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Abstract 

Mitigating climate change requires reducing the concentration of greenhouse gases (GHGs) in 

the atmosphere relative to business-as-usual.  Evidence suggests that agricultural soils have a 

large physical potential to sequester carbon from the atmosphere but with significant 

heterogeneity across space and time.  Less is known about how the variability impacts the 

economic viability of policies to build soil carbon at large scales.  Here, we use revealed crop 

and practice choices on working cropland to examine the scale of agricultural GHG abatement 

under a range of carbon prices.  Using a discrete choice modeling framework and a spatially 

explicit model of GHGs, we explore the impact of model specification and distributional 

assumptions on the estimated supply curve of GHG abatement from corn and soy production in 

Iowa.  We find that the choice of the discrete choice model of crop and practice choice affects 

estimates of the GHG supply curve but that even the most optimistic case suggests that tillage 

changes can only provide 263,000 tonnes of abatement per year, equal to 0.004% of US annual 

emissions.  Our results suggest that there is limited potential for GHG abatement from 

incentivizing changing tillage practices on working agricultural lands. 
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Introduction 

Rising greenhouse gas (GHG) concentrations in the earth’s atmosphere cause increasing 

temperatures and alter the patterns of weather across the planet (IPCC 2013).  To avoid extreme 

costs of this change in climate, the global community has agreed to maintain atmospheric GHG 

concentrations at a level consistent with significantly less than 2 degrees C of warming1.  To 

achieve this goal, individual countries have made voluntary commitments2 to decrease GHG 

emissions while increasing efforts to remove carbon dioxide (CO2) from the atmosphere using 

both chemical processes (Sanz-Perez et al. 2016) and natural solutions (Griscom et al. 2017).  

Natural solutions include managing forests to store carbon (Sohngen and Mendelsohn 2003), 

influencing land use change (Stavins 1999), and incentivizing practice changes that store carbon 

in agricultural soils (Pautsch et al. 2001, Choi and Sohngen 2010) or reduce agricultural 

emissions (Ogle et al. 2020).  Highlighting the desired role for natural solutions on agricultural 

land, the United States’ Nationally Declared Contribution to global climate change mitigation 

efforts states that “The United States will support scaling of climate smart agricultural practices 

(including, for example, cover crops)3.”   

Despite the increasing policy attention given to carbon sequestration in agricultural soils, the 

economic viability of policies incentivizing practice changes remains unclear.  Therefore, we use 

a discrete choice modeling approach to estimate how the probability of adopting crop and tillage 

practices depends on the expectation and variability of returns.  We leverage field level estimates 

of productivity and soil carbon changes to capture the role of spatial and temporal heterogeneity 

in physical conditions.  Then, we use coefficient estimates to simulate how payments for 

additional changes in net GHG emissions (considering soil carbon and nitrous oxide (N2O) 

emissions) affect practice choices and GHGs over time.  Finally, we examine how heterogeneity 

in responses to GHG payments affects the estimated supply curve for GHG abatement from 

agricultural land.  Specifically, we estimate conventional and mixed logit models that make 

different assumptions about heterogeneity in producer responses to revenues. 

 
1 https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement 
2 https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-

determined-contributions-ndcs  
3https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/Unite

d%20States%20NDC%20April%2021%202021%20Final.pdf  

https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-determined-contributions-ndcs
https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-determined-contributions-ndcs
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf
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An accurate estimate of the scale of GHG abatement as a function of payment amounts can 

inform existing efforts to incentivize practice change, reduce N2O emissions, and build soil 

carbon.  This includes federal government programs and private sector initiatives such as carbon 

offset markets facilitated by companies such as Indigo Ag4 and Nori5.  How agricultural GHG 

abatement responds to carbon prices can inform policymakers and buyers in carbon offset 

markets who are considering what price to pay to achieve different levels of sequestration.  It can 

also reveal the potential for the agricultural sector to contribute to national GHG mitigation 

goals. While evidence exists that agricultural soils can physically store significant amounts of 

carbon—enough to offset ~10% of global emissions initially (Paustian et al. 2016)—producers 

must be willing to implement practices that build soil carbon. 

Estimating responses to conservation policies is complicated by heterogeneity in producer 

decisions related to conservation and soil health.  For example, Chouinard et al. (2008) 

demonstrate that some producers adopt conservation practices at the expense of profitability.  

This suggests that not all conservation practice use is a result of policy, and that there is likely a 

benefit to using observed producer decisions related to conservation and practice choice.  A 

reliance on profit/net present value-maximization models can inform qualitative questions about 

payment design (Antle et al. 2003) but may produce misleading conclusions about the scale of 

practice change.  Pautsch et al. (2001), Wu et al. (2004), and Wang et al. (2015) use observed 

choices over time to estimate discrete choice models of producer crop and/or practice decisions 

and to examine the environmental implications of these choices.  Claassen et al. (2017) add to 

this literature by estimating random parameters and endogenously allowing producers to fall into 

different response classes.  They use a latent class, random parameters model to examine how 

crop insurance subsidies have affected crop choice and environmental outcomes.  Uz et al. 

(2021) demonstrate that ignoring heterogeneity in responses to salinity can lead to significant 

underestimates of the impacts of salinity.   

In addition to variable producer behavior, there exists considerable heterogeneity in the ability of 

soils to store carbon (Ogle et al. 2019).  Factors such as land use history, soil type, and climate 

determine the physical potential for practice change to sequester carbon.  This suggests that 

 
4 https://www.indigoag.com/ 
5 https://nori.com/ 
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understanding the economic viability of carbon sequestration programs at scale requires an 

appropriate representation of this physical heterogeneity over space and time. 

To address heterogeneity in producer behavior and soil carbon changes, we use biophysical 

modeling (DayCent (Del Grosso et al. 2001)) to capture variability in yields and economic 

returns across a range of practices and to consider heterogeneity across space and time in the 

change in soil carbon stocks under alternative practices.  We use data points from the US 

National Resources Inventory (NRI) (NRCS 2018) and account for changes that occur even in 

the absence of abatement incentives.  We also investigate the importance of producer 

heterogeneity by allowing responses to expected net revenue to vary across producers (Train 

2009).  When estimating GHG abatement supply responses, we then allow for both physical and 

behavioral heterogeneity across space and time by simulating responses to field-level predicted 

changes in soil carbon and N2O emissions. 

We find that the choice of discrete choice model meaningfully affects the estimated abatement 

supply curve.  Specifically, while all the models that we consider show an increase in utility for 

an increased average profitability and a decrease in utility from the variation in profits, we find 

that the elasticity of CO2 abatement supply curves is significantly different across different 

modeling and specification assumptions. Baseline results suggest that GHG abatement on 

agricultural lands is increasing as a result of changes in tillage practices.  Therefore, we focus on 

a program that pays for additional carbon to demonstrate the gains from cost effective program 

designs.   

Our results knit together the literature using discrete choice models to explore the interaction 

between producer crop and practice choices (Pautsch et al. 2001, Wu et al. 2004, Wang et al. 

2015 Claassen et al. 2017 Uz et al. 2021) with the literature exploring GHG abatement policies 

using natural solutions (Antle et al. 2003, Klotz 2016). We follow Pautsch et al. (2001) and use 

discrete choice econometric modeling to investigate the cost of incentivizing tillage practices in 

Iowa.  We update their approach by allowing for heterogeneity in producer behavior while 

focusing on physical heterogeneity across the state. Whereas they rely on county average yields 

and profitability, we incorporate field-level heterogeneity in the profitability of alternative crops 

and practices.  When modeling changes in soil carbon, we use the DayCent model to reflect 

field-level heterogeneity while also considering N2O emissions over time.  
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We jointly consider the impacts of practice choices on soil carbon and N2O emissions because 

N2O is a particularly potent GHG, with each tonne emitted equivalent to 298 tonnes of carbon 

dioxide (CO2).  Also, agriculture is the largest source of N2O emissions in the US.  Therefore, if 

policy ignores changes in N2O emissions that accompany changes in soil carbon (Ogle et al. 

2020), programs could lead to unintended increases in atmospheric GHG concentrations.  We 

account for multiple pollutants and spatial heterogeneity by using interdisciplinary research 

methods that integrate biogeochemical process models with observed producer decisions over 

space and time. 

Our results show the potential for (and limitations of) working agricultural lands to contribute to 

national GHG mitigation efforts.  In particular, using observed producer behavior, we find that at 

the current carbon price of around $15/tonne, we would expect between 1,300 and 42,000 CO2e 

tonnes of additional abatement.  This is between 0.00002% and 0.0006% of annual US 

emissions. This information is timely because policymakers and private sector actors have begun 

to commit significant resources to incentivizing GHG abatement in the agricultural sector.  Our 

results suggest that A limited scope for additional abatement from changes in tillage practices on 

US cropland.   

This paper is laid out as follows.  The next section describes the data and context that we use to 

estimate the supply of GHG abatement from working agricultural land.  We then describe the 

behavioral and econometric model that describe the relationship between net revenues and crop 

and practice choices.  This is followed by a description of the simulations that allow us to 

characterize abatement supply curves.  The results section presents econometric estimates and 

the supply curves associated with each econometric specification.  Finally, we discuss results and 

conclude. 

Data and Context 

To estimate behavioral models of crop and practice choices, we rely on several data sources.  

First, we use the US National Greenhouse Gas Inventory dataset (US EPA 2020) to obtain crop 

and practice choices along with crop yields and changes in soil carbon and N2O emissions from 

all NRI points in Iowa.  We combine this with data on crop prices and input costs from the 

USDA. 
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Greenhouse gas inventory data 

Data on crop and tillage, as well as other practices such as irrigation, synthetic fertilization and 

manure amendment practice choices are available at each NRI survey point in Iowa from the US 

National Greenhouse Gas Inventory dataset (US EPA 2020).  Management choices are obtained 

for each NRI survey point over time from information compiled by the United States Department 

of Agriculture, such as the National Resources Inventory (NRI) (NRCS 2018b), Agriculture 

Resource Management Surveys (USDA-ERS 2018), and the Conservation Effects Assessment 

Project (CEAP) (NRCS 2018a).  Using the dataset, we identify NRI survey points every five 

years for years 1981, 1986,…, 2006, 2011 that produce corn grain (i.e., not silage) or soy over 

the time period (N = 80,901) and classify the tillage practice at each point and year as full till, 

reduced till, or no till.  We focus on this time period because the National GHG Inventory data 

for soil carbon are available for this period.  While crop choices are available for every year of 

the period 1979-2015 in the NRI dataset, the tillage practices are only updated every 5 years. 

Tillage is imputed from 2001-2005, which coincides with the CEAP data on tillage, with 

imputation classes based on CEAP region, crop group, and soil texture class. For an individual 

class, tillage systems are assigned by randomly selecting from a sub-population of CEAP donors 

in the same imputation class as the NRI survey location.  Tillage systems for remaining five-year 

time blocks are imputed forward and backward in time using trending information obtained from 

a time series from the Conservation Technology and Information Center Data (CTIC 2004), 

CEAP and ARMS (See US-EPA 2020 for more information). As a result, for the purposes of 

econometric model estimation, we use data from the years 1981-2011 in 5-year intervals.  When 

simulating changes in GHGs over time, we hold tillage choice constant between years with 

CEAP observations. 

At each NRI survey point and year, we use the DayCent ecosystem model (Parton et al. 1998; 

Del Grosso et al. 2001, 2011) to estimate the yield per acre of the crop and practice observed at 

the point.  DayCent provides yields in grams of carbon in grain. As a result, to calculate yield in 

bushels per acre, we convert grams of carbon to harvestable biomass in bushels per acre based on 

constants that vary by crop. These constants convert carbon to dry matter and dry matter to 

marketable biomass. We compare county averages of modeled yield to county average yields 

reported by USDA NASS and apply a scaling factor to ensure that modeled yields match average 
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reported yields in every year of our data.  Similarly, DayCent provides an estimate of nitrogen 

fertilizer use per acre.  To obtain estimates of total fertilizer use, we estimate phosphorous and 

potash use as implied by the nitrogen use in DayCent with nutrient ratios common in the area. 

We then estimate the total fertilizer cost for each NRI point, and variable profit as the difference 

between production revenues and fertilizer cost. 

For the crop and tillage practices not observed at each point and year (i.e., not selected by the 

producer at a NRI survey location), we first estimate each individual’s average and standard 

deviation of profitability. Based on these values, we estimate a productivity index for each 

individual (for both average and standard deviation of profits), which is the ratio of each 

individual's average profitability to average profitability in Iowa for the previous three years. 

This index for profitability, 𝜃𝑖𝑡
𝑟 , is used to approximate profitability for crop-practices that were 

not planted each year. The assumption is that an individual that was more productive in growing 

corn relative to the average would also be more productive in growing soybeans relative to 

others.  We create a similar index, 𝜃𝑖𝑡
𝑠 , for each individual’s standard deviation over three years 

relative to the standard deviation of profitability across Iowa. This process provides us with 

estimates of profit mean and standard deviation for all crop and tillage practices for all NRI 

points in our dataset over time. 

To generate estimates of changes in N2O emissions and soil carbon stock change for Iowa, we 

used the emissions data from the United States National Greenhouse Gas Inventory (US-EPA 

2020), which is estimated with a Tier 3 modeling approach following the IPCC guidelines 

(Aalde et al. 2006). Specifically, the DayCent ecosystem model (Parton et al. 1998; Del Grosso 

et al. 2001, 2011) is used to simulate the influence of past land use and management on soil 

biogeochemical processes. DayCent incorporates critical processes that influence soil carbon 

stocks and N2O emissions, including crop production, soil organic matter formation and 

decomposition, water flows through the crop-soil system, and soil temperature regimes. DayCent 

also requires input data on soil characteristics, which are based on the United States Department 

of Agriculture Soil Survey Geographic Database (SSURGO 2019), in addition to data on 

historical weather patterns, which are derived from the Parameter-elevation Regressions on 

Independent Slopes Model (Daly et al. 1994; Daly and Bryant 2013). 
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For each NRI survey point, the DayCent model is applied in three time blocks for the GHG 

inventory assessment, including a) simulation of native vegetation for 5000 years to initialize the 

model at steady state conditions, b) simulation of the expansion of agriculture in the United 

States over a varying amount of time following land use conversion from as early as the 1700s, 

and c) simulation of recent agricultural management from 1979 through 2015 (see US-EPA 

(2020) for more detail on the modeling framework).  The NRI survey of land use and cropping 

histories serves as the primary data frame for simulating soil carbon dynamics and N2O 

emissions in the latter part of the inventory assessment from 1979 through 2015.  We use the 

output of this recent period to approximate soil carbon stock changes and N2O emissions from 

observed crop and practice choices over time.  To predict N2O emissions and changes in soil 

carbon from the other crop and practices not observed in the data, we estimate (unconditional) 

average of changes in soil carbon and N2O emissions for each crop and practice based on 

historical changes in soil carbon and N2O emissions across the NRI survey points6. 

We convert changes in soil carbon to tonnes of CO2 by multiplying changes in soil carbon by 

44/12.  Finally, we use the global warming potential of N2O (298) to convert emissions into CO2 

equivalent (CO2e).  This facilitates calculation of net emissions changes and allows us to 

examine practice changes as a function of carbon prices that are paid for changes in emissions of 

CO2e. 

Table 1 provides a summary of revenue, fertilizer costs, N2O emissions, and soil carbon changes 

by crop and tillage practice.  It also presents the proportion of point-year observations that use 

each crop and practice.  Interestingly, full till corn has lower yields and fertilizer use per acre 

than reduced- or no-till.  A similar pattern exists for soy yields and fertilizer use. 

 
6 In current work, we are modeling changes in emissions as a function of production and other physical 

characteristics (e.g., soil type) 



 

10 
 

Crop Practice

Proportion 

of crop-

years

Average 

revenue per 

acre

Average 

fertilizer cost 

per acre

Tonnes of 

soil carbon 

per acre per 

year

Tonnes of 

N2O 

emissions 

per acre per 

year

Soil 

carbon in 

CO2e per 

acre per 

year

N2O 

emissions 

in CO2e 

per acre 

per year

Full till 0.28 384.368 25.792 0.042 0.002 0.154 0.596

No till 0.15 449.107 29.924 0.171 0.001 0.627 0.298

Reduced till 0.15 489.808 32.035 0.109 0.001 0.400 0.298

Full till 0.20 275.8 12.121 0.038 0.002 0.139 0.596

No till 0.11 308.343 14.583 0.178 0.002 0.653 0.596

Reduced till 0.11 326.673 15.681 0.106 0.002 0.389 0.596

Corn

Soy

Table 1: Summary Statistics by Crop and Practice, 1981-2011, every 5 years

 

Figure 1 shows how tillage choices have evolved over time on average in our study area.  The 

use of full till has declined substantially over time, with the use of reduced and not till 

increasing.  As of 2015, reduced till was the dominant tillage practice on land growing corn and 

soy in Iowa.  Given this, soil carbon stocks are not constant in a no-policy baseline (see Figure 

2).  In fact, cropland in Iowa accumulated more than 70 million tonnes of soil carbon between 

2000 and 2015.  Table 2 shows the stability of conversion from full-till to reduced- or no-till by 

showing the proportion of fields using full till in year t continue to do so in year t+1 (t indexes 

over years in which we observe practices in the data).  It also shows the same for reduced- or no-

till.  Figure 1 demonstrates that producers are adopting reduced- and no-till over time but Table 2 

illustrates that nearly 2% of observations switch from no- or reduced till back to full till. 
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Figure 1: Number of Acres in Iowa using Full- No- and Reduced-Till (million acres) 
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Figure 2: Soil Carbon Changes over Time In Iowa 

 

Left-hand panel shows change in soil carbon (tonnes) per acre and right-hand panel show 

changes in soil carbon overall (million tonnes) 

 

 

 

Full till Reduced or no till

Full till 44.36% 6.24%

Reduced or no till 1.93% 47.46%

Table indicates the percent of point-years where row

practice was done in t, and column practice was done

in year t+1. t indexes over CEAP years.

Table 2: Stability of tillage choice, %

t+1

t

 

 

Finally, to facilitate scale-up of model estimates, NRI data contain weights that describe the 

number of acres represented by each point.  In our supply curve analysis, we use these weights to 

scale our predictions to the state of Iowa. 

USDA data 
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We calculate field level revenue per acre for each crop and tillage practice combination at each 

NRI survey point in our data by multiplying the output of the DayCent model by state-level 

output prices provided by USDA NASS.  Similarly, we estimate fertilizer costs by multiplying 

fertilizer use in DayCent by prices provided by USDA ERS.  These data include annual prices at 

the state level for nutrients applied.  We create annual fertilizer costs for the state of Iowa by 

estimating the ratio of nitrogen, phosphorous, and potash because DayCent only reports nitrogen 

fertilizer application values. We use the average quantities for the year 2018 and calculate the 

amount of potash and phosphorous based on these ratios. Next, we estimate the annual price of 

each of these elements based on a fertilizer price index reported by USDA. Finally, we estimate 

the cost of fertilizer as the sum of the cost of all three elements. There are other costs involved in 

production besides fertilizer. In the empirical application, we discuss how our modeling 

assumptions address these other costs. Table 1 summarizes revenue and fertilizer costs by 

practice in our dataset.  

Model and simulation 

In this section, we present the structural econometric model used to describe producer behavior 

related to tillage decisions.  We then describe the integration of biogeochemical information and 

carbon prices to predict changes in practices and GHG emissions over time under a range of 

carbon price scenarios. 

Random utility model 

Here, we present a random utility model of the discrete crop and practice choices that producers 

make. We assume that producer 𝑖 = 1, … 𝑁 receives utility 𝑈𝑖𝑗𝑡 from crop/tillage practice 

combination 𝑗 ∈ {𝑠𝑜𝑦 𝑓𝑢𝑙𝑙 − 𝑡𝑖𝑙𝑙, 𝑠𝑜𝑦 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − 𝑡𝑖𝑙𝑙, 𝑠𝑜𝑦 𝑛𝑜 − 𝑡𝑖𝑙𝑙, 𝑐𝑜𝑟𝑛 𝑓𝑢𝑙𝑙 −

𝑡𝑖𝑙𝑙, 𝑐𝑜𝑟𝑛 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − 𝑡𝑖𝑙𝑙, 𝑐𝑜𝑟𝑛 𝑛𝑜 − 𝑡𝑖𝑙𝑙} in year 𝑡 = 1, … 𝑇.  This utility can be described as 

𝑈𝑖𝑗𝑡 = 𝛼𝑗 + 𝛽𝑅𝑖𝑗𝑡 + 𝛿𝑆𝑖𝑗𝑡 + 𝛾𝑋𝑖𝑡 + 𝜃𝑗𝑡 + 𝜀𝑖𝑗𝑡 (3) 

  

Where 𝛼𝑗 is an alternative-specific constant.  This controls for time-invariant factors that affect 

utility from each practice and are common to all producers.  For example, this could include 

labor and capital costs associated with each tillage practice.  𝑅𝑖𝑗𝑡 is the expected revenue for each 

crop and practice net of fertilizer costs as of year 𝑡.  We calculate revenue in each year as output 
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price times yield minus the fertilizer cost implied by DayCent and as described in the previous 

section.  Define this as 𝑟𝑖𝑗𝑡.  We then calculate 𝑅𝑖𝑗𝑡 = 𝑅̅𝑗𝑡𝜃𝑖𝑡
𝑟  where 𝑅̅𝑗𝑡 𝑖s the observed average 

revenue for crop-practice 𝑗 in year 𝑡.  𝑆𝑖𝑗𝑡 = 𝑆̅𝑗𝑡𝜃𝑖𝑡
𝑠  where 𝑆̅𝑗𝑡 is the standard deviation of 𝑟𝑖𝑗𝑡 

across all 𝑖 in year 𝑡7.  

𝑋𝑖𝑡 contains a vector of indicators that control for the crop and practice used in 𝑡 − 1.  As in 

Claassen et al. (2017), this controls for rotational constraints and transition costs of moving from 

one crop and practice to another.  𝜃𝑗𝑡 is a practice-year fixed effect that controls for other 

incentives associated with each practice that may vary over time.  For example, the 

Environmental Quality Incentives Program (EQIP) provided cost share for tillage practice 

changes (among other practice changes). 

Finally, 𝜀𝑖𝑗𝑡 is a random variable that represents other idiosyncratic factors that influence 

producer utility. It represents factors that decision-makers know but that we cannot control for in 

our model specification.   

The probability that a producer chooses practice 𝑗′ is 

𝑝𝑟𝑜𝑏(𝑈𝑖𝑗′𝑡 > 𝑈𝑖𝑗𝑡)    ∀ 𝑗 ≠ 𝑗′ 

= 𝑝𝑟𝑜𝑏(𝜀𝑖𝑗𝑡 − 𝜀𝑖𝑗′𝑡 < 𝑉𝑖𝑗′𝑡 − 𝑉𝑖𝑗𝑡) 

(4a) 

(4b) 

With 𝑉𝑖𝑗𝑡 =  𝛼𝑗 + 𝛽𝑅𝑖𝑗𝑡 + 𝛿𝑆𝑖𝑗𝑡 + 𝛾𝑋𝑖𝑡 + 𝜃𝑗𝑡. 

If we assume that 𝜀𝑖𝑗𝑡 is distributed extreme value and that all at independent, then 𝜀𝑖𝑗𝑡 − 𝜀𝑖𝑗′𝑡 is 

distributed logistic, and we can express this probability as: 

𝑝𝑟𝑜𝑏(𝑈𝑖𝑗′𝑡 > 𝑈𝑖𝑗𝑡) =
𝑒𝑉𝑖𝑗′𝑡

∑ 𝑒𝑉𝑖𝑗𝑡 𝑗

 
(5) 

In our empirical application, we estimate this model using a conditional logit and with a mixed 

logit that allows 𝛽, the response to expected revenue, to be a random variable, with a distribution 

across the population.  In this case, the probability in equation 5 becomes 

𝑝𝑟𝑜𝑏(𝑈𝑖𝑗′𝑡 > 𝑈𝑖𝑗𝑡) =  ∫
𝑒𝑉𝑖𝑗′𝑡(𝛽)

∑ 𝑒𝑉𝑖𝑗𝑡(𝛽) 𝑗

𝑓(𝛽)𝑑𝛽. 
(6) 

 
7 In current work, we also use lagged measure of profitability.  Results are qualitatively similar. 
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We estimate conventional (with and without controls) and mixed logit specifications using 

maximum likelihood methods. In theory, the marginal utility of net revenue should be positive.  

Therefore, in mixed logit models, we consider the cases where 𝛽 is distributed log-normal and 

truncated normal where the distribution is truncated at 0.  In these cases, we estimate the mean 

and standard deviations of 𝛽 across our observations. 

Simulation of agricultural GHG abatement 

To quantitatively explore the scale of GHG abatement from agriculture and to qualitatively 

examine the importance of modeling assumption and heterogeneity, we simulate practice choices 

under a no-policy baseline and carbon price scenarios and examine changes in net GHG 

emissions over a 35-year (1980-2015) simulation period.  First, we use estimated parameters to 

calculate 𝑉𝑖𝑗1 for each crop and practice in year 1 of the baseline simulation.  In the case of the 

conditional logit, this portion of utility is deterministic.  With mixed logit, we make a random 

draw for each point in our data from the distribution of 𝛽.  

To calculate 𝑈𝑖𝑗1 = 𝑉𝑖𝑗1 + 𝜀𝑖𝑗1, we make a random draw from the distribution of 𝜀𝑖𝑗𝑡 (Type 2 

extreme value, or Gumbel) and find the crop and tillage practice combination that leads to the 

highest utility at NRI point 𝑖 (if there is a tie, we choose arbitrarily).  This becomes the crop and 

practice choice for point 𝑖 and the process is repeated for all 𝑖.  Then, in the next time period, we 

make a random draw from the error distribution for each point, find the crop and practice with 

the highest utility, and produce the practice choice in year 2 of the baseline simulation8.  This 

process repeats annually for 35 years (representing the length of our dataset) and provides an 

estimate of baseline crop and practice choice, N2O emissions, and changes in soil carbon over 

the simulation period. 

Next, we introduce payments for changes in soil carbon and N2O emissions, relative to the 

baseline.  In this case, a producer receives a payment for increases in soil carbon and decreases 

in N2O emissions.  Importantly, these two changes in GHGs are treated differently by buyers of 

credit (either private entities or the government under a GHG abatement program).  Since an 

avoided unit of N2O emissions (in CO2e) is identical to reduced emissions of CO2 elsewhere, 

 
8 In future work, we will update soil carbon levels and allow expected (and standard deviation of) yield to depend 
on soil carbon levels. 
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the market would pay up to the carbon price, 𝑃, for the avoided emission in CO2e. Carbon stored 

in the soil, on the other hand, is merely being stored for the time being, and could be released in 

future time periods (Gramig 2012).  In fact, many existing programs that pay farmers for stored 

carbon generate credits that last a finite number of years.  In this case, a buyer does not pay for a 

full unit of avoided emissions.  Instead, it “rents” a credit, which delays a permanent reduction 

(or future offset rental/purchase) (Parisa et al. 2021).  When this is the case, the price paid for 

temporary soil carbon storage from 𝑡 to 𝑇 is 𝑝𝑡 = 𝑃𝑡 −
𝑃𝑇

(1+𝜌)𝑇−𝑡, where 𝑃𝑡 is the carbon price in 

year 𝑡 and 𝜌 is the annual discount rate.  In other words, a buyer is willing to pay to delay a 

permanent reduction because the future cost is discounted.  Assuming a constant carbon price, 𝑃, 

the annual rental price becomes 𝑝 = 𝑃 (1 −
1

1+𝜌
).  In our main specification, we assume 𝜌 =

 .07, leading the rental price to be 0.0654 ∗ 𝑃.  Let 𝑞𝑖𝑗𝑡 be the increase in soil carbon level 

relative to baseline and 𝑛𝑖𝑗𝑡 be the reduction in N2O emissions (both in CO2e).  Then, the 

payment for a change in emissions in a given year is  

𝑀𝑖𝑗𝑡(𝑃) = 𝑃(0.0654 ∗ 𝑞𝑖𝑗𝑡 + 𝑛𝑖𝑗𝑡) (7) 

Also, let 𝑆𝑖𝑗𝑡
𝑀  be the standard deviation of crop revenue plus carbon payment across locations in 

year 𝑡.  Then, utility from each crop and practice can be expressed as 

𝑈𝑖𝑗𝑡
𝑀(𝑃)

= 𝛼𝑗 + 𝛽 (𝑅𝑖𝑗𝑡 + 𝑀𝑖𝑗𝑡(𝑃)) + 𝛿𝑆𝑖𝑗𝑡
𝑀(𝑃)

+ 𝛾𝑋𝑖𝑡 + 𝜃𝑗𝑡 + 𝜀𝑖𝑗𝑡 (8) 

We then simulate crop and practice choices for carbon price 𝑃 = 5,10, … 120.  To do this, we 

calculate 𝑈𝑖𝑗1
𝑀(𝑃)

 as the sum of 𝑉𝑖𝑗1
𝑀(𝑃)

 and the same draw of the error term as in the baseline 

simulation for each point.  For mixed logit simulations, we hold the draw of 𝛽 and the error term 

constant across all carbon prices.  The crop and practice that produces the highest utility level at 

point 𝑖 is then the crop and practice choice at point 𝑖.  Given the realized choice, we calculate 

𝑈𝑖𝑗2
𝑀(𝑃)

 and find the crop and practice that maximize utility to determine the crop and practice in 

year 2.  This continues for the 35 years of the simulation. 

At the end of each simulation, we compare resulting soil carbon stocks and cumulative N2O 

emissions to the baseline and calculate a total quantity of GHG abatement at each point.  To 

scale this to the state of Iowa, we multiply each field-level abatement amount by the weight 
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provided in the NRI data to estimate total abatement, 𝐴(𝑃).  Then, to facilitate comparison with 

statistics related to annual emissions, we calculate the average annual abatement as 𝑎(𝑃) =
𝐴(𝑃)

35
.   

Finally, we repeat the simulation process for 100 iterations to account for the uncertainty in 

specific practice choices.  We report average abatement quantities and 95% confidence intervals 

at each carbon price. 

We simulate using random draws to capture the heterogeneity in changes in soil carbon over 

time, especially because of the temporal dependence in these processes.  An alternative approach 

is to calculate expected changes in GHGs by multiplying predicted probabilities by the change in 

GHGs that result from each practice at each point.  This is the approach taken in Pautsch et al. 

(2001).  In future work, we plan to compare this approach to our simulation approach to examine 

if there are meaningful gains from accounting for spatial and temporal dependence in soil carbon 

changes. 

Results 

In this section, we present coefficient estimates from the discrete choice models and we show the 

output of simulations describing the scale of GHG abatement from corn and soy producers in 

Iowa. 

Econometric results 

Table 3 presents coefficient estimates for our discrete choice model under alternative 

assumptions about the model specification.  For conventional logit, the table presents estimates 

of 𝛽’s (average profit and standard deviation of profits) and its standard error for two different 

specifications.  For mixed logit, we report the estimated mean and standard deviation for the 

distribution of 𝛽′𝑠 for two different distributional assumptions for 𝛽′𝑠.  Column 1 presents a 

conditional logit that includes alternative specific constant for each crop practice choice. Since 

we have 6 alternative crop practice choices, there are 5 alternative specific constants that are 

estimated relative to the omitted full-till corn crop practice choice. The second column is the 

results of a conditional logit model that also includes year and lagged crop interacted with crop-

practice choice. These variables capture (linear) time trends that are specific to each crop and 

practice and also rotational considerations by producers. Column 3 reports the results of a mixed 
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logit model where both average and standard deviation of profit are normally distributed. This 

distributional assumption does not impose any restrictions on the sign of the average profitability 

and the standard deviation of profit. Finally, column 4 reports the results for the mixed logit 

model where average and standard deviation of profitability are distributed log-normally. We 

expect an increase in average profit to increase utility and an increase in variability of profit to 

reduce a producer’s utility. As a result, we assume that the coefficient of the average profitability 

is positive and the coefficient of the standard deviation of profitability is negative. Specification 

in columns 3 and 4 also include year and lagged crop interacted with crop-practice. 

Qualitatively, the results are similar across specifications and follow our intuition. Specifically, 

an increase in average profitability increases the utility and the probability of planting a crop and 

using a specific tillage practice while higher standard deviation decreases this probability. 

Examining alternative-specific constants, we can observe that there is a disutility from moving 

away from corn production under the full till practice across all modeling assumptions as full till 

corn is more profitable and is a dominant crop practice in Iowa in the study period.  

When comparing the coefficients of average and standard deviation of profits across the models, 

we see that model specification affects the result quantitatively.  Specifically, the coefficients of 

mean and standard deviation of profit are larger in column 2 relative to column 1, which presents 

the results of the conditional logit with no controls, showing that considering the rotation and 

temporal patterns are important. This comparison is reflected in the log-likelihood values. The 

results are quantitively similar across columns 2, 3 and 4 for profitability. However, columns 3 

and 4 show that there is significant heterogeneity across NRI points that is not captured in the 

conditional logit model. 
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Table 3. Econometric output 

 

Agricultural GHG abatement supply 

Here, we first compare our average simulated baseline practice proportions over time and 

compare them to actual proportions in each year of the simulation.  This comparison ensures that 

our simulation replicates observed behavior, at least on average.  Table 4 presents the number of 

no-till corn simulations under the baseline for each of the discrete choice modeling assumptions 

and comapares them with observed data (other crop-practices reveal similar results). This 

comparison reveals that the models, on average, predict the number of observations that plant 

corn under no-till practice. Moreover, our models can pick up temporal changes in baseline 

choices, e.g., the increase in no-till corn in the last two periods. Overall, the table shows that our 

estimations calibrate well to the base data such that using all models, we successfully recover 

baseline probabilities, suggesting that all models describe the current data reasonably well.   
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Table 4. Baseline simulation results for the number of no-till corn observations compared to data proportions by year 

 

Figure 3 shows the supply curve using four different models presented in Table 3.  The x-axis 

describes the annual predicted abatement (𝑎(𝑃)) and the y-axis is the carbon price, 𝑃, per ton of 

CO2.  Abatement (y-axis) is presented in CO2e and includes changes from the baseline path in 

N2O emissions and soil carbon stocks. The abatement supply curves for the mixed logit models 

were estimated based on a random draw for each producer (NRI point) in each year.9 

Qualitatively, the simulation output makes clear that modeling assumptions can meaningfully 

affect predictions about the scale of GHG abatement from agricultural lands.  Specifically, we 

can see that the conditional logit model without any controls is very inelastic while the mixed 

logit model with normally distributed profit coefficients is very elastic with respect to the price 

of CO2. This occurs despite similar baseline practice choices on average.  Therefore, while 

model choice does not affect baseline simulations, it has a meaningful impact on resulting supply 

curves created through counterfactual simulation. Interestingly, we find that the conditional logit 

model that includes the control interactions provides a similar supply curve as the mixed logit 

model with log-normally distributed profit coefficients while making very different assumptions 

about producer heterogeneity.  

 
9 Future work will include confidence intervals based on different coefficient draws and error term. 
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Quantitatively, simulation output shows that there is limited scope for GHG abatement through 

incentivizing reduced- and no-till practices. Under the current CO2 price of $15 per tonne of 

CO2, our simulations predict an abatement of between 1,300 and 42,000 tonnes of CO2e, which 

is between 0.00002% and 0.0006% of annual US CO2 emissions, which is around 6.6 billion 

tonnes (EPA). Under the most optimistic case with the mixed logit model and normally 

distributed profit coefficients, the amount of GHG abetment is around 0.0006% of annual US 

emission. Even assuming a price of $100 per tonne of CO2, the amount of GHG abetment is 

263,000 tonnes per year. This is around 0.004% of annual US emission.  

Figure 4 shows the emissions reductions for the mixed logit specification with normally 

distributed profit coefficients, separated by N2O and soil carbon changes.  The figure shows that 

most of the emissions are coming from the SOC emissions. However, we should point out that 

while the CO2e of SOC emissions are higher, SOC sequestrations are not necessarily permanent, 

while reduced N2O emissions are permanent.  
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Figure 4. Abatement by emission type for the mixed logit specification with normally distributed profits 

Discussion and Conclusion 

We use observed tillage decisions on corn and soy acres in Iowa to describe the potential for 

policy and/or carbon markets to incentivize GHG abatement from working lands.  Econometric 

results are used to examine the agricultural GHG abatement supply curve for the region.  Results 

show the importance of model specification and heterogeneity in predicting changes in practices 

and GHG emissions.  Accounting for heterogeneity by allowing variable responses to net 

revenue results in more elastic abatement supply curve.    

Quantitatively, our results point to the challenges of using policy or carbon markets to increase 

GHG abatement from the agricultural sector.  At least in Iowa, soil carbon is increasing even in 

the absence of GHG policy.  Therefore, paying only for additional abatement leads to relatively 

small payments compared to differences in profitability by practice and crop.  Even at a 100-

dollar carbon price, only 263,000 tonnes of CO2e are obtained from acres in soy and corn.  
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Compared to US annual GHG emissions of 6.6 billion tonnes10, changes in tillage practices on 

working croplands in Iowa likely have a limited impact. 

Programs to incentivize practice change could be designed in ways that increase payments, 

practice change, and abatement, but it is unlikely to be cost effective.  For example, paying for 

non-additional changes may cause more producers to change tillage practices but this will 

include payments for change in GHG emissions that would have occurred anyway, leading to 

higher program costs per unit of additional abatement. Payments for non-additional changes in 

GHG emissions do not necessarily mean that an inefficient level of abatement is achieved.  If the 

carbon price is set appropriately the efficient amount of total abatement from agriculture can be 

achieved. Nevertheless, payments for non-additional carbon are transfers that lead to higher 

program costs than necessary.  If non-additional changes in emissions are included in offset 

programs, it can change baseline emissions of buyer firms but does not lead to any abatement at 

the aggregate level. 

Our work provides a useful example of integrating physical (biogeochemical) knowledge into 

behavioral models to examine how the natural environment interacts with human decisions to 

affect policy outcomes.  This approach can be useful in other environmental and resource 

economics settings when it is costly to observe individual environmental conditions or impacts.  

For example, other settings such as non-point source pollution regulation may benefit from the 

ability to model heterogeneity in emissions, emissions damages, and policy impacts. 

In current and future work, we hope to improve and apply our modeling infrastructure in a 

number of ways.  First, we plan to update our dataset using the most recent GHG Inventory.  

This will include additional remotely sensed observations of practice choices at NRI points and 

years without CEAP information.  We also plan to include cover crops in our analysis.  Cover 

crops are much less common in our data, suggesting that there is a larger potential for additional 

changes in soil carbon from expanding their use.  The lack of adoption also suggests that it may 

be more costly to incentivize at scale. 

Once finalized with the updated dataset, we will be well-placed to examine the cost effectiveness 

and efficiency implications of alternative payment designs.  For example, what is the impact of 

 
10 https://www.epa.gov/climate-indicators/climate-change-indicators-us-greenhouse-gas-emissions 



 

24 
 

ignoring N2O, non-additional payments, or payment for practice instead of payment for service?  

We also hope to further examine the gains of using biogeochemical models by comparing our 

results to models estimated using county averages and point-level controls that can be accessed 

publicly (e.g., soil type, weather, slope, etc.).  Finally, we are currently working to allow 𝛿 (the 

impact of net revenue variance) to be random as well (and correlated with 𝛽). 

Taken together, our approach suggests that producers have economically important incentives to 

invest in soil health by reducing tillage, but that well-designed incentives can increase the 

adoption of reduced- or no-till methods.  While the scope for contributing additional abatement 

to climate change mitigation efforts is limited, these changes can lead to reduced runoff, drought 

resilience, and reduced input costs.  Therefore, investments in soil health may be justified by 

concerns for climate change adaptation, food security concerns, or local environmental 

challenges (Grosnell et al. 2020).  Future work should examine how policy can be designed to 

simultaneously reduce the climate change impacts of agriculture while furthering other social 

and environmental goals.  
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