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Abstract

This paper examines Pasture Rangeland Forage Rainfall Insurance, which is an insurance

mechanism that provides coverage for land used for grazing and haying forage crops. The

contract is based upon a rainfall index, and this paper looks at improvements to the index

through modifications and additional variables using basis risk of the index as a measure of

effectiveness. Additionally, it takes an in depth look at the policy implications of basis risk

improvement and how the structure of the mechanism may need to evolve with a warming

climate.
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1 Introduction

Pasture, Rangeland, Forage Rainfall Insurance (PRF-RI) is a USDA insurance program

that provides protection for perennial forage used for grazing or haying. Why does PRF

land matter? PRF land is used to graze or grow feed for livestock. In the event of crop

spoilage, livestock owners must purchase feed on the market, which can be expensive. For

this reason, farmers and ranchers value risk management tools to insure their PRF land.1

PRF-RI insurance has been growing year over year popularity since the program’s

initiation in 2007, and as is true with most federal crop insurance products, the program is

subsidized (about 54% of Total Premium). In 2021, over 53,000 policies were sold covering

over 238,000 acres for a total liability of $4.4 billion.2

The product operates by insuring a rainfall index based on local historic precipitation on a

roughly 17 square mile gird (0.25 degrees), but why an index? The yields of forage crops

are inherently difficult to quantify; forage is often grazed by livestock and not counted at

harvest or when sold. This nature of forage lands prevents standard crop insurance

mechanisms, which rely on quantifiable yields, from being an option.3

To provide some form of a risk management product to forage lands, PRF-RI insures

against rainfall uncertainty. As an index insurance, indemnities are triggered only by

aggregate monthly rainfall being below the threshold, which varies based on location and

desired level of coverage. Each grid is allocated and ”Expected Grid Index” based on

location and time of year. The Expected Grid Index is multiplied by the desired coverage

1Matthew Diersen. “Choosing Pasture, Rangeland, Forage Rainfall Index (PRF-RI) Insurance Coverage”.
In: AgWeb (2015). doi: https://www.agweb.com/article/choosing-pasture-rangeland-forage-

rainfall-index-prf-ri-insurance-coverage-university-news-release
2USDA RMA. Pasture, Rangeland, and Forage. 2019. url: https://www.rma.usda.gov/en/News-

Room/Frequently-Asked-Questions/Pasture-Rangeland-Forage (visited on 04/11/2019)
3Jody Campiche and JJ Jones. “Pasture, Rangeland, Forage Insurance Program”. In: Oklahoma Coop-

erative Extension Service (2013)
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level (70%, 75% , 80%, 85% or 90%) to determine the threshold. By insuring only a rainfall

index, this insurance contract is a more limited form of risk management compared to most

crop insurance programs. The highest level of risk management is revenue insurance, which

includes price risk (low market price) and yield risks (pests, drought, temperatures etc.).

Yield insurance covers a smaller umbrella of risk (yield but not price), but still guarantees

production or compensation. As an index insurance, PRF-RI Insurance carries basis risk:

the risk of imperfect correlation between the index and the losses. An insured party can

incur total crop loss, but if there is a sufficient amount of rain such that the insurance

contract does not trigger then they will not be compensated. Additionally, there could be

no crop loss, but still a payment due to the level of rainfall. The nature of this mechanism

suggest an interesting perception of the risk to PRF land that will be discussed further in

the next section.

This insurance product is rated using historic precipitation data collected from the Climate

Prediction Center (CPC) of the National Oceanic and Atmospheric Administration

(NOAA), as well as local productivity data. Policy owners must indicate the intended use

of their land (haying or grazing) and provide documentation. The premium and indemnity

of an individual policy depends on expected grid index, productivity factor, and intended

use of land.23 Productivity factor is a multiple of county base production between 60% and

150%. Policy intervals two months in length and are available through the entire year.32

For example, a farmer may insure at a 150% productivity level and a 70% grid base for a

January and February. An indemnity in the first or second month will pay 150% of the

county base if rainfall is below 70% of the expected grid index.

The design of this contract, an index based solely on aggregate monthly rainfall, brings

another question to mind: what is the relationship between forage yields and the index?

This imperfect correlation is knows as basis risk for an index based insurance product. For

the purpose of this paper, it can be divided into two ostensibly named categories: spatial
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basis risk and dependence basis risk. The former represents imperfect correlation between

observed rainfall (observed from the perspective of the RMA) and the real rainfall at the

field’s location. Assigned rainfall values are spatially smoothed from the nearest NOAA

observation stations and aggregated at grid level. They can vary from actual rainfall at

field level. The latter risk, dependence risk, represents risk derived from imperfect

correlation between the rainfall index and forage yields.

The purpose of this study is to evaluate the basis risk of the PRF mechanism and suggest

an alternate design of the index. A high basis risk means the product is not useful as a

purely risk management tool, which has been shown to reduce demand for the product and

could lead to a misallocation of taxpayer funds (through the subsidy).4,5,6 The reduction in

demand due to high basis risk may diminish another goal of the product: to offer benefits

to forage producers and livestock owners who reap less rewards of subsidized products

available to other crops.7

2 The PRF-RI Mechanism and Prior Work

In this section, I describe the PRF-RI mechanism and it’s use as a meaningful risk

management tool. As previously mentioned, PRF-RI is an index insurance. Index

insurances have benefits over conventional insurance products in that they are considered

to be free of moral hazard issues.8 However, moral hazard may become present again if the

4Hans Peter Binswanger. “Is There Too Much Hype about Index-based Agricultural Insurance?” In:
Journal of Development Studies 48.2 (2012), pp. 187–200

5Ghada Elabed et al. “Managing basis risk with multiscale index insurance”. In: Agricultural Economics
44 (2013), pp. 419–431

6Daniel J. Clarke. “A Theory of Rational Demand for Index Insurance”. In: American Economic Journal:
Microeconomics 8 (2016), pp. 283–306

7Joshua G. Maples, B. Wade Brorsen, and Jon T. Biermacher. “The Rainfall Index Annual Forage Pilot
Program as a Risk Management Tool for Cool-Season Forage”. In: Journal of Agricultural and Applied
Economics 48.1 (2016), pp. 29–51

8Harold Halcrow. “Actuarial Structures for Crop Insurance”. In: Journal of Farm Economics 31.3 (1949)
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insurance in rated incorrectly. For example, Nadolnyak and Vendevov examine the

relationship between PRF-RI and El Nino forecasts. They find intertemporal adverse

selection is present when insurers do not account for the forecasts and the insureds do.9 As

mentioned previously, index insurances carry basis risk, which I define components as

spatial risk and dependence risk. Both spatial7,10,11 and dependence7,10,12 risk have been

evaluated at length as important aspects of the effectiveness of the PRF-RI mechanism as

a risk management tool.

The findings of spatial dependence risk are relatively consistent. Maples, Brorsen, and

Biermacher find a correlation of roughly 0.95 (5% spatial basis risk) between rainfall index

and actual index in Burneyville, Oklahoma. The correlation is found to be lowest, around

0.9, from March to May.7 Yu et al. define locational basis risk as the difference between

total basis risk associated with rainfall at the exact location and total basis risk associated

with rainfall from the grid value. They consider three locations total, two in Nebraska and

one in Kansas, and find the locational risk to be 5− 9%.10 Cho and Brorsen provide more

comprehensive analysis using the correlation between 131 Oklahoma Mesonet weather

stations and their associated grid value. They find an overall correlation of 0.95 that varies

slightly by location. Specifically, the correlation is found to be lower in low rainfall areas.11

Overall, the findings indicate spatial basis risk is between 5− 10%, but has the potential to

be lower in certain locations and times of year.

Prior work investigating dependence related basis risk or even total basis risk is scarce and

much less consistent. Maples, Brorsen, and Biermacher estimate the correlation between

9Denis Nadolnyak and Dmitry Vedenov. “Information Value of Climate Forecasts for Rainfall Index
Insurance for Pasture, Rangeland, and Forage in the Southeast United States”. In: Journal of Agricultural
and Applied Economics 45.1 (2013)

10Jisang Yu et al. “Estimating the Basis Risk of Rainfall Index Insurance for Pasture, Rangeland, and
Forage ”. In: Journal of Agricultural and Resource Economics 44.1 (2019), pp. 179–193

11Whoi Cho and B. Wade Brorsen. “Design of the Rainfall Index Crop Insurance Program for Pasture
Rangeland and Forage”. In: Journal of Agricultural and Resource Economics 46.1 (2021), pp. 85–100

12Ashlee Westerhold et al. “Risk implications from the selection of rainfall index insurance intervals”. In:
Agricultural Finance Review 78.5 (2018), pp. 514–531
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forage yields of ryegrass, a common cool season forage, and rainfall in two Oklahoma

locations. Winter forages are often planted in the late summer-fall and grow through the

late-spring. They find that correlation between rainfall intervals and ryegrass forage yield

is only significant in the December-January interval.7 Using a regression framework, they

find some evidence that rainfall from September to February has a positive effect on yields,

but results vary greatly by location. They additionally include temperature variables in

their model, but find no significance.

Westerhold et al. examine financial outcomes from forage production for two controlled

locations in Nebraska and a blend of warm and cool season grasses. They use a gamma

curve to model the relation ship between yield and yearly rainfall, recognizing the

relationship is likely non-linear. Yearly rainfall is on the forage production year, September

through August, rather than the calendar year. They find yearly rainfall accounts for 72%

of variation in yields.12

Yu et al. evaluate basis risk associated using accurate ranch level data from three

university ranches: two Nebraska locations used in Westerhold et al. and one additional

Kansas location. They regress annual forage yield on a quadratic time trend, fixed effects,

and precipitation (level and squared) from the previous January through July, an extension

of the forage production year. They use a variable selection technique to account for their

large number of regressors. Their model explains 82.4% of the variability in forage yields in

all locations using ranch-level rainfall data; however, only the months March, May, June,

and July are significant in aggregate monthly precipitation.10 They define basis risk as false

negative probability or

FNP = Prob(ŷt > ȳ|yt < ȳ) (1)
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where where ŷt is the predicted yield, ȳ is the historical average yield, and yt is the realized

yield in year t. They find that their estimated PRF-RI mechanism that includes months

March-July carries a basis risk between 21-43% depending on precipitation data and yield

location.10

Overall, there is some support of PRF-RI as a risk management tool, but prior work is

limited by choice of forage and location. The actual basis risk of the PRF mechanism likely

varies greatly by forage type and local weather patterns. In this study, I will use a novel

approach, which generalizes across weather regions and forages, to evaluate the basis risk

associated with PRF-RI insurance. Then, I will examine index-based mechanisms including

alternate variables with the goal of reducing basis risk through increased correlation to

forage production. The findings of this study will be of use to policy makers and those in

extension who care about the performance of the PRF mechanism as a risk management

tool.

3 Data and Conceptual Framework

As seen in the previous section, basis risk of the PRF-RI mechanism has been estimated in

multiple ways. I propose a new estimate of basis risk, which is favorable for the type of

data used in the rating process. The data used by the RMA are monthly aggregates of

precipitation. Therefore, it is natural to use only monthly variables when evaluating the

basis risk of the contract. Changing the data interval would question the validity of a basis

risk estimate. To measure the correlation between forage yields and the index, a dependent

variable to represent forage yields is needed. Forage production is known to vary across

location and variety. Temperature also likely plays a large role in forage production, as

mentioned by users of the product in their complaints. Additionally, It is reasonable to
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assume the effect of weather variables on forage yield changes in different climates. To

estimate a consistent measure of basis risk of the current PRF mechanism and suggest

alternatives, a dataset which includes forage yields with different varieties and in different

weather regions would be ideal.

In an effort to provide this consistency, the forage data are taken from the USDA Forest

Service’s rangeland dataset, which covers the coterminous US. The dataset is derived from

satellite imagery, so it is comprehensive, and for inclusion an of land must be 1.0 acre in

size and 120.0 feet wide. The categories of land in the dataset are ”Rangeland,”

”Afforested Rangeland” (experiencing encroachment by trees [¿ 25% tree cover]) and

”Transitional Rangeland” (currently dominated by herbs or shrubs that will likely become

forested without management intervention).

The dependent variable for this study, forage yields, is taken from the rangeland

productivity dataset, which is a subset of the rangeland dataset. It contains annual

rangeland productivity in pounds per acre for only the ”Rangeland” category of land. The

productivity measure is generated using the Normalized Difference Vegetation Index

(NDVI) from the Thematic Mapper Suite from 1984 to 2020 at 250 m2 resolution (one

pixel represents 250 m2). The NVDI operates by measuring near infrared and visible light

reflected off vegetation. Figure 1 displays, in yellow, the area included in the rangeland

productivity dataset.
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Figure 1: U.S. Rangelands

The regressors used in this study are taken from PRISM Climate Group’s monthly time

series dataset. The prism climate group uses a network of weather stations in the

coterminous U.S. to measure weather data such as precipitation, temperature, and vapor

pressure. From 1984 to present, there are at minimum 16,500 weather stations reporting

precipitation, temperature maximum, and temperature minimum, the variables used in this

study.13

The data are aggregated at the PRF grid level as well as the county level. The data are

aggregated at the higher county level for multiple reasons. First, there are 3,006 counties in

the U.S. The PRISM data are spatially smoothed to cover the entire U.S., but a grid level

of aggregation will have observations containing no weather stations. Second, using county

level aggregation will help preserve the spatial consistency of the model. Many

13PRISM Climate Group. Descriptions of PRISM Spatial Climate Datasets for the Conterminous United
States. Tech. rep. PRISM Climate Group, Oregon State University, 2021
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observations from the rangeland productivity index come from the great plains region with

dense amounts of rangeland. Aggregating to a higher level will improve the consistency of

the estimates across all rangelands as they are more equally represented. I compare the

results from the two different aggregation levels to make conclusions about the mechanisms

potential and spatial consistency.

3.1 Framework

Forage yield models are estimated with standardized data as well as non-standardized data.

The standardized data accounts for fixed effects of county productivity and conveniently

acts in a similar fashion to the current PRF mechanism, which insures rainfall as a

percentage of expected (historic mean) rainfall for the area. The non-standardized data

provides intuition to the biological needs of forage and tell us how much variation in forage

yields can be explained through a weather index. I estimate the basis risk of the current

PRF mechanism and of my proposed mechanism. I define basis risk in equation 2 following

Yu et al.10 This definition of basis risk corresponds to the false negative probability (FNP),

or, probability of predicting above average yield when yield was below average.

FNP = Prob(ŷct > yc|yct < yc) (2)

ŷct is the predicted yield for county c in year t, yc is the historic mean yield, and yct is the

realized yield. For the standardized equations, equation 3 defines basis risk.

FNP = Prob(ŷct > 0|yct < 0) (3)
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First, in equation 4, I produce an estimate the basis risk of the current PRF mechanism.

Pptcti is precipitation in county c for year t and month i.

yct =
12∑
i=1

βiPptcti + εt (4)

Model 1

In reality, this is not quite the actual basis risk of the PRF mechanism. The mechanism is

divided into two month intervals throughout the year and does not have month specific

factors, which implies identical coefficients on each month. This is a best guess of the basis

risk of the current mechanism.

Next, I estimate alternative mechanisms and their associated basis risk. Equation 5 shows

model 2. Because this data set covers a large geographic area, effects are likely to vary

across regions. For example, precipitation is likely more important in hot dry regions of the

country. I use regional fixed effects interacted with monthly precipitation to account for

this. I assign a dummy variables for each quartile of yearly precipitation, so each region

represents a group that is 25% of the total numbers of counties in size and grouped by

similar values of yearly precipitation. I do the same for temperature quartiles to produce

four temperature regions, which are independent of precipitation regions. Notice that in

the case of standardized data, these mean zero regions would have no effect on mean zero

yield; however, when interacted with monthly precipitation, they provide flexibility for

precipitation’s effect on forage yield to vary by weather region.

In this model, Ppt2cti are monthly precipitation squared, Ppt Dumcj are fixed effects for

each precipitation quartile, Tmax Dumcj are fixed effects for each max temperature

quartile, PIctij are the interactions between the precipitation quartiles and monthly

precipitation, and TIctij are the interactions between each temperature quartile and

monthly precipitation. I include an additional regressor (for each month) to bring a
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measure of temperature into the model. I estimate the model using both sum of monthly

temperature and temperature days over the threshold as representations of temperature.

Temperature days over the threshold, or Tdayscti in equation 5 is drawn from Annan and

Schlenker’s seminal paper in 2015, which introduces it. Temperature days is a count

variable for the number of days within a month with temperature over a threshold.14 It is

intended to capture the direct effect of temperature on precipitation. The model also

includes fixed effects, Dc, when applied to non-standardized data too account for

county-specific effects such as forage variety, soil quality, and solar radiation.

yct =
12∑
i=1

[
βiPptcti + βi+12Ppt

2
cti + Tdayscti

]
(5)

+
3∑
j=1

[
δjPpt Dumcj + δj+3Tmax Dumcj +

12∑
i=1

[γiPIctij + γi+12TIctij]

]
+Dcεt (6)

Model 2

For the standardized case, my expectation is that precipitation’s effect is decreasing in

precipitation quartile. This represents how above precipitation variability is less important

in regions with high expected rainfall. I expect precipitation’s effect to be increasing in

temperature quartile in summer months. This represents precipitation’s increased

importance in hotter regions, which is consistent with the agronomy literature.

3.2 Estimation Process

In estimating basis risk, data are split into an estimation group and a test group to observe

out of sample performance. To remove inter-year correlation between yields, the test group

used is one year of the dataset. The estimation-test process is repeated T times using every

14Francis Annan and Wolfram Schlenker. “Federal crop insurance and the disincentive to adapt to extreme
heat”. In: American Economic Review 105.5 (2015), pp. 262–266
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year as the test year and basis risk for each year is averaged to get the final measure,

known as a k-fold process. This will ensure consistency of the estimates throughout

different yearly outcomes. For example, basis risk in the model could be higher in drought

years or high precipitation years, but k-fold yearly validation will ensure that all outcomes

are taken into account. All models are estimated at the county level as well as the grid

level for comparison. They are additionally estimated with standardized data at the county

and grid level and non-standardized data at the county level. The standardized data

mimics the current PRF mechanism and allows estimation at the grid level that is

demeaned: too many fixed effects needed for efficient grid level estimation. The

non-standardized county data provides us with understanding of the underlying biological

process for forage growth and how much variation can be explained from our regressors.

The current PRF mechanism, model 1, insures all months and insures precipitation at a

percent of historic mean rainfall for all months; Therefore, we estimate the basis risk of this

model simply by OLS. Due to the high number of regressors in model 2, a variable

selection technique, such as the lasso, is a natural choice. However, as Tibshirani15

documents, if the regressors are highly correlated then the ridge regression outperforms the

lasso in minimizing out of sample error. Therefore, I use Zou and Hastie’s elastic net

regularization method, which still conducts variable selection while performing better in

out of sample forecast than the lasso.16 The elastic net estimator is

15Robert Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal of the Royal
Statistical Society 58.1 (1996), pp. 267–288

16Hui Zou and Trevor Hastie. “Regularization and Variable Selection via the Elastic Net”. In: Journal of
the Royal Statistical Society 67.2 (2005), pp. 301–320
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β̂ =minβ{|Y −Xβ|2} (7)

subjectto(1− α)

p∑
j=1

|βj|+ α

p∑
j=1

βj ≤ s (8)

where s and α are tuning parameters. If α = 1 this is equivalent to the lasso; if α = 0, it is

the ridge regression. I use α = 0.9 for estimation because it is associated with the lowest

RMSE. This method also has the options to select specific variables to be non-penalized,

which is used to force regional fixed effects into the standardized model in order for the

model to be fully identified. A variable selection technique would not select fixed effects

when the dependent variable is standardized, but the interaction terms may be selected.

Before estimating model 2, I perform a first-step estimation of the temperature day

threshold for forage. I create yearly count variables for temperature days between one and

forty degrees Celsius: variables named Tdaysi for i = 20 : 40. For example, Tdays20 is the

number of days with max temperature between 21 and 22 degrees and Tdays40 is the

number of days with max temperature greater than 40 degrees. I regress yield on the

yearly temperature day count. In this case, I use a yearly count instead of monthly

variables for simplicity. Ideally, each month and each region would have a different

temperature threshold, but this would surely overfit the data. Equation 9 defines the first

step regression including temperature days. I include yearly precipitation and precipitation

squared in the regression and estimate it via elastic net.

Y ieldt = Prect + Prec2t +
40∑
j=20

Tdayst,j + εt (9)
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4 Results

4.1 Current Mechanism

Model 1’s parameter estimates can be seed in table 1. Model 1 is estimated at the county

and grid level for regionally standardized data. The regressors and dependent variable are

standardized by county, so they are interpreted as a one standard deviation increase in

monthly precipitation leads to a β standard deviation increase in annual forage yield.

Precipitation explains 15.3% of standardized forage yield variation at the county level and

15.6% at the grid level. Basis risk associated with the current PRF mechanism is 34.9% at

the county level and 34.8% at the grid level.

The only major difference between the level of aggregation is precipitation in December,

which is negative at the county level and positive at the grid level. Precipitation in

November is also negative. These results imply the design of the PRF mechanism may not

be optimal. April through August have by far the largest effect on forage yields, which is

consistent with the findings of Yu et al.10

Table 1: Model 1

County Precipitation Significance
Month 1 0.081 ***
Month 2 0.046 ***
Month 3 0.07 ***
Month 4 0.142 ***
Month 5 0.171 ***
Month 6 0.148 ***
Month 7 0.107 ***
Month 8 0.126 ***
Month 9 0.046 ***

Month 10 0.007 ***
Month 11 -0.066 ***
Month 12 -0.008 ***

Grid Precipitation Significance
Month 1 0.103 ***
Month 2 0.061 ***
Month 3 0.069 ***
Month 4 0.168 ***
Month 5 0.173 ***
Month 6 0.118 ***
Month 7 0.082 ***
Month 8 0.111 ***
Month 9 0.063 ***

Month 10 0.016 ***
Month 11 -0.051 ***
Month 12 0.046 ***

I also regress non-standardized forage yields on monthly precipitation and include county

level fixed effects to get a measure of real yield variation explained by precipitation. The
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model explains 45.9% of non-standardized forage yield variation. The precipitation

coefficients are displayed in table 2. Using the regression, the basis risk associated with this

model is 51.3%, which performers worse than a random guess and much worse than the

standardized model.

Table 2: Real Yield Precipitation Coefficients

Ppt PV
Month 1 -0.105
Month 2 0.794 ***
Month 3 1.708 ***
Month 4 5.319 ***
Month 5 3.369 ***
Month 6 3.755 ***
Month 7 3.638 ***
Month 8 3.015 ***
Month 9 2.307 ***

Month 10 1.513 ***
Month 11 1.274 ***
Month 12 0.371 ***

4.2 Proposed Mechanism

I first estimate model 2 using sum of monthly temperature as the temperature variable.

Precipitation is interacted with the weather regions to allow it’s effect to vary over regions.

When the interaction is selected in one of the quartiles, the net precipitation effect in that

region becomes the overall precipitation effect plus the selected quartile effect.

The selected regressors in model 2, seen in table 3, explain 20% of standardized forage

yield variation. The basis risk is found to be 0.363%, which is outperformed by the current

mechanism. Precipitation is selected in months January-September, with a positive value

representing a positive effect from above average precipitation. Above average precipitation

has a relatively strong effect on forage yields in April through June regardless of region,

and additionally for months July and August, but only in high temperature regions (Tmax

quartile 3 and 4). In July and August, the positive coefficient estimates in the higher

temperature quartiles represent the importance of above average precipitation in hotter

regions. Precipitation quartile estimates are not selected in many cases, but the negative

value in the fourth precipitation quartile for May represents the decreased importance of
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above average precipitation for regions already receiving a high amount of precipitation.

The temperature variable, above average sum of monthly temperature, has a negative

effect in April and May and a positive effect in January and November. These temperature

effects were selected for all regions (they are not interacted with region), but there are

likely other temperature effects present throughout the year that vary by region. These will

be explored in a robustness check at the end of this section.

Table 3: County Level with Sum Monthly Temperature

Ppt Ppt Sq Ppt Quartile 2 Tmax Quartile 2 Ppt Quartile 3 Tmax Quartile 3 Ppt Quartile 4 Tmax Quartile 4 Tmax
Month 1 0.038 0.122
Month 2 0.028
Month 3 0.035 0.049
Month 4 0.090 -0.062
Month 5 0.130 -0.097 -0.131
Month 6 0.136
Month 7 0.019 0.040 0.080 0.123
Month 8 0.068 0.101 0.108
Month 9 0.037 0.035

Month 10
Month 11 0.122
Month 12

4.2.1 Proposed Mechanism with Temperature days

Before estimating model 2 with the temperature threshold, I perform the first-step

estimation of the temperature days threshold. The selected parameter estimates are plotted

in figure 2. Days over 30 degrees are shown to have a negative impact on forage yields, so I

use that as the threshold for model 2. Days between 23 and 29 degrees have a positive

effect on forage yield, but that is likely variable by weather region. Days over 35 degrees are

not selected, but this is likely due to the relatively low number of those days experienced.

The selected regressors in model 2 with the temperature threshold, seen in table 4, explain

17.2% of standardized forage yield variation. The basis risk associated with model 2 is

0.348% for standardized yields, which performs similarly to the current mechanism in basis

risk and outperforms in explained variation. The temperature days threshold model

outperforms the sum of temperature model, likely due to temperature days above the

threshold’s effect being more consistent across different weather regions. This is
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Figure 2: First Step Coefficients

investigated in the robustness check as well.

When sum of monthly temperature is replaced with the temperature threshold variable,

there are a few changes in selected variables. There is an additional month in which

temperature effect is negative, March, and no months have a positive temperature effect,

likely due to the fact there are not many temperature days over the threshold in winter

months regardless of region. Additionally, precipitation is selected with a negative value in

November, which contradicts the design of the current contract that precipitation has a

positive effect in all months. Finally, two more months have a negative precipitation effect

in the highest precipitation quartile, April and November, likely representing the

decreasing importance of above average precipitation when the region already receives high

precipitation in April. However, in November this shows the negative effect of above

average precipitation in November is larger in high precipitation regions.
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Table 4: County Level with Temperature Threshold

Ppt Ppt Sq Ppt Quartile 2 Tmax Quartile 2 Ppt Quartile 3 Tmax Quartile 3 Ppt Quartile 4 Tmax Quartile 4 30 tmaxday
Month 1 0.039 0.047
Month 2 0.035
Month 3 0.054 -0.040
Month 4 0.144 -0.055 -0.020
Month 5 0.184 -0.102 -0.015
Month 6 0.137
Month 7 0.031 0.032 0.067 0.112
Month 8 0.069 0.093 0.105
Month 9 0.025 0.032

Month 10
Month 11 -0.046 -0.042
Month 12

When estimated with non-standardized yields, the model explains 91.51% of

non-standardized forage yield variation, a large increase from 45.9% under the current

mechanism. The proposed model carries a basis risk of 38.8%, which is down from 51.3%.

In the non-standardized case, the regional dummy variables now have coefficient values

which represent the difference in yields for each weather region, as seen in table 5. Yield is

increasing in precipitation district, as expected, but is also increasing in temperature

district. This may be associated with higher year round yield in regions with warm winters.

The monthly coefficient estimates are displayed in table 6. Precipitation is selected in all

months and has a positive effect in all except November. Precipitation’s effect is decreasing

in precipitation region showing the diminishing marginal return of precipitation.

Precipitation’s effect is higher in temperature quartile 3 and 4, in May through August,

representing the increased importance of precipitation in hotter regions. Temperature days

over the threshold is positive in December through February and negative in March through

July. This represents the benefit of warm winters and the detriment of hot summers.

Table 5: Regional Fixed Effects

Precipitation Temperature
Quartile 2 83.47 -685.92
Quartile 3 310.34 -415.42
Quartile 4 566.21 606.7

Model 2 with the temperature threshold is also estimated with data standardized at the

grid level. The selected regressors in Model 2, seen in table 7, explain 19.7% of

standardized forage yield variation and have a basis risk of 35.5%. Many more variables are

selected at the grid level and they explain a higher percent of variation in forage yields.
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Table 6: County Level Potential Yields

Ppt Ppt Sq Ppt Quartile 2 Tmax Quartile 2 Ppt Quartile 3 Tmax Quartile 3 Ppt Quartile 4 Tmax Quartile 4 30 tmaxday
Month 1 0.119 0.971 0.252 -0.001 67.099
Month 2 0.400 -0.001 -0.073 0.411 1.458
Month 3 0.285 0.876 0.288 -0.184 -19.356
Month 4 1.673 -0.001 -0.429 -0.798 -8.168
Month 5 2.366 -0.002 -0.072 -0.617 -1.314 0.054 -0.688
Month 6 1.871 -0.001 -0.008 -0.840 -0.525 0.227 -2.680
Month 7 1.097 -0.002 0.512 0.306 -0.215 0.979 -0.489
Month 8 0.972 -0.002 0.356 0.743 -0.110 0.986
Month 9 0.359 0.000 0.222 -0.093 -0.355 -0.140 0.031

Month 10 0.252 0.001 -0.076 -0.518 0.108 -0.401
Month 11 -0.876 0.001 0.460 0.004 -0.141 -0.262 -22.019
Month 12 0.275 0.000 -0.594 0.080 -0.826 47.389

This is likely due to the large number of similar grid observations used. Basis risk is

slightly higher than the county level aggregation, reflecting the loss of generalization.

The coefficients weakly confirm that precipitation’s effect is increasing in temperature

region and decreasing in precipitation region. There are some coefficients that contradict

this, the positive precipitation values in precipitation quartile 3 and the negative

temperature values in temperature quartile 3.

Table 7: Grid Level with Temperature Threshold

Ppt Ppt Sq Ppt Quartile 2 Tmax Quartile 2 Ppt Quartile 3 Tmax Quartile 3 Ppt Quartile 4 Tmax Quartile 4 30 tday
Month 1 0.120 -0.059 -0.082 0.013
Month 2 0.072 -0.049 -0.061 0.053 0.019
Month 3 0.056 0.038 -0.045
Month 4 0.173 0.047 0.031 -0.104 -0.033 -0.039
Month 5 0.128 0.101 0.073 0.030 -0.043 -0.015
Month 6 0.052 0.145 0.112 -0.017 0.047 -0.033
Month 7 0.020 0.092 0.122
Month 8 0.061 0.062 0.118
Month 9 0.045 0.018 0.026 -0.036 0.055

Month 10 0.047 -0.079 -0.041 0.013
Month 11 -0.041 -0.044
Month 12 0.083 0.033 -0.058 -0.055 -0.076

4.3 Robustness Check by Region

I also split the model up by weather district to perform a sensitivity analysis of

precipitation and the temperature. I remove the quartile dummy variables from the model

and regress forage yields on precipitation for each quartile region. I then regress yields on

precipitation along with a temperature variables for each region, allowing a more clear view

of how precipitation and temperature effects vary across regions. I use the same iterative

k-fold net elastic procedure for the estimation in each region. These regressions use
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standardized regressors and yields, similar to model two. To be clear, this means estimated

precipitation and temperature effects are for monthly precipitation and temperature

compared to the average.

Table 8 shows the selected precipitation months by region. In October-December,

precipitation is selected at a low rate with mixed effects in October and December and

negative effects in November. This is consistent with the findings of Yu et al. 10 that

precipitation in these months does not significantly impact forage growth. In January, the

findings are also mixed, but the lower half of the precipitation counties, quartiles one and

two, show some evidence of a positive impact on temperature. Additionally, there is mixed

support for precipitation in high-precipitation and high-temperature regions, with the

exception being region 4-4, with a negative impact on forage yields. In February, some

support is also shown for low-precipitation regions, with no apparent impact of

temperature region. In March, there is additional support for precipitation in

low-precipitation regions and high-precipitation and high-temperature regions. In the

months April-June, precipitation is selected in almost ever low-precipitation region with a

positive effect. Additionally, the high-precipitation and high-temperature regions show

support for precipitation’s benefit on forage yields. This effect is clearly emphasized in July

and August, where precipitation is selected in every high-temperature regions except one.

This result presents convincing evidence that temperature should be considered in the

design of the PRF mechanism, even if just in select months. September also shows some

support for precipitation in lower-half-precipitation and highest-temperature regions.

A few overall trends from this analysis: above average precipitation is far more important

in low-precipitation regions; it is still important in high-precipitation regions, but only in

the hottest regions (temperature quartiles 3-4) and the hottest months (June-August).

Even if a temperature variable is not directly included, there is evidence that the design of

the PRF mechanism should consider temperature region as well as precipitation region.
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Additionally, with a warming climate, more counties will enter the higher-temperature

category, where precipitation is of increased importance.

Table 8: Regional Precipitation Effects

Ppt 1 Ppt 2 Ppt 3 Ppt 4 Ppt 5 Ppt 6 Ppt 7 Ppt 8 Ppt 9 Ppt 10 Ppt 11 Ppt 12 n Rsq Basis

Ppt 1 Temp 1 0.073 0.062 0.041 0.203 0.352 0.278 0.038 0.045 0.046 3723 0.383 0.209
Ppt 1 Temp 2 0.037 0.030 0.042 0.258 0.296 0.162 0.028 0.041 -0.045 0.097 4066 0.348 0.273
Ppt 1 Temp 3 0.033 0.215 0.198 0.131 0.148 0.129 3778 0.256 0.252
Ppt 1 Temp 4 0.061 0.088 0.115 0.159 0.050 0.177 0.246 0.102 2873 0.292 0.252
Ppt 2 Temp 1 0.110 0.062 0.096 0.060 5176 0.065 0.389
Ppt 2 Temp 2 0.056 0.203 0.256 0.057 3363 0.201 0.309
Ppt 2 Temp 3 -0.109 0.071 0.194 0.288 0.231 0.115 0.176 -0.109 2764 0.385 0.300
Ppt 2 Temp 4 0.063 0.168 0.234 0.258 0.090 0.187 0.240 0.064 -0.090 3136 0.459 0.336
Ppt 3 Temp 1 -0.060 4155 0.013 0.912
Ppt 3 Temp 2 4874 0.000 0.433
Ppt 3 Temp 3 0.080 0.061 0.159 0.097 0.054 0.147 3003 0.173 0.318
Ppt 3 Temp 4 0.067 0.097 0.122 0.242 0.160 0.227 0.221 2407 0.330 0.341
Ppt 4 Temp 1 1395 0.003 0.967
Ppt 4 Temp 2 2128 0.000 1.000
Ppt 4 Temp 3 0.058 0.049 4921 0.023 0.787
Ppt 4 Temp 4 -0.122 0.140 0.055 0.053 -0.122 5995 0.089 0.496

Table 9 shows the selected temperature months by region. The first clear observations are

that temperature carries a negative effect in April through July and a positive effect in

October through January regardless of region. These effects are consistent with the

variables selected by model two. The positive effects of temperature in December and

January are highest in the high-temperature regions, implying that these hotter regions

have some forage growth even in the winter months. Some evidence is shows for

temperature having a negative effect on forage yield, specifically in April and May. June

and July show limited evidence for a negative temperature effect in high-temperature

regions. Temperature does not appear to significantly impact forage yields in February,

March, August, and September.

Table 9: Regional Temperature Effects

Tsum 1 Tsum 2 Tsum 3 Tsum 4 Tsum 5 Tsum 6 Tsum 7 Tsum 8 Tsum 9 Tsum 10 Tsum 11 Tsum 12 n Rsq Basis
Ppt 1 Temp 1 -0.122 -0.255 0.096 0.100 3723 0.501 0.269
Ppt 1 Temp 2 -0.186 -0.126 0.056 0.095 0.092 4066 0.435 0.299
Ppt 1 Temp 3 0.084 0.187 0.099 3778 0.360 0.294
Ppt 1 Temp 4 0.107 -0.077 -0.072 -0.025 -0.048 0.107 2873 0.326 0.273
Ppt 2 Temp 1 -0.167 -0.138 0.088 0.021 5176 0.173 0.413
Ppt 2 Temp 2 0.173 -0.163 -0.100 -0.064 0.173 3363 0.309 0.389
Ppt 2 Temp 3 -0.188 -0.082 0.092 0.247 0.038 2764 0.476 0.321
Ppt 2 Temp 4 0.146 -0.150 0.077 0.146 3136 0.508 0.351
Ppt 3 Temp 1 0.020 -0.104 0.020 4155 0.047 0.691
Ppt 3 Temp 2 -0.007 4874 0.019 0.580
Ppt 3 Temp 3 0.086 -0.152 0.086 3003 0.186 0.342
Ppt 3 Temp 4 0.109 -0.034 -0.183 -0.150 0.118 0.182 2407 0.453 0.390
Ppt 4 Temp 1 0.047 1395 0.064 0.643
Ppt 4 Temp 2 0.025 -0.082 0.025 2128 0.040 0.720
Ppt 4 Temp 3 -0.094 4921 0.061 0.613
Ppt 4 Temp 4 -0.102 -0.134 5995 0.151 0.484

I also perform the robustness check with the temperature days threshold as the
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temperature variable, as seen in table 10. There is much less evidence of the positive

temperature effect in October through January, likely due to the low number of days that

actually exceed the threshold. Temperature continues to show a negative effect in March

through July, but in less region. Specifically, the negative effects of temperature in

high-temperature regions are emphasized. While we want the model to explain as much

variability as possible, it is important to note the trade off in basis risk, which we also saw

in model 2. Basis risk was overall higher when using sum of monthly temperature instead

of temperature days threshold. In this breakdown by region, the out-performance of

temperature days becomes less clear.

Table 10: Regional Temperature Threshold Effects

Tdays 1 Tdays 2 Tdays 3 Tdays 4 Tdays 5 Tdays 6 Tdays 7 Tdays 8 Tdays 9 Tdays 10 Tdays 11 Tdays 12 n Rsq Basis
Ppt 1 Temp 1 3723 0.373 0.201
Ppt 1 Temp 2 -0.074 4066 0.358 0.287
Ppt 1 Temp 3 3778 0.255 0.249
Ppt 1 Temp 4 0.066 -0.061 -0.081 -0.045 -0.044 -0.076 2873 0.329 0.271
Ppt 2 Temp 1 5176 0.077 0.368
Ppt 2 Temp 2 -0.153 -0.061 3363 0.253 0.378
Ppt 2 Temp 3 0.018 -0.062 -0.112 -0.102 0.018 2764 0.419 0.327
Ppt 2 Temp 4 -0.122 -0.086 -0.100 3136 0.487 0.322
Ppt 3 Temp 1 4155 0.027 0.856
Ppt 3 Temp 2 4874 0.012 0.484
Ppt 3 Temp 3 -0.149 3003 0.200 0.347
Ppt 3 Temp 4 -0.172 2407 0.345 0.401
Ppt 4 Temp 1 1395 0.003 0.985
Ppt 4 Temp 2 2128 0.000 1.000
Ppt 4 Temp 3 -0.037 4921 0.041 0.654
Ppt 4 Temp 4 -0.130 -0.047 5995 0.119 0.457

An interesting result regardless of temperature variable choice is that basis risk is

increasing in precipitation regions. I confirm this effect by regressing precipitation and a

time trend on basis risk for each year in model two. Again, basis risk was averaged over the

years to remove inter-year correlation that would cause an endogeneity issue. I look at the

basis risk from each year in the k-fold process and its relation to yearly precipitation. The

time trend is included to make sure the regression is not spurious due to the trend in

rainfall. I find that basis risk is significantly increasing in yearly precipitation and that a

one standard deviation increase in yearly precipitation leads to a 11.7% increase in basis

risk. This shows the models do not due well at predicting FNP in high precipitation years.
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5 Conclusions

I find that basis risk under the current PRF mechanism is roughly 35% with basis risk

increasing in high precipitation years. Unlike other studies, the unique dataset I use

combined with my analysis by weather region ensures these results should extrapolate well

across all forage producing regions. This measure of basis risk should correspondingly

extrapolate across regions. My proposed mechanism has a lower basis risk than the current

PRF contract, especially in dryer years, but still does not perform well when under high

precipitation conditions.

I find temperature should be included in the index product for ideal yield risk

management. I also find that weather region should be accounted for in the index design

and that precipitation and temperature effects vary significantly by weather region.

While the inclusion of a temperature variable in the index does not lead to a significant

reduction in basis risk, the effects of precipitation are shown to vary by temperature region.

As temperature continues to rise in a warming climate, consideration of temperature region

will become more important to correlation between precipitation and forage yield.
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