in 

automatic data editing and imputation (E/I) 

with linear edits under the Fellegi-Holt (F-H) 

methodology (Fellegi and Holt, 1976), the 

linear programming approach provides proper 

methods for solution (Rubin, 1975; Sande, 

1978; Schiopu-Kratina and Kovar, 1989). 

However, in practice, the computational 

efficiency of error localization has been an 

issue (Winkler, 1999; Winkler and Chen, 

2002). Various efforts have been made to 

improve the efficiency, including using an 

algorithm other than Chemikova’s for linear 

programming, e.g., one based on Duffin’s 

(1974) analysis of a system of linear 

inequalities (Houbiers, 1999); a tree-search 
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approach instead of a Chemikova’s algorithm¬ 

like process (Quere, 2000; Quere and De 

Waal, 2000); and even an entirely different 

approach, while still in the spirit of F-H 

(Bankier, 2000; Bankier, et ah, 2000). 

One other consideration is to simplify the 

linear edit system by using its special structure 

and features, to reduce the dimension of the 

system and thus the magnitude of computation 

for error localization. 

Edits used in economic surveys and 

censuses, like those created by NASS/USDA 

for the U.S. Census of Agriculture, are 

primarily linear. They also contain a 

considerable number of equality edits, for 

example balance edits, in which an aggregate 

variable is equal to the sum of its component 

variables. 

In the presence of equality edits in a linear 

edit system, it seems preferable to use the 

equality edits to eliminate fields (variables), 

leading to a simplified system in reduced 

dimension. However, until now, none of the 

1 





automatic computer E/I systems for numerical 

data have distinguished conceptually between 

equality and inequality edits. Equality edits 

have generally been treated as a special case of 

inequality edits. Some algorithms adopted the 

representation of an equality edit by two 

inequalities of opposite direction. Such 

handling seems to ignore the more informative 

specification of an equality edit. The equality 

form defines a more restrictive relationship 

than that of an inequality. In linear theory, an 

equality represents a lower dimension 

hyperplane in the data linear space. The 

contribution of an equality edit to an editing 

problem should be more than that of an 

inequality edit. 

From the point of view of F-H 

methodology, there is an important distinction 

between equality and inequality edits in their 

generation of implied edits. This paper 

identifies such a distinction and establishes a 

method of using equality edits to eliminate 

fields and reach an equivalent linear edit 

system, for which all the inequality edits form 

a linear edit system of lower dimension. The 

original linear editing problem can be solved 

by first solving the problem with respect to 

this reduced system, and then determining the 

remaining fields by the specification of the 

equality edits. 

Benefits in computational efficiency from 

this methodology can be significant. The 

magnitude of the editing problem is reduced 

through elimination, and the program needs 

only to handle inequality edits. 

The outline of this report is as follows. 

Section 2 describes the basic setting and 

concepts of linear editing. Section 3 reviews 

some basic concepts and results of the F-H 

theory in the context of linear editing, that are 

related to the topic of this paper. Section 4 is a 

brief review of some mathematical concepts of 

Fourier elimination. Section 5 presents our 

theoretical results on the methodology of 

elimination by equality edit. Section 6 gets 

back to the main editing problem, error 

localization, which motivated this research 

and now can be solved in reduced scale with 

improved efficiency. Section 7 briefly 

discusses the implementation issue. Section 8 

gives our recommendations. The technical 

Appendix contains the proof of the theoretical 

results of this paper. 

2. LINEAR EDITING 

The editing problem of numerical data 

from a survey/census is generally defined by a 

set of linear edits in the following form: 

e,: anx, + a,2x2+...+alnx„ < b, 

i' = l,2,...,m (la) 

with positivity constraints for the variables 

xj > 0, j = 1,2,...,n (lb) 

Here in (la) the inequality sign may represent 

either inequality or equality. In matrix 

notation, the above linear edit system is 

written as 

A x < b (2a) 

and 

x > 0 (2b) 

where A (m X n) is the edit coefficient 

matrix of (la), b (m X 1 ) is the nght-hand- 
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side vector of (la), andx = (jc, , x2,xn )T 

is the data vector (where T denotes transpose 

of a vector). Data editing so specified is called 

linear editing. Additional constraints may be 

added to the above basic setting to define 

various linear editing problems, for example 
error localization, that will be described in 

Section 6. 

A data record is a passing record with 

respect to a linear edit system if the record 

satisfies all edits in the system. Otherwise, the 

record is a failed one. All data points that 

satisfy the linear edit system form the feasible 

area of the system. A passing record is also 

called feasible, and a failed record infeasible. 

A linear edit system is completely described 

by its feasible area. Two linear edit systems 

are considered equivalent if they have 

identical feasible areas. Geometrically, the 

feasible area of a linear system is a polyhedron 

in the data space. 

We are actually in the setting of linear 

programming (Gass, 1985; Kotz & Johnson 

(Ed), 1985; Luenberger, 1984). Linear editing 

problems, such as error localization, are 

generally related to solutions of a linear 

program. A linear program can be solved by 

finding the set of all extremal points of its 

feasible area. Chemikova’s algorithm 

(Chemikova, 1964, 1965) is used to find all 

extremal points of a linear system of 

nonnegative variables. 

3. F-H THEOREM ON LINEAR EDITS 

Fellegi and Holt (1976) established the 

fundamental theory of automatic editing and 

imputation in the following criteria, widely 

referred to as the F-H principles: 

(1) The data in each record should be made to 

satisfy all edits by changing the fewest 

possible items of data (fields). 

(2) Imputation rules should be derived from 

the corresponding edit rules without explicit 
specification. 

(3) When imputation takes place, it should 

maintain, as far as possible, the frequency 
structure of the data file. 

For a failed record, identifying the fewest 

possible fields that may be changed to make 

the resulting record satisfy all edits is the error 

localization problem. 

To solve the error localization problem, F- 

H showed that both explicit (the original) 

edits, as specified by subject-matter experts, 

and implied edits are needed. An implied edit 

is one that is logically implied by a set of 

explicit edits. An implied edit is said to be an 

essentially new edit if it does not involve all 

the fields (variables) explicitly involved in the 

edits that generated it. A field that is 

eliminated in generating an essentially new 

implied edit is called a generating field of the 

implied edit. A set of edits together with all 

essentially new implied edits that can be 

generated from the set of edits, forms a 

complete set of edits. The concept of a 

complete set of edits is crucial in F-H theory, 

which underlies their main theorem. 

We focus on linear editing. For linear 

edits, the generation of essentially new edits 

and the derivation of a complete set of edits 

take an explicit form, as given by Theorem 3 

of Fellegi and Holt (1976). The following is a 

restatement of the theorem. 

Theorem (F-H, 1976). An essentially new 

implied edite, is generated from edits er and 

es, as in (la), using field j as a generating 

field, if and only if a rj and a sj are both nonzero 
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and of opposite sign. The coefficients of the 

new edit, atk , are given by 

Q lk — <2 skQ. rj Cl rk (2 sj, k — 2,..., K , 

5y >-60 

-5y >-30 

y > -100 

-ly >-50 

(3*E1 + 2*E3) 

(3*E2 + E3) 

(3*E1 + 2*E4) 

(3*E2 + E4). 

where r and s are so chosen that a rj >0 and 

a SJ < 0 . Repeated application of the above 

procedure will derive all essentially new 

implied edits. 

We may continue to generate implied 

edits, though maybe redundant, from the 

above generated implied edits and the original 

edits. 

The theorem simply states that from two 

linear inequalities where the inequality signs 

are in the same direction, a variable can be 

eliminated by taking their linear combination 

if and only if the variable has coefficients in 

the two inequalities which are of the opposite 

sign. The essence of generating an essentially 

new implied edit is elimination of a field. 

Example 1 (Generation of essentially new 

implied edits). Consider the following set of 

linear edits: 

El: 2x + y > 20 , 

E2: x-2y >10, 

E3: -3x + y > -60 , 

E4 -3jc - y > -80 . 

Using y as the generating field, the following 

essentially new edits may be generated: 

5 Jt >50 (2*E1+E2) 

-5* >-110 (2*E3 + E2) 

- ;t > -60 (E1+E4) 

- 6* > -140 (E3+E4) 

The elimination operations are indicated in the 

parentheses. And, using* as the generating 

field, the following essentially new implied 

edits may be generated: 

4. FOURIER ELIMINATION 

In linear theory, the method used in F-H 

Theorem 3 to generate essentially new implied 
edits is called Fourier elimination (Duffin, 

1974; Fourier, 1826; Schrijver, 1986). This 

approach was proposed by Fourier to solve 

linear programming problems by elimination 

of variables. A variable, say, x h, can be 

eliminated by taking positive combinations of 

two inequalities which have opposite signs in 

the coefficient of xh . By adding suitable 

combinations of all possible pairs of 

inequalities with a positive and a negative 

coefficient oixh , and subsequently adding all 

inequalities that did not contain xh in the first 

place, one gets a new system of inequalities 

which does not contain variable xh . This 

process can continue in successive elimination 

of other variables. 

In a Fourier elimination process, the 

number of inequalities can grow excessively. 

Moreover, by taking all possible linear 

combinations of the original inequalities 

during the elimination process, it could easily 

occur that some inequalities become 

redundant. That is, an inequality can be 

written as a positive linear combination of 

some of the other inequalities. Duffin (1974), 

in his method of analyzing systems of linear 
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inequalities, proposed a “refined elimination” 

rule which deletes any inequality which has 

been generated by adding t + 2 or more of the 

original inequalities, when t variables have 

been eliminated. Houbiers (1999) applied 

Duffm’s method to error localization. 

Fourier’s original problem of interest was 

whether a feasible solution to a specified set of 

linear inequalities exists. This can be restated, 

in the terminology of modem automatic data 

editing, as whether a set of fields can be 

imputed in such a way that a specified set of 

linear edits can be satisfied. Fourier’s method 

of successive elimination has fostered modem 

automatic data editing, as generalized in the F- 

H methodology. 

5. ELIMINATION BY EQUALITY EDIT 

In addressing linear editing problems, it 

seems that the role of equality edits has not 

been fully explored. Equality edits have 

generally been treated as a special case of 

inequality edits, without using the defining 

feature, the deterministic aspect, of an equality 

edit. Actually, from the implied edit point of 

view, there is an important distinction between 

equality edits and inequality edits in their 

generation of implied edits, as shown by two 

lemmas to be introduced below. 

Before stating the lemmas, we introduce 

the concept of equivalent edits. Two sets of 

edits are equivalent, if they imply each other, 

that is, each edit in one set is implied by (some 

edits of) the other set. In the linear edit 

context, two sets of linear edits are equivalent 

if their feasible area (thus, the set of extremal 

points) are identical. Two sets of equivalent 

linear edits have the same contribution to a 

linear edit system, and may thus replace each 

other. Editing problems with respect to two 

equivalent sets of edits are considered the 

same. 

The following two lemmas extend the 

statements of Fellegi and Holt (1976) 

Theorem 3 in the situation where one edit is 

an equality. They state that, in such situations, 

it is always possible to generate an essentially 

new implied edit when a common field is 

involved. Furthermore, the original inequality 

edit can be replaced by the essentially new 

implied edit generated. 

Lemma 1. An essentially new implied edit 

can always be generated from edits er andes, 

where es is an equality edit, using field j as a 

generating field, provided the coefficients of 

field j in the two edits are both nonzero. 

Lemma 2. An inequality edit er can be 

replaced by an essentially new implied edit 

et generated from er and an equality edit es. 

Proof of Lemma 1 and Lemma 2 are given 

in Appendix of this report. 

The above lemmas show how an equality 

edit can be used to simplify a linear edit 

system. Based on these two lemmas, our next 

two theorems show that, just as elimination of 

free variables can be made using equalities in 

the linear system, so can elimination of 

positively constrained variables using the 

equality edits present in the linear edit system. 

The theorems are stated in the context of 

linear editing through the F-H concept of 

implied edit. 

Theorem 1 (Elimination by equality edit). 

Suppose a linear edit system contains m 

inequality edits and one equality edit, with n 

positivity constraints for the n fields involved. 

Then, one nonzero field of the equality edit 
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can be eliminated from all other edits 
involving that field. The resulting new linear 

edit system contains m + 1 inequality edits 

involving n - 1 fields, with n - 1 

corresponding positivity constraints, and the 
original equality edit. The new system is 

equivalent to the original one. The extremal 

points of the original linear system can thus be 

obtained by first obtaining the extremal points 

in the n — 1 fields of the new linear system 

excluding the equality edit, and then 

determining the remaining field by the 

equality edit. 

Proof of Theorem 1 is given in Appendix. 

The following example illustrates the 

elimination method, as stated in the proof of 

Theorem 1. 

Example 2. Consider the following set of 

linear edits: 

2jc, + x2 + Jt3 < 4 , (4) 

xx + 2x2 + 3jc3 < 5 , 

+ x2 + 2x3 = 3 , 

Xj >0,j = 1,2,3. 

We use the equality edit to eliminate a 

variable, say, x3, in the two inequality edits. 

Eliminatingin the first inequality edit, we 

have 

3je, + x2 < 5 . 

Eliminating x3 in the second inequality edit, 

we have 

— JC, + JC2 < 1 . 

And, the essentially new implied edit 

generated by the positivity constraints, > 0 

and the equality edit: 

x] + x2 < 3 . 

In the(jt,, x2) space, solve the last three 

inequalities, and there are three extremal 

points: 

(^,0), (0,1),and (1,2). 

Now calculate x, using the equality edit, 

s3 = (3 — s, — x2) / 2 , it follows 

x3 = y^,l,0 , respectively. The extremal 

points of the original system thus are 

(y'j ,°> ^3) > (0,1,*). and (1,2,0) ■ 

Theorem 1 may be extended to linear edit 

systems containing multiple equality edits, as 

follows. 

Theorem 2. Suppose a linear edit system 

contains m inequality edits and q equality 

edits, with n positivity constraints for 

the n fields involved (q <n). Assume the q 

equality edits are of full rank. Then, a new 

linear edit system, which is equivalent to the 

original one, can be formed through 

elimination using the q equality edits. The new 

system contains m + q inequality edits 

involving/? — q fields, with/? — q 

corresponding positivity constraints, and the 

original q equality edits. The extremal points 

of the original linear system can thus be 

obtained by first obtaining the extremal points 

in the n — q fields of the new linear system 
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excluding the <7 equality edits, and then 

determining the remaining q fields using 

theg equality edits. 

Proof of Theorem 2 is provided in 

Appendix. The elimination process, as 

described in the proof of Theorem 2, is 

illustrated by the following example. 

fields (s,, s ,), two corresponding positivity 

constraints s; > 0, j = 1,2 , and two equality 

edits, (5.1), and (5.4) (or, equivalently, the two 
original equality edits, (5.1) and (5.2)). 

In the second stage of elimination, we use 

equality edit (5.4) to eliminate another field, 

say, s2 , in the inequality edits. With (5.5): 

Example 3. Consider the following set of 

linear edits (m = 1 and q = 2 ): 

3s, + 3s2 + s3 = 3 , (5.1) 

2s, 1 + s2 + 2s3 — 4 , (5.2) 

4*. + 2*2 +X} <3Y2, (5.3) 

x, >0J = 1,2,3. 

Here, for a convenient setting to display the 

elimination process, we list equality edits 

above inequality edits. 

First, use equality edit (5.1) to eliminate a 

field, say, s3. With (5.2): 

4s, + 5x2 = 2 . (5.4) 

With (5.3): 

s, - s2 < . (5.5) 

Also, with the positivity constraint s3 > 0 : 

3s, +3x2 < 3 , or 

s, + x2 < 1. (5.6) 

Now the new edit system, resulting from the 

first stage of elimination, consists of two 

inequality edits, (5.5) and (5.6), involving 

With (5.6): 

x, < 3 (5.8) 

And with the positivity constraints, > 0 : 

4s, < 2 , or, 

X, < ]/2 ■ (5.9) 

The new edit system, resulting from the 

second stage of elimination, consists of three 

inequality edits, (5.7), (5.8) and (5.9), 

involving only field s, , the positivity 

constraints, > 0 , and two equality edits (5.1) 

and (5.4) (or, (5.1) and (5.2)). 

Now we can solve the reduced linear 

system ins, , that is, (5,7), (5.8) and (5.9), 

with the constraints, > 0 . We find two 

extremal points s, = 0 and . Then, using 

(5.4), we gets, = andO respectively; and 

Q / O / 
using (5.1), s3 andrespectively. 
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Thus, the extremal points of the original 

system are 

(0, ) and (j/^ >0> y^). 

We may simultaneously eliminate two 

fields using the two equality edits. By this, we 

first convert the equalities to the canonical 

form through Gaussian elimination (see, e.g., 

Luenberger (1984)), and then substitute them 

into the inequalities. (5.1) and (5.2) can be 

written in such form in (x,, x2) as 

x, + x3 — 3 = 0, (5.10) 

x2-y^x3+2=0. (5.11) 

Substituting (5.10) and (5.11) into the 

inequality edit (5.3) to eliminate x, and x2 , it 

follows 

x 3 (5.12) 

and into x, > 0 , it follows 

-5/^x3+3>0; (5.13) 

x3, obtaining the two extremal points, 

3/ Q / 
X3 = andx3 = yc . Then, use (5.10) and 

(5.11) to determine the remaining fields, 

3 / 1 / 
x, and x2 : forx3 ~ /2 ' x\ ~ /2 and 

x2 = 0 ; and forx3 = ^5 ,x, = 0 and 

6. ERROR LOCALIZATION 

The error localization problem is stated as: 

for a failed record, anticipating the F-H 

principles, which components of the record 

must be changed in order that, with as few as 

possible changes, the record can be made to 

pass the edit system? 

In linear editing, the linear programming 

approach to solving the error localization 

problem (Sante, 1978; Schiopu-Kratina and 

Kovar, 1989) is briefly described as follows. 

Letx o be a failed record with respect to the 

linear edit system (2a, 2b). Let Ax be the 

correction vector in the sense that x 0 + Ax 

passes all the edits of (2a, 2b), that is, 

and intox2 > 0 , it follows 
A(x0 + Ax) < b , 

x 0 + Ax > 0 . 

y^ x3 - 2 > 0 . (5.14) 

Now the new edit system, resulting from the 

elimination of (x,, x 2) , contains three 

inequality edits in x3, (5.12), (5.13) and 

(5.14), with the positivity constraint x3 > 0 , 

and the two equality edits, (5.10) and (5.11). 

We first solve the simplified linear system in 

Since x 0 is known, rewrite the above system 

as 

A Ax < b - Ax 0, (6) 

Ax > -x0. 

The usual technique to solve (6) is to 

express the change Ax as a difference between 
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the positive and negative changes: point that satisfies (8c). 

Ax = u - v , 

where both u and v are nonnegative vectors 

and their inner product is zero, u Tv = 0 (i.e., 

for any field, there may be either positive or 

negative change, but not both). 

Denote | x| +, called cardinality, for the 

number of strictly positive elements of a 

nonnegative vector X . The problem (6) can be 

stated as: Find all possible correction vectors 

(U T, V T)T such that the cardinality of 

| U — v| is a minimum, subject to: 

A(u - v) < b - Ax0, (7) 

u - V > -x0, 

u,v >0, 

u Tv = 0 . 

Problem'(7) can be restated with respect to a 

linear system in (u, V) E R 2n, in standard 

form, with suitable matrices A j andbj , as: 

min|u - v|+ 

subject to: 

(8a) 

(8b) 

(8c) 

( n\ 
- bj 

VVJ 
u,v >0, 

u Tv = 0 . 

The complementary condition (8c) is actually 

redundant in the problem, because the 

minimum of| U — v|4 is always reached at a 

Rubin (1975) noticed the monotone 

property with Chemikova’s algorithm in 

processing a row, that the cardinality of any 

new column generated is no less than that of 

its generating columns. He modified 

Chemikova’s algorithm to solve the following 

cardinality constrained linear program 

problem: 

max d rx 

subject to 

Ax < b , (9) 
x >0 , 

|x|+< Th 

where X andd are n X 1 , A is m X n , b is 

m X 1 , and 77 is a positive integer less than 

m in {m, n}, by directly producing the 

extremal points of the feasible area 

G = {x| Ax < b,x > 0} that satisfy 

| X | + < Tj, and then determining the optimal 

extremal point. As Tanahashi and Luenberger 

(1971) showed, an optimal solution to (9) can 

always be found in G . 

Rubin’s cardinality constrained linear 

program has been adopted as a standard 

formulation of the linear editing error 

localization problem, e.g., GEIS (Sande, 1978; 

Schiopu-Kratina and Kovar, 1989) and 

CherryPi (De Waal, 1996). 

Houbiers (1999) applied Duffin’s method 

on Fourier’s analysis of linear inequality 
systems to error localization. He compared 

Duffin’s method with Chemikova’s algorithm 

- two similar algorithms with different control 

rules for excessive growth of the matrix, and 
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showed that Duffin’s method is expected to be 
more efficient. Quere (2000) developed a new 

algorithm which performs Fourier elimination 

in a tree search process, instead of a 

Chemikova’s algorithm-like process, to 

determine all optimal solutions to the error 

localization problem (see also Quere and De 

Waal, 2000). 

In the presence of equality edits in the 

linear edit system, by the elimination 

methodology provided in last section, we can 

solve the error localization problem with 

respect to a simplified system in reduced 

dimension, as described below. 

Through elimination by the equality edits, 

the linear edit system is restructured into the 

following form : 

L,: A ,x<1> < b(l), 

x'1’ >0, 

and 

fails L,, perform error localization and 

imputation forx q1} with respect to system L,. 

And then correct X q2 1 by the imputed 

X q1 ] using the equality edits of L2. If X j,1} is 

feasible with respect to Lx, butx 0 fails L,, we 

only need to correct X q2) , again, byx q1} using 

the equality edits of L2, a deterministic 

imputation. 

Benefits in computational efficiency for 

error localization can be significant from 

application of the elimination methodology. 

In processing a row with Chemikova’s 

algorithm, excessive growth of the number of 

columns depends on the number of fields, 

which causes the storage problem. Reduction 

of the number of fields reduces the magnitude 

of computation. Also, the computer code does 

not need to handle equality edits, which also 

simplifies the computation. 

7. IMPLEMENTATION 

L2: A 2x = bf2), 

where X = 

^x(1)^ 

y(2) 

vx ; 
(n x 1 ),x(1) (n - q) x 1 

consisting of the fields involved in the 

inequality edits in L, ,x l2) (q X 1) consisting 

of the fields eliminated from the inequality 

edits; A j m, X (n - q), A 2 (q X ti ) of full 

rank,b(1 ] (m, X 1), andbt2) (q X 1). 

Let X 0 = 

fYdA 
A o 

x(2) Vxo J 
be a failed record. The 

correction procedure is: if the subrecord X1'1 

In linear editing, elimination of fields by 

equality edits restructures the linear edit 

system. This restructuring is conducted prior 

to data editing, since data are not involved. A 

separate module can be created to perform the 

elimination. 

Generally, when q (linearly independent) 

equality edits are present in the linear edit 

system, any subset of q fields may be selected 

for elimination from the inequality edits, 

provided the elimination process is valid 

according to Theorems 1 and 2. That is, the 

q variables are linearly independent. When 

performing a successive elimination, at each 

stage, there is no additional theoretical 

criterion for choosing a field for elimination. 
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besides the general requirement of a nonzero 

field. 

Practically, some strategies may be 

developed for choosing the fields for 

elimination. At each stage of elimination, 

maximizing the number of zeros in the 

coefficients of inequality edits appears to be a 

practical criterion. Aggregate variables are 

natural candidates for elimination. Other 

strategies may be developed based on the 

structure of the edit system. 

In computer implementation of the 

elimination process, either successive 

elimination or simultaneous elimination can 

be performed, as illustrated by the examples in 

Section 5. 

8. RECOMMENDATIONS 

The edit specifications for many of NASS’ 

surveys include a substantial number of 

equality edits. Balance edits are a common 

example of this type of edit. The Census of 

Agriculture, in particular, requires a very 

extensive editing system, incorporating many 

edits of this type. As a result, the variable 

elimination methodology provided by this 

paper is especially useful in the context of 

researching the possible incorporation 

of error-localization into the editing system for 

the 2007 U.S. Census of Agriculture. 

The implementation of this methodology, 

in conjunction with other computational 

improvements, may enable Fellegi-Holt 

methodology to be implemented into the 

editing systems for future censuses and sample 

surveys with improved efficiency and 

accuracy. 

The author makes the following 

recommendations for further research: 

1) Develop an automated approach for 
implementing the proposed variable 

elimination process from an initial set of 

linear edits. 

2) Calculate the computational gains from 

implementing this methodology on the 

linear edits prepared specifically for the 

Census of Agriculture. 
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APPENDIX: Proof of Lemmas and 
Theorems 

Proof of Lemma 1: 

The lemma is clearly true. Since we can 
always make the coefficient of the generating 

field in the equality edit to be opposite in sign 

to that in the other edit, the lemma is thus an 

immediate consequence of Fellegi and Holt 

(1976) Theorem 3. 

Proof of Lemma 2: 

The set of edits er and es is equivalent to 

the set of edits et and es, since edit er can also 

be generated as an implied edit by edits 

et and es. Thus we may use the set of edits 

et and es to replace the original set of edits er 

andes; or, equivalently, use the essentially 

new implied edit et to replace the original 

inequality ed\ter. 

Proof of Theorem 1: 

Lete(, i = 1,2,..., m , be them inequality 

edits of the linear edit system, and J , the one 

equality edit. Denote g J for the positivity 

constraint*^ > 0, j = 1,2,..., n . 

Suppose*^ is a nonzero field ofe . For 

each inequality edit ei, for which xh is also a 

nonzero field, by Lemmas 1 and 2, an 

essentially new implied edit can be generated 

frome( andF using field x h as the generating 

field, and replaces e{ in the original set of 

edits. Also, an essentially new implied edit 

can be generated from g h , the positivity 

constraint for*A , ande using xh as the 

generating field, and replaces g h . The 

resulting linear edit system is equivalent to the 

original system. The new system contains 

m + 1 inequality edits in which xh is 

eliminated, with n - 1 positivity constraints 

g •, j ^ h , and the original equality edit T . 

In the new linear system, ~e is the only edit that 

involves xh . Formally, xh is a free variable in 

J . Thus, the extremal points of the new linear 

system can be obtained by first obtaining the 

extremal points in * ., j & h , of the new 

linear system excluding F, and then 

determining x h using F. These extremal points 

are also those of the original linear system. 

The proof is completed. 

Proof of Theorem 2: 

This theorem is a result of repeated 

application of the elimination method given 

by Theorem 1. For convenience, the proof is 

made for <7 = 2 . For q >2 , the proof can be 

formally given by induction, and is omitted 

here. 

Denote L for the linear edit system in the 

theorem. Let et, i = 1,2,..., m , be the m 

inequality edits, Fk, k =1,2 , the two equality 

edits. Denote g . for the positivity constraint 

Xj >0,j = 1,2,..., w . 

Suppose xh is a nonzero field of the 

equality edit ^ . By Theorem 1, using F, we 

can eliminate field jc ^ from all other edits that 

involvesxh , including them inequality edits, 

ei, i = 1,2,..., m , the equality edite~2 , and 
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the positivity constraint g h . Denote e\u for the 

resulting m inequality edits from 

et, i = 1,2,..., m ,F2(1) for that from^2 , and 

for that from g h . Denote L{ 11 for the 

resulting linear edit system. L(] ) then contains 

m + 1 inequality edits, e{1}, 

i = 1,2,..., m + 1 , which involve fields 

x ., j ^ h , the n — 1 corresponding positivity 

constraints, g ., j ^ h , and the two equality 

edits, F] and F-jn (one original and one 

generated). L(1) is equivalent to L . This is the 

first stage of elimination. 

Now w'e perform the second stage of 

elimination with respect to L(1). Let J^.be a 

nonzero field of the equality edit 

F\1 ] (h' ^ h ,h' exists by the full rank 

assumption for the equality edits). We use 

~e\1 ] to eliminate field xh. from all other edits, 

except Fx, that involves xh., including the 

m +1 inequality edits, e,(1), 

/ = 1,2,..., m + 1, and the positivity 

constraint g h. for xh.. Denote ex , 

i = 1,2,..., m + 2 , for the resultingm + 2 

inequality edits. 

Denote V1] for the resulting linear edit 

system from the second stage of elimination. 

L contains m + 2 inequality edits, 

ej2\ i = 1,2,..., m + 2 , involving fields 

x j, j ^ h, h', the n — 2 corresponding 

positivity constraints, g ., j ± h,h', and the 

two equality edits, F, and F^' (or equivalently. 

the original set of equality edits e j and e2 ). 

L{2) is equivalent to L(1), and hence to L . 

We thus established, for q = 2 , the 

structure of the new linear system through 
elimination, as stated in the theorem. The 

general truth of the theorem for any q can be 

established by induction. The statement in the 

theorem for obtaining the extremal points of 

the original system through the new system is 

an immediate consequence of the structure of 

the new linear system. The proof is completed. 
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