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Crop Choice Decisions in Response to Soil Salinity on Irrigated Lands in California 

Juhee Lee and Nathan P. Hendricks 

 
 

Abstract 

This work quantifies the soil salinity sensitivity of specific crop choices at the field level by 

econometrically estimating the response of crop choice by using the Multinomial Logit Model 

with Fixed Effects. We use high-resolution remote-sensing data of saline soils and crop-specific 

land cover for 2007-2016 in California’s Western San Joaquin Valley and measure growing-

degree days to accommodate the effects of climate change. Our estimates show that as the level 

of salinity increases, the probability that salt-tolerant crops will be selected for cultivation 

increases. Similarly, salt-sensitive crops are less likely to be selected as salinity increases. This 

suggests that farmers adapt corresponding to the degree of salinity. However, it is necessary to 

note that our estimates may have some endogeneity bias. Crop choice affects the amount of 

water applied which could affect salinity. Unfortunately, we cannot determine the direction of 

the endogeneity bias because applying more water can increase or decrease soil salinity 

depending on the degree of salinity of the water applied. 

 

Keywords: California, crop choice, salinity, irrigation 
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1. Introduction 

Soil salinization, as one of the primary causes of land degradation1, is the process of the 

accumulation of soluble salts in the root zone through the evapotranspiration of irrigated water. 

The high concentration of salts in the soil limits the growth and productivity of crops by 

adversely affecting soil chemical properties and soil biota, causing specifically ion toxicity and 

upset of the nutritional balance in crops (Wong et al. 2006; Jahknwa et al. 2014). Continuous salt 

accumulation may threaten the sustainability of agricultural production (Letey 2000; Lobell 

2010; Ivits et al. 2013). It has been estimated that around one-third of the world’s 260 million 

hectares of irrigated land, which accounts for 40% of global food production, are afflicted by 

salinity (Schwabe et al. 2006). Moreover, the salinized regions are increasing at a rate of 10% 

annually (Shrivastava and Kumar 2015), and are presently expanding to many countries and 

states, e.g., Egypt, Pakistan, Australia, China, and California in the United States of America2.  

Salinization challenges are generally more pronounced in semiarid and arid regions than 

compared to humid regions, which is attributed to the former’s restriction in terms of the supply 

of sufficient rainfall to dissipate the salts out of the root zone. Also, ongoing climate change 

affects the frequency and severity of extreme weather events, including heatwaves and droughts, 

which can disrupt effective dissipation. That is, the increased evapotranspiration and the reduced 

precipitation caused an instant decline in both surface water runoff and groundwater recharge, 

which lessens water availability to dilute existing levels of saline groundwater discharge and 

leach the salts out of the root zone. Increasing irrigated agriculture has been considered a critical 

adaptation to meet growing food demands, due to the world’s growing population in arid and 

 
1 Soil erosion is the first primary cause of land degradation, and soil salinity is the second cause of it (Zaman et al. 

2018). 
2 Refer to Ghassemi, Jakeman and Nix (1995) and Tanji, Program and Kielen (2002) for Egypt; Qureshi et al. (2008) 

for Pakistan; (Rengasamy (2006) for Australia; and FAO (2010) for China. 
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semiarid regions. In the case of irrigated areas, the intensive local pumping needed by irrigated 

agriculture is certainly inducing the water table to decline (i.e., the surface of the saturated part 

of the aquifer), thus leading to an increased upward movement of the saltwater into the 

freshwater. 

A particular concern for the saline regions is that soil salinization would induce supply 

shortages of foods, ushering in an increase in prices. Most of the existing studies have focused on 

agricultural productivity, particularly in terms of yield change of a specific crop in response to 

soil salinity with linked climate, agronomic, and hydrologic models (e.g., Maas 1993; Van 

Genuchten 1993; Horticulturae 1998). Additionally, the papers linked with economic models 

have only added economic measurement on agricultural productivity with estimating changes in 

revenues (e.g., Beare and Heaney 2002; Connor et al. 2012; Welle et al. 2017).  

Quantifying the impact of salinity on irrigated agriculture cannot rely solely on how 

salinity affects the changes in productivity or revenues of crops; there needs to be an inclusion of 

farmers’ reactions, management adjustments, and the product of those changes in practices in 

response to salinity. For instance, as soil salinity levels increase, farmers are likely to switch 

from salt-sensitive crops to more salt-tolerant crops. Current analysis that overlooks such 

adjustments may overestimate the welfare losses from soil salinity.  

The traditional response to soil salinity is switching crops to more salinity-tolerant crops. 

This is an instantaneous and relatively easy adaptation compared to other possible alternatives, 

while still allowing cultivation even though it is on less profitable land due to salinity. In other 

responses, leaving the land fallow is often the last resort when the land cannot be restored from 

such salinity (Connor et al. 2012). Changing irrigation systems with better control of the 

distribution and depth of water often triggers an intensification of water consumption rendering a 
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high irrigation cost. The NRCS-USDA (2009), for example, reports that the larger irrigation 

systems requiring permanent pumps and pipelines increase the production cost of land from 

$1800/ha to $2500/ha. Regarding such high costs, it is challenging to alter irrigation systems 

without government subsidies or incentives. 

Despite the abundant literature on irrigated crop choices3, changes in crops cultivated as 

farmers’ response to soil salinity in arid and semiarid settings have not been investigated without 

agronomic field experiments. Ayars (2003) carries out two field experiments in California with 

saline soils and saline groundwater, respectively, but the study only covers current crop choices 

as a laboratory sampling to show the salinity in the surface layers of the soil profile and the 

internal drainage of soil under the agronomic approach, not as a farmer response. Likewise, 

Beare and Heaney (2002) examine land-use activity choices including different crop types in 

connection with soil salinity. But they merely consider the choices in the context of the net return 

based on the revenue from crop yields and cost increases caused by incremental irrigation 

salinity. They also do not estimate how farmers’ cropping patterns change in response to higher 

salinity. 

To address this gap in the literature, we quantify the adaption to soil salinity by farmers 

in California’s Western San Joaquin Valley (WSJV) by econometrically estimating how farmers 

change crop choices in response to different soil salinity levels. We use high-resolution remote-

sensed soil salinity and remote-sensed crop data during 2007-2016 to capture fine-scale spatial 

variations in agricultural settings, controlling for other soil properties and climate conditions on 

irrigated lands at each field. Our estimates show that as the level of soil salinity increases, the 

 
3 In general, studies of crop choice rely either on the link between crop choice and water/land environment and 

irrigation technology changes (e.g., Lichtenberg 1989; Wu et al. 1994), between crop choice and policy or energy 

prices changes (e.g., Wu and Segerson 1995; Wu and Adams 2001; Pfeiffer and Lin 2014), or between crop choice 

and climate change (e.g., Kurukulasuriya and Mendelsohn 2008; Fleischer et al. 2011). 
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probability that salt-tolerant crops will be selected for cultivation increases, which suggests that 

farmers adapt corresponding to the degree of salinity. However, it is necessary to note that our 

estimates may have some endogeneity bias. Crop choice affects the amount of water applied 

which could affect salinity. Unfortunately, we cannot determine the direction of the endogeneity 

bias because applying more water can increase or decrease soil salinity depending on the degree 

of salinity of the water applied. 

 

2. Background on Soil Salinity in WSJV  

The WSJV is located on the west side of the San Joaquin Valley in California, which is one of 

the most productive farming regions in the world4 (Figure 1A). The WSJV is often challenged by 

extensive accumulation of soil salinity and this challenge has been accelerated by the change in 

regional climate and hydrology conditions.  

As shown in Figure 1B, the WSJV spans 5,600 square miles and includes two subbasins 

of the SJV groundwater basin, one is the Delta–Mendota subbasin where Delta–Mendota Canal 

passes through, and another is the Westside subbasin where California Aqueduct passes through. 

The WSJV’s aquifer system is constituted of late Tertiary to Quaternary age alluvium5 which 

originated from the Coast Mountain Range to the west and the Sierra Nevada Mountain Range to 

the east (Fram 2017b).  

The alluvial aquifer already contains inherent levels of soluble salt. That is because 

almost all waters draining from a bedrock of the aquifer naturally possess major mineral 

 
4 In San Joaquin Valley, there are more than 250 unique crops, which produce an annual gross value greater than 

$25 billion through irrigated agriculture (U.S. Environmental Protection Agency 2012). 

5 Alluvium is alluvial deposits consisting mainly of poorly to moderately permeable yellowish-brown gravel, sand, 

silt, and clay. 
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components including salts, which were trapped during the deposition of the sediment to form 

the bedrock. Specifically, alluvium originated from the Sierra Nevada Mountain Range and 

generally has lower salinity since most surface water from the infiltration of precipitation as 

snowmelt dominates Sierra Nevada Mountain Range. Whereas alluvium originated from the 

Coast Mountain Range and has higher salinity since saline marine sediments from the deep 

aquifer or oceans dominate the Coast Ranges Mountain Range.  

Irrigation water applied in the WSJV is partially imported as surface water from the 

Sierra Nevada alluvium and partly pumped as groundwater from the Coast Range alluvium 

(Dubrovsky et al. 1999). Accordingly, if irrigation water imported from surface water of the 

Sierra Nevada alluvium is applied, it is likely to have low salinity in the soil. Conversely, if 

irrigation water derived from the Coast Ranges alluvium is applied, the WSJV soil naturally 

contains high salinity. This implies that the cross-sectional variation of soil salinity across the 

spatial units can exist depending on which source of adjacent irrigation water is used.  

In essence, the direct source of soil salinity in WSJV stems from the marine origin of 

Coastal Range alluvium (Scudiero, Skaggs, and Corwin 2014). Due to the geographical location 

of WSJV more adjacent to the Coast Ranges Mountain Range, it is overall susceptible to saline 

coastal sediments. This vulnerability is also compounded by other disturbances, such as the 

WSJV’s climate and hydrology conditions.  

First, there is an instant reduction in both surface water runoff and groundwater recharge 

due to the arid and semiarid climate and occasional drought. As a result, the reduced freshwater 

limits the availability of water to flush the existing salts. Second, there is a saltwater inflow by 

overpumping for irrigated agriculture and by the lack of soil drainage. Once water tables fall due 

to overpumping groundwater, pumping wells need to be drilled deeper to reach the water. In this 
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process, pumping can cause the upward intrusion of saltwater into the fresh aquifer, which 

ultimately can damage the aquifer and contaminate land via increasing soil salinity.  

There is a substantial delay before a reduction in water availability is fully attributed to 

salt accumulations, since natural soil drainage can initially offset soil salinization (Beare and 

Heaney 2002). However, the WSJV suffers from a low-permeability soil drainage problem. 

Indeed, the WSJV’s soil is dominated by the finer-textured Corcoran clay6 from saline alluvium 

which derives from California’s Southern Coast Range (Valley 2009; Scudiero et al. 2014). Also, 

it is estimated that approximately 60% of the soil was saline by the 1980s due to the influence of 

soil texture (Scudiero, Skaggs, and Corwin 2015).  

Possible management practices to mitigate soil salinity include salinity leaching, saline 

drainage water reuse, land retirement, and shifting to salinity-tolerant crops. Salinity leaching is 

basic and traditional management practice for controlling salinity. This practice is to flush the 

existing salts below the root zone of crops by applying more water (Fipps 2003; Welle and 

Mauter 2017). Yet, this practice, unlike some regions wherein average snowpack or rainfall can 

supply adequate water availability (i.e., the availability of water recharge) for leaching, may be 

limited in WSJV where there is inadequate water availability. Indeed, California’s 5-year 

drought reduced approximately 30% of available surface water in the state of California, and an 

estimated $600 million in pumping cost occurred to replace the reduced volume with 

groundwater pumping (Lund et al. 2018). These losses7 were concentrated in the SJV with the 

inferior climate and hydrology environment and resulted in a more pronounced salinity (Scudiero 

et al. 2015).  

 
6 Finer-textured Corcoran clay soils usually have weak soil drainage levels by less permeability. 
7 Drought has restricted the availability of irrigation water and thereby leading to reduced irrigated land drastically. 

Detail information on the economic impacts of the drought, see Howitt et al. (2014, 2015).  
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The reuse of drainage water to reclaim salt-affected soil can be a useful practice in places 

where irrigation water is scarce, to supplement the required water (FAO 2019b). However, this is 

only effective when original irrigation water of good quality is reapplied. It is generally known 

that drainage water is not as good as the original irrigation water. That is due to recharge under 

post-development conditions having inferior water quality than that of the water under pre-

development conditions (Fram 2017a). Specifically, under pre-development conditions, 

groundwater was recharged by the infiltration of precipitation, river, and scattered streamflow 

from the Coast Ranges through alluvial fans and from the San Joaquin and Jings Rivers in the 

basin, and groundwater was discharged principally by evapotranspiration from crops (Belitz and 

Heimes 1990; Fram 2017a). Whereas under post-development conditions, groundwater is 

recharged mostly by the infiltration of groundwater and surface water used for irrigation, and 

groundwater is discharged mostly by pumping for irrigated agriculture, besides 

evapotranspiration from crops and engineered drainage (California Department of Water 

Resources 2006; Faunt 2009). Therefore, salt accumulation often aggravates in irrigated areas. 

Another management practice is cropland retirement, namely leaving saline land fallow 

(Connor et al. 2012). It can often be a difficult decision for farmers concerning economic returns, 

so this practice is chosen as a last resort when the land cannot be restored from salinity by other 

means. The primary option to allow for soil salinity recovery is to work with the new type of soil 

by switching vulnerable crops to more salinity-tolerant crops this management practice by 

farmers is reduce the negative impacts of soil salinity. This practice is also an instant and 

relatively easy adaptation compared to other possible alternatives aforementioned, while the 

land’s productivity decreases relatively because of soil salinity. 
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3. Data Description 

The overall process of constructing the final dataset is to spatially merge the soil salinity data 

with crop type classification using ArcGIS. By additionally merging other data needed for our 

empirical analysis on the WSJV, we compose a field-level dataset for the period 2007-2016 

including 139,060 unique fields, which cover five counties (i.e., Merced, Fresno, Kings, Tulare, 

and Kern). The final dataset contains records on the crop type classification, five levels of soil 

salinity measured by the electrical conductivity, other soil properties, and climate conditions at 

each field. Note that crop type classification is the only variable that changes over time in the 

dataset. Table 1 presents descriptive statistics for all variables used in the analysis. 

3.1. Cropland Data Layer 

The records of crop-specific land cover data for field-level crop choice decisions are derived 

from the national Cropland Data Layer (CDL) provided by the National Agricultural Statistics 

Service (NASS) of the National Agricultural Statistics Service (USDA). The CDL is a raster-

formatted data with 30m spatial resolution (i.e., the one-pixel size on the ground is 30m×30m) 

and produced annually for the conterminous U.S. via satellite imagery from the Landsat 8 

OLI/TIRS sensor and the Disaster Monitoring Constellation DEIMOS-1 and UK2 sensors that 

are collected based on the current growing season (Boryan et al. 2011, 2012; USDA-NASS 

2016; Yan and Roy 2016). In this study, the California CDL data for the years 2007–2016 were 

obtained through the Crop Scape. The 2007-2016 CDL data show total crop mapping accuracies8 

ranging from 89.53% to 97.22% for 247 crop categorization codes. Non-agricultural land cover 

classes, for example, fallow9, forest, shrubland, barren, water, wetlands, and open space, were 

 
8 The overall accuracies consider only row crops and seasonal fruit and vegetables, not non-agricultural land cover 

classes. 
9 The reason why fallow was excluded from the crop choice data is that soil salinity on the corresponding fields was 

not estimated Scudiero et al. (2017).    
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excluded from the code, along with missing values (i.e., crop codes 248 and 250). Finally, 72 

crops are selected for inclusion in the data.  

We select a sample point within each field boundary spatially joined with the Moderate 

Resolution Imaging Spectroradiometer Irrigated Agriculture Data for the U.S. (MIrAD-US) land 

cover in Subsection 3.2 because we focus on field-level decisions instead of pixel-level10. These 

Common Land Unit (CLU) field points are defined as the centroid of the field. Next, the CDL 

data are assigned to give the CLU field points using a spatial join tool in ArcGIS (ArcGIS 

Resource Center 2018) to capture field-level crop choice decisions. Based on the spatially joined 

crop data, we make two types of crop categories for econometric estimation: (i) five categories 

(i.e., Field Crops, Forage Crops, Fruit Crops, Vegetable Crops, and Other Crops11) and soil 

salinity tolerance level of each crop type followed by the weighted average in each crop type; as 

well as (ii) seven categories of the selected major crops among 72 crops in the study region 

according to their share (i.e., Alfalfa, Cotton, Winter Wheat, Tomato, Corn, Almond, Others12) 

and soil salinity tolerance level by each selected major crop followed crop tolerance index. 

3.2. Soil Salinity  

Our key variable of interest that impacts crop choices, soil salinity, is defined as the occurring 

when the water containing the dissolved salts is transpired by crops and evaporated into the air, 

leading to the appearance of salts on the soil surface. we use remote-sensed soil salinity data 

measured by the electrical conductivity of saturated soil paste extract (ECe, ds/m: deciSiemens 

per meter), which is a measure of the concentration of salts in the soil. This remote-sensing 

 
10 Refer to the supplementary appendix in Hendricks et al. (2014) for further details on constructing the CDL data. I 

followed their process with only the study region changed and orchards excluded.  
11 Other crops for five categories by crop type include seed crops, herbs, and double crops. 
12 Others for seven categories by selected major crops include all remaining crops grown on a small scale except 

seven major crops. 
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approach with high resolution, as Scudiero et al. (2017)13 mentioned, provides a more precise 

assessment of soil salinity than traditional sampling methods with coarse resolution, allowing the 

capture of abrupt changes between neighboring fields. Specifically, we focus on the soil salinity 

in the root zone (i.e., soil volume down to a depth of about 0 to 4 feet) rather than on the soil 

surface (i.e., sometimes visible as salt crusts), because the former is a prevalent salinity indicator 

used for agricultural evaluation.  

The remote-sensed root zone soil salinity in the WSJV covering the five counties, as 

shown in Figure 2, is obtained from Scudiero et al. (2017) via personal communication. Figure 2 

shows five levels of root zone salinity quantified as the ECe classification by Richards (1954). 

The percentage of soil salinity level in the total area is shown as follows: 0–2 dS/m nonsaline 

(433,777 acres, 25%); 2–4 dS/m slightly saline (349,007 acres, 40%); 4–8 dS/m moderately 

saline (436,476 acres, 25%); 8–16 dS/m strongly saline (374,000 acres, 22%) and >16 dS/m 

extremely saline (145,070 acres, 8%). This salinity data is assigned to the given CLU field points 

by using spatial join in ArcGIS after the CDLs joining (see Figure 3). 

3.3. Irrigation Classification  

To identify the irrigated agricultural lands in WSJV, we use the MIrAD-US land cover, which is 

from the U.S. Geological Survey. The MIrAD-US reveals the detailed spatial patterns of 

irrigation change across the nation. These data center on irrigation status classified from remote 

sensing at 250m spatial resolution (Brown, Maxwell and Pervez 2009; Boryan et al. 2012; 

Brown and Pervez 2014). The most recent 2012 MIrAD-US is used as a measure of irrigation 

status in this application and is spatially joined to the USDA’s Farm Service Agency CLU 

boundary data (Woodard 2016a,b). The CLU boundary data represent field boundaries. 

 
13 For additional well-documented papers on the advantages of using the use of remote sensing for assessing and 

mapping soil salinity, see (Lobell 2010; Allbed and Kumar 2013). 
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3.4. Soil Properties 

Data on soil properties such as soil drainage classes and other properties such as bulk density, 

root zone available water storage, soil organic carbon, soil pH, and the log of slope are from the 

Soil Survey Geographic provided by the Natural Resource Conservation Service. The soil data 

are aggregated to the map unit level. Then they are merged into the field by the map unit 

associated with the point at each field. These soil properties are selected based on the Soil 

Quality Indicator Sheets from the USDA’s Natural Resources Conservation Service (USDA-

NRCS 2019).  

Soil drainage classes mean the frequency and duration of wet periods during soil 

formation. It refers to natural soil drainage conditions, unlike altered drainage, which is mainly 

caused by artificial drainage or irrigation; in summary, it is the rate at which water is removed 

from the soil. This natural soil drainage in the WSJV is categorized into four discrete classes as 

follows: well-drained, moderately well-drained, somewhat poorly drained, and poorly drained. 

Clay soil mainly distributed in the WSJVusually has poor drainage levels because of less 

permeability compared to sand soil with a faster water infiltration rate. This implies that the 

higher the clay ratio, the more serious the drainage problems due to the remaining salinity.  

In terms of other soil properties, bulk density indicates the soil compaction and reflects 

the movement of air and water through the soil. If the bulk density is higher than the thresholds, 

the soil function will be impaired, because high bulk density has low soil compaction and 

porosity, which can restrict root growth and impact the movement of air and water through the 

soil. Root zone available water storage14 is the plant-available water volume that the soil can 

hold within the root zone. The water-holding in the root zone can be stored and used for crop 

 
14 Further information on this variable beyond the Soil Quality Indicator Sheets, see Leenaars et al. (2015). 
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uptake, and thereby it is a critical variable affecting crop yield potential and stability. Soil 

organic carbon15 can enhance soil structure and fertility by providing energy sources for soil 

microorganisms to affect plant growth. Soil pH (H2O)16 is an important variable to impacts 

various chemical or biological activities in the soil. Therefore its levels that are too high or too 

low can induce soil deterioration resulting in the reduction of crop yields. . The average National 

Commodity Crop Productivity Index (NCCPI)17 provides condensed information about average 

crop productivity based on the inherent soil properties. The NCCPI incorporates several factors 

related to crop production, such as landscape and climate characteristics, and imposes a rating 

(score) on the production.  

Elevation indicates the height from the fixed reference point and the slope is the degree to 

which a surface is tilted and is a measure of elevation change. Although the slope is not a direct 

indicator of soil properties, it affects crop productivity by influencing the distribution of soil 

moisture near the land surface. For example, the steeper slopes generally have lower soil 

moisture than the flatter slopes due to lower infiltration rates, rapid subsurface drainage, and 

higher surface runoff (Famiglietti, Rudnicki, and Rodell 1998). Also, soil loss tends to increase 

when the steep slope increases (Liu et al. 2000; Kapolka and Dollhopf 2001). Here, we take the 

log of slope to use a more normally distributed variable across the fields.  

3.5. Climate Conditions   

We determine the climate with precipitation and degree days (DDs) in each field based on the 

daily weather data (i.e., maximum temperature, minimum temperature, and total precipitation) 

provided by PRISM Climate Group. We construct long-run average weather variables (i.e., 

 
15 Further information on this variable beyond the Soil Quality Indicator Sheets, see Thiele-Bruhn (2016). 
16 Further information on this variable beyond the Soil Quality Indicator Sheets, see Batjes (1995). 
17 For more detail of the NCCPI, refer to as Dobos, Sinclair Jr, and Hipple (2008). 
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1981-2016) given that long-run average weather (i.e., the climate) is most likely to have an 

impact on what crop is planted.  

Regarding the impact of temperature, we follow the piecewise linear approach, which is 

applied to predict the nonlinear temperature effects by referring to Schlenker and Roberts (2009) 

and Tack, Barkley, and Nalley (2015). The piecewise linear model is estimated by including 

DDs as controls. DDs are a measure of cooling and heating defined as the number of degrees that 

are calculated by the sum of degrees above a lower threshold and below an upper threshold 

during the growing season (Fraisse and Brown, 2011). DDs are calculated between 0 and 10, 10 

and 20, 20 and 30, 30 and 40, and above 40 for a growing season from March 1 to September 30. 

Next, we average these DDs and precipitation variables for 36 years of data and then finally 

merge them with field-level CDL data. 

 

4. Model 

In this section, we specify the conceptual model and empirical model to underly farmers’ crop 

choice decisions based on existing studies of crop choice decisions using a multinomial logit 

model (MNL) (e.g., Wu et al. 2004, Kurukulasuriya and Mendelsohn 2007; Seo and Mendelsohn 

2008a,b; Seo et al. 2008; Fleischer, Mendelsohn and Dinar 2011). 

4.1. Conceptual Model 

Each farmer cultivating a field i in year 𝑡 is assumed to make a crop choice decision to maximize 

the expected profit. Thus, the profit function is composed of π𝑖𝑡𝑗 = 𝑉𝑗(𝑋𝑖𝑡) + 𝜀𝑖𝑡𝑗, and crop j will 

be chosen if  π𝑗 ≥ π𝑘 for all 𝑗 ≠ 𝑘. The profit function in two parts, the deterministic component 

𝑉𝑗 and the random component 𝜀𝑖𝑡𝑗. The 𝑉𝑗 is a function of a vector of explanatory variables 𝑋𝑖𝑡 to 

indicate different levels of soil salinity, soil properties, and climate conditions. Typically, the 
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deterministic portion 𝑉𝑗 can be assumed in a separable linear fashion, the expected profit, π𝑖𝑡𝑗 

can be expressed as: 

π𝑖𝑡𝑗 = 𝑋𝑖𝑡
′ 𝛽𝑗 + 𝜀𝑖𝑡𝑗 .                                                              (1) 

 Since 𝑉𝑗 is the portion observed by the econometrician and 𝜀𝑖𝑡𝑗 is the unobserved portion, 

making the choice in field i  in year 𝑡 to be representative in a probability manner as follows 

(Baltas and Doyle 2001): 

𝑃𝑟(𝐶𝑖𝑡 = 𝑗) = 𝑃𝑟(π𝑖𝑡𝑗 ≥ π𝑖𝑡𝑘) = 𝑃𝑟(𝑋𝑖𝑡
′ 𝛽𝑗 + 𝜀𝑖𝑡𝑗 ≥ 𝑋𝑖𝑡

′ 𝛽𝑘 + 𝜀𝑖𝑡𝑘)    𝑓𝑜𝑟 ∀𝑗≠𝑘     (2) 

Assuming that 𝜀𝑖𝑡𝑗 follows an independent and identical Gumbel distribution, also known as 

Type I  Extreme Value distribution, then the probability of choosing crop j  can be calculated 

using the familiar MNL as follows (Mcfadden 1981):  

𝑃𝑖𝑡𝑗 = 𝑃𝑟(𝐶𝑖𝑡 = 𝑗) =
𝑒𝑥𝑝(𝑋𝑖𝑡

′ 𝛽𝑗+ 𝑖𝑡𝑗)

∑ (𝑋𝑖𝑡
′ 𝛽𝑘+ 𝑖𝑡𝑘)

𝐽−1
𝑘=0

,    𝑗 = 0,1,2, … , 𝐽 − 1                               (3) 

This method is generally used to predict the probabilities of three or more possible categorical 

outcomes given a set of explanatory variables.  

4.2. Econometric Model 

We estimate how farmers change crop choices in response to different soil salinity levels with a 

field-level dataset covering 9 years. Concerning five salinity levels, soil properties, and climate 

conditions, as well as year and county fixed effects, the MNL with fixed effects model is 

specified as follows: 

𝑃𝑖𝑡𝑗 = 𝑃𝑟(𝐶𝑖𝑡 = 𝑗|𝑋𝑖𝑡) =
𝑒𝑥𝑝(𝑋𝑖𝑡

′ 𝛽𝑗+ 𝑖𝑡𝑗)

∑ (𝑋𝑖𝑡
′ 𝛽𝑘+ 𝑖𝑡𝑘)

𝐽−1
𝑘=0

                                                                              (4) 

                                                    =  
𝑒𝑥𝑝(𝛽𝑗1𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑖+𝛽𝑗2𝑆𝑜𝑖𝑙𝑖+𝛽𝑗3𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑖+𝛾𝑗𝑌𝑒𝑎𝑟𝑡+𝛿𝑗𝐶𝑜𝑢𝑛𝑡𝑦𝑖)

∑ 𝑒𝑥𝑝(𝛽𝑘1𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑖+𝛽𝑘2𝑆𝑜𝑖𝑙𝑖+𝛽𝑘3𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑖+𝛾𝑘𝑌𝑒𝑎𝑟𝑡+𝛿𝑘𝐶𝑜𝑢𝑛𝑡𝑦𝑖)𝐽−1
𝑘=0

                         

where i denotes 139,060 unique fields and t refers time period of 2007–2016.  j represents 

different crop choices and two alternative classifications are used in model estimation: (i) five 
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categories J={Other Crops, Field Crops, Forage Crops, Fruit Crops, Vegetable Crops} and (ii) 

seven categories J={Others, Alfalfa, Cotton, Winter Wheat, Tomato, Corn, Almond}. 𝑃𝑖𝑡𝑗 =

𝑃𝑟(𝐶𝑖𝑡 = 𝑗|𝑋𝑖𝑡) denotes the probability of observing crop j on field 𝑖 in year 𝑡.  𝛽𝑗 is the 

coefficient vector including the intercept 𝛽0𝑗, while 𝛽𝑘𝑗 is the slope coefficient. Because the 

probabilities must sum to one, we restrict 𝛽𝑗 = 0 for one of the alternatives as the base category. 

Consequently, only 4 (J-1) for and 6 (J-1) are estimations for five categories and seven 

categories, respectively. In this study, we apply “other crops” as the base category for five 

categories and “other” as the base category for seven categories.  

𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑖 has 5 salinity levels: 0–2 dS/m, nonsaline; 2–4 dS/m, slightly saline; 4–8 dS/m, 

moderately saline; 8–16 dS/m, strongly saline; and >16 dS/m, extremely saline. 𝑆𝑜𝑖𝑙𝑖 contains 

soil drainage classes, bulk density, root zone available water storage, soil organic carbon, soil 

pH, and the log of slope of field i. 𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑖 includes precipitation and DDs of field i. 𝑌𝑒𝑎𝑟𝑡 are 

the year fixed-effects to capture the effect of macro-level shocks which affect all fields, such as 

changes in crop prices, energy prices, and other input prices. 𝐶𝑜𝑢𝑛𝑡𝑦𝑖  are county fixed-effects to 

capture the differences across counties. Robust standard errors are clustered at the county level to 

allow error correlation for a given field over time and spatial correlation within a county. We 

allow fields within a county to be spatially correlated but independent across the counties.  

The coefficients obtained from the above MNL model are difficult to interpret directly 

unlike the slope coefficients of the Ordinary Least Squares regression model (Greene, William 

2012; Wulff 2015). In particular, simply with the positive coefficients, the increase in the 

explanatory variable does not necessarily mean an increase in the selection probability of a 

particular outcome. Instead, the marginal effects (MEs) of the explanatory variables for the 

categories are calculated as: 



 

18 

 

𝑀𝐸𝑖𝑡𝑗 =
𝜕𝑃𝑖𝑡𝑗

𝜕𝑋𝑖𝑡
=

𝜕𝑃𝑟(𝐶𝑖𝑡 = 𝑗|𝑋𝑖𝑡)

𝜕𝑋𝑖𝑡
= 𝑃𝑖𝑡𝑗(𝛽𝑗 − 𝛽�̅�),   where  𝛽�̅� = ∑ 𝑃𝑟(𝐶𝑖𝑡 = 𝑘|𝑋𝑖𝑡)𝛽𝑘𝑘             (5)                                                                            

Here, 𝑋𝑖𝑡 is the explanatory variable including the soil salinity variable as a key treatment 

variable, and 𝛽�̅� is a probability-weighted average of the coefficients for other alternative 

combinations. 

The MEs are nonlinear because they depend on the probabilities that vary across all 

explanatory variables in the model. This implies that the MEs are not constant and may be 

positive for some values of explanatory variables and be negative for others. Here, the MEs are 

calculated at the means (MEM) of the explanatory variables as follows: 

MEM = �̅�𝑗(𝛽𝑘𝑗 − 𝛽�̅�)                                                                (6) 

where �̅�𝑗𝑡  is computed by holding 𝑋𝑖𝑡 at their mean values. In this study, we evaluated the MEM. 

Another way, average marginal effects (AME)18 based on actual values of the explanatory 

variables can be used. While MEM and AME yield different evaluations, there is no consensus 

as to which of the two is the most representative (Greene, William 2012; Wulff 2015), so both 

can be utilized to get MEs.  

 Equation (6) represents MEM for continuous variables. Yet, we have categorical 

variables, such as five soil salinity levels and four soil drainage classes. In this case, taking the 

difference in estimated probabilities between the different levels of the categorical variable is 

suitable to analyze MEM. If, say, 𝑥 denotes the dummy explanatory variable to capture the 

categorical effect and 𝑋∗denotes other explanatory variables at their means. Due to the discrete 

change for the categorical variable, the effect of  𝑥 on the predicted probabilities of 𝐶𝑖𝑡 = 𝑗 is: 

ME = 𝑃𝑟[𝐶𝑖𝑡 = 𝑗|𝑥 = 1, 𝑋𝑖𝑡
∗ ] − 𝑃𝑟[𝐶𝑖𝑡 = 𝑗|𝑥 = 0, 𝑋𝑖𝑡

∗ ].                                   (7)                                                                

 
18 AME =

1

𝑛
∑ 𝑃𝑖𝑡𝑗(𝛽𝑘𝑗 − 𝛽�̅�)

𝑛
𝑖=1  
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5. Results 

The results in Table 3 and Table 4 present the marginal effects of all variables from the 

MNL regression models in five categories and seven categories among selected major crops, 

respectively. The interpretation of the marginal effects on continuous variables indicates the 

change in predicted probabilities of choosing a particular alternative due to a one-unit change in 

a particular variable. The interpretation of the marginal effects on categorical variables (such as 

five soil salinity levels and four drainage classes) suggests the difference in predicted 

probabilities of choosing a particular alternative due to a variable taking that particular level 

compared to the base category. The marginal effects of different soil salinity levels on crop 

choices are of great interest. This finding demonstrates how the change in soil salinity 

encourages or discourages the probability of a particular crop being grown in a given field.  

Table 3 indicates the marginal effects of soil salinity levels in five categories. Overall, at 

all levels of soil salinity except for slightly saline soil levels, the marginal effects of field crops, 

forage crops, fruit crops, and vegetable crops show signs that match expectations in the light of 

the relative salinity tolerance index for those crops. They are also statistically significant. 

Specifically, the probabilities of culturing field crops and vegetable crops in a slightly saline soil 

(i.e., ECe 2-4 dS/m) field are 3.16% -and 5.31%is  lower than those in a nonsaline soil (i.e., ECe 

2-4 dS/m) field. These results are statistically significant at the 1% level of significance. 

Meanwhile, the probability of planting forage crops in a field having slightly saline soil is 5.98% 

higher than that in a field having nonsaline soil, and the variance is statistically significant at the 

1% level. These results are in contradiction with our expectations, based on the relative salt 

tolerance index for those crops. Perhaps this level is close to the natural saline level and does not 

substantially render yield loss.  



 

20 

 

Compared to a field having moderately saline soil (i.e., ECe -8 dS/m), the probabilities of 

planting fruit crops and vegetable crops in a field having slightly saline soil or higher are 2.24% 

higher and 9.38% lower, respectively. These results are both statistically significant at the 1% 

level. The probability of culturing forage crops in a field having slightly saline soil is 5.98% 

higher than that in a field having nonsaline soil, and this result is statistically significant at the 

1% level. The probabilities of planting field crops and fruit crops in a field having strongly saline 

soils (i.e., ECe 8-16 dS/m) are 17.26% higher and 8.32% lower than those in a field having 

nonsaline soil. The results show statistical significance at the 5% and 1% levels for field and fruit 

crops, respectively. However, the probability of planting vegetable crops in a field having 

strongly saline soil is 16.33% lower than that in a field having nonsaline soil, and this is 

statistically significant at the 1% level. Compared to a field having nonsaline soil, a field having 

extremely saline soil (i.e., ECe >16 dS/m) shows 25.84% and 11.62% higher possibility of 

culture field crops and fruit crops, respectively. It exhibits statistical significance at the 5% and 

1% levels for field and fruit crops, respectively. However, the probabilities of culturing forage 

crops and vegetable crops in a field having extremely saline soils (i.e., ECe >16 dS/m) are 

16.48% lower and 15.72% higher than those in a field having nonsaline soil. The results show 

statistical significance at the 10% and 1% levels for field and fruit crops, respectively. As the 

level of soil salinity increases, the probability that salt-tolerant crops will be selected by farmers 

for cultivation increases gradually. In contrast, salt-sensitive crops are incrementally less likely 

to be selected by farmers as cultivated crops. This suggests that the extent of farmers’ 

adaptations to salinity change is highly associated with the degree of soil salinity. 

It is observed that soil salinity shows all positive and statistically significant marginal 

effects on fruit crops w at the slightly saline soil or higher. In the light of the relative salinity 
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tolerance index, we anticipate that the probability of culturing salt-sensitive fruit crops in a given 

field would decrease. This is possibly ascribed to the fact that most crops including fruit crops 

grow perennially in all locations of the study region. Especially almonds, which account for the 

largest portion of fruit crops, are representative of perennial crops. Also, crop rotation19 will not 

apply to perennial crops like almonds. For example, almond trees generally live for 25 to 30 

years depending on the growing conditions, their yield tends to decline gradually after reaching 

the maximum yields of about 15 years. Given the roughly seven years for the almond tree to 

reach the point where it can launch for commercial production, the peak production only last for 

seven years (Almond Board of California 2016; Ternus-Bellamy 2019). Because of the long time 

and other input costs of perennial crops (i.e., involving relatively higher sunk costs than the other 

crops), a slight increase in soil salinity is unlikely to be an incentive to induce an immediate 

change of choice to other annual crops.  

 Our estimations may have some endogeneity bias. For example, if the selected crop 

consumes water containing high salinity, then the irrigation process will potentially increase soil 

salinity. Moreover, the farmer might intentionally grow a crop that consumes more water to flush 

the salts out of the soil. Therefore, the crop choice of farmers in response to soil salinity also 

depends on the salinity and amount of water applied and the water used by the crop for irrigation. 

Unfortunately, we can not determine the direction of the endogeneity bias in this work.  

 Table  4 shows the marginal effects of soil salinity on seven categories of the selected 

major crops in the WSJV according to their shares. Overall, except for cotton and almond, the 

marginal effects of soil salinity on alfalfa, winter wheat, tomato, and corn show signs that match 

 
19 Crop rotation is to plant different crops more than two sequentially on the same plot of land for growing season to 

improve soil health by preventing soil diseases or pests and by optimizing nutrients in the soil (Dufour 2015). 

However, crop rotation has not confirmed to be an entirely adequate control practice for almond trees (Micke 1997). 
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expectations in the light of the relative salinity tolerance index for those crops at almost all soil 

salinity levels apart from slightly saline soil level, and they are also statistically significant. 

Specifically, the probability of planting alfalfa in a field having slightly saline soils (i.e., ECe 2-4 

dS/m) is 5.39% higher than that in a field having nonsaline soil (i.e., ECe 2-4 dS/m). This result 

is statistically significant at the 1% level. Meanwhile, the probability that a field having slightly 

saline soil is planted with cotton and tomato is 5.65% and 2.20% lower than that of a field having 

nonsaline soil, respectively. Both results are statistically significant at the 1% level. Likewise, 

the result of the five categories above is in contradiction with our expectations, based on the 

relative salt tolerance index for those crops.  

Compared to a field having moderately saline soils (i.e., ECe -8 dS/m), the field having 

slightly saline soil or higher show 6.77% and 1.05% higher probability of culture winter wheat 

and almond, respectively. It shows statistical significance at the 5% and 1% levels for winter 

wheat and almond, respectively. The probability that a field having moderately saline soil is 

planted with cotton and tomato is 8.76% and 4.35% lower than that of a field having nonsaline 

soil, respectively. It shows statistical significance at the 10% and 1% levels for cotton and 

tomato, respectively. Meanwhile, the probabilities of planting alfalfa and corn in a field having 

strongly saline soil are 10.97% and 3.02% lower than those in a field having nonsaline soil, 

respectively. It shows statistical significance at the 5% and 1% levels for alfalfa and corn crops, 

respectively. The probabilities that a field having extremely saline soil (i.e., ECe >16 dS/m) is 

planted with winter wheat and almond are 17.80% and 4.60% higher than those of a field having 

nonsaline soil. These results show statistical significance at the 1% level. However, the 

probability of culturing alfalfa, cotton, tomato, and corn in a field having extremely saline soil is 
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17.50%, 24.10%, 11.67%, and 2.94% lower than those of crops in a field having nonsaline soil, 

respectively. Such results are all statistically significant at either the 5% or 1% level. 

In the seven categories, cotton (a field crop) and almonds (a fruit crop) show notably 

opposite trends to expectations. Cotton was expected to be highly selected for farmers facing 

more salinity because it was a salt-tolerant crop. Its sign was expected to be positive and 

consistent with the results of field crops in the five categories shown earlier. However, the result 

was statistically significant and opposite to expectations. This may stem from cotton’s water use 

intensity (see Table 2). Even though cotton is a salt-tolerant crop, farmers are less likely to 

choose cotton, due to its high-water use intensity (i.e., average water need: 1000mm/growing 

period). This high-water need offsets the impact of soil salinity on the likelihood of choosing a 

salt-tolerant crop.  

Almond, like cotton, has different statistical signs to expectation. The possible reasons 

for this result are the same as the fruit crops in the five categories shown above. In other words, 

due to the relatively higher sunk costs than the other crops, no matter how much almonds are 

salt-sensitive, farmers will not be able to leave almond cultivation immediately. Moreover, 

almonds (600mm/growing period) use less water than either walnut in the same fruit crop 

category or corn and cotton; thus, the effect of soil salinity on farmers' almond selection also has 

the potential to increase. 

Conversely, winter wheat and corn as field crops showed signs that matched their relative 

salinity tolerance indices with statistically significant. Moderately salt-tolerant winter wheat is 

also the best choice for farmers facing soil salinity because water use intensity (i.e., average 

water need: 550mm/growing period) is not only resistant to salinity to some extent but also lower 

water use intensity compared to cotton. Indeed, farmers in the region facing salinity show a high 
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tendency to choose winter wheat. On the other hand, farmers in this region reduce the choice of 

moderately salt-sensitive corn, as in the case of cotton, but because the corn uses less water than 

cotton, the magnitude of the decrease is small compared to cotton.  

Soil properties and climate conditions also affect crop choice. In Table 3, as the soil 

drainage classes are poor, it decreases the likelihood of selecting moderately salinity-sensitive 

fruit crops. The effect of soil drainage class could partly be responsible for soil salinity impacts 

because poor drainage can increase soil salinity. This can be seen in field crops and fruit crops. 

The probability that a field is planted with salt-tolerant field crops is higher if it has a more 

poorly drained soil class relative to a well-drained soil class. Conversely, the probability that a 

field is planted with salt-sensitive fruit crops is lower if it has a more poorly drained soil class 

relative to a well-drained soil class. Likewise, seven categories of selected major crops in Table 

4 Table 4can be interpreted in the same way for the soil drainage classes. In summary, as the soil 

drainage classes are poor, it encourages the likelihood of choosing salt-tolerant cotton and 

discourages the likelihood of selecting salt-sensitive almonds. The results for cotton and almond 

are consistent with the results for field crops and fruit crops, respectively. However, it is also 

possible that the soil drainage class captures other aspects of the soil that affect plant growth, so 

the soil drainage class could be capturing other aspects than soil salinity. 

Soil properties such as bulk density and soil pH do not significantly affect crop choice in 

five crop categories. The seven crop categories are not significantly impacted by bulk density 

and soil organic carbon as well. However, precipitation has significant effects on all crop 

categories. In the case of DDs between 10°C and 20°C, it has the most significant impact on crop 

choice. 
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6. Conclusions 

Soil salinity has threatened agricultural productivity and sustainability in the WSJV, one of the 

highest crop productivity regions in the United States. The source of soil salinity in WSJV stems 

from saline Coastal Range alluvium. Such salinity challenges are credited to the lack of 

freshwater availability caused by regional climate conditions and the inflow of saltwater induced 

by excessive irrigated agriculture and regional hydrology conditions. 

A robust literature examines the effect of soil salinity on productivity and crop yields, 

however, studies are available to investigate the changes in cropping patterns as an adaptation 

strategy to soil salinity. We quantify the adaptation to soil salinity by farmers in the WSJV by 

econometrically estimating how farmers change crop choices in response to different soil salinity 

levels. We use high-resolution remote-sensed soil salinity and remote-sensed crop data during 

2007-2016 to capture fine-scale spatial variations inherent in agricultural settings, controlling for 

other soil properties and climate conditions on irrigated lands at each field. To investigate 

farmers’ crop choices, we estimate a multinomial logit model with fixed effects for two types of 

crop categories: five categories and seven categories by selected major crops in the study region. 

Our estimated total marginal effect shows that as the salinity level increases,  increases 

the probability of choosing a salt-tolerant crop. Our results provide useful information for 

farmers and policymakers on how farmers adjust cropping choices in response to soil salinity in 

irrigated lands. This information could be used in deriving a reasonable picture of adaptation to it 

when they make agricultural decisions under more complex environments due to a variety of 

factors threatening agricultural production and sustainability. Specifically, our work makes an 

additional contribution to a much broader literature in the WSJV, confined to assessing, 

sampling, or mapping soil salinity at regional and state levels.  
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Tables and Figures 

Table 1. Descriptive Statistics 

Outcome Variables Obs Mean Std.Dev.  Min  Max 

Five categories by crop type      
 Field Crops 139807 0.44 0.14 0.04 0.93 

 Forage Crops 139807 0.27 0.13 0.00 0.70 

 Fruit Crops 139807 0.08 0.10 0.00 0.94 

 Vegetable Crops 139807 0.13 0.14 0.00 0.81 

 Other Crops 139807 0.08 0.06 0.00 0.42 

Seven categories by selected major crops      
 Alfalfa 139807 0.26 0.13 0.00 0.69 

 Cotton 139807 0.20 0.12 0.00 0.82 

 Winter Wheat 139807 0.13 0.09 0.01 0.68 

 Tomato 139807 0.09 0.10 0.00 0.70 

 Corn 139807 0.05 0.05 0.00 0.47 

 Almond 139807 0.03 0.05 0.00 0.65 

 Others 139807 0.25 0.12 0.01 0.80 

Explanatory Variables Obs Mean Std.Dev.  Min  Max 

Soil Salinity       
 Nonsaline: 0–2 (dS/m) 139807 0.35 0.48 0.00 1.00 

 Slightly saline: 2–4 (dS/m)a 139807 0.30 0.46 0.00 1.00 

 Moderately saline: 4–8 (dS/m)a 139807 0.26 0.44 0.00 1.00 

 Strongly saline: 8–16 (dS/m)a 139807 0.08 0.27 0.00 1.00 

 Extremely saline: >16 (dS/m)a 139807 0.01 0.11 0.00 1.00 

      

Soil Properties Variables      
 Moderately well drainedb 139753 0.13 0.34 0 1 

 Somewhat poorly drainedb 139753 0.2 0.4 0 1 

 Poorly drainedb 139753 0.27 0.44 0 1 

 Bulk density (g/cm3) 139165 1.44 0.10 1 1.65 

 Root Zone Available Water Storage (mm) 139666 190.32 51.40 0 270 

 Soil Organic Carbon in 0–150cm depth (kg/m2) 139577 6815.35 3349.72 92.44 27709.79 

 Soil pH 139165 8.09 0.42 4.83 9.80 

 National Commodity Crop Productivity Index 139595 0.10 0.05 0 0.44 

 Log of slop (%) 139753 0.83 0.59 0 12 

      

Climate Conditions Variables       
 Precipitation (mm) 139807 214.71 40.83 140.57 302.77 

 Degree days between 0°C and 10°C 139807 6406.58 210.73 5945.26 6822.23 

 Degree days between 10°C and 20°C 139807 3076.06 195.18 2669.43 3443.63 

 Degree days between 20 °C and 30°C 139807 998.3 111.37 767.02 1213.49 

 Degree days between 30°C and 40°C 139807 163.22 34.37 83.18 238.61 

 Degree days greater than 40°C 139807 0.67 0.42 0.01 2.59 
aFive soil salinity levels measured by the electrical conductivity of saturated soil paste extract (ECe) and the base 

category is “Nonsaline: 0–2 (dS/m)”. 
bThe base category for four soil drainage classes is “Well drained”. 
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Table 2. Soil Salinity Tolerance Indexes and Water Use Intensity 

Crop 

Code 

Crop 

Name 

Crop 

Type 

Salinity 
Toleran

ce  

0% Yield Loss 

(ECe, dS/m)  

50% Yield Loss 

(ECe, dS/m)  

 
Share 

(%) 

Growing Period 

(days) 

Average 
Growing Period 

(days) 

Water Need 

(mm/growing period) 

Average 
Water Need 

(mm/growing period) 

1 Corn Field MS 1.7 5.9 4.94 125-180 152.5 500-800 650 

2 Cotton Field T 7.7 17.0 19.82 180-195 187.5 700-1300 1000 

3 Rice Field S 3.0 7.2 0.15 90-150 120 450-700 575 

4 Sorghum Field MT 4.0 11.0 0.28 120-130 125 450-650 550 
12 Sweet Corn Vegetable MS 1.7 5.9 0.06 80-110 95 500-800 - 

21 Barley Field T 8.0 18.0 1.56 120-150 135 450-650 550 

22 Durum Wheat Field T 5.9 13.0 1.11 120-150 135 450-650 550 
23 Spring Wheat Field T 6.0 13.0 0.01 120-150 135 450-650 550 

24 Winter Wheat Field T 6.0 13.0 12.55 120-150 135 450-650 550 

27 Rye Forage MT 5.6 12.2 0.07 - - - - 

28 Oats Field T 2.0 - 2.62 120-150 135 450-650 550 

33 Flaxseed Others MS 1.7 5.9 1 150-220 185 450-900 675 
36 Alfalfa Forage MS 2.0 8.8 25.64 100-365 232.5 800-1600 1200 

37 

Other Hay/Non 

Alfalfa Forage MT 6.0 13.0 0.73 - - - - 
38 Camelina Forage T - - 0.02 - - - - 

41 Sugarbeets Field T 7.0 15.0 0.06 160-230 195 550-750 650 

42 Dry Beans Vegetable S 1.0 3.6 0.28 95-110 102.5 300-500 400 
43 Potatoes Vegetable MS 1.7 5.9 0.40 105-145 125 500-700 600 

44 Other Crops Field - - - 0.02 - - - - 

46 Sweet Potatoes Vegetable MS 1.5 6.0 0.03 - - - - 
47 Misc Vegs & Fruits Others - - - 0.04 - - - - 

48 Watermelons Fruit MS - - 0.27 120-160 140 400-600 500 

49 Onions Vegetable S 1.2 4.3 1.09 150-210 82.5 350-550 450 
50 Cucumbers Vegetable MS 2.5 6.3 0.01 105-130 117.5 350-500 425 

53 Peas Vegetable MS 3.4 - 0.11 90-110 95 350-500 425 

54 Tomatoes Vegetable MS 2.5 7.6 8.68 135-180 157.5 400-800 600 

57 Herbs Others - - - 0.08 - - - - 

58 Clover/Wildflowers Forage MS 1.5 5.7 0.03 125-130 127.5 579-1320 949.5 

59 Sod/Grass Seed Others - - - 0.01 - - - - 
66 Cherries Fruit S 1.7 - 0.07 - - - - 

67 Peaches Fruit S 1.1 1.4 0.04 - - - - 

68 Apples Fruit S 1.7 4.8 0 - - - - 
69 Grapes Fruit MS 1.5 6.7 1.68 - - - - 

71 Other Tree Crops Others - - - 0.02 - - - - 

72 Citrus Fruit S 1.7 4.8 0.03 240-365 302.5 900-1200 1050 

74 Pecans Fruit MS - - 0 - - - - 

75 Almonds Fruit S 1.5 4.1 3.29 180-240 210 500-700 600 

76 Walnuts Fruit S 1.7 4.8 0.27 130-140 135 700-1000 850 

(Continued) 
 

 

 



 

28 

 

Table 2. Continued 

Crop 

Code 

Crop 

Name 

Crop 

Type 

Salinity 
Toleran

ce  

0% Yield Loss 

(ECe, dS/m)  

50% Yield Loss 

(ECe, dS/m)  

 
Share 

(%) 

Growing Period 

(days) 

Average 
Growing Period 

(days) 

Water Need 

(mm/growing period) 

Average 
Water Need 

(mm/growing period) 

204 Pistachios Fruit MS - - 1.68 - - - - 
205 Triticale Field T 6.1 14.0 0.68 - - - - 

206 Carrots Vegetable S 1.0 4.6 0.69 100-150 125 350-500 425 

207 Asparagus Vegetable T 4.1 18.0 0.13 - - - - 
208 Garlic Vegetable MS 3.9 6.0 0.69 - - - - 

209 Cantaloupes Vegetable MS 2.2 9.1 0.78 - - - - 

210 Prunes Fruit MS 1.5 4.3 0.01 75-95 85 300-600 450 
211 Olives Fruit MT 2.7 8.4 0.01 150-180 165 600-1000 800 

212 Oranges Fruit S 1.3 4.8 0.33 240-365 302.5 900-1200 1050 
213 Honeydew Melons Fruit MS 1.0 - 0.17 120-160 140 400-600 500 

214 Broccoli Vegetable MS 2.8 8.2 0.03 100-150 125 250-500 375 

216 Peppers Vegetable MS 1.5 5.1 0.13 120-210 165 600-900 750 
217 Pomegranates Fruit MS 2.7 8.4 0.28 120-130 125 280-600 440 

218 Nectarines Fruit S 1.7 4.1 0.01 - - - - 

219 Greens Vegetable MS 0.9 - 0.01 - - 250-500 375 
220 Plums Fruit S 1.5 4.3 0.02 - - - - 

222 Squash Vegetable MT 4.9 - 0 95-120 107.5 500-650 600 

223 Apricots Fruit S 1.6 3.7 0.01 - - - - 
224 Vetch Forage MS 3.0 - 0.06 - - - - 

225 

Dbl Crop 

WinWht/Corn 

Others - - - 3.90 - - - - 

226 Dbl Crop Oats/Corn Others - - - 1.95 - - - - 

227 Lettuce Vegetable MS 1.3 5.2 0.33 75-140 107.5 400-600 500 

231 
Dbl Crop 

Lettuce/Cantaloupe 
Others - - - 0 - - - - 

232 

Dbl Crop 

Lettuce/Cotton 

Others - - - 0 - - - - 

234 

Dbl Crop Durum 

Wht/Sorghum 

Others - - - 0 - - - - 

235 
Dbl Crop 

Barley/Sorghum 
Others - - - 0.03 - - - - 

236 

Dbl Crop 

WinWht/Sorghum 

Others - - - 0.95 - - - - 

237 

Dbl Crop 

Barley/Corn 

Others - - - 0.02 - - - - 

238 

Dbl Crop 

WinWht/Cotton 

Others - - - 0.03 - - - - 

242 Blueberries Fruit S 2.0 - 0 - - - - 

243 Cabbage Vegetable MS 1.8 7.0 0.01 120-140 130 350-500 425 
246 Radishes Vegetable MS 1.2 5.0 0 35-45 40 300-400 350 

247  Turnips Vegetable MS 0.9 - 0 - - - - 

Notes: Compiled from various sources 
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Table 3. Marginal Effects of the Probabilities to Choose Alternative Crops in Five Categories  
 

Tolerant Moderately 

Sensitive 

Moderately 

Sensitive 

Moderately 

Sensitive 

Moderately 

Sensitive 

Variables Field crops Forage crops Fruit crops Vegetable crops Other cropsc 

Slightly saline: 2–4 (dS/m)a     -0.0316***       0.0598*** 0.0006      -0.0531***       0.0255*** 

       (0.0072) (0.0108) (0.0016) (0.0074) (0.0025) 

Moderately saline: 4–8 (dS/m)a        0.0153 0.0286       0.0224***      -0.0938***       0.0275*** 

       (0.0337) (0.0347)  (0.0038) (0.0069) (0.0054) 

Strongly saline: 8–16 (dS/m)a   0.1726**        -0.0775       0.0832***      -0.1633***        -0.0151 

      (0.0869)        (0.0500) (0.0096) (0.0369) (0.0124) 

Extremely saline: >16 (dS/m)a 0.2584**        -0.1648*       0.1162***    -0.1572**      -0.0525*** 

      (0.1043)        (0.0886)  (0.0083) (0.0619) (0.0119) 

Moderately well drainedb    0.1222***        -0.0433      -0.0494*** 0.0132      -0.0427*** 

      (0.0239)        (0.0294)  (0.0068) (0.0288) (0.0102) 

Somewhat poorly drainedb    0.1300***         0.0169      -0.0683***        -0.0528    -0.0259** 

      (0.0280)        (0.0347) (0.0067)  (0.0406) (0.0088) 

Poorly drainedb    0.1714***         0.0200      -0.0808***        -0.0165      -0.0940*** 

      (0.0183)        (0.0609) (0.0084)        (0.0509) (0.0140) 

Bulk density (g/cm3)      -0.3155         0.2176 0.0707        -0.0205 0.0477 

      (0.2659)        (0.2135) (0.0840)        (0.0639) (0.0552) 

Root Zone Available Water Storage (mm)      -0.0006**        -0.0001       0.0003***       0.0003*** 0.0001 

      (0.0002)        (0.0003) (0.0000)        (0.0001) (0.0001) 

Soil Organic Carbon in 0‐150 cm depth (kg/m2)      -0.0000        -0.0000   0.0000*         0.0000 0.0000 

      (0.0000)        (0.0000) (0.0000)        (0.0000) (0.0000) 

Soil pH       -0.0193         0.0384**    -0.0093**    -0.0153** 0.0055 

      (0.0168)        (0.0153) (0.0038)        (0.0065) (0.0060) 

(Continued) 
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Table 3. Continued 
 

Tolerant Moderately 

Sensitive 

Moderately 

Sensitive 

Moderately 

Sensitive 

Moderately 

Sensitive 

Variables Field crops Forage crops Fruit crops Vegetable crops Other cropsc 

National Commodity Crop Productivity Index           0.7635***        0.2296        -0.3532***       -0.2666*      -0.3733*** 

         (0.1548)       (0.2675)        (0.0710)       (0.1593) (0.0682) 

Log of slop (%)          0.0668**     -0.0774***         0.0198**        0.0097        -0.0188 

         (0.0215)       (0.0206)       (0.0100)       (0.0068)  (0.0158) 

Precipitations (mm)         -0.0021**     0.0029***       -0.0003    -0.0012***  0.0007 

         (0.0009)       (0.0007)       (0.0002)       (0.0003)  (0.0005) 

Degree days between 0°C and 10°C  -0.0005       -0.0026        0.0007**   0.0024**        -0.0000 

   (0.0023)       (0.0024)       (0.0003)       (0.0010)        (0.0010) 

Degree days between 10°C and 20°C  0.0002   0.0061**  -0.0015**    -0.0052***         0.0004 

  (0.0028)       (0.0026) 0.0005)       (0.0012)        (0.0014) 

Degree days between 20 °C and 30°C  0.0018       -0.0091        0.0017    0.0071**        -0.0014 

  (0.0028)       (0.0061)       (0.0013)       (0.0025)        (0.0015) 

Degree days between 30°C and 40°C        -0.0035        0.0120       -0.0024       -0.0107*         0.0045 

        (0.0104)       (0.0159)       (0.0024)       (0.0056)        (0.0031) 

Degree days greater than 40°C        -0.0574       -0.0658        0.0526*    0.1713**    -0.1008** 

        (0.1979)       (0.2286)       (0.0307)       (0.0628)        (0.0350) 

Year fixed effects Yes Yes Yes Yes Yes 

County fixed effects  Yes Yes Yes Yes Yes 

Observations 139,060 139,060 139,060 139,060 139,060 

Notes: Asterisks ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust standard errors clustered at the county level 

are reported in parentheses. 
aFive soil salinity levels measured by the electrical conductivity of saturated soil paste extract (ECe) and the base category is “Nonsaline: 0–2 (dS/m)”. 
bThe base category for four soil drainage classes is “Well drained”. 
cOther crops for five categories by crop type include seed crops, herbs, and double crops. Other crops are used as the base category. 
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Table 4. Marginal Effects of the Probabilities to Choose Alternative Crops in Seven Categories by Selected Major Crops 

 Moderately 

Sensitive 

Tolerant  Moderately 

Tolerant 

Moderately 

Sensitive 

Moderately 

Sensitive 

Sensitive 

 

Undetermined 

Variables Alfalfa Cotton Winter Wheat Tomato   Corn Almond Othersc 

Slightly saline:  

2–4 (dS/m)a 

      0.0539*** 

(0.0103) 

     -0.0565*** 

(0.0097) 

0.0215 

(0.0146) 

    -0.0220*** 

     (0.0024) 

0.0028 

(0.0039) 

0.0005 

(0.0022) 

      -0.0000 

 (0.0188) 
 

Moderately saline:  

4–8 (dS/m)a 

0.0068 

(0.0257) 

    -0.0876*** 

(0.0158) 

   0.0677** 

     (0.0267) 

   -0.0435*** 

     (0.0042) 

-0.0003 

(0.0043) 

      0.0105*** 

(0.0027) 

    0.0463**  

(0.0177) 
 

Strongly saline:  

8–16 (dS/m)a 

   -0.1097** 

(0.0365) 

     -0.1682*** 

(0.0102) 

     0.1678*** 

     (0.0420) 

   -0.0724*** 

     (0.0102) 

    -0.0302*** 

(0.0048) 

      0.0382*** 

(0.0034) 

     0.1745*** 

(0.0257) 
 

Extremely saline:  

>16 (dS/m)a 

  -0.1750** 

     (0.0794) 

   -0.2410*** 

     (0.0372) 

     0.1780*** 

     (0.0449) 

  -0.1167*** 

    (0.0076) 

   -0.0294** 

(0.0136) 

     0.0460*** 

(0.0067) 

     0.3381*** 

(0.0632) 
 

Moderately well drainedb       -0.0188 

(0.0310) 

    0.1659*** 

     (0.0231) 

      0.0168 

     (0.0116) 

     0.0190 

    (0.0117) 

   -0.0115** 

 (0.0055) 

     -0.0305*** 

(0.0035) 

     -0.1410*** 

(0.0256)  

Somewhat poorly drainedb 0.0273 

(0.0392) 

    0.1723*** 

    (0.0390) 

      0.0278 

     (0.0216) 

    -0.0029 

    (0.0138) 

-0.0161 

 (0.0117) 

     -0.0205*** 

(0.0039) 

     -0.1879*** 

(0.0400)  

Poorly drainedb 0.0540 

(0.0568) 

   0.2553*** 

    (0.0250) 

     -0.0097 

     (0.0332) 

     0.0111 

    (0.0216) 

-0.0013 

 (0.0172) 

     -0.0277*** 

(0.0031) 

     -0.2817*** 

(0.0374)  

Bulk density (g/cm3) 0.1845 

(0.1609) 

    -0.1515 

    (0.2407) 

     -0.0617 

     (0.0844) 

     0.0025 

    (0.0401) 

  0.0254* 

(0.0138) 

0.0442 

(0.0405) 

      -0.0434 

 (0.1286)  

Root Zone Available Water 

Storage (mm) 

      -0.0003 

(0.0002) 

    -0.0000 

    (0.0003) 

 -0.0003** 

     (0.0002) 

 0.0001** 

    (0.0000)  

    -0.0001*** 

(0.0000)  

    0.0001** 

(0.0000)  

    0.0004**  

(0.0001) 
 

Soil Organic Carbon 

in 0‐150cm depth (kg/m2) 

     -0.0000 

     (0.0000)  

   0.0000*** 

    (0.0000) 

 -0.0000** 

     (0.0000) 

     0.0000 

    (0.0000) 

      0.0000*** 

(0.0000) 

   -0.0000** 

(0.0000)  

       0.0000 

(0.0000) 
 

Soil pH    0.0379** 

     (0.0186) 

      -0.0108 

(0.0275) 

      -0.0153 

(0.0152) 

   -0.0087 

   (0.0055) 

      -0.0026 

(0.0046) 

    -0.0125*** 

(0.0019) 

0.0119 

(0.0207)  

(Continued) 
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Table 4. Continued 
 

Moderately 

Sensitive 

Tolerant  Moderately 

Tolerant 

Moderately 

Sensitive 

Moderately 

Sensitive 

Sensitive 

 

Undetermined 

Variables Alfalfa Cotton Winter Wheat Tomato   Corn Almond Othersc 

National Commodity Crop 

Productivity Index  

  0.6541* 

(0.3351) 

     0.6327** 

 (0.3163) 

0.2207 

(0.2361) 

-0.0760 

 (0.0903) 

     0.0896** 

      (0.0306) 

     -0.0789*** 

(0.0170) 

   -1.4422**  

(0.5001) 

 

Log of slop (%)    -0.0803** 

 (0.0326) 

       -0.0005 

 (0.0298) 

    0.0205** 

(0.0080) 

    0.0065** 

(0.0030) 

-0.0133 

 (0.0163) 

      0.0052*** 

(0.0014) 

    0.0619**   

(0.0295) 
 

Precipitations (mm)       0.0032*** 

      (0.0006) 

    -0.0015** 

 (0.0005) 

  -0.0012** 

(0.0005) 

     -0.0006*** 

(0.0002) 

      0.0016*** 

(0.0002) 

 -0.0002* 

(0.0001) 

      -0.0014 

 (0.0011)  

Degree days between 0°C and 

10°C 

      -0.0041 

      (0.0025) 

   -0.0025** 

 (0.0011) 

    0.0013** 

(0.0005) 

 0.0006 

 (0.0005) 

     -0.0025*** 

(0.0004) 

 0.0001 

 (0.0001) 

    0.0071**  

(0.0024)  

Degree days between 10°C 

and 20°C 

   0.0080** 

     (0.0029) 

       0.0040*** 

 (0.0007) 

     -0.0028*** 

(0.0006) 

   -0.0017** 

(0.0007) 

      0.0044*** 

(0.0009) 

-0.0003 

 (0.0003) 

     -0.0117*** 

(0.0029)  

Degree days between 20 °C 

and 30°C 

     -0.0085 

     (0.0058) 

      -0.0018 

(0.0052) 

0.0033 

(0.0031) 

    0.0032** 

(0.0013) 

  -0.0028** 

(0.0010) 

0.0004 

(0.0005) 

  0.0062* 

(0.0033)  

Degree days between 30°C 

and 40°C 

      0.0091 

    (0.0148) 

      -0.0026 

(0.0098) 

      -0.0039 

 (0.0063) 

   -0.0058** 

(0.0027) 

0.0020 

(0.0014) 

-0.0002 

 (0.0008) 

0.0014 

(0.0100)  

Degree days greater than 40°C     -0.0661 

    (0.2127) 

        0.0292 

(0.0547) 

0.0387 

(0.0631) 

    0.0896** 

(0.0289) 

     -0.0638*** 

(0.0180) 

-0.0066 

 (0.0102) 

      -0.0210 

 (0.1482) 
 

Year fixed effects Yes Yes Yes Yes Yes Yes Yes 

County fixed effects  Yes Yes Yes Yes Yes Yes Yes 

Observations 139,060 139,060 139,060 139,060 139,060 139,060 139,060 

Notes: Asterisks ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Robust standard errors clustered at the county level 

are reported in parentheses. 
aFive soil salinity levels measured by the electrical conductivity of saturated soil paste extract (ECe) and the base category is “Nonsaline: 0–2 (dS/m)”. 
bThe base category for four soil drainage classes is “Well-drained”. 
cOthers for seven categories by selected major crops include all remaining crops grown on a small scale except seven major crops. Others are used as the base 

category. 
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Figure 1. Overview of the study region: Western San Joaquin Valle California, USA.  

Note: Adapted and modified from Scudiero et al. (2016).    
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Figure 2. Map of remote-sensed root zone soil salinity in the WSJV covering the five counties 

Note: The label in the box indicates the extent (in percentage) of soil salinity.  
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Figure 3. Example map of CDLs joined to remote-sensed root zone soil salinity with CLU field 

boundaries and points used as the unit of analysis for the econometric model 

Note: This example targets Tulare County in the WSJV, wherein it shows the most proportion for extreme salinity. 
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