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1. Introduction 

African Swine Fever (ASF) is a contagious virus disease observed at for any pig farm. It brings 

about lots of socioeconomic problems threatening the food security of all countries and also 

affects the imports of pigs from neighboring countries. For example, due to ASF outbreaks in 

China, pork imports in Korea decreased by 14.3-21.4%. As a result, pork price in Korea has 

changed rapidly; it rose by 40% in September 2019 and dropped in half just after one month. 

Such a rapid price volatility involves market disturbance with the demand of excessive social 

cost. Thus, it would be beneficial to provide more accurate price prediction as both farmers and 

consumers can effectively react to market changes induced by ASF outbreak.  

For this study, we pay attention to recent methodologies based on deep learning (DL) 

algorithm, which is a specific concept of machine learning, with the understanding that its 

prediction power is known to be more robust than that of conventional time series models 

(Adhikari and Agrawal, 2013; Gamboa, 2017). Especially, we employ Long Short-Term 

Memory (LSTM) units as a key model. LSTM is an advanced model of Recurrent Neural 

Networks (RNNs), which is one of methods relying on DL (Che et al., 2017). While the 
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application of RNNs suffers from a vanishing gradient problem and an exploding gradient 

problem, LSTM provides alternative ways to mitigate those problems by RNNs. Also, LSTM is 

known to be efficient in capturing long-term dependencies and inner relations among multiple 

time series (Hochreiter and Schmiduber, 1997).  

Due to its advanced efficiency, LSTM has been applied to various fields such as image 

recognition, language learning, time series prediction, and so on (Graves et al., 2007; Perez-Oritz 

et al. 2003; Wierstra et al., 2005). However, LSTM has been rarely used in the field of 

agriculture, such as agricultural water, farm land, remote sensing data, and so on. (Ndikumana et 

al., 2018; You et al., 2017; Zhang et al., 2018). Most recently, Jiang et al. (2018) suggested 

prediction of corn yields over county levels at the Corn Belt in the United States using LSTM, 

which is closely connected to our research object. 

Based on LSTM, we devise a prediction model for pork price with multivariate time 

series data considering livestock disease outbreaks, such as ASF, Foot Mouth Disease (FMD), 

and Highly Pathogenic Avian Influenza (HPAI), and substitution relation such as beef and 

broiler. We gather weekly-based time series data from January 2010 through April 2022 

covering all outbreaks of ASF, FMD, and HPAI. In particular, we consider the COVID-19 

pandemic broke out in December, 2019. As an atypical data, we consider text queries concerning 

those outbreaks, which are gathered from on-line websites such as news, blogs, or social media 

services.  

Prediction algorithm is as follows: first, we normalize all time-series data using min-max 

scaling. Second, we generate both training and testing datasets. Third, we generate LSTM 

networks using AdamOptimizer provided by TensorFlow with Python as an optimization 

function. Finally, we predict pork price and compare results with the mean absolute percentage 



error (MAPE). In addition, conventional time series models like Vector Error Correction Model 

(VECM) can be considered as a benchmark case for comparison. We expect our study can 

provide some introductory implication in using LSTM for the field of agricultural economics and 

for the livestock policy makers in case livestock diseases break out.  

 

2. Model 

As a benchmark, we use Threshold Vector Autoregressive (TVAR) model and Threshold Vector 

Error Correction Model (TVECM) to identify the nonlinear structure of the livestock product 

prices caused by the infectious diseases in livestock. Both models rely on the threshold model, an 

analytical method dividing a sample into two or more regions according to the threshold values 

when the subject has a nonlinear relationship (Zapata and Gauthier, 2003). 

TVAR model is based on the Vector Autoregressive (VAR) model with threshold effects. 

A single TVAR model with one threshold value is shown in the following equation (1) (Hansen, 

2000). 

 

𝑌𝑡 =  {
𝑐1 + 𝛽1𝑗𝑋𝑡 + 𝜖1𝑡    𝑖𝑓  𝑞𝑡 < 𝛾𝑖

𝑐2 + 𝛽2𝑗𝑋𝑡 + 𝜖2𝑡    𝑖𝑓  𝛾𝑖 ≤ 𝑞𝑡
      (1) 

where,  𝑋𝑡 = [𝑌𝑡−1 𝑌𝑡−2 𝑌𝑡−3 ⋯ 𝑌𝑡−𝑝],    𝑌𝑡 = [𝑃1 𝑃2 𝑃3] 

 

𝑌𝑡 is a dependent variable vector, and 𝑞𝑡T is a threshold time series variable. The VAR 

model can be divided into two or more regimes based on 𝛾𝑖 which is the threshold value. This is 

summarized in the following equation (2) to (3). 

 

𝑌𝑡 =  (𝑐1 + 𝛽1𝑋𝑡 + 𝜖1𝑡)𝐼(𝑞𝑡 < 𝛾𝑖) + (𝑐2 + 𝛽2𝑋𝑡 + 𝜖2𝑡)𝐼(𝑞𝑡 ≥ 𝛾𝑖)   (2) 



 

𝑌𝑡 =  𝐶 + 𝛿𝑋𝑡(𝛾) + 𝑒𝑡        (3) 

where.  𝑋𝑡(𝛾) = [𝑋𝑡𝐼(𝑞𝑡 < 𝛾𝑖)  𝑋𝑡𝐼(𝑞𝑡 ≥ 𝛾𝑖)]′,    𝛿 = [𝛽1 𝛽2] 

 

I is an indicator function that has a value of 1 if the condition is satisfied and a value of 0 

otherwise. The TVAR model has a nonlinear / discontinuous form because it has different 

parameter according to the indicator function I, such as 𝛽1 and 𝛽2. Therefore, the appropriate 

parameter estimation could be derived from the sequential conditional least squares as equation 

(4) and the threshold value can be estimated the least squares as shown in equation (5) (Hansen, 

1997). 

 

𝛿(𝛾) = (∑ 𝑋𝑡(𝛾)𝑋𝑡(𝛾)′𝑛
𝑡=1 )−1(∑ 𝑋𝑡(𝛾)𝑌𝑡

𝑛
𝑡=1 )     (4) 

𝑒𝑡̂(𝛾) = 𝑌𝑡 − 𝛿(𝛾)𝑋𝑡(𝛾) 

𝜎𝑛
2̂(𝛾) =

1

𝑛
∑ 𝑒𝑡̂(𝛾)2

𝑛

1

 

 

𝛾 = argmin𝛾∈[𝛾 𝛾]  𝜎𝑛
2̂(𝛾)        (5) 

 

In order for the estimation results to be meaningful, the threshold effects must exist. For 

this reason, it is necessary to test the threshold effect. However, under the null hypothesis, there 

is a problem that the threshold value is not identified in testing the threshold effect. As shown in 

the equation (6), this can be solved through F- test for residuals both under the null hypothesis 

and under the alternative hypothesis by assuming that the error term 𝑒𝑡 follows iid(independent 



identically distributed). This is because if 𝑒𝑡  follows iid, it is possible to approximate for 

asymptotic distribution through bootstrapping (Hansen, 1997). 

 

𝐹𝑛 = 𝑛 (
𝛿𝑛

2̃ −𝛿𝑛
2̂

𝛿𝑛
2̂

) , 𝛿𝑛
2̃ is sum of squar residuals under alternative hypothesis  (6) 

𝐹𝑛(𝛾) = 𝑛 (
𝛿𝑛

2̃ − 𝛿𝑛
2̂(𝛾)

𝛿𝑛
2̂(𝛾)

) 

 

TVECM also has a form in which the threshold effect is added to the Vector Error 

Correction Model (VECM). When there exists a cointegrating relationship, VECM assumes that 

long-run equilibrium relationship is linear, while TVECM assumes that long-run equilibrium is 

nonlinear. This is because the presence of transection costs and/or fixed adjustment costs may 

prevent economic agents from correcting the error continuously (Balke and Formby, 1997). The 

basic VECM is shown the following equation (7). 

 

[

∆𝑃𝑡
1
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2
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3
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1
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3

]   (7) 

 

In equation (7), 𝛽𝑖 is the short-term price change, λ is the adjustment speed  to the long-

term average, and 𝐸𝐶𝑇𝑡−1 is the error correction term. Balke and Formby (1997) extended the 

VECM by applying the concept of threshold cointegration, which means TVECM. It is assumed 

that there exists the threshold in ECT, so that the model is a suitable for explaining short- and 

long-term changes in variables with nonlinear long-run equilibrium. TVECM implies that ECT 

can be divided into several regions according to the threshold values, so that each region has 



different adjustment speeds as shown in equation (8) to (9). 

 

[

∆𝑃𝑡
1

∆𝑃𝑡
2

∆𝑃𝑡
3
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1

∆𝑃𝑡−𝑖
2

∆𝑃𝑡−𝑖
3

] +𝑛
𝑖=1 [

𝜆1
1

𝜆1
2
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3
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1
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2
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𝑖𝑓  𝐸𝐶𝑇𝑡−1  <  𝛾 

 

[

∆𝑃𝑡
1

∆𝑃𝑡
2

∆𝑃𝑡
3

] = [

𝐶4

𝐶5
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𝑏𝑖
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3

] +𝑛
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𝜆2
1

𝜆2
2

𝜆2
3

] [𝐸𝐶𝑇𝑡−1] + [

𝑒𝑡
1

𝑒𝑡
2

𝑒𝑡
3

]   (9) 

𝑖𝑓  𝐸𝐶𝑇𝑡−1  ≥  𝛾 

 

 It shows that there exists only one threshold in the ECT, so that the model is divided into 

two regions. In the model, the short-term effects are classified into 𝛽𝑖 and 𝑏𝑖, and the adjustment 

coefficient to long-run equilibrium is also divided into 𝜆1 and 𝜆2. 

 Also, we devise a Long Short-Term Memory (LSTM) model. In an RNN, tanh is used as 

an activation function to train the model in a non-linear way. However, there is a long-term 

dependency problem caused by a “vanishing gradient” problem in the RNN’s BPTT, in which the 

gradient (weights update rate) disappears as the value (derivative value of the tanh function with 

respect to ℎ𝑡) less than 1 continues to multiply. Thus, the state of a relatively distant past time 

point has almost no effect on an output of the present time point. As a result, the model relies 

only on short-term data and has a limit in achieving the best performance. To solve this problem, 

Hochreiter et al. (1997) suggested the LSTM model. 

 

** Figure 1 ** 



 

Figure 1 shows the internal structure of LSTM and its process.  LSTM is the model in 

which forgetting and memory ( 𝑓𝑡 ), the input ( 𝑖𝑡 ), the inner cell state candidate ( 𝐶𝑡̃ ), the 

conveying and inner cell state at time point t (𝐶𝑡), and the output (𝑜𝑡) are added to the RNN 

model. Especially, 𝐶𝑡 , which penetrates all time points, greatly contributes to solving the long-

term dependency problem. The order of each part and the internal algorithm can be explained by 

the following process: 

 

𝑓𝑡 = 𝜎(𝑊𝑥ℎ(𝑓)𝑥𝑡 + 𝑊ℎℎ(𝑓)ℎ𝑡 − 1 + 𝑏ℎ(𝑓)) (10) 

𝑖𝑡 = 𝜎(𝑊𝑥ℎ(𝑖)𝑥𝑡 + 𝑊ℎℎ(𝑖)ℎ𝑡 − 1 + 𝑏ℎ(𝑖)) (11) 

𝐶𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ(𝐶𝑡̃)𝑥𝑡 + 𝑊ℎℎ(𝐶𝑡̃)ℎ𝑡 − 1 + 𝑏ℎ(𝐶𝑡̃)) (12) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡 − 1 + 𝑖𝑡 ⊙ 𝐶𝑡̃ (13) 

𝑜𝑡 = 𝜎(𝑊𝑥ℎ(𝑜)𝑥𝑡 + 𝑊ℎℎ(𝑜)ℎ𝑡 − 1 + 𝑏ℎ(𝑜)) (14) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝐶𝑡) (15) 

∗⊙= 𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝜎 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
1

1 + 𝑒  − 𝑥
 

 

 

Equation (24), output of the forget gate, determines whether the historical state is 

forgotten by the combination of 𝑥𝑡  and ℎ𝑡−1. The output value of this step is converted to a 

number between 0 and 1 by the sigmoid function and multiplied by 𝐶𝑡−1 (memory of past data, 

i.e., historical state) to determine how much past data to preserve or forget. A value of 0 indicates 

forgetfulness, and 1 indicates memorization of past data. Equations (25) and (26) are involved in 

the storage of the inner cell state of time point t. Equation (25), output of the input gate, 



determines how much data of time point t are memorized. In other words, it has a value between 

0 and 1, indicating the degree of memorizing for the new information. At the same time, 

Equation (26) generates the inner cell state candidate of time point t. Equation (27) generates the 

new cell state at time point t and passes it on to the LSTM cell at the next time point (t + 1). In 

other words, LSTM solves the RNN’s long-term dependency problem by adjusting the 

memorization and forgetfulness of the past and presents the state through Equations (24)–(27). In 

the end, the output is decided by Equations (28) and (29). Equation (28), output of the output 

gate, decides which part of the new cell state will become output. A value of the new cell status 

is converted through the tangent function and calculated with the result value of Equation (28) to 

produce the final output of time point t, as shown in Equation (29). 

 

3. Data 

This study applies TVAR and TVECM to the Korean market in detail using the price of pigs, 

broilers, and eggs from January 2011 to May 2017 in Korea. Furthermore, we set the infectious 

diseases data as threshold variables. The price data and the infectious diseases data are obtained 

from Korea Institute for Animal Products Quality Evaluation (KAPE) and Korea Animal Health 

Integrated System (KAHIS) in Korea, respectively. The infectious diseases data
3
 is used by 

multiplying the number of infected livestock by the average carcass weight per species. The 

summary statistics on price data and on diseases are shown in form Table 1 to Table 2. 

** Table 1 ** 

                                                           
3 Based on the data in KHAIS, pig infectious diseases include FMD (Foot Mouth Disease), PRRS (Porcine 

Reproductive and Respiratory Syndrome), CSF (Classical Swine Fever), Aujeszky's disease, and 

Brucellosis. Broiler and laying hens diseases include fowl typhoid, pullorum disease, Newcastle disease, 

HPAI (Highly Pathogenic Avian Influenza). In the cases of broiler, Tuberculosis is also added. 



** Table 2 ** 

4. Results 

Since the models used in this study rely on time series data, the stationarity of the data is verified 

through the unit root test. As a result of the ADF test, there exist unit root in all prices. Also, it 

shows that the first difference data of all prices are stationary. Then, the optimal lag is 

determined based on AIC, SIC, and HQIC statistics. The optimal lag of all livestock products 

model is 1 as shown in Table 4. 

 

** Table 3 ** 

** Table 4 ** 

Then, we conduct Hansen and Seo (2002) test to test whether there are thresholds in 

cointegrating relationship considering the threshold cointegration effect established in Balke and 

Formby (1997). If there are more than one threshold in the error correction term between the 

distribution channels, which means that long-run equilibrium relationship between the 

distribution channels has nonlinear structure due to the infectious diseases. In addition, it is 

necessary to test the threshold cointegration to determine which model is more suitable for 

analysis among TVAR model and TVECM. 

** Table 5 ** 

 The results of threshold cointegraion show that there are no threshold cointegration 

between the distribution stages’ prices of pig. In the case of broiler prices, there are two 

threshold cointegration both farm to wholesale and wholesale to retail. The result of egg shows 

that both farm to retail and wholesale to retail are significant. The purpose of this study is to 

analyze to whether the livestock procducts’ prices from farm to retail have a nonlinear structure 



according to the incidence of infectious diseases, so that TVECM seems to be not appropriate 

model for analysis because it is not able to grasp the relation of prices of the entire distribution 

stages. On the other hand, TVAR model can consider the interaction of prices of the entire 

distribution stages, so we conduct analysis based on TVAR model.  

In order to validate threshold model, Hansen (1999) showed that the threshold effects should 

exist in the VAR model composed of prices for distribution stages as shown in Table 6.  

** Table 6 ** 

The results of the threshold effects test represent that VAR model for prices of distribution stages 

has two thresholds for infectious diseases, which means that VAR model would be divided into 

three regimes due to infectious diseases. Considering the above, the results of TVAR with two 

thresholds are represented in Table 7 to Table 9. 

** Table 7 ** 

The threshold values for pig TVAR model in Table 7 are estimated to 812,1278 kg and 

1,278.733 kg. In regime 1 where the pig diseases are less than 812.1278 kg, constant and retail 

price are reject the null hypothesis. Specifically, the retail lag price has a negative impact on the 

farm price and retail price, also it has negative impact on the wholesale price in regime 1. All of 

the lag price is significant in regime 2, where the pig diseases are between 812.1278 kg and 

1,278.733 kg. The farm and retail lag prices have negative impacts on all prices, and the 

wholesale lag price has a positive impact on all prices. In regime 3 where the pig diseases are 

over 812.1278 kg, the retail lag price has a negative impact on farm and wholesale price, and has 

a positive impact on retail price. 

The threshold values for broiler TVAR model in Table 8 are estimated to 3,600 kg and 8016 

kg. The farm lag price has a positive impact on all prices in regime 1 where the broiler diseases 



are less than 3,600 kg. In the regime 2, the wholesale lag price affects positively on all prices, 

and besides the farm lag price has a negative effect on retail price. In the regime of highest 

incidence of diseases for broiler, only the wholesale lag price is statistically significant. 

Table 9 shows the results of egg TVAR model with two thresholds. The threshold values are 

estimated to 1,477.827 kg and 166,029 kg, respectively. The farm and wholesale lag prices affect 

positively on farm price in regime 1. In regime 2 and regime 3, only the retail lag price is 

statistically significant for all prices. Especially, the impacts of retail lag price for farm and 

wholesale price are positive in regime 2, but the impact are negative in regime 3. This is 

interpreted that if diseases are less than a certain value, the retail lag price has a positive impact 

on the farm and wholesale price, but if diseases exceeds a certain value, then the retail lag price 

affects negatively on those prices. 

5. Conclusion 

This study used the TVAR model and TVECM to determine whether the prices of pig, broiler, 

and egg have a nonlinear structure due to the incidence of livestock infectious diseases. Prior to 

the analysis, we conducted unit root test to ensure the stability of the data. The results showed 

that all prices of pig, broiler, and egg are nonstationary. Thereafter, threshold cointegration test is 

performed, which showed that there is no threshold cointegration in the prices of pig. Moreover, 

the prices of all livestock products have the threshold effect. The threshold values of the pig were 

estimated to 812.1278kg and 1,278.733kg. The threshold values of broiler were estimated to 

3,600kg and 8,016kg, and threshold values of egg were estimated to 1,477.827kg and 166,029kg. 

Then, Granger causality was conducted to test the causality for the livestock products’ price of 

different distribution stages, after then we analyzed the generalized impulse response function 

through causality path. As a result of analyzed the impulse response function, it was confirmed 



that the shock in each distribution stages is different according to the incidence of infectious 

diseases. The shock of the prices has different duration and speed according to the separated 

regimes by diseases. 

This suggests that if infectious diseases occur on a large-scale, government policies 

should be implemented to suit with each livestock products. For instance, in the case of broiler, 

the shock of prices tends to maintain about 3 to 6 weeks when diseases occur on a large-scale, so 

that it is necessary to implement short-term stabilization policy, such as the release of 

government’ and private’ stockpiles. In the case of pig, the shock of price lasts more than 12 

weeks when a large-scale diseases occur. Therefore, it is necessary not only short-term policies 

such as securing supply through the import, but also long-term policies such as the supply and 

demand forecasting system to maintain the appropriate number of pig or the promotion for 

consumption of substitution goods through discount. Finally, in the case of egg, the shock of the 

price lasts more than about 12 weeks as with pig. Consequently, it is necessary to implement 

long-term policies such as restoring infrastructure for laying hens, along with short-term policies 

which increase supplies such as stockpile and imported egg. 

In conclusion, the significant results of this study are expected to be useful resources for the 

price stabilization policy and distribution policy for livestock products. However, this study has 

the limitation in that it does not take into consideration the various economic factors related to 

the price of livestock products. It is also expected that more detailed interpretation will be made 

if economic analysis using specific numerical values such as variance decomposition analysis 

considering economic causality is added. 
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Figure 1.  Internal structure of long short-term memory (LSTM). 

  



Table 1. Price summary statistics from 2011 to 2017 (KRW/kg) 

 
Price Mean Std. Min Max 

Pig 

Farm 3,182.50 614.46 1,839 5,170 

wholesale 4,625.77 893.11 2,673 7,515 

Retail 19,023.88 2,521.98 12,214 24,950 

Broiler 

Farm 1,660.64 316.59 1,048 2,546 

wholesale 3,155.51 431.70 2,196 4,231 

Retail 5,626.39 488.79 4,644 7,123 

Egg 

Farm 2,024.44 392.27 1,344 3,409 

wholesale 2,228.62 385.64 1,490 3,628 

Retail 2,996.21 406.13 2,285 4,808 

 

 
Table 2. Disease summary statistics from 2011 to 2017 

 
Obs. Occurrences Mean(kg) Std. (kg) Min(kg) Max(kg) 

Pig disease 215 157,814 48,730.97 284,193.8 112.49 3,836,720 

Broiler disease 184 2,736,037 11,379.47 46,490.41 3.11 455,003.3 

Laying hens 

disease 
103 21,495,268 91,692.49 656,212.5 1.56 7,944,253 

 

Table 3. Results of Augmented Dickey-Fuller test for unit root 

Type Price 
ADF test 

t-stat. p-value 

Pig 

Level 

Farm -0.8709 0.3382 

wholesale -0.8625 0.3418 

Retail -0.3023 0.5764 

D(-1) 

Farm -16.211 0.0000*** 

wholesale -16.406 0.0000*** 

Retail -15.681 0.0000*** 

Broiler 

Level 

Farm -1.6742 0.0890* 

wholesale -0.9904 0.2884 

Retail -0.6584 0.4315 

D(-1) 

Farm -24.6403 0.0000*** 

wholesale -11.3081 0.0000*** 

Retail -12.5793 0.0000*** 

Egg 

Level 

Farm -1.0386 0.2694 

wholesale -0.9654 0.2986 

Retail -0.6391 0.4400 

D(-1) 

Farm -14.5967 0.0000*** 

wholesale -13.0746 0.0000*** 

Retail -18.8839 0.0000*** 

***: p < 0.01, **: p < 0.05, *: p < 0.1 



 

Table 4. Optimal lag selection 

 
AIC SIC HQIC Optimal lag 

Pig 
price (-2) 

(41.4909) 

price (-1) 

(41.6428) 

price (-1) 

(41.5641) 
1 

Broiler 
price (-7) 

(43.0791) 

Price (-1) 

(43.3421) 

Price (-1) 

(43.2635) 
1 

Egg 
price (-3) 

(38.3212) 

price (-1) 

(38.5158) 

price (-2) 

(38.4138) 
1 

a) The blanket means statistics 

 

Table 5. Results for Hansen and Seo(2002) cointeration test 

 
Null hypothesis Farm to wholesale wholesale to Retail Farm to Retail 

Pig 
t-statistics 4.9407 14.6855 14.4052 

P-value 0.18 0.10 0.10 

Broiler 
t-statistics 38.7673 32.1415 13.8768 

P-value 0.00*** 0.00*** 0.24 

Egg 
t-statistics 15.1331 24.1565 26.7018 

P-value 0.32 0.00*** 0.00*** 
a) ***: p < 0.01 

 

Table 6. Results for threshold effects test 

  
LR-statistics P-value 

Pig 
Linear VAR vs. 1 threshold VAR 28.98 0.12 

Linear VAR vs. 2 threshold VAR 100.92 0.02** 

Broiler 
Linear VAR vs. 1 threshold VAR 44.17 0.01** 

Linear VAR vs. 2 threshold VAR 101.92 0.03** 

Egg 
Linear VAR vs. 1 threshold VAR 70.01 0.00*** 

Linear VAR vs. 2 threshold VAR 114.57 0.00*** 
a) ***: p < 0.01, **: p <  0.05 

b) Bootstrapping repeats 100 times 

  



Table 7. Results of TVAR model for pig 

 
Farm price wholesale price Retail price 

regime 1 Pig diseases  812.1278kg 

Farm price(-1) 
0.5382 

(0.3895) 

0.7895 

(0.5643) 

1.7205 

(2.8837) 

wholesale price(-1) 
0.2956 

(0.2695) 

0.4243 

(0.3905) 

-0.0684 

(1.9955) 

Retail price(-1) 
-0.0291*** 

(0.0076) 

-0.0413*** 

(0.0110) 

0.3864*** 

(0.0560) 

c 
655.7839*** 

(101.2629) 

932.3193*** 

(146.7106) 

6,451.8378*** 

(749.7696) 

regime 2 812.1278kg  Pig diseases  1,278.733kg 

Farm price(-1) 
-406.8953*** 

(65.7822) 

-591.6832*** 

(95.3058) 

-3,103.2220*** 

(487.0636) 

wholesale price(-1) 
280.9183*** 

(45.2660) 

408.4941** 

(65.5817) 

2138.0734*** 

(335.1575) 

Retail price(-1) 
-0.1207*** 

(0.0201) 

-0.1755*** 

(0.0292) 

-0.5419*** 

(0.1490) 

c 
974.9594** 

(454.9076) 

1,418.2307** 

(659.0737) 

15,938.3320*** 

(3368.2200) 

regime 3 Pig diseases  1,278.733kg 

Farm price(-1) 
-10.0156 

(23.7271) 

-14.4539 

(34.3760) 

112.2430 

(175.6799) 

wholesale price(-1) 
7.6053 

(16.3222) 

10.9828 

(23.6477) 

-76.7311 

(120.8523) 

Retail price(-1) 
-0.0338** 

(0.0166) 

-0.0490** 

(0.0240) 

0.8278*** 

(0.1229) 

c 
496.2407** 

(211.3994) 

720.1629** 

(306.2771) 

873.2963 

(1565.2401) 

a) ***: p < 0.01, **: p <  0.05 

b) The blanket means standard error 

 

 


