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Abstract

Mitigating climate change requires reducing the concentration of greenhouse gases (GHGS) in
the atmosphere relative to business-as-usual. Evidence suggests that agricultural soils have a
large physical potential to sequester carbon from the atmosphere but with significant
heterogeneity across space and time. Less is known about how the variability impacts the
economic viability of policies to build soil carbon at large scales. Here, we use revealed crop
and practice choices on working cropland to examine the scale of agricultural GHG abatement
under a range of carbon prices. Using a discrete choice modeling framework and a spatially
explicit model of GHGs, we explore the impact of model specification and distributional
assumptions on the estimated supply curve of GHG abatement from corn and soy production in
lowa. We find that the choice of the discrete choice model of crop and practice choice affects
estimates of the GHG supply curve but that even the most optimistic case suggests that tillage
changes can only provide 263,000 tonnes of abatement per year, equal to 0.004% of US annual
emissions. Our results suggest that there is limited potential for GHG abatement from
incentivizing changing tillage practices on working agricultural lands.



Introduction

Rising greenhouse gas (GHG) concentrations in the earth’s atmosphere cause increasing
temperatures and alter the patterns of weather across the planet (IPCC 2013). To avoid extreme
costs of this change in climate, the global community has agreed to maintain atmospheric GHG
concentrations at a level consistent with significantly less than 2 degrees C of warming!. To
achieve this goal, individual countries have made voluntary commitments? to decrease GHG
emissions while increasing efforts to remove carbon dioxide (CO2) from the atmosphere using
both chemical processes (Sanz-Perez et al. 2016) and natural solutions (Griscom et al. 2017).
Natural solutions include managing forests to store carbon (Sohngen and Mendelsohn 2003),
influencing land use change (Stavins 1999), and incentivizing practice changes that store carbon
in agricultural soils (Pautsch et al. 2001, Choi and Sohngen 2010) or reduce agricultural
emissions (Ogle et al. 2020). Highlighting the desired role for natural solutions on agricultural
land, the United States’ Nationally Declared Contribution to global climate change mitigation
efforts states that “The United States will support scaling of climate smart agricultural practices

(including, for example, cover crops)3.”

Despite the increasing policy attention given to carbon sequestration in agricultural soils, the
economic viability of policies incentivizing practice changes remains unclear. Therefore, we use
a discrete choice modeling approach to estimate how the probability of adopting crop and tillage
practices depends on the expectation and variability of returns. We leverage field level estimates
of productivity and soil carbon changes to capture the role of spatial and temporal heterogeneity
in physical conditions. Then, we use coefficient estimates to simulate how payments for
additional changes in net GHG emissions (considering soil carbon and nitrous oxide (N20)
emissions) affect practice choices and GHGs over time. Finally, we examine how heterogeneity
in responses to GHG payments affects the estimated supply curve for GHG abatement from
agricultural land. Specifically, we estimate conventional and mixed logit models that make

different assumptions about heterogeneity in producer responses to revenues.

! https://unfcce.int/process-and-meetings/the-paris-agreement/the-paris-agreement

2 https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-
determined-contributions-ndcs
3https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%200f%20America%20First/Unite
d%20States%20NDC%20April%2021%202021%20Final.pdf
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An accurate estimate of the scale of GHG abatement as a function of payment amounts can
inform existing efforts to incentivize practice change, reduce N20 emissions, and build soil
carbon. This includes federal government programs and private sector initiatives such as carbon
offset markets facilitated by companies such as Indigo Ag* and Nori®>. How agricultural GHG
abatement responds to carbon prices can inform policymakers and buyers in carbon offset
markets who are considering what price to pay to achieve different levels of sequestration. It can
also reveal the potential for the agricultural sector to contribute to national GHG mitigation
goals. While evidence exists that agricultural soils can physically store significant amounts of
carbon—enough to offset ~10% of global emissions initially (Paustian et al. 2016)—producers

must be willing to implement practices that build soil carbon.

Estimating responses to conservation policies is complicated by heterogeneity in producer
decisions related to conservation and soil health. For example, Chouinard et al. (2008)
demonstrate that some producers adopt conservation practices at the expense of profitability.
This suggests that not all conservation practice use is a result of policy, and that there is likely a
benefit to using observed producer decisions related to conservation and practice choice. A
reliance on profit/net present value-maximization models can inform qualitative questions about
payment design (Antle et al. 2003) but may produce misleading conclusions about the scale of
practice change. Pautsch et al. (2001), Wu et al. (2004), and Wang et al. (2015) use observed
choices over time to estimate discrete choice models of producer crop and/or practice decisions
and to examine the environmental implications of these choices. Claassen et al. (2017) add to
this literature by estimating random parameters and endogenously allowing producers to fall into
different response classes. They use a latent class, random parameters model to examine how
crop insurance subsidies have affected crop choice and environmental outcomes. Uz et al.
(2021) demonstrate that ignoring heterogeneity in responses to salinity can lead to significant

underestimates of the impacts of salinity.

In addition to variable producer behavior, there exists considerable heterogeneity in the ability of
soils to store carbon (Ogle et al. 2019). Factors such as land use history, soil type, and climate

determine the physical potential for practice change to sequester carbon. This suggests that

4 https://www.indigoag.com/
5 https://nori.com/



understanding the economic viability of carbon sequestration programs at scale requires an

appropriate representation of this physical heterogeneity over space and time.

To address heterogeneity in producer behavior and soil carbon changes, we use biophysical
modeling (DayCent (Del Grosso et al. 2001)) to capture variability in yields and economic
returns across a range of practices and to consider heterogeneity across space and time in the
change in soil carbon stocks under alternative practices. We use data points from the US
National Resources Inventory (NRI) (NRCS 2018) and account for changes that occur even in
the absence of abatement incentives. We also investigate the importance of producer
heterogeneity by allowing responses to expected net revenue to vary across producers (Train
2009). When estimating GHG abatement supply responses, we then allow for both physical and
behavioral heterogeneity across space and time by simulating responses to field-level predicted

changes in soil carbon and N20O emissions.

We find that the choice of discrete choice model meaningfully affects the estimated abatement
supply curve. Specifically, while all the models that we consider show an increase in utility for
an increased average profitability and a decrease in utility from the variation in profits, we find
that the elasticity of CO2 abatement supply curves is significantly different across different
modeling and specification assumptions. Baseline results suggest that GHG abatement on
agricultural lands is increasing as a result of changes in tillage practices. Therefore, we focus on
a program that pays for additional carbon to demonstrate the gains from cost effective program

designs.

Our results knit together the literature using discrete choice models to explore the interaction
between producer crop and practice choices (Pautsch et al. 2001, Wu et al. 2004, Wang et al.
2015 Claassen et al. 2017 Uz et al. 2021) with the literature exploring GHG abatement policies
using natural solutions (Antle et al. 2003, Klotz 2016). We follow Pautsch et al. (2001) and use
discrete choice econometric modeling to investigate the cost of incentivizing tillage practices in
lowa. We update their approach by allowing for heterogeneity in producer behavior while
focusing on physical heterogeneity across the state. Whereas they rely on county average yields
and profitability, we incorporate field-level heterogeneity in the profitability of alternative crops
and practices. When modeling changes in soil carbon, we use the DayCent model to reflect

field-level heterogeneity while also considering N20O emissions over time.



We jointly consider the impacts of practice choices on soil carbon and N20 emissions because
N20 is a particularly potent GHG, with each tonne emitted equivalent to 298 tonnes of carbon
dioxide (CO2). Also, agriculture is the largest source of N20 emissions in the US. Therefore, if
policy ignores changes in N20 emissions that accompany changes in soil carbon (Ogle et al.
2020), programs could lead to unintended increases in atmospheric GHG concentrations. We
account for multiple pollutants and spatial heterogeneity by using interdisciplinary research
methods that integrate biogeochemical process models with observed producer decisions over

space and time.

Our results show the potential for (and limitations of) working agricultural lands to contribute to
national GHG mitigation efforts. In particular, using observed producer behavior, we find that at
the current carbon price of around $15/tonne, we would expect between 1,300 and 42,000 CO2e
tonnes of additional abatement. This is between 0.00002% and 0.0006% of annual US
emissions. This information is timely because policymakers and private sector actors have begun
to commit significant resources to incentivizing GHG abatement in the agricultural sector. Our
results suggest that A limited scope for additional abatement from changes in tillage practices on

US cropland.

This paper is laid out as follows. The next section describes the data and context that we use to
estimate the supply of GHG abatement from working agricultural land. We then describe the
behavioral and econometric model that describe the relationship between net revenues and crop
and practice choices. This is followed by a description of the simulations that allow us to
characterize abatement supply curves. The results section presents econometric estimates and
the supply curves associated with each econometric specification. Finally, we discuss results and

conclude.
Data and Context

To estimate behavioral models of crop and practice choices, we rely on several data sources.
First, we use the US National Greenhouse Gas Inventory dataset (US EPA 2020) to obtain crop
and practice choices along with crop yields and changes in soil carbon and N2O emissions from
all NRI points in lowa. We combine this with data on crop prices and input costs from the
USDA.



Greenhouse gas inventory data

Data on crop and tillage, as well as other practices such as irrigation, synthetic fertilization and
manure amendment practice choices are available at each NRI survey point in lowa from the US
National Greenhouse Gas Inventory dataset (US EPA 2020). Management choices are obtained
for each NRI survey point over time from information compiled by the United States Department
of Agriculture, such as the National Resources Inventory (NRI) (NRCS 2018b), Agriculture
Resource Management Surveys (USDA-ERS 2018), and the Conservation Effects Assessment
Project (CEAP) (NRCS 2018a). Using the dataset, we identify NRI survey points every five
years for years 1981, 1986,..., 2006, 2011 that produce corn grain (i.e., not silage) or soy over
the time period (N = 80,901) and classify the tillage practice at each point and year as full till,
reduced till, or no till. We focus on this time period because the National GHG Inventory data
for soil carbon are available for this period. While crop choices are available for every year of
the period 1979-2015 in the NRI dataset, the tillage practices are only updated every 5 years.
Tillage is imputed from 2001-2005, which coincides with the CEAP data on tillage, with
imputation classes based on CEAP region, crop group, and soil texture class. For an individual
class, tillage systems are assigned by randomly selecting from a sub-population of CEAP donors
in the same imputation class as the NRI survey location. Tillage systems for remaining five-year
time blocks are imputed forward and backward in time using trending information obtained from
a time series from the Conservation Technology and Information Center Data (CTIC 2004),
CEAP and ARMS (See US-EPA 2020 for more information). As a result, for the purposes of
econometric model estimation, we use data from the years 1981-2011 in 5-year intervals. When
simulating changes in GHGs over time, we hold tillage choice constant between years with
CEAP observations.

At each NRI survey point and year, we use the DayCent ecosystem model (Parton et al. 1998;
Del Grosso et al. 2001, 2011) to estimate the yield per acre of the crop and practice observed at
the point. DayCent provides yields in grams of carbon in grain. As a result, to calculate yield in
bushels per acre, we convert grams of carbon to harvestable biomass in bushels per acre based on
constants that vary by crop. These constants convert carbon to dry matter and dry matter to
marketable biomass. We compare county averages of modeled yield to county average yields

reported by USDA NASS and apply a scaling factor to ensure that modeled yields match average



reported yields in every year of our data. Similarly, DayCent provides an estimate of nitrogen
fertilizer use per acre. To obtain estimates of total fertilizer use, we estimate phosphorous and
potash use as implied by the nitrogen use in DayCent with nutrient ratios common in the area.
We then estimate the total fertilizer cost for each NRI point, and variable profit as the difference

between production revenues and fertilizer cost.

For the crop and tillage practices not observed at each point and year (i.e., not selected by the
producer at a NRI survey location), we first estimate each individual’s average and standard
deviation of profitability. Based on these values, we estimate a productivity index for each
individual (for both average and standard deviation of profits), which is the ratio of each
individual's average profitability to average profitability in lowa for the previous three years.
This index for profitability, 6], is used to approximate profitability for crop-practices that were
not planted each year. The assumption is that an individual that was more productive in growing
corn relative to the average would also be more productive in growing soybeans relative to
others. We create a similar index, 8}, for each individual’s standard deviation over three years
relative to the standard deviation of profitability across lowa. This process provides us with
estimates of profit mean and standard deviation for all crop and tillage practices for all NRI

points in our dataset over time.

To generate estimates of changes in N20O emissions and soil carbon stock change for lowa, we
used the emissions data from the United States National Greenhouse Gas Inventory (US-EPA
2020), which is estimated with a Tier 3 modeling approach following the IPCC guidelines
(Aalde et al. 2006). Specifically, the DayCent ecosystem model (Parton et al. 1998; Del Grosso
et al. 2001, 2011) is used to simulate the influence of past land use and management on soil
biogeochemical processes. DayCent incorporates critical processes that influence soil carbon
stocks and N20 emissions, including crop production, soil organic matter formation and
decomposition, water flows through the crop-soil system, and soil temperature regimes. DayCent
also requires input data on soil characteristics, which are based on the United States Department
of Agriculture Soil Survey Geographic Database (SSURGO 2019), in addition to data on
historical weather patterns, which are derived from the Parameter-elevation Regressions on
Independent Slopes Model (Daly et al. 1994; Daly and Bryant 2013).



For each NRI survey point, the DayCent model is applied in three time blocks for the GHG
inventory assessment, including a) simulation of native vegetation for 5000 years to initialize the
model at steady state conditions, b) simulation of the expansion of agriculture in the United
States over a varying amount of time following land use conversion from as early as the 1700s,
and c) simulation of recent agricultural management from 1979 through 2015 (see US-EPA
(2020) for more detail on the modeling framework). The NRI survey of land use and cropping
histories serves as the primary data frame for simulating soil carbon dynamics and N2O
emissions in the latter part of the inventory assessment from 1979 through 2015. We use the
output of this recent period to approximate soil carbon stock changes and N2O emissions from
observed crop and practice choices over time. To predict N2O emissions and changes in soil
carbon from the other crop and practices not observed in the data, we estimate (unconditional)
average of changes in soil carbon and N20O emissions for each crop and practice based on

historical changes in soil carbon and N20O emissions across the NRI survey points®.

We convert changes in soil carbon to tonnes of CO2 by multiplying changes in soil carbon by
44/12. Finally, we use the global warming potential of N20 (298) to convert emissions into CO2
equivalent (CO2e). This facilitates calculation of net emissions changes and allows us to
examine practice changes as a function of carbon prices that are paid for changes in emissions of
CO2e.

Table 1 provides a summary of revenue, fertilizer costs, N20O emissions, and soil carbon changes
by crop and tillage practice. It also presents the proportion of point-year observations that use
each crop and practice. Interestingly, full till corn has lower yields and fertilizer use per acre

than reduced- or no-till. A similar pattern exists for soy yields and fertilizer use.

8 In current work, we are modeling changes in emissions as a function of production and other physical
characteristics (e.g., soil type)



Table 1: Summary Statistics by Crop and Practice, 1981-2011, every 5 years

Tonnes of  Soil N20
Tonnesof  N20 carbon in emissions

Proportion Average Average soil carbon emissions CO2e per in CO2e

of crop- revenue per fertilizer cost per acre per per acre per acre per peracre

Crop Practice years acre per acre year year year per year
Full till 0.28 384.368 25.792 0.042 0.002 0.154 0.596
Corn No till 0.15 449.107 29.924 0.171 0.001 0.627 0.298
Reduced till 0.15 489.808 32.035 0.109 0.001 0.400 0.298
Full till 0.20 275.8 12.121 0.038 0.002 0.139 0.596
Soy No till 0.11 308.343 14.583 0.178 0.002 0.653 0.596
Reduced till 0.11 326.673 15.681 0.106 0.002 0.389 0.596

Figure 1 shows how tillage choices have evolved over time on average in our study area. The
use of full till has declined substantially over time, with the use of reduced and not till
increasing. As of 2015, reduced till was the dominant tillage practice on land growing corn and
soy in lowa. Given this, soil carbon stocks are not constant in a no-policy baseline (see Figure
2). In fact, cropland in lowa accumulated more than 70 million tonnes of soil carbon between
2000 and 2015. Table 2 shows the stability of conversion from full-till to reduced- or no-till by
showing the proportion of fields using full till in year t continue to do so in year t+1 (t indexes

over years in which we observe practices in the data). It also shows the same for reduced- or no-

till. Figure 1 demonstrates that producers are adopting reduced- and no-till over time but Table 2

illustrates that nearly 2% of observations switch from no- or reduced till back to full till.

10



Figure 1: Number of Acres in lowa using Full- No- and Reduced-Till (million acres)
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Figure 2: Soil Carbon Changes over Time In lowa
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Table 2: Stability of tillage choice, %
t+1
Full till Reduced or no till
Full till 44.36% 6.24%
Reduced or no till 1.93% 47.46%

Table indicates the percent of point-years where row
practice was done in t, and column practice was done

in year t+1. t indexes over CEAP years.

Finally, to facilitate scale-up of model estimates, NRI data contain weights that describe the
number of acres represented by each point. In our supply curve analysis, we use these weights to

scale our predictions to the state of lowa.

USDA data
12



We calculate field level revenue per acre for each crop and tillage practice combination at each
NRI survey point in our data by multiplying the output of the DayCent model by state-level
output prices provided by USDA NASS. Similarly, we estimate fertilizer costs by multiplying
fertilizer use in DayCent by prices provided by USDA ERS. These data include annual prices at
the state level for nutrients applied. We create annual fertilizer costs for the state of lowa by
estimating the ratio of nitrogen, phosphorous, and potash because DayCent only reports nitrogen
fertilizer application values. We use the average quantities for the year 2018 and calculate the
amount of potash and phosphorous based on these ratios. Next, we estimate the annual price of
each of these elements based on a fertilizer price index reported by USDA. Finally, we estimate
the cost of fertilizer as the sum of the cost of all three elements. There are other costs involved in
production besides fertilizer. In the empirical application, we discuss how our modeling
assumptions address these other costs. Table 1 summarizes revenue and fertilizer costs by

practice in our dataset.
Model and simulation

In this section, we present the structural econometric model used to describe producer behavior
related to tillage decisions. We then describe the integration of biogeochemical information and
carbon prices to predict changes in practices and GHG emissions over time under a range of

carbon price scenarios.
Random utility model

Here, we present a random utility model of the discrete crop and practice choices that producers

make. We assume that producer i = 1, ... N receives utility U;;, from crop/tillage practice
combination j € {soy full — till, soy reduced — till, soy no — till,corn full —

till, corn reduced — till,corn no — till} inyear t = 1,...T. This utility can be described as

Uije = aj + BRyje + 8Sije + v Xie + 0j¢ + €3¢ ©)

Where q; is an alternative-specific constant. This controls for time-invariant factors that affect

utility from each practice and are common to all producers. For example, this could include

labor and capital costs associated with each tillage practice. R;;, is the expected revenue for each

crop and practice net of fertilizer costs as of year t. We calculate revenue in each year as output

13



price times yield minus the fertilizer cost implied by DayCent and as described in the previous

section. Define this as r;;,. We then calculate R;;, = Ejte[t where ﬁjt is the observed average

revenue for crop-practice j in year t. S;;, = §jt i+ Where fjt is the standard deviation of 7;;

across all i in year t7.

X;; contains a vector of indicators that control for the crop and practice used in t — 1. Asin
Claassen et al. (2017), this controls for rotational constraints and transition costs of moving from
one crop and practice to another. 8;, is a practice-year fixed effect that controls for other
incentives associated with each practice that may vary over time. For example, the
Environmental Quality Incentives Program (EQIP) provided cost share for tillage practice

changes (among other practice changes).

Finally, €;;, is a random variable that represents other idiosyncratic factors that influence
producer utility. It represents factors that decision-makers know but that we cannot control for in

our model specification.
The probability that a producer chooses practice j' is

prob(UUrt > Uye) Vi #J' (4a)

= prob(g;j, — &ijre < Vijre —Vije) (4b)

With Vijt = aj + BRijt + 651']'1: + )/Xl't + th

If we assume that ¢, is distributed extreme value and that all at independent, then &;;, — &, is
distributed logistic, and we can express this probability as:

Vijrt
e’y (5)
prOb(Uij’t > Uijt) = Zje—vut
In our empirical application, we estimate this model using a conditional logit and with a mixed
logit that allows f3, the response to expected revenue, to be a random variable, with a distribution

across the population. In this case, the probability in equation 5 becomes

Vl]’t(ﬁ) (6)
prob(Uyre > Uy) = [ 5o - ovr /046

7 In current work, we also use lagged measure of profitability. Results are qualitatively similar.
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We estimate conventional (with and without controls) and mixed logit specifications using

maximum likelihood methods. In theory, the marginal utility of net revenue should be positive.
Therefore, in mixed logit models, we consider the cases where g is distributed log-normal and
truncated normal where the distribution is truncated at 0. In these cases, we estimate the mean

and standard deviations of 8 across our observations.
Simulation of agricultural GHG abatement

To quantitatively explore the scale of GHG abatement from agriculture and to qualitatively
examine the importance of modeling assumption and heterogeneity, we simulate practice choices
under a no-policy baseline and carbon price scenarios and examine changes in net GHG
emissions over a 35-year (1980-2015) simulation period. First, we use estimated parameters to
calculate V;;; for each crop and practice in year 1 of the baseline simulation. In the case of the
conditional logit, this portion of utility is deterministic. With mixed logit, we make a random

draw for each point in our data from the distribution of £.

To calculate U;j; = V;j; + &1, we make a random draw from the distribution of ;;, (Type 2
extreme value, or Gumbel) and find the crop and tillage practice combination that leads to the
highest utility at NRI point i (if there is a tie, we choose arbitrarily). This becomes the crop and
practice choice for point i and the process is repeated for all i. Then, in the next time period, we
make a random draw from the error distribution for each point, find the crop and practice with
the highest utility, and produce the practice choice in year 2 of the baseline simulation8. This
process repeats annually for 35 years (representing the length of our dataset) and provides an
estimate of baseline crop and practice choice, N20 emissions, and changes in soil carbon over

the simulation period.

Next, we introduce payments for changes in soil carbon and N20 emissions, relative to the
baseline. In this case, a producer receives a payment for increases in soil carbon and decreases
in N20 emissions. Importantly, these two changes in GHGs are treated differently by buyers of
credit (either private entities or the government under a GHG abatement program). Since an

avoided unit of N20 emissions (in CO2e) is identical to reduced emissions of CO2 elsewhere,

8 In future work, we will update soil carbon levels and allow expected (and standard deviation of) yield to depend
on soil carbon levels.
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the market would pay up to the carbon price, P, for the avoided emission in COZ2e. Carbon stored
in the soil, on the other hand, is merely being stored for the time being, and could be released in
future time periods (Gramig 2012). In fact, many existing programs that pay farmers for stored
carbon generate credits that last a finite number of years. In this case, a buyer does not pay for a
full unit of avoided emissions. Instead, it “rents” a credit, which delays a permanent reduction

(or future offset rental/purchase) (Parisa et al. 2021). When this is the case, the price paid for

Pr

temporary soil carbon storage from t to T is p, = P, — Tap)ir

where P, is the carbon price in

year t and p is the annual discount rate. In other words, a buyer is willing to pay to delay a
permanent reduction because the future cost is discounted. Assuming a constant carbon price, P,
the annual rental price becomes p = P (1 — ﬁ) In our main specification, we assume p =
.07, leading the rental price to be 0.0654 = P. Let g, be the increase in soil carbon level

relative to baseline and n; ;. be the reduction in N20 emissions (both in CO2e). Then, the

payment for a change in emissions in a given year is
M;;r(P) = P(0.0654  q;j; + nyj;) (7)
Also, let Si"}t be the standard deviation of crop revenue plus carbon payment across locations in

year t. Then, utility from each crop and practice can be expressed as

M(P M(P
Ui = a; + B (Rije + Myje(P)) + 85 +yXie + 0 + 410 (8)
We then simulate crop and practice choices for carbon price P = 5,10, ...120. To do this, we
calculate UM as the sum of V") and the same draw of the error term as in the baseline

ij1 ij1
simulation for each point. For mixed logit simulations, we hold the draw of £ and the error term
constant across all carbon prices. The crop and practice that produces the highest utility level at

point i is then the crop and practice choice at point i. Given the realized choice, we calculate

gM®

ij2 and find the crop and practice that maximize utility to determine the crop and practice in

year 2. This continues for the 35 years of the simulation.

At the end of each simulation, we compare resulting soil carbon stocks and cumulative N20
emissions to the baseline and calculate a total quantity of GHG abatement at each point. To

scale this to the state of lowa, we multiply each field-level abatement amount by the weight

16



provided in the NRI data to estimate total abatement, A(P). Then, to facilitate comparison with

A®)

statistics related to annual emissions, we calculate the average annual abatement as a(P) = v

Finally, we repeat the simulation process for 100 iterations to account for the uncertainty in
specific practice choices. We report average abatement quantities and 95% confidence intervals

at each carbon price.

We simulate using random draws to capture the heterogeneity in changes in soil carbon over
time, especially because of the temporal dependence in these processes. An alternative approach
is to calculate expected changes in GHGs by multiplying predicted probabilities by the change in
GHGs that result from each practice at each point. This is the approach taken in Pautsch et al.
(2001). In future work, we plan to compare this approach to our simulation approach to examine
if there are meaningful gains from accounting for spatial and temporal dependence in soil carbon

changes.
Results

In this section, we present coefficient estimates from the discrete choice models and we show the
output of simulations describing the scale of GHG abatement from corn and soy producers in

lowa.
Econometric results

Table 3 presents coefficient estimates for our discrete choice model under alternative
assumptions about the model specification. For conventional logit, the table presents estimates
of 8’s (average profit and standard deviation of profits) and its standard error for two different
specifications. For mixed logit, we report the estimated mean and standard deviation for the
distribution of B's for two different distributional assumptions for g’s. Column 1 presents a
conditional logit that includes alternative specific constant for each crop practice choice. Since
we have 6 alternative crop practice choices, there are 5 alternative specific constants that are
estimated relative to the omitted full-till corn crop practice choice. The second column is the
results of a conditional logit model that also includes year and lagged crop interacted with crop-
practice choice. These variables capture (linear) time trends that are specific to each crop and

practice and also rotational considerations by producers. Column 3 reports the results of a mixed
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logit model where both average and standard deviation of profit are normally distributed. This
distributional assumption does not impose any restrictions on the sign of the average profitability
and the standard deviation of profit. Finally, column 4 reports the results for the mixed logit
model where average and standard deviation of profitability are distributed log-normally. We
expect an increase in average profit to increase utility and an increase in variability of profit to
reduce a producer’s utility. As a result, we assume that the coefficient of the average profitability
is positive and the coefficient of the standard deviation of profitability is negative. Specification

in columns 3 and 4 also include year and lagged crop interacted with crop-practice.

Qualitatively, the results are similar across specifications and follow our intuition. Specifically,
an increase in average profitability increases the utility and the probability of planting a crop and
using a specific tillage practice while higher standard deviation decreases this probability.
Examining alternative-specific constants, we can observe that there is a disutility from moving
away from corn production under the full till practice across all modeling assumptions as full till

corn is more profitable and is a dominant crop practice in lowa in the study period.

When comparing the coefficients of average and standard deviation of profits across the models,
we see that model specification affects the result quantitatively. Specifically, the coefficients of
mean and standard deviation of profit are larger in column 2 relative to column 1, which presents
the results of the conditional logit with no controls, showing that considering the rotation and
temporal patterns are important. This comparison is reflected in the log-likelihood values. The
results are quantitively similar across columns 2, 3 and 4 for profitability. However, columns 3
and 4 show that there is significant heterogeneity across NRI points that is not captured in the

conditional logit model.
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Table 3. Econometric output

conditional conditional mixed logit mixed logit
logit logit normal log-normal
(Intercept):Corn NT —0.606"* —44.114** —37.841*** —44.148***
(0.011) (2.281) (2.277) (2.270)
(Intercept):Corn_RT 0 —0.595** —83.954*** —82.823*** —83.952***
(0.011) (2.315) (2.293) (2.286)
(Intercept):Soybeans FT —0.171** —56.404*** —71.462*** —56.470***
(0.014) (3.216) (3.689) (3.390)
(Intercept):Soybeans NT —0.788*** —96.050*** —117.248*** —96.101***
(0.016) (3.645) (3.963) (3.668)
(Intercept):Soybeans RT —0.728*** —143.295"  —167.268*  —143.331**
(0.016) (3.683) (3.946) (3.672)
Average profit 0.0004*** 0.002** 0.003*** 0.002**
(0.0001) (0.0001) (0.0002) (0.064)
Standard deviation of profit —0.008** —0.011* —0.012* —0.010**
(0.001) (0.001) (0.001) (0.107)
Standard deviation of 0.038*** 0.328***
average profit (0.0004) (0.108)
Standard deviation of 0.037* 0.750***
standard deviation of profit (0.001) (0.098)
Observations 81,760 81,760 81,760 81,760
Controls year year year
lagged crop lagged crop lagged crop
Log Likelihood —142,156.000 —123,120.300 —134,176.800 —123,088.300

Note: *p<0.1; *p<0.05; **p<0.01

Agricultural GHG abatement supply

Here, we first compare our average simulated baseline practice proportions over time and
compare them to actual proportions in each year of the simulation. This comparison ensures that
our simulation replicates observed behavior, at least on average. Table 4 presents the number of
no-till corn simulations under the baseline for each of the discrete choice modeling assumptions
and comapares them with observed data (other crop-practices reveal similar results). This
comparison reveals that the models, on average, predict the number of observations that plant
corn under no-till practice. Moreover, our models can pick up temporal changes in baseline
choices, e.g., the increase in no-till corn in the last two periods. Overall, the table shows that our
estimations calibrate well to the base data such that using all models, we successfully recover

baseline probabilities, suggesting that all models describe the current data reasonably well.
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Table 4. Baseline simulation results for the number of no-till corn observations compared to data proportions by year

year actual clogit- woc clogit we mxlogit n mxlogit_In

1981 1,636 1,591 1,554 1,544 1,561
1986 1,741 1,563 1,489 1,530 1,501
1991 1,592 1,674 1,598 1,543 1,632
1996 1,416 1,780 1,761 1,662 1,787
2001 1,568 1,810 1,852 1,851 1,868
2006 1,885 1,713 1,744 1,689 1,746
2011 2,224 1,938 2,032 1,778 2,092

Figure 3 shows the supply curve using four different models presented in Table 3. The x-axis
describes the annual predicted abatement (a(P)) and the y-axis is the carbon price, P, per ton of
CO2. Abatement (y-axis) is presented in CO2e and includes changes from the baseline path in
N20 emissions and soil carbon stocks. The abatement supply curves for the mixed logit models

were estimated based on a random draw for each producer (NRI point) in each year.°

Qualitatively, the simulation output makes clear that modeling assumptions can meaningfully
affect predictions about the scale of GHG abatement from agricultural lands. Specifically, we
can see that the conditional logit model without any controls is very inelastic while the mixed
logit model with normally distributed profit coefficients is very elastic with respect to the price
of CO2. This occurs despite similar baseline practice choices on average. Therefore, while
model choice does not affect baseline simulations, it has a meaningful impact on resulting supply
curves created through counterfactual simulation. Interestingly, we find that the conditional logit
model that includes the control interactions provides a similar supply curve as the mixed logit
model with log-normally distributed profit coefficients while making very different assumptions

about producer heterogeneity.

9 Future work will include confidence intervals based on different coefficient draws and error term.
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Quantitatively, simulation output shows that there is limited scope for GHG abatement through
incentivizing reduced- and no-till practices. Under the current CO2 price of $15 per tonne of
CO2, our simulations predict an abatement of between 1,300 and 42,000 tonnes of CO2e, which
is between 0.00002% and 0.0006% of annual US CO2 emissions, which is around 6.6 billion
tonnes (EPA). Under the most optimistic case with the mixed logit model and normally
distributed profit coefficients, the amount of GHG abetment is around 0.0006% of annual US
emission. Even assuming a price of $100 per tonne of CO2, the amount of GHG abetment is

263,000 tonnes per year. This is around 0.004% of annual US emission.

Figure 4 shows the emissions reductions for the mixed logit specification with normally
distributed profit coefficients, separated by N20O and soil carbon changes. The figure shows that
most of the emissions are coming from the SOC emissions. However, we should point out that
while the CO2e of SOC emissions are higher, SOC sequestrations are not necessarily permanent,

while reduced N20 emissions are permanent.
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Figure 4. Abatement by emission type for the mixed logit specification with normally distributed profits

Discussion and Conclusion

We use observed tillage decisions on corn and soy acres in lowa to describe the potential for
policy and/or carbon markets to incentivize GHG abatement from working lands. Econometric
results are used to examine the agricultural GHG abatement supply curve for the region. Results
show the importance of model specification and heterogeneity in predicting changes in practices
and GHG emissions. Accounting for heterogeneity by allowing variable responses to net

revenue results in more elastic abatement supply curve.

Quantitatively, our results point to the challenges of using policy or carbon markets to increase
GHG abatement from the agricultural sector. At least in lowa, soil carbon is increasing even in
the absence of GHG policy. Therefore, paying only for additional abatement leads to relatively
small payments compared to differences in profitability by practice and crop. Even at a 100-

dollar carbon price, only 263,000 tonnes of CO2e are obtained from acres in soy and corn.
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Compared to US annual GHG emissions of 6.6 billion tonnes'?, changes in tillage practices on

working croplands in lowa likely have a limited impact.

Programs to incentivize practice change could be designed in ways that increase payments,
practice change, and abatement, but it is unlikely to be cost effective. For example, paying for
non-additional changes may cause more producers to change tillage practices but this will
include payments for change in GHG emissions that would have occurred anyway, leading to
higher program costs per unit of additional abatement. Payments for non-additional changes in
GHG emissions do not necessarily mean that an inefficient level of abatement is achieved. If the
carbon price is set appropriately the efficient amount of total abatement from agriculture can be
achieved. Nevertheless, payments for non-additional carbon are transfers that lead to higher
program costs than necessary. If non-additional changes in emissions are included in offset
programs, it can change baseline emissions of buyer firms but does not lead to any abatement at

the aggregate level.

Our work provides a useful example of integrating physical (biogeochemical) knowledge into
behavioral models to examine how the natural environment interacts with human decisions to
affect policy outcomes. This approach can be useful in other environmental and resource
economics settings when it is costly to observe individual environmental conditions or impacts.
For example, other settings such as non-point source pollution regulation may benefit from the

ability to model heterogeneity in emissions, emissions damages, and policy impacts.

In current and future work, we hope to improve and apply our modeling infrastructure in a
number of ways. First, we plan to update our dataset using the most recent GHG Inventory.
This will include additional remotely sensed observations of practice choices at NRI points and
years without CEAP information. We also plan to include cover crops in our analysis. Cover
crops are much less common in our data, suggesting that there is a larger potential for additional
changes in soil carbon from expanding their use. The lack of adoption also suggests that it may

be more costly to incentivize at scale.

Once finalized with the updated dataset, we will be well-placed to examine the cost effectiveness

and efficiency implications of alternative payment designs. For example, what is the impact of

10 https://www.epa.gov/climate-indicators/climate-change-indicators-us-greenhouse-gas-emissions
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ignoring N20O, non-additional payments, or payment for practice instead of payment for service?
We also hope to further examine the gains of using biogeochemical models by comparing our
results to models estimated using county averages and point-level controls that can be accessed
publicly (e.g., soil type, weather, slope, etc.). Finally, we are currently working to allow § (the

impact of net revenue variance) to be random as well (and correlated with £).

Taken together, our approach suggests that producers have economically important incentives to
invest in soil health by reducing tillage, but that well-designed incentives can increase the
adoption of reduced- or no-till methods. While the scope for contributing additional abatement
to climate change mitigation efforts is limited, these changes can lead to reduced runoff, drought
resilience, and reduced input costs. Therefore, investments in soil health may be justified by
concerns for climate change adaptation, food security concerns, or local environmental
challenges (Grosnell et al. 2020). Future work should examine how policy can be designed to
simultaneously reduce the climate change impacts of agriculture while furthering other social

and environmental goals.
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