

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Factors of Vertical Farming adoption: Japan as an example

**Pei-Jyun Lu, Department of Agricultural, Food, and Resource Economics, Michigan State University,
lupeijyu@msu.edu**

*Selected Poster prepared for presentation at the 2022 Agricultural & Applied Economics Association
Annual Meeting, Anaheim, CA; July 31-August 2*

*Copyright 2022 by Pei-Jyun Lu. All rights reserved. Readers may make verbatim copies of this document
for non-commercial purposes by any means, provided that this copyright notice appears on all such
copies.*

Factors of Vertical Farming adoption: Japan as an example

Pei-Jyun Lu

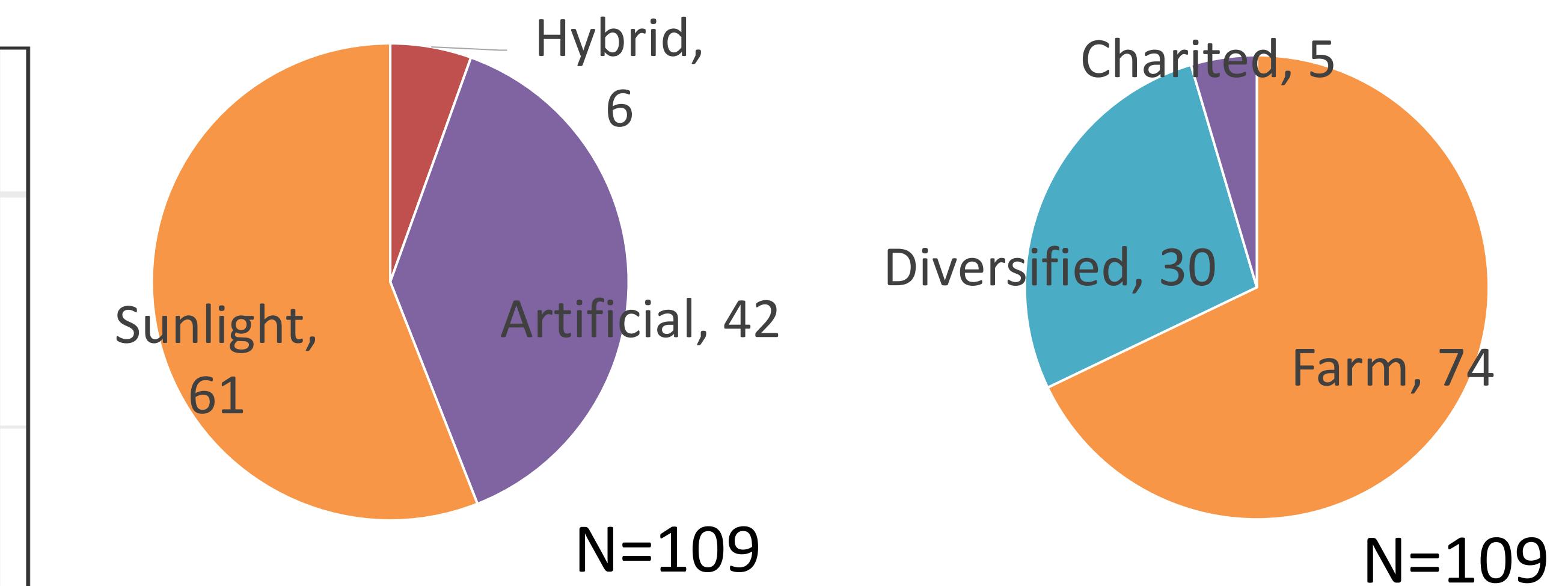
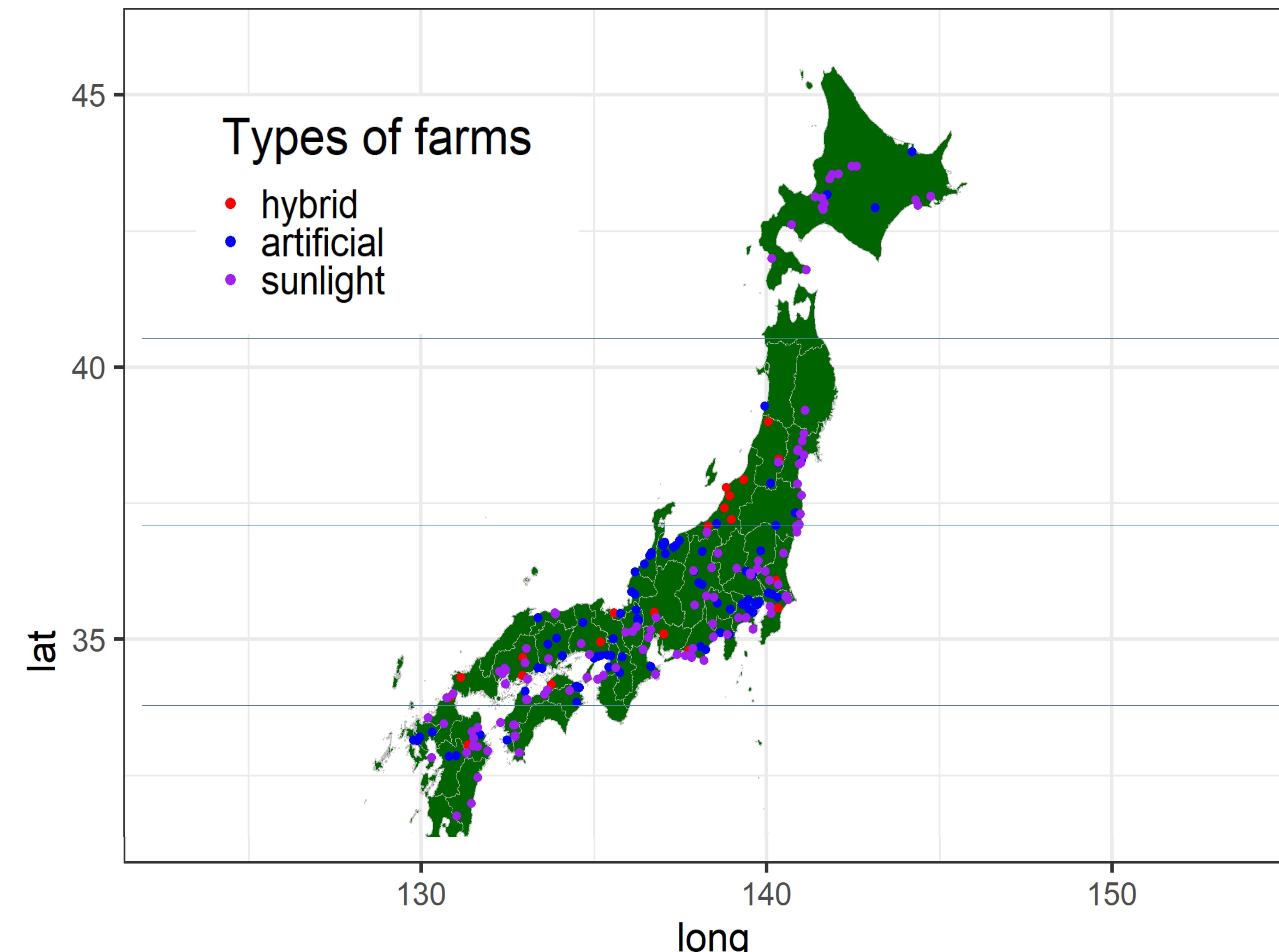
Department of Agricultural, Food, and Resource Economics, Michigan State University PhD Student

MICHIGAN STATE
UNIVERSITY

Introduction

- Vertical farming can increase productivity per unit of land and support urban population.
- A conventional greenhouse is a special case of stacked horizontal systems with only a single layer.
- Energy efficiency and land cost are the main concerns when farmers adopt vertical farming, but there has no empirical evidences for the research.

Data



Vertical farm survey data in 2013 is from Japan Greenhouse Horticulture Association, including farms' sizes, vertical farming types, addresses, etc. The energy efficiency of vertical farming data is from Weidner et al. (2021). Prices of land is from National Chamber of Agriculture, Japan.

Methods

- To analyze the factors, a multinomial logit model is adopted.
- Firm i makes a choice j among three different types of farming: greenhouse farming with natural sunlight (s), controlled environment agriculture with artificial lighting (a), or hybrid (h).
- Firm i 's systemic utility V_{ij} derived from choice alternative j , $j=1,\dots,J$. ($J=3$) is

$$V_{ij} = X'_{ij}\beta + \varepsilon_{ij}$$

where the vector of attributes X_i contains factors that influence the utility, including land cost and energy efficiency. β is the vector of coefficient, and ε_{ij} is the random error term.

Conclusions

- When considering the land and energy costs, the probability of adopting artificial vertical farms (a) or hybrid (h) instead of conventional greenhouses (sunlight) decreases with increased land costs and increases with increased energy costs.
- The marginal effects reflect the magnitude change of probabilities. When the natural log land cost increased by one unit, the probability of choosing an artificial vertical farm instead of conventional vertical farms increased by 16%.
- If considering the type of business, diversified businesses have a higher chance to choose vertical farming with artificial lighting instead of conventional greenhouses than farms. For example, LED companies adopt vertical farming with artificial light to demonstrate LED products. Selling fresh produce is not the priority of the business.

Results

Variable	Hybrid		Artificial		Hybrid	Artificial
	Coef. (Std. Err.)	$\frac{\partial y}{\partial x}$	Coef. (Std. Err.)	$\frac{\partial y}{\partial x}$	Coef. (Std. Err.)	Coef. (Std. Err.)
Ln(Land cost)	-1.14** (0.50)	-0.02 (0.01)	-2.26*** (0.48)	-0.16*** (0.02)	-1.18** (0.56)	-3.30*** (0.86)
Ln(Energy cost)	0.68 (0.51)	0.02 (0.02)	1.03** (0.42)	0.07** (0.03)	0.62 (0.59)	2.36*** (0.79)
Business Type					-13.85 (1713)	4.91*** (1.63)
Diversified					-15.21 (5027)	-0.79 (8.41)
Charitable					9.26*** (5.33)	24.79*** (5.08)
Cons					10.93* (5.94)	26.86*** (7.24)
Log likelihood			-45.61			-35.58

(a) Sunlight is the base case. (b) Level of significance: *** 1%, ** 5%, *10%. (c) Business types are pure farm, diversified company (e.g. LED company), and charitable organization.

References

- Japan Greenhouse Horticulture Association (2014)平成25年度次世代型通年安定供給モデル構築支援・環境整備事業報告書. Available online: <https://jgha.com/dl/>
- National Chamber of Agriculture (2014) Survey on Farm Land Trading Prices. Available online: <https://www.nca.or.jp/publication/statistics/>
- Weidner, T., A. Yang, M. W. Hamm (2021) "Energy optimization of plant factories and greenhouses for different climatic conditions," *Energy Conversion and Management*, 243, 114336.