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ABSTRACT

To avoid significant negative climate change consequences, the Intergovernmental Panel
on Climate Change (IPCC) advises that global warming be limited to 1.5° C from pre-
industrial times, a target adopted under the Paris Agreement framework. The University
of Maryland Center for Global Sustainability suggests that the U.S. would remain con-
sistent with the IPCC target by reducing emissions 51% below 2005 levels by 2030, or
44.8% below 2012 levels, my base year. This paper examines the changes necessary in
primary energy sources in order for the U.S. agri-food system to reduce its emissions from

electricity use by 44.8% from 2012 to 2030.

First, an environmental input-output (EIO) model is used to determine electricity con-
sumption associated with different activities, commodities, and final uses within the U.S.
food system. Additionally, electricity consumption is disaggregated by primary energy
source, to which emissions levels are attributed using life cycle emissions estimates. Sec-
ond, the EIO model output serves as an input into two optimization problems. Subject
to the same constraints on energy use and total emissions, the first problem minimizes
the cost of meeting the emissions target, while the second minimizes the change from ex-
isting electricity consumption patterns. United States Energy Information Agency (EIA)
projections through 2030 for the growth of fossil-fuels, renewable energies, and nuclear

are key data parameters for the optimization constraints.

Given the EIA projections, my principal finding is that the U.S. food system is not on
track to reduce emissions from electricity use in a manner consistent with the 1.5°C
target. That is, the optimization problems cannot yield a feasible solution given the
projected growth of each energy source used for electricity generation. However, solutions

for both problems become feasible by relaxing the energy type constraint—adding eight

i



percentage points to the EIA projected growth for all energy types. The paper concludes
with a discussion of policy implications, model limitations, and the potential for future

research.
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Introduction

In 2018, the Intergovernmental Panel on Climate Change (IPCC) advised that global
warming must be limited to 1.5°C from pre-industrial times to avoid significant negative
consequences (IPCC 2018). At 2°C warming, the IPCC predicts increased prevalence of
heat waves, food insecurity, drought, flooding, and migration crises, together with greater
incidence of disease, reduced GDP growth, sea-level rise, ecosystem loss, and species
extinction, which all contribute to more premature deaths. Research suggests that less
than ten years remain to avert “catastrophic” climate change; that the climate system
is approaching “tipping points” (IPCC 2021) and a “point of no return” (Aengenheyster
et al. 2018) beyond which certain damages are irreversible. Achieving the 1.5°C target
requires substantial emissions reductions across all sectors of the economy, including the
agri-food system, which accounted for 19.8% of emissions in the U.S. in 2019 (FAOSTAT
2021).

To meet the target, the 2021 UN Environment Programme (UNEP) Emissions Gap Report
(EGR) suggests that global emissions must be reduced from 58.1 gigatons of carbon
dioxide equivalent (CO2e) emissions in 2019 to 25 gigatons by 2030, a 57% reduction.
Due to unprecedented Covid-19 measures, global emissions fell 5.4% in 2020 (UNEP
2021). However, preliminary estimates suggest emissions could grow 4.8% in 2021 (UNEP
2021). In contrast to the global trend, the U.S. has achieved minor emissions reductions
in recent years. Excluding downturns during the Great Financial Crisis and Covid-19
pandemic, which generated reductions, the U.S. averaged an annual 0.69% decline in

emissions between 2010-2019 (see Figure 1.1).



According to the University of Maryland Center for Global Sustainability, “emissions
reductions of 51% below 2005 levels by 2030 [would| put the U.S. on a trajectory to
net-zero emissions in 2050, consistent with limiting global warming to 1.5°C” (Hultman
et al. 2021), which was the target announced by the Biden administration in April 2021
(Friedman and Davenport 2021). This means reducing U.S. annual CO2e emissions from

7,423 million metric tons (MMt) in 2005 to 3,637 by 2030.

Figure 1.1: Carbon dioxide equivalent emissions (MMt), U.S. 1990-2030
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This paper examines the energy input changes for electricity generation that are required
in the U.S. food system to remain consistent with the IPCC target of 1.5°C, assum-
ing reductions in line with national targets. Starting from 2012—my base year—this
implies a 44.8% necessary reduction in food system emissions by 2030. Using an envi-
ronmental input-output (EIO) analysis framework, I model the U.S. agri-food system,
identifying major energy sources and their associated emissions. Additionally, applying
mathematical programming (MP) models, I determine separately the change-minimizing

and cost-minimizing adjustments to energy inputs that satisfy the emissions reduction



constraint while producing the same amount of food to satisfy existing demand.

1.1 Organization of the Paper

The Introduction provides an overview of agri-food system emissions, background on EIO
and MP models, and the contribution of this paper to existing literature. The Data and
Methods section outlines data sets used and develops the EIO and MP models. Results
are presented in the Findings Section. The Discussion section reviews policy implications,

model limitations, potential for future research, and concluding thoughts.

1.2 Agri-food System Emissions

The share of total emissions attributable to agri-food systems varies by country. In
2019, agri-food systems were estimated to contribute roughly one third of total emissions
globally, while accounting for only 19.8% of emissions in the U.S. (Crippa et al. 2021;
FAOSTAT 2021). Agri-food system emissions can be defined as “those generated by farm
production activities (crops and livestock), land use change and pre- and post-production
processes” (FAOSTAT 2021). The first category is considered to be emissions directly
attributable to agriculture and has been regularly tracked by the Food and Agriculture
Organization of the United Nations (FAO) and the IPCC (FAOSTAT 2021). The lat-
ter two categories expand upon this traditional emissions category, moving beyond the
“farm-gate” to form the broader agri-food system definition, which more comprehensively
identifies the emissions generated from food production, distribution, and consumption.
Land use change refers to the conversion of land to agricultural purposes, with promi-
nent examples including deforestation and peatland degradation (FAOSTAT 2021). Pre-

and post-production processes include: “i) the production of inputs (fertilizers, materials

3



for food packaging); ii) energy generation and consumption in food supply chains (food
processing, transport and retail) and at the household level (cooking and refrigeration);
and iii) waste disposal (such as in landfilling, incineration and wastewater management)”

(FAOSTAT 2021).

Whereas the narrower category of agricultural emissions has long been studied, the study
of agri-food system emissions is more recent. For the share of total emissions generated by
agri-food systems, Rosenzweig et al. (2020) produced global estimates, at 21-37%, while
Crippa et al. (2021), Tubiello et al. (2021), and FAOSTAT (2021) have generated both
global and country-level estimates !. As delineated by the United Nations Framework
Convention on Climate Change (UNFCCC), the traditional economic sectors to which
emissions have been attributed include agriculture, land use, land use change and forestry
(LULUCEF), energy, industrial processes and product use (IPPU), and waste (FAOSTAT
2021). Distinct from the UNFCCC classification, the agri-food system measure cuts
across these sectors, encompassing agriculture, LULUCF, waste, and energy use at all
stages 2. Recent literature argues that this broader measure supports more effective

policy responses to climate change (Crippa et al. 2021; Rosenzweig et al. 2020; Tubiello
et al. 2021).

Based on the UNFCCC sector classification, the greatest contributor to global emissions
is energy, at 70%, while agriculture and LULUCF combined contribute 14% (FAOSTAT
2021). Industrial processes and product use accounts for 9%, with waste at 5% (FAOSTAT
2021). However, using the FAO sector classification for the agri-food system, energy
emissions associated with food are captured in the overarching “pre- and post-production

processes” category (see Appendiz Figure A.1). Accordingly, within the agri-food system

!Common among these studies, the measure of carbon dioxide equivalent (CO2e) emissions combines
multiple greenhouse gases into a single metric, based on their warming potential. FAOSTAT (2021)
includes carbon dioxide (CO2), methane (CH4), nitrous oxide (N20), and fluorinated substances. In this
paper, the reader can assume that “emissions” refers to CO2e emissions.

2For a visual of food supply chain activities by category, see Appendix Figure A.1.



globally in 2019, roughly 7 billion tonnes of COZ2e emissions were attributable to farm-
gate activities, 6 billion to pre- and post-production processes, and 4 billion to land use
change (FAOSTAT 2021). Pre- and post-production processes account for a larger share
of food system emissions in developed countries, while emissions from farm-gate activities

and land use change predominate in developing countries (FAOSTAT 2021).

In the U.S., the largest share of agri-food system emissions comes from energy, at 36-37%?3.
As the focus of this paper, electricity use accounts for 57% of energy consumed by the food
system (Canning, Rehkamp, Waters, et al. 2017). This includes electricity use embodied
in inputs for the agricultural stage of production, as well as the post farm-gate stages of
processing, packaging, transport, wholesale, retail, and household consumption. Out of
scope are emissions from waste, land-use change, and farm-gate activities (agriculture),
except for on-farm electricity use. Because electricity accounts for a major portion of
emissions in the U.S. food system, this paper is analyzing a significant emissions source.
However, in addition to other primary energy sources, the categories agriculture and
land use change are vitally important, particularly in developed countries, where these
sources generate the majority of emissions. Hitaj et al. (2019) accounts for agriculture
and land use change by supplementing their EIO model with a biophysical model, which
captures sources such as enteric fermentation and burning of crop residues and savanna.
Incorporating additional emissions sources beyond electricity is taken up in the Discussion

section.

SFAOSTAT (2021) estimates that energy accounted for 36.2% of agri-food system emissions in 2019.
However, the LULUCF and IPCC Agriculture categories combined accounted for 39.4%. With a similar
categorization, Crippa et al. (2021) estimates that energy and “land-based” sectors each accounted 39%
of emissions in 2015.



1.3 Environmental Input-Output Analysis

As a way to model national economies and represent the interrelationships among dif-
ferent economic sectors, input-output (I-O) analysis was originally developed by Wassily
Leontief beginning in the 1920s, for which he was awarded the Nobel Memorial Prize in
Economic Sciences in 1973. Building on the I-O framework, Leontief (1970) introduced the
theoretical foundation for EIO, which was further developed in subsequent studies (Wied-
mann 2009). Like I-O models that analyze national economic sectors—e.g., assessing how
changes in final demand impact production and output—EIO models can analyze the en-
vironmental impact of production activities throughout the economy (Canning, Rehkamp,

and Yi 2022; Kitzes 2013) 4.

Impacts are categorized as direct or indirect. First, “direct impacts account for production
activities that provide direct outputs to meet a specified demand,” considered a first-tier
activity (Canning, Rehkamp, and Yi 2022). As an example, a direct impact of meat
production includes emissions generated when transporting meat products to market—
transportation services being a direct input. Second, indirect impacts account for sec-
ondary inputs, considered “second-tier activities to support first-tier activities” (Canning,
Rehkamp, and Yi 2022). For the meat commodity, whereas the grain fed to livestock is
a direct input, an indirect impact includes the emissions generated by operating a com-
bine to harvest the grain (second-tier activity). A third-tier could include emissions from

producing steel, an input into combine harvester production, and so on.

A major strength of input-output models is their ability to fully capture these direct and
indirect economic relationships throughout the production process, and EIO models are

ideal for capturing their corresponding environmental impacts (Canning, Rehkamp, and

4While national economies were the original unit of observation, I-O analysis has also been applied
at lower levels—sub-national, regional models—and at higher levels—multi-country regional or global
models.



Yi 2022). Moreover, along with accounting for emissions in production, EIO models can
associate those emissions with final consumption categories, either at the sectoral level or
for disaggregated commodity groups. While EIO offers a “top-down” sectoral approach,
Life Cycle Analysis (LCA) is a “bottom-up” alternative that analyzes the environmental
impact across the supply chain of individual products. Unlike EIO analysis, which can
comprehensively account for direct and indirect impacts, the LCA analyst must determine
an eventual cutoff point in the supply-chain, beyond which impacts are not recorded °

(Hitaj et al. 2019; Ingwersen and Li 2020).

In addition to offering a comprehensive accounting at lower or higher levels of aggregation,
benefits of EIO models include consistency, ability for decomposition, and data reliability.
First, EIO models are structured in a manner such that double-counting of emissions
sources across products is avoided (Kitzes 2013). Second, these models facilitate supply
chain analysis via decomposition techniques. Third, EIO data inputs are reliably tracked
by national governments, using common international standards, the United Nations Sys-

tem of National Accounts (SNA) and its companion System of Environmental Economic

Accounting (SEEA).

Limitations of EIO models are based in part on certain grounding assumptions. Core

assumptions are that:

1. there are no supply constraints, “because the supply of primary factors (labor, cap-

ital, natural resources) exceed the demand for these production inputs” (Canning,

Rehkamp, and Yi 2022);

2. inputs do not experience diminishing marginal productivity, because “any additional
use of these primary factors is equally productive as what is already in use” (Can-

ning, Rehkamp, and Yi 2022);

5Depending on the LCA design, this issue may be negligible. Additionally, hybrid EIO-LCA models
can also avoid this issue, gaining the benefits of each methodology (Yang et al. 2017).



3. prices are constant over the period of analysis, because “the new scenario being
studied does not change existing relative prices in factor and commodity markets or
existing production technologies such as factor productivities and material discharge

rates” (Canning, Rehkamp, and Yi 2022);

4. because a Type I model is used—explained under methods—"all proceeds accruing to
primary factor owners from the scenario induced production outcomes do not induce
further spending by factor owners in the period of analysis” (Canning, Rehkamp,

and Yi 2022); and

5. a given commodity group contains homogeneous products (Kitzes 2013).

One potential limitation is that these assumptions preclude the analysis of how a given
final demand scenario can induce additional changes in final demand or in primary factors®
(Canning, Rehkamp, and Yi 2022). However, this study is interested in how production
inputs can be optimized to reduce emissions while meeting a fized level of final demand.
Thus, induced demand is not a point of focus here. By assuming homogeneity within a
commodity group, the EIO analyst cannot account for product variation—e.g., organic
versus conventional food products—whereas the LCA analyst can (Hitaj et al. 2019). The
EIO approach adopts a kind of average, flattening any variation in product characteristics.
Regarding prices, if they are stable, then EIO modeling can be appropriate (Canning,
Rehkamp, and Yi 2022). Further, final demand being held constant mitigates the issue of

potential price changes.

6See the Methods section for the difference between Type I and Type II models with respect to induced
effects.



1.4 Mathematical Programming

Mathematical programming (MP) is a well-established method—particularly in opera-
tions research—that has increasingly been used for environmental applications (Miller
and Blair 2009; Vogstad 2009). The [-O model itself can be interpreted as a type of linear
programming (LP) problem (Miller and Blair 2009; Vogstad 2009). This paper defines
an LP problem and a non-linear programming (NLP) problem, corresponding to cost-
and change-minimizing objective functions, respectively. These LP and NLP optimiza-
tion problems minimize their objective functions (total energy cost and change in energy

source) subject to various environmental and energy constraints.

Utilizing the MP methodology enables me to extend the initial EIO model analysis, using
its output as an input for the optimization problems described above. Whereas the
EIO model yields a detailed accounting of existing electricity consumption patterns and
corresponding emissions, the MP models examine how those patterns must change in

order to meet the IPCC 1.5° target.

1.5 Contribution

Previous papers applying EIO analysis to study emissions from food production include
Hitaj et al. (2019) and Boehm et al. (2018), examining the U.S. food system, Hendrie et al.
(2014), examining Australia, and Camanzi et al. (2017), examining the EU. This paper is
a unique contribution to these past studies because it assesses the impact of a supply-side
change, rather than changes in final demand, and estimate least-cost and least-change
energy input changes consistent with a 1.5°C target. This supply-side approach can serve
as a benchmark for understanding the magnitude of energy input changes required in the

generation of electricity.



My focus is on the reduction of U.S. food system emissions from electricity use. While
this represents only a subset of total U.S. emissions, the methodology developed could be
applied to other energy sources as well as other sectors of the economy beyond the food
system. Additionally, electricity generation is a critical component of decarbonization
strategies. In their 2015 study, Jacobson et al. (2015) argued there exist viable “solutions
to the grid reliability problem with 100% penetration of [wind, water, and solar| (WWS)
across all energy sectors in the continental United States between 2050 and 2055.” That
is, powering the U.S. economy entirely with WWS. Doing so would entail an unprece-
dented expansion of electricity generating capacity and battery production, to power
everything that currently requires fossil fuels or nuclear (Jacobson et al. 2015; Griffith
2021). Although these findings were challenged (Clack et al. 2017), the study raises the
question of whether renewable energy potential is underestimated (Creutzig et al. 2017)

and highlights the importance of electricity generation (Griffith 2021).
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Data and Methods

Data requirements for this paper can be broadly categorized as economic and environ-
mental. First, [ use an EIO model and associated data developed by Canning, Rehkamp,
and Yi (2022). Then, output from the EIO model is an input into the MP model, sup-
plemented by additional parameter data. This section discusses data inputs and then

develops the EIO and MP methodology.

2.1 Data

The EIO model includes an input-output table (IOT) characterizing the U.S. economy
and data for electricity consumption by primary energy source. For the 2012 U.S. national
economy, the IOT covers high-level economic sectors as well as more detailed food indus-
tries and commodities. Data for 2012 is the most recent available !, but other key energy
use metrics are updated to recent years, as described below. Canning, Rehkamp, and
Yi (2022) follow a standard methodology for constructing their IOT from an underlying
Supply and Use table (SUT) 2.

In turn, the SUT is constructed from three data sets. Published by the U.S Department of

Commerce, Bureau of Economic Analysis (USDOC-BEA), these include a more detailed

nput-output modeling is data-intensive but uses high-quality data sources compiled by government
statistical agencies. Representing entire economies, comprehensive nationwide surveys musts be admin-
istered, followed by additional compilation, which contributes to the gap between publication year and
year of analysis.

2See Appendix A Figure A.2 for a schematic showing an example of mapping Supply and Use tables
to an IOT.
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Benchmark SUT and a less detailed Summary table, released every five years and annually,
respectively (Canning, Rehkamp, and Yi 2022; USDOC-BEA 2021). An SUT published
annually by the U.S. Department of Labor, Bureau of Labor Statistics is utilized as
well (Canning, Rehkamp, and Yi 2022; USDOC-DOL 2021). Additionally, to develop
a more granular picture of the food system—achieving further disaggregation than is
possible in the Benchmark and Summary tables noted above—the Personal Consumption
Expenditures (PCE) Bridge table ® from the National Income and Product Accounts
(NIPAs) is also utilized. Lastly, the economic data used in the EIO model includes
multiple secondary sources that enable the identification of “expenditures and uses of
goods and services for U.S. households to run their home kitchens,” a process described

in Canning, Rehkamp, Waters, et al. (2017) (Canning, Rehkamp, and Yi 2022).

As described by Canning, Rehkamp, and Yi (2022), the resulting IOT developed from

these sources contains:

229 activities (A001 to A229),

e 231 commodities (C001 to C231),

four leakage matrix elements (LO1 to L04),

four non-food expenditure related institutional matrix elements (X01 to X04), and
32 food commodity and home kitchen operation expenditure matrix elements (XF01

to XF32) 4

The EIO model section below provides definitions and context for these matrices and
Appendix Tables B.1, B.2, B.3, and B.4 list each matrix element along with a brief

description. This paper adopts the Social Accounting Matrix (SAM) terminology—in

3This data is located under the ‘Underlying Estimates’ section of the USDOC-BEA Input-Output
Accounts Data page (USDOC-BEA 2021).
40nly 27 categories are relevant to this paper, denoted XF01 to XF27.
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accordance with Canning, Rehkamp, and Yi (2022)—where the “leakage” matrix corre-
sponds to “value-added” from IO models and the “institutional”, or “injection”, matrix
corresponds to “final demand.” The above data elements are depicted in an IOT for a

simplified economy in Appendix A Figure A.3.

A core attribute of EIO models is supplementing economic with environmental data.
Following Canning, Rehkamp, and Yi (2022), this paper uses primary energy consumption
and price ° data from the State Energy Data System (SEDS), published by Department
of Energy, Energy Information Administration (USDOE-EIA 2021; Canning, Rehkamp,
and Yi 2022). As shown in Table 2.1 below, total primary energy use in the U.S. in 2012
was 94 quadrillion BTUs (quads), of which electricity was the largest contributor, with 38
quads. As a user of electricity, the food system accounted for 7 quads (Canning, Rehkamp,
and Yi 2022), which is the focus of this paper. In turn, total bBTU from electricity can
be disaggregated into primary energy sources, using SEDS data for electricity generation

by source (USDOE-EIA 2021; Canning, Rehkamp, and Yi 2022).

In order to conduct a detailed supply chain analysis of food system electricity usage,
total electricity used by source is allocated among every commodity, activity, and insti-
tutional element of the IOT. Population (USDOC-BEA 2022b; DMDC 2022) and em-
ployment (USDOC-DOL 2022; Census Bureau 2022; USDOT 2022) data are used to
estimate electricity consumed by every element, as detailed by Canning, Rehkamp, and
Yi (2022). As the primary output of interest from the EIO model, this result Ef’)f , 1s
a three-dimensional matrix showing bBTUs of electricity consumed by the food system
by energy source, food category, and supply chain stage 7. Examples of the 27 food cat-

egories include “food at home: cereals,” “food away from home,” (eating out), and “home

5From SEDS, only the natural gas and petroleum prices are used in a price ratio, as a replacement for
levelized cost of electricity (LCOE) estimates used for all energy sources except petroleum, as described
in Appendix C.

6See “Supplemental _info.xlsx” for a table of 2012 baseline electricity consumption.

"See Table 2.2 for all energy sources. See Appendix B Table B.4 for food categories and Table B.5 for
supply chain stages.

13



Table 2.1: Primary energy use by source and user, U.S. 2012, bBTU

Source Industrial Commercial Transportation | Residential | Total
All petroleum | 8,054,349 550,001 25,272,426 869,788 34,746,564
products
Biofuel 710,871 710,871
Coal 1,516,013 43,650 1,559,663
Electricity 10,287,524 13,640,682 73,842 14,149,504 38,151,552
Geothermal 4,200 19,702 39,600 63,502
Hydroelectric | 22,393 261 22,654
Natural gas 8,822,590 2,968,401 781,762 4,252,794 16,825,547
Solar 7,196 33,300 78,844 119,340
Wind 182 513 695
Wood 438,094 438,094
Wood and | 1,621,149 105,929 1,727,078
biomass
waste

] Total 31,046,467 17,362,439 26,128,030 19,828,624 \ 94,365,560 ‘

Source: Canning, Rehkamp, and Yi (2022)

kitchen operations: utilities,” while the 13 supply chain stages include “agribusiness,”

“crops,” “transportation and storage,” and “utilities for kitchen” (Canning, Rehkamp, and

Yi 2022). Aggregating ng to two dimensions, Figure 2.1 shows how the food system

consumed electricity by energy source and supply chain stage. Figure 2.2 shows the same

for food categories.
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Figure 2.1: Food system electricity by energy and stage (bBTU), U.S. 2012

—— Solar : 7,589 ries 3;8

Figure by author based on data from Canning, Rehkamp, and Yi (2022).

In 2012, coal generated the most electricity consumed by the U.S. food system, followed
by gas, while “utilities for kitchen” was the largest supply chain stage consumer, followed
by “foodservice”. In Figures 2.1 and 2.2, the most emitting energy sources are darker

brown (coal), while the least emitting sources are darker green (wind).
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Figure 2.2: Food system electricity by energy and food category (bBTU), U.S. 2012

Figure by author based on data from Canning, Rehkamp, and Yi (2022).

In Figure 2.2, food and beverage final uses are categorized by “food at home” (FAH),
“food away from home” (FAFH), “beverage at home” (BAH), “beverage away from home”
(BAFH), “food at work” (FAW), and “home kitchen operations” (HKO). Among these,

HKO - Utilities accounted for the largest electricity consumption, followed by FAFH.
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Together with food system electricity consumption by energy source—as output from the
EIO model—the MP model require additional data inputs as parameters. These include
data for life cycle emissions, electricity growth rates by energy source, total growth rates,
depreciation rates of fossil fuel plants, and estimates of the levelized cost of electricity

(LCOE).

First, Life Cycle Assessment (LCA) provides a methodology for considering emissions
generated from all life cycle stages of energy technologies, including upstream, operation,
and downstream (NREL 2022b). This paper uses energy source life cycle CO2e emissions
estimates by the National Renewable Energy Laboratory (NREL), compiled from their
meta-analysis of roughly 3,000 publications (NREL 2022a; NREL 2022b). According to
this analysis, wind and nuclear power are the least emissions-intensive energies, while
petroleum and coal are the most emissions-intensive (see Table 2.2) 8. Model results were

derived with the median NREL ? estimate.

Table 2.2: Life Cycle Emissions Factors (g CO2e / mBTU)

Generation Technology 1Q Median 3Q
Biopower (All Technologies) 8,206 15,240 32,238
Photovoltaic (All Technologies) 8,792 12,719 18,170
Geothermal (All Technologies) 6,418 10,756 15,093
Hydropower (All Technologies) 2,452 6,008 8,021
Wind (All Technologies) 2,373 3,810 6,515
Nuclear - Light Water Reactor (LWR) | 2,257 3,810 9,085
Natural Gas - Conventional Gas 125,215 142,433 161,336
Oil 211,597 946,180 265,816
Coal (All Technologies) 261,126 293,364 332,343

Source: NREL (2022a)

The life cycle emissions factor data is combined with the EIO model output for bBTU

consumption to yield total CO2e emissions by energy, supply stage, and food category.

8The original data set in grams CO2e per kWh was converted to grams CO2e per mBTU.
9The NREL category “biopower” is used for estimating the EIA combined categories of “wood” and
“waste”, denoted in this paper as “wood and waste biomass”.

17



As done for Figures 2.1 and 2.2, this three-dimensional data, (-)gf , can be visualized along
two dimensions. Figure 2.3 shows emissions by energy and stage, while figure 2.4 shows
emissions by energy and food category. As can be seen, in 2012 coal accounted for an
outsized proportion of emissions, 888 MMt, at 76% of the total. Natural gas is the second

largest emitter, 22%, while all other sources contribute less than 1%.

Figure 2.3: Food system CO2e emissions by energy and stage (MMt), U.S. 2012

Figure by author based on data from Canning, Rehkamp, and Yi (2022).
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Figure 2.4: Food system Co2e emissions by energy and food category (MMt), U.S. 2012

Figure by author based on data from Canning, Rehkamp, and Yi (2022).

Relative to the left-hand side (energy source), the right-hand side of Figures 2.3 and 2.4
do not show the same disproportional relationship with respect to Figures 2.1 and 2.2.
The stages and food categories are assumed to consume electricity with the same energy
mix—as if a single utility—and so their CO2e emissions output has a linear relationship

to bBTU consumption. Thus, because the utilities for kitchen stage is largest electricity
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consumer, it also generates to most emissions. Likewise, as the energy mix is optimized
to reduce emissions, the largest electricity consumers will necessarily yield the largest

emissions reductions.

Electricity growth rate data includes actual rates achieved and projections. First, the EIO
model output, ng , is updated to reflect 2021 electricity generation. Summing over ng by
supply chain stage, z, and food and beverage final demand category, f, yields total electric-

27 13
ity consumption by energy type, d, for the U.S. food system in 2012— )" > 04, 7,0 € ¥.

In the MP model, these 2012 energy totals are multiplied by actual nat{;riazlzénergy growth
rates 1 (USDOE-EIA 2022c) to yield 2021 totals, which are then multiplied by the pro-
jected national energy growth rates to yield 2030 totals (USDOE-EIA 2022a; USDOE-EIA
2022b) (See Table 2.3) 1. This represents the projected total bBBTUs by energy source
available for the U.S. food system in 2030, serving as a theoretical upper bound in the
optimization problem. However, as we will see in the Findings section, a feasible solution

for meeting the emissions reduction target does not exist if renewable energy growth is

restricted according to these EIA projections.

In addition to upper bounds on energy sources, a lower bound on total electricity generation—
the minimum bBTU required to support the food system—also requires actual and pro-
jected growth rates. Total electricity growth is derived by aggregating the same figures for
actual and projected electricity generation by source (See Tables 2.3 “Total”) (USDOE-
EIA 2022c¢; USDOE-EIA 2022a; USDOE-EIA 2022b). The resulting total projected elec-

tricity growth term from 2012 to 2030 is:

p=(1+p2) x (1+ p*") = (1+ (~.016)) x (1 +.043) = 1.02

10This assumes that national trends apply to the food system. The growth rate is derived from EIA
kWh totals in the EIA Monthly Energy Review March 2022.

"My category “wood and waste biomass” combines EIA categories “wood” and “waste”, sub-categorized
under their biomass category.
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Table 2.3: Electricity by source, U.S. Food System, bBTU

Source 2012 % change | 2021 % change 2021- | 2030
2012-21  (na- 30 (national pro-
tional actual) jection)
Coal 3,030,046 | -40.6% 1,798,521 | -28.3% 1,290,164
Hydropower | 499,103 -5.8% 470,167 15.6% 543,415
Natural gas 1,783,567 | 28.5% 2,291,820 | -1.4% 2,258,852
Nuclear 1,543,979 1.1% 1,561,681 | -9.1% 1,419,746
Petroleum 41,012 -19.0% 33,216 -25.7% 24,672
Solar 7,589 2550.5% 201,143 250.1% 704,287
Geothermal 28,362 4.3% 29,593 48.5% 43,933
Wood 86,689 -3.7% 83,465 15.3% 96,260
and waste
biomass
Wind 256,512 169.7% 691,760 57.2% 1,087,140
| Total | 7,276,860 | -1.6% | 7,161,366 | 4.3% | 7,468,469

Data Source: Canning, Rehkamp, and Yi (2022), USDOE-EIA (2022c), USDOE-EIA (2022a), and USDOE-EIA (2022b)

Using depreciation rates from USDOC-BEA (2022a), a lower bound on fossil fuel energy
types is enforced in the optimization problem. This prevents the model from reducing a
high-emitting energy by more than that amount projected by depreciation (See Appendiz
Table B.6). As an example, this means existing coal power plants cannot be shut down

and replaced before their natural lifespan.

Lastly, levelized cost of electricity (LCOE) data from the International Energy Agency
(IEA) is used to determine the cost-minimizing changes in energy sources that will meet
emissions reduction targets. Levelized cost of electricity is a widely used metric despite
some limitations (IEA 2020), which will be reviewed in the Discussion section. The
USDOE suggests three useful characteristics of this metric: that it (i) “measures lifetime
costs divided by energy production,” (ii) “calculates present value of the total cost of
building and operating a power plant over an assumed lifetime,” and (iii) “allows the
comparison of different technologies (e.g., wind, solar, natural gas) of unequal life spans,

project size, different capital cost, risk, return, and capacities” (USDOE 2022). For these

reasons, LCOE is an ideal tool for evaluating the long-term cost of different energy sources
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in this paper. As shown in Table 2.4 12, the IEA finds that natural gas and wind have
lowest cost, while coal and petroleum have the highest cost. Note that solar is estimated to
be higher cost than nuclear. On the one hand, the inclusion of residential and commercial
solar in a weighted average raises overall solar LCOE, being relatively more expensive
than utility-scale solar. On the other hand, averaging “new build” nuclear with ten- and
twenty-year “long-term operation” (LTO) nuclear lowers its LCOE. Whereas new nuclear
plants are more costly, extending the life of existing plants—long-term operation—can
make nuclear the “most cost-effective low-carbon solution,” according to the IEA (IEA
2020). Also note that while the IEA reference estimates include a $30 carbon price, my
estimates exclude carbon pricing, which would raise the cost of fossil fuels further. In
Appendix C, additional detail is provided on the core assumptions and key decisions in

compiling LCOE estimates.

Table 2.4: Levelized Cost of Electricity, U.S. 2020

Source LCOE (USD /|LCOE (USD /
MWh) bBTU)
Petroleum 95.25 27,916.27
Coal 84.34 24,716.89
Hydropower 78.89 23,120.39
Geothermal 77.69 22,767.24
Wood and waste | 76.00 22,273.41
biomass
Solar 70.75 20,735.64
Nuclear 46.38 13,592.12
Wind 39.02 11,435.64
Natural gas 34.78 10,193.02

Source: IEA (2020), IEA (2022), and IRENA (2022)

12A1l Table 2.4 estimates are provided by the IEA for the U.S., except wood and waste biomass, a
global estimate from the International Renewable Energy Agency (IRENA). See Appendix C for details
on the compiling each LCOE estimate.
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2.2 Methods

This paper utilizes an EIO model, the output from which is an input into optimization
problems, together with additional parameter data as outlined above. This section devel-
ops the EIO model and optimization problems in turn, where the latter is the primary

contribution of this paper.

2.2.1 The Environmental Input-Output Model

As noted in the introduction, this paper adopts the Type I EIO multiplier model devel-
oped by Canning, Rehkamp, and Yi (2022), which “provides a measurement of how $1
injected into the economy as an expenditure on a specific good or service (commodity)
changes total production or output of each activity and commodity across the entire econ-
omy.” Further, the multiplier effect of a $1 injection increasing production activity has an
analogous effect on increasing electricity required to support that production. A Type I
model measures direct and indirect effects but not induced effects. When households are
endogenous to the model—Type II model—greater production activity induces greater
consumption, which in turn increases production. Because we are interested in the elec-
tricity required for a fixed level of food consumption, the Type I model is appropriate,

excluding induced effects.

The key result of a standard I-O model derivation is a matrix equation describing how
a change in final demand—3$1 injected into the economy—will impact output, mediated
by a multiplier matrix that contains elements for every economic activity. The derivation

gives:

y=M x x, (2.1)
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where vy is the gross output vector, @ is the injection, or final demand, vector, and M is
the total requirement matrix '3. The total requirement matrix '* represents the direct and
indirect monetary amount of every activity and commodity element that is required for
production in order to meet final demand. When considering only food-related purchases,

equation 2.1 becomes:

y/ = M x x7, (2.2)

where y/ and «f denote the food-related gross output and injection vectors, respectively.
This basic I-O model is extended to an EIO model by introducing our environmental
metric, electricity consumption, which is further translated to CO2e emissions as a linear
relationship. The environmental matrix, E, shows electricity required by energy source
(matrix rows) for every activity and commodity (matrix columns), measured in bBTU

per $1 output *°. Including E in the model gives:

ol =E xy' + 0%, (2.3)

where the o/ vector represents the total bBTU consumed by energy source d '®. The
o® vector represents electricity consumed directly by end users through home kitchen
operations—e.g., running a coffee maker—which is added to E x y7, total bBTU required

by activities and commodities in the production process. Diagonalizing y/ and introducing

13See Appendix D Section D.1 for notes on matrix notation and Section D.2 for a listing of all matrices
and vectors with brief descriptions. See Appendix D for a complete derivation of the EIO model, as
adapted from the supplemental information of Canning, Rehkamp, and Yi (2022)

14The total requirement matrix is sometimes termed the Leontief inverse.

15Tn their model, Canning, Rehkamp, and Yi (2022) have the rows of E correspond to the energy sources
listed in Table 2.1. This paper instead selects only the electricity row from Table 2.1 and disaggregates
electricity by its primary energy source, as seen in Table 2.3. The model equations detailed in this section
are applicable in either case.

16Table 2.3 shows the nine energy sources.

24



E*, the gives:

¥ = [E* x (y')"lo’], (‘" denotes horizontal concatenation) (2.4)

where:

e X%/ is a two-dimensional matrix representing the total bBTU consumed by energy

source d (rows) and food category f (columns);

e E* is the environmental multiplier matrix derived through a supply chain analysis

17

procedure ** using “double-inversion”; as outlined in Canning, Rehkamp, and Yi

(2022), with (rows) for energy source d and (columns) for supply chain stage z; and

e The (y/)"” matrix is y/ diagonalized.

The supply chain analysis procedure reduces the full set of activities and commodities (See
Table B.1) to a smaller set of supply chain stages (See Table B.5), attributing electricity
use to these stages, rather than to an activity or commodity. Equation (2.4) can be

restated as:

E2f — [E* % (yf1|yf2|...|yf23)|E % (yf24|yf24|yf26)|0'f27] (25)

In equation (2.5):

o y/! to y/?* are gross output vectors corresponding to the food-related demand
categories X F1 to XF23 from Table B.4, and The rows of y/! to y/?* are the

supply chain stages z;

17See Appendix D.3.1.
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e FE is the standard environmental multiplier matrix;
o y/?* to y/26 are gross output vectors corresponding X F24 to X F'26; and

e 0/?7 is the final demand vector for energy consumed directly through home kitchen

operations, corresponding to X F'27, with rows for energy source d.

Lastly, the two-dimensional matrix ¥2/ can be rewritten as a three-dimensional matrix,

»3/.

= = (B () 1) 1) ) 1B < (W) 16" 167" ) [077] - (2.6)

The result 33/ represents the entire annual food system electricity budget allocated across
three indices. The matrix rows are energy source d, while the columns are supply chain
stage z and food-related final demand category f. The electricity consumed for the
baseline year 2012 is denoted ng , which is represented graphically in Figures 2.1 and 2.2

above. Below, we will see how ng is a key parameter input into the MP model.

Letting g4 be a vertical vector of emissions coefficients by energy sources (See Table 2.2),

a matrix for food system emissions is given by:

ey =x¥oq, (2.7)

In equation (2.7):

e G = (g4|...|gq), with gq repeatedly column-concatenated such that 33/ and G have

the same dimensions; and

e o denotes an element-wise multiplication.
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2.2.2 The Mathematical Programming Model

Mathematical programming (MP) problems are executed for two objective functions, with
both achieving a certain level of emissions reduction. First, change is minimized relative
to existing electricity consumption patterns. Second, cost is minimized. Both objective
functions are subject to the same constraint on total emissions and various constraints
on electricity use and primary energy sources. The choice variable is indexed over energy
source, d = {1,...,9}. As a model input, ng is collapsed from a matrix to a vector by

taking the row sums:

ol =33 x4,

where ¢ is a unit vector. The given MP parameters are denoted:

ga, for life cycle emissions factors (g CO2e / mBTU)

¢9, for 2012 baseline bBTU by energy source, as the row sum of ng

04, for the annual depreciation rate for physical plant by energy source

Mg = (14 A2021) 5 (14 2080 4 A2y for the growth rate of electricity generation by

source d from 2012 to 2030

— A% for the actual recorded growth rate from 2012 to 2021
— A2030_for the projected growth rate from 2021 to 2030

— )\Zlus, for the extra percentage points growth beyond EIA projections required

for a feasible solution

o p=(1+ p¥2) x (1 + p?»%), for the growth rate of total electricity generation from
2012 to 2030
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— p*21 for the actual recorded growth rate from 2012 to 2021

— p?930 for the projected growth rate from 2021 to 2030
e LCOE,, for the levelized cost of electricity for every energy source
The choice variable is o}, the optimal bBTU in 2030 by energy source. With these

parameters and variable, the optimization problem that meets the emissions target while

minimizing change is:

9 2
. ¢y — B4
Hdl)lln Z1 = Z %, (2.8)
d d=1 d
subject to:
9 9
> 6hx 92 <0552 x Y65 x g4 (2.9)
d=1 d=1
9 9
Yoz px Y ) (2.10)
d=1 d=1
o1 = ¢y x eI (2.11)
5 > ¢y x "X (2.12)
8 g x 18 (2.13)
$1 < 1 X A (2.14)
63 < 6) X Xy (2.15)
< (2.16)
04 < 89 X Ao, (2.17)
where:
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e equation (2.8) is the change minimizing objective function;

e cquation (2.9) is the total emissions constraint, requiring that CO2e emissions in

2030 meet the reduction target, 55.2% of baseline 2012 emissions;

e equation (2.10) is the total energy constraint, requiring that bBTUs used in 2030
not be less than bBTU used in 2012, increased by the EIA projected rate of total

electricity growth, p;

e cquations (2.11) to (2.13) are the energy lower bound constraints—for coal, natural
gas, and petroleum respectively—requiring that bBTU used in 2030 not be reduced

by a rate greater than depreciation, d,;

e and equations (2.14) to (2.17) are the energy upper bound constraints—for nine
energy types—requiring that bBTU used in 2030 not be increased by a rate greater

than EIA projections, A,.

Note that the energy lower bounds only apply to the fossil fuels. This is because the GAMS
optimization program seeks to replace high-emissions energy sources by low-emissions
sources, where consumption of all non-fossil fuel sources increases relative to the baseline.

Subject to the same constraints, the cost minimization problem is given as:

9
min Z1 =) ¢} x LCOE, (2.18)

%a =

Both MP models yield total electricity use by energy source, from which energy shares are
derived. The 2030 three-dimensional matrix for electricity use, E?f , for both objective
functions is computed by a matrix multiplication of the baseline 2012 electricity use row
totals vector, ((ng )l X i), and the energy shares vector, 7, together with the scalar

growth term, p (See equation 2.19).
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¥ = px ((zgf) X z) x 7' (2.19)

Given equation (2.19), target 2030 emissions are derived by:

e¥=x¥oq (2.20)

As will be seen, the cost- and change-minimization problem yield similar results for elec-

tricity and corresponding emissions.

30



Findings

This section first presents my principal findings, detailing energy mix changes for the food
system’s electricity use that are consistent with the IPCC target of limiting warming to
1.5 °C. Then, the supply chain stages and food categories are analyzed. Because stages
and food categories are assumed to consume electricity generated by the same energy
mix, emissions reductions are directly proportional to their total energy use. That is, the

largest electricity consumers realize the largest emissions reductions.

3.1 Overall energy mix

My principal finding is that the EIA projected changes in electricity generation—with
declining fossil fuels and increasing renewables as shown in Table 2.3—are not consistent
with limiting warming to 1.5°C. If the U.S. food system were to consume electricity as
projected by the EIA through 2030, then it would exceed its share of the CO2e emissions
budget, assuming that a 44.8% emissions reduction from 2012 is required to meet the

IPCC target.

Before presenting estimates, a note on totals is needed. For a given year, total life cycle
CO2e emissions generated by U.S. food system electricity consumption can be derived
by multiplying bBTU consumed by energy source (see Table 2.3) by the respective life
cycle emissions estimates (see Table 2.2). For 2012, this yields 1,164 MMt CO2e life cy-
cle emissions from U.S food system electricity consumption. By comparison, annual 2012

CO2e emissions for the entire U.S. economy were estimated at 6,585 MMt (USEPA 2022),
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with U.S. food system generating an estimated 1,448 MMt (Crippa et al. 2021). In the
U.S. in 2012, 36% of food system emissions were attributed to energy (FAOSTAT 2021)
while 57% of food system energy use was from electricity (Canning, Rehkamp, Waters,
et al. 2017). Thus, my life cycle emissions estimate from annual electricity consumption
is significantly larger than the annual estimates cited elsewhere. This is because LCA
considers the entire life of energy sources, encompassing upstream, operation, and down-
stream emissions. Whereas burning coal generates 95.7 kg CO2/mBTU (USDOE-EIA
2022d), coal as an energy source generates an estimated 293 kg CO2e/mBTU life cycle
emissions (NREL 2022a). As an example, the latter includes methane from coal mines,
as well as other upstream emissions. I argue it is appropriate to model the lifetime emis-
sions of energy choices because 1) these choices entail significant investment in new energy
infrastructure, ii) this paper considers long-term energy consumption, and iii) cumulative
emissions drive climate change. Additionally, the LCA approach enables a more accurate
trade-off between fossil fuels, nuclear, and renewables, where the latter categories gener-
ate zero or negligible emissions from operation but have emissions embedded elsewhere in
their supply chain. That is, expanding generating capacity from renewables will produce

emissions.

To meet the IPCC target, life cycle emissions from U.S food system electricity consump-
tion must decline from 1,164 MMt CO2e in 2012 to 643 MMt in 2030. However, if energy
source growth followed EIA projections, CO2e emissions would reach only 730 MM¢t. Us-
ing EIA projections, no feasible solution exists for the MP model, for either the cost- or
change-minimizing objective functions. Given this infeasibility, I incrementally relaxed
the upper constraint on energy source until a solution was feasible. Across all energy
sources, adding eight percentage points to the EIA growth projections yields the first
feasible solution limiting emissions for both objective functions (See Figure 3.1). Thus,
rather than nuclear energy declining 9.1% from 2021 to 2030, as projected by EIA (see

Table 2.8), a solution is just feasible when nuclear declines 1.1%. Likewise, solar energy
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growth is adjusted from 250.1% to 258.1% and so on. Under cost-minimization, total
CO2e is 632 MMt, while change-minimization yields 642 MMt. This small difference is
partially attributed to the former model choosing more of the lower cost energy, solar,

whereas the latter chooses the higher-cost, change-minimizing energy, petroleum.

Figure 3.1: Agri-food system emissions totals (actual, projected, target)
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g

Baseline 2012 EIA projection 2030 EIA + 8 points (change min) EIA + 8 points (cost min)

The category “EIA + 8 points” denotes 8 percentage points added to EIA projected energy growth.

Under both change- and cost-minimization optimization problems, coal’s share of elec-
tricity declines substantially from 41% in 2012 to 12% and 11.8% in 2030, respectively,
representing declines of 70% and 71%. For both optimization problems, the lower bound
on coal is not binding: coal is not reduced the maximum amount allowed by deprecia-
tion of existing infrastructure. The EIA projections also predict a lower than baseline coal
share of electricity, 17%), albeit higher than the target solutions (See Figure 3.2). The only

energy source decreased the maximum amount is petroleum, under the cost-minimizing
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solution, as it is the costliest source.

Also of note, the share of wind and solar is substantially higher under the EIA projections,
change-minimization, and cost-minimization scenarios. The solar share of electricity in-
creases from 0.1% to 9.4%, 9.1%, and 9.6%, respectively '. The change minimization
solution yields less solar than EIA projections, whereas cost minimization yields more.
For wind, change- and cost-minimization yield identical results, 15.3%, slightly higher
than EIA projections, 14.6%. Because the solution is just feasible—with an incremental
relaxation of the energy upper bound—both optimization problems yield similar results
overall. Both problems maximize the use of hydropower, natural gas, nuclear, geother-
mal, wind, and biomass such that the upper bound in binding (see Appendiz Table E.2.1).
The key difference between the two solutions is that cost-minimization maximizes the use
of solar—lower LCOE—whereas change-minimization maximizes the use of petroleum—
higher LCOE 2. Another key difference between EIA projections and the target solutions

is that the former have a greater share of natural gas, which is maximized.

Figure 3.2: Percent total electricity bBTU by source
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! Appendix Table E.2.3 reports the shares for each energy source.
2See Appendix E for full results



In terms of percent change from the 2012 baseline, results suggest that solar experiences by
far the largest growth, increasing by a factor of more than 88 across all three scenarios—
the EIA projections, cost- and change-minimization solutions (See Figure 3.3). With the
exception of petroleum, solar, and coal, both optimization solutions increase all energy
sources by a greater percentage than projected by the EIA. Both solutions decrease coal
more than what the EIA projects. For solar and petroleum, the solutions yield opposite
results with respect to the EIA. However, because the energy provided by petroleum
is relatively small in 2012, the change minimization solution increasing this source has

minimal impact on total emissions.
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Figure 3.3: Percent change bBTU generation by source, 2012-2030
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Note the different axes scales for solar and wind energy, relative to other energy source.
Solar increases by a factor of more than 88 under all three scenarios.

3.2 Emissions in the Food Supply Chain

First, in terms of electricity consumption derived from cost-minimization, Figures 3.4 and
3.5 show how 2030 projected coal generation has decreased relative to 2012—shown in

Figures 2.1 and 2.2. Generating capacity is shifted from coal to various other energy
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sources, except petroleum, which also decreases under the cost-minimization problem 3.
Both optimization problems yield solutions with the greatest generating capacity coming
from natural gas, nuclear, wind, coal, and solar, in that order. Due largely to their relative
baseline totals, coal-powered electricity still exceeds solar-powered, despite the significant

decline and growth experienced by each respectively.

On the right side of Figures 3.4 and 3.5, the supply chain stages and food categories,
respectively, all increase by the same factor, p, and do not change their relative composi-
tion. Thus, “utilities for kitchen” and the corresponding “HKO: utilities” remain the two

largest stage and food category consumers of electricity.

3Figures 3.4 and 3.5 show the solution for cost minimization, where change minimization is nearly
identical, as discussed above.
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Figure 3.4: Food system electricity by energy and stage (bBTU), U.S. 2030
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Figure 3.5: Food system electricity by energy and food category (bBTU), U.S. 2030
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FAH: salt and chemical

By holding the demand side constant, adjusted for overall electricity demand growth,
reductions in emissions are achieved entirely through changes in production. Electricity
is demanded in the same proportions, but electricity production generates less emissions
by replacing high-emitting energy—coal and petroleum—with lower-emitting alternatives.
As the counterparts to Figures 2.3 and 2.4, emissions for the cost-minimization solutions

are shown in Figures 3.6 and 3.7. Whereas coal was the primary emitter in 2012, natural
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gas becomes the primary emitter in the 2030 solution, at 347 MMt CO2e emissions (54%),
followed by coal at 257 MMt (40%). The remaining 6% of emissions are attributed to the

other seven energy sources, with solar accounting for the third most emissions, 9 MMt

(1.4%).

Figure 3.6: Food system CO2e by energy and stage (MMt), U.S. 2030

——— Wood & waste biomass : 1.569
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Figure 3.7: Food system CO2e by energy and food category (MMt), U.S. 2030

As is clear from comparing Figures 3.4 and 3.6, nuclear and wind generate a compara-
tively small amount of emissions, despite becoming the second and third largest electricity
providers. As the largest provider of electricity, natural gas becomes the largest emitter.
For its part, coal becomes the fourth largest provider of electricity, slightly ahead of solar,
while still generating the second most emissions. Of note, even if all fossil fuels were

eliminated from electricity generation, the remaining energy sources would still produce

41



emissions. This point will be discussed further below, when considering the path to net

zero emissions by 2050.

The right hand sides of Figures 3.5 and 3.6 are directly proportional to Figures 3.3 and
3.4—greater electricity consumption generating greater emissions. As the largest electric-
ity consumers, the largest emissions reduction is achieved by “utilities for kitchen” and
“HKO: utilities”. Emissions from the stage “utilities for kitchen” are nearly cut in half,

declining from 449,552 MMt in 2012 to 233,325 MMt in 2030.
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Discussion

This final section presents the policy implications of my findings, model limitations, po-

tential for future research, and concluding remarks.

4.1 Policy Implications

My findings suggest that more must be done to reduce emissions from food system elec-
tricity use, if the IPCC target of 1.5° is to be achieved. Given the latest EIA projections
for growth of primary energy sources—grounded in their analysis of expected market and
policy trends—sufficient decarbonization would not be realized in electricity generation
for the U.S. food system to meet the IPCC target. This finding is consistent with other
research suggesting the U.S. economy as a whole is not on track to limit warming to 1.5°C

(UNEP 2021).

However, my findings suggest that the additional growth required is modest relative to
EIA projected changes, in some cases. Whereas I added 8 percentage points of growth
across all energy sources to achieve a feasible solution, the EIA predicts solar will increase
250% from 2021 to 2030 (See Table 2.3). Likewise, the EIA predicts wind, geothermal, and
hydropower will grow 57%, 48%, and 15%, respectively. With a projected 9% decline for
nuclear, the added growth would instead mean declining at a slower rate, nearly holding

steady. Relative to the projections, the growth rates seem achievable.
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4.2 Model Limitations and Future Research

A primary limitation of my model is the supply-side focus. While holding demand fixed
enables the analysis of production changes specifically, in reality changes in food demand
could have a significant impact on energy use and corresponding emissions (Hitaj et al.
2019). Moreover, because a solution is not feasible at existing EIA projections for energy
growth, I incrementally increase the percentage growth of all sources. This uniform

increase does not capture the true nature of energy supply.

Additionally, key model parameters—LCOE and life cycle emissions factors—are assumed
constant over the period of analysis even though these are expected to change. Given this
paper’s assumptions, the path to net zero in 2050 would be impossible. This is because
non-fossil fuel energy sources still have emissions embedded in their supply chains—with
rates assumed constant through 2030 (See Table 2.2)—and because negative emissions
technology is not modeled. This limitation of the model reflects real-world challenges:
i) the need to invent negative emissions technologies that are as yet unproven at scale,
and ii) the need to decarbonize “clean” energy sources. Because the former is unproven,
more researchers are advocating an emphasis on the latter, with a strategy of “electrifying
everything” and generating that electricity through a combination of renewable energy

and potentially nuclear (Prentiss 2015; Griffith 2021).

These limitations point towards potential research opportunities. First, developing energy
supply functions could more accurately model energy growth beyond the EIA projections,
incorporating energy prices and elasticity. In turn, food demand could be allowed to vary
in response to changing food prices generated by energy production changes. Under this

model, emissions reduction would be achieved by both supply- and demand-side changes.

Negative emissions technologies—principally carbon capture and storage—could be mod-

eled based on estimates of when such technology will be deployed at scale. This modeling
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is standard in IPCC climate pathways (IPCC 2018). Additionally, instead of holding life
cycle emissions factors constant across time through 2030, these factors could be projected
annually, reflecting changes in production processes that reduce the energy source’s em-
bodied supply chain emissions. Likewise, the LCOE estimates could be annual, incorpo-
rating “learning by doing” rates such that cost decreases as deployment increases, lowering
the costs of those sources projected to grow the most. Regarding cost, the IEA suggests
that supplementing LCOE estimates with the value-adjusted levelized cost of electricity

(VALCOE) could more accurately model deregulated electricity markets ! (IEA 2020).

To expand modeling scope, incorporating the other energy sources listed in Table 2.1
would provide a comprehensive view of energy consumption and emissions in the U.S.
food system. Further, incorporating all economic sectors tracked by USDOL-BLS would
enable the modeling of energy use for the entire U.S. economy. However, such modeling
would likely entail greater data aggregation, sacrificing the specificity of supply chain

analysis.

4.3 Conclusion

My principal finding is that the U.S. food system is not on track reduce emissions from
its electricity use in a manner consistent with limiting warming to 1.5° C. Neither the

cost- nor change-minimizing MP problems yield a feasible solution given EIA projections

!The IEA states: “The LCOE is the principal tool for comparing the plant-level unit costs of different
baseload technologies over their operating lifetimes. The LCOE indicates the economic costs of a generic
technology, not the financial costs of a specific project in a specific market. Due to the equality between
discounted average costs and the stable remuneration over lifetime electricity production, which is at
its heart, LCOE is in spirit closer to the costs of electricity production in regulated electricity markets
with stable tariffs, for which it was developed, than to the variable prices in deregulated markets. By
adjusting the discount rate for the implicit cost of price volatility, the LCOE concept can, in principle,
also be applied in the context of deregulated markets.... While there is an increasing need to complement
it with information, such as provided by VALCOE, on the system contribution of different technologies
under different constellations, the LCOE retains its fundamental usefulness as a widely used tool for
modelling, policy making and public debate” (IEA 2020).
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for energy source growth through 2030. However, solutions become feasible when adding
eight percentage points to the EIA projections, suggesting that the target remains within
reach. Notably, the solutions yield results showing natural gas as the largest source of
electricity and the largest source of CO2e emissions in 2030. While this may satisfy the
model constraints as designed—a 44.8% emissions reduction from 2012 levels by 2030—
investment in natural gas electricity generation would not lead to net zero emissions
by 2050, absent the deployment at scale of unproven negative emissions technologies.
Further research can model the potential impacts of such technology, as well as the impacts
of dynamic LCOE estimates and emissions factors. Modeling energy supply and food
demand response could more accurately capture market behavior. Lastly, expanding the
scope of energy sources and economic sectors can enable comprehensive modeling of the

U.S. economy.
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Charts and Schematics

Figure A.1: Agri-food systems categories: Mapping from IPCC to FAO
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Figure A.2: Supply, Use, and Input-Output tables — example

Commodity
Crop and

ammmal products Goods Services | Total
23 2 25
4 128 3| 135
86| 86
52 20 31, 33
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Use of commodities by activity and GDP components, and use of primary

factors by activity

\

* PCE = personal consumption expenditures; PDI = private direchimcsmlcnt
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Source: Canning, Rehkamp, and Yi (2022)
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Figure A.3: EIO model schematic for simplified IOT
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Tables

B.1 Input-Output table elements

Table B.1 shows the activities and commodities from the IOT used for the EIO model.

Because the first 222 commodities are a one-to-one match with activities, only the re-

maining commodities are shown. The combined activities and commodities form the first

rows and columns of the IOT, which are symmetrical, as shown in Figure A.3.

Table B.1: IOT activities and commodities

Row | Row Description Row | Row Description

A001 | Oilseed farming A120 | Other durable goods merchant
wholesalers

A002 | Grain farming A121 | Drugs and druggists sundries

A003 | Vegetable and melon farming A122 | Petroleum and petroleum prod-
ucts

A004 | Fruit and tree nut farming A123 | Other nondurable goods mer-
chant wholesalers

A005 | Greenhouse nursery and floricul- | A124 | Wholesale electronic markets and

ture production agents and brokers
A006 | Other crop farming A125 | Customs duties
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A007 | Beef cattle ranching and farming | A126 | Grocery and related product
including feedlots and dual pur- wholesalers
pose ranching and farming
A008 | Dairy cattle and milk production | A127 | Motor vehicle and parts dealers
A009 | Animal production except cattle | A128 | Food and beverage stores
and poultry and eggs
A010 | Poultry and egg production A129 | General merchandise stores
A011 | Forestry and logging A130 | All other retail
A012 | Fishing hunting and trapping A131 | Air transportation
A013 | Support activities for agriculture | A132 | Rail transportation
and forestry
A014 | Oil and gas extraction A133 | Water transportation
A015 | Coal mining A134 | Truck transportation
A016 | Metal ore mining A135 | Transit and ground passenger
transportation
A017 | Nonmetallic mineral mining and | A136 | Pipeline transportation
quarrying
A018 | Support activities for mining A137 | Scenic and sightseeing trans-
portation and support activities
for transportation
A019 | Electric power generation trans- | A138 | Couriers and messengers
mission and distribution
A020 | Natural gas distribution A139 | Warehousing and storage
A021 | Water sewage and other systems | A140 | Newspaper periodical book and
directory publishers
A022 | Construction A141 | Software publishers
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A023 | Dog and cat food manufacturing | A142 | Motion picture video and sound
recording industries
A024 | Other animal food manufacturing | A143 | Radio and television broadcasting
A025 | Flour milling and malt manufac- | A144 | Cable and other subscription pro-
turing gramming
A026 | Wet corn milling A145 | Wired telecommunications carri-
ers
A027 | Soybean and other oilseed pro- | A146 | Wireless telecommunications car-
cessing riers (except satellite)
A028 | Fats and oils refining and blend- | A147 | Satellite telecommunications re-
ing sellers and all other telecommu-
nications
A029 | Breakfast cereal manufacturing A148 | Data processing hosting and re-
lated services
A030 | Sugar and confectionery product | A149 | Other information services
manufacturing
A031 | Frozen food manufacturing A150 | Monetary authorities credit inter-
mediation and related activities
A032 | Fruit and vegetable canning pick- | A151 | Securities commodity contracts
ling and drying fund trusts and other financial
investments and vehicles and re-
lated activities
A033 | Cheese manufacturing A152 | Insurance carriers
A034 | Dry condensed and evaporated | A153 | Agencies brokerages and other in-

dairy product manufacturing

surance related activities

62




A035 | Ice cream and frozen dessert man- | A154 | Real estate
ufacturing
A036 | Fluid milk and butter manufac- | A155 | Owner occupied dwellings
turing
A037 | Animal (except poultry) slaugh- | A156 | Automotive equipment rental and
tering rendering and processing leasing
A038 | Poultry processing A157 | Consumer goods rental and gen-
eral rental centers
A039 | Seafood product preparation and | A158 | Commercial and industrial ma-
packaging chinery and equipment rental and
leasing
A040 | Bread and bakery product manu- | A159 | Lessors of nonfinancial intangible
facturing assets (except copyrighted works)
A041 | Cookie cracker pasta and tortilla | A160 | Legal services
manufacturing
A042 | Snack food manufacturing A161 | Accounting tax preparation book-
keeping and payroll services
A043 | Coffee and tea manufacturing A162 | Architectural engineering and re-
lated services
A044 | Flavoring syrup and concentrate | A163 | Specialized design services
manufacturing
A045 | Seasoning and dressing manufac- | A164 | Computer systems design and re-
turing lated services
A046 | All other food manufacturing A165 | Management scientific and tech-

nical consulting services
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A047 | Soft drink and ice manufacturing | A166 | Scientific research and develop-
ment services
A048 | Breweries A167 | Advertising and related services
A049 | Wineries A168 | Other professional scientific and
technical services
A050 | Distilleries A169 | Management of companies and
enterprises
A051 | Tobacco manufacturing A170 | Office administrative services
A052 | Textile mills and textile product | A171 | Facilities support services
mills
A053 | Apparel leather and allied prod- | A172 | Employment services
uct manufacturing
A054 | Sawmills and wood preservation | A173 | Business support services
A055 | Veneer plywood and engineered | A174 | Travel arrangement and reserva-
wood product manufacturing tion services
A056 | Pulp paper paperboard mills | A175 | Investigation and security ser-
other wood product manufactur- vices
ing including wood tv radio and
sewing machine cabinet manufac-
turing
A057 | Converted paper product manu- | A176 | Services to  buildings and
facturing dwellings
A058 | Printing and related support ac- | A177 | Other support services
tivities
A059 | Petroleum and coal products | A178 | Waste management and remedia-

manufacturing

tion services
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A060 | Basic chemical manufacturing A179 | Elementary  and  secondary
schools

A061 | Resin synthetic rubber and artifi- | A180 | Junior colleges colleges universi-
cial synthetic fibers and filaments ties and professional schools
manufacturing

A062 | Pesticide fertilizer and other agri- | A181 | Other educational services
cultural chemical manufacturing

A063 | Pharmaceutical and medicine | A182 | Offices of physicians
manufacturing

A064 | Paint coating and adhesive man- | A183 | Offices of dentists
ufacturing

A065 | Soap cleaning compound and toi- | A184 | Offices of other health practition-
let preparation manufacturing ers

A066 | Other chemical product and | A185 | Outpatient care centers
preparation manufacturing

A067 | Plastics product manufacturing | A186 | Medical and diagnostic laborato-

ries

A068 | Rubber product manufacturing A187 | Home health care services

A069 | Clay product and refractory man- | A188 | Other ambulatory health care ser-
ufacturing vices

A070 | Glass and glass product manufac- | A189 | Hospitals
turing

A071 | Cement and concrete product | A190 | Nursing and residential care facil-

manufacturing

ities
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A072 | Lime gypsum and other non- | A191 | Individual and family services
metallic mineral product manu-
facturing
A073 | Iron and steel mills and ferroalloy | A192 | Community and vocational reha-
manufacturing bilitation services
A074 | Steel product manufacturing | A193 | Child day care services
from purchased steel
A075 | Alumina and aluminum produc- | A194 | Performing arts companies
tion and processing
A076 | Nonferrous metal (except alu- | A195 | Spectator sports
minum) production and process-
ing
A077 | Foundries A196 | Promoters of events and agents
and managers
A078 | Forging and stamping A197 | Independent artists writers and
performers
A079 | Cutlery and handtool manufac- | A198 | Museums historical sites and sim-
turing ilar institutions
AO80 | Architectural and structural met- | A199 | Amusement parks and arcades
als manufacturing
A081 | Boiler tank and shipping con- | A200 | Gambling industries  (except
tainer manufacturing casino hotels)
A082 | Hardware manufacturing A201 | Other amusement and recreation
industries
A083 | Spring and wire product manu- | A202 | Accommodation

facturing
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A084 | Machine shops turned product | A203 | Service at full service restaurants
and screw nut and bolt manufac-
turing

A085 | Coating engraving heat treating | A204 | Service at limited service restau-
and allied activities rants

A086 | Other fabricated metal product | A205 | Service at all other food and
manufacturing drinking places

AO87 | Agriculture construction and | A206 | Automotive repair and mainte-
mining machinery manufacturing nance

A088 | Industrial machinery manufac- | A207 | Electronic and precision equip-
turing ment repair and maintenance

A089 | Commercial and service industry | A208 | Commercial and industrial ma-
machinery manufacturing includ- chinery and equipment (except
ing digital camera manufacturing automotive and electronic) repair

and maintenance

A090 | Ventilation heating air condition- | A209 | Personal and household goods re-
ing and commercial refrigeration pair and maintenance
equipment manufacturing

A091 | Metalworking machinery manu- | A210 | Personal care services
facturing

A092 | Engine turbine and power trans- | A211 | Death care services
mission equipment manufactur-
ing

A093 | Other general purpose machinery | A212 | Drycleaning and laundry services

manufacturing
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A094 | Computer and peripheral equip- | A213 | Other personal services
ment manufacturing excluding
digital camera manufacturing

A095 | Communications equipment | A214 | Religious organizations
manufacturing

A096 | Audio and video equipment man- | A215 | Grantmaking and giving services
ufacturing and social advocacy organizations

A097 | Semiconductor and other elec- | A216 | Civic social professional and sim-
tronic component manufacturing ilar organizations

A098 | Navigational measuring elec- | A217 | Private households
tromedical and control instru-
ments manufacturing

A099 | Manufacturing and reproducing | A218 | Federal enterprise
magnetic and optical media

A100 | Electric lighting equipment man- | A219 | Federal general government (de-
ufacturing fense)

A101 | Household appliance manufactur- | A220 | Federal general government (non-
ing defense)

A102 | Electrical equipment manufactur- | A221 | State and local government
ing

A103 | Other electrical equipment and | A222 | State and local enterprise
component manufacturing

A104 | Motor vehicle manufacturing A223 | Export assembly

A105 | Motor vehicle body and trailer | A224 | Food at full service restaurants

manufacturing
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A106 | Motor vehicle parts manufactur- | A225 | Food at limited service restau-
ing rants

A107 | Aerospace product and parts | A226 | Food at all other food and drink-
manufacturing ing places

A108 | Railroad rolling stock manufac- | A227 | Vouchers for full service restau-
turing rants

A109 | Ship and boat building A228 | Vouchers for limited service

restaurants

A110 | Other transportation equipment | A229 | Vouchers for all other food and
manufacturing drinking places

A111 | Household and institutional fur- | C223 | Used second hand and scrap
niture and kitchen cabinet manu-
facturing excluding wood tv radio
and sewing maching cabinet man-
ufacturing

A112 | Office furniture (including fix- | C224 | Noncomprable imports and rest
tures) manufacturing of world adjustment

A113 | Other furniture related product | C225 | Export assembly
manufacturing

A114 | Medical equipment and supplies | C226 | Food at full service restaurants
manufacturing

A115 | Other miscellaneous manufactur- | C227 | Food at limited service restau-
ing rants

A116 | Motor vehicle and motor vehicle | C228 | Food at all other food and drink-

parts and supplies

ing places

69




A117 | Professional and commercial | C229 | Vouchers for full service restau-
equipment and supplies rants

A118 | Household appliances and electri- | C230 | Vouchers for limited service
cal and electronic goods restaurants

A119 | Machinery equipment and sup- | C231 | Vouchers for all other food and

plies

drinking places
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Table B.2 shows the last rows of the IOT (leakage matrix rows) used for the EIO model.

Table B.2: Leakage rows

Row | Row Description

LO1 Compensation of employees

LO2 Taxes on production and imports

less subsidies

LO3 Gross operating surplus

L04 Imports

Table B.3 shows the columns of the IOT representing non-food injection matrix categories.

Table B.3: Injection columns (non-food)

Column Column Description

X01 Nonfood personal consumption expenditures
X02 Investment

X03 Government

X04 Exports
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Table B.4 shows the columns of the IOT representing food injection matrix categories.

Table B.4: Injection columns (food)

Column Column Description

XF1 Beverages at home: Beer

XF2 Beverages at home: Nonalcoholic beverages
XF3 Beverages at home: Spirits

XF4 Beverages at home: Wine

XFb5 Beverages away from home

XF6 Food at home: Fresh vegetables

XF7 Food at home: Bakery products

XF8 Food at home: Beef, pork and other meats
XF9 Food at home: Cereals

XF10 Food at home: Consumed on farms

XF11 Food at home: Eggs

XF12 Food at home: Fats and oils

XF13 Food at home: Fish and seafood

XF14 Food at home: Fresh Fruits

XF15 Food at home: Fresh milk

XF16 Food at home: Other foods

XF17 Food at home: Poultry

XF18 Food at home: Processed dairy products
XF19 Food at home: Processed fruits and vegetables
XF20 Food at home: salt and chemical additives
XF21 Food at home: Sugar and sweets

XF22 Food at work: Vouchers
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XF23 Food away from home

XF24 Home kitchen operations: appliances

XF25 Home kitchen operations: equipment and supplies
XF26 Home kitchen operations: fleet

XF27 Home kitchen operations: Utilities

Table B.5 shows food system supply chain stages.

Table B.5: Supply Chain Stages

Stage Stage Description

1 Agribusiness

2 Appliances

3 Crops

4 Fleet

5 Food processing

6 Food retailers

7 Food wholesalers

8 Foodservice

9 Kitchenware

10 Livestock

11 Other ag forestry fisheries
12 Transportation and storage
13 Utilities for kitchen
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B.2 Depreciation

Table B.6 shows depreciation rates for coal, petroleum, and natural gas plants. Because
the optimization model naturally seeks to reduce high-emitting energies and increase
low-emitting energies, the lower bound imposed by depreciation rates does not constrain
the choice variables for nuclear and renewables. The rate of decay formula is e%*!8, for

d € {coal, natural gas, petroleum}.

Table B.6: Depreciation and rate of decay

Source BEA Depreciation rate Rate of decay
Coal -0.0780 0.2456125
Natural gas -0.0237 0.6527246
Petroleum -0.0780 0.2456125

Data Source: USDOC-BEA (2022a)
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LCOE Estimates

This paper uses LCOE estimates prepared by IEA from their latest report published every
five years, “Projected Costs of Generating Electricity 2020 Edition” (IEA 2020). However,
rather than use the reference estimates, I use the IEA “Levelised Cost of Electricity
Calculator” to generate estimates with a zero carbon price (IEA 2022). Where multiple
technologies are used in a given category—e.g., commercial, residential, and utility-scale
solar—if data was available for their respective share of total capacity, then a weighted
average was computed based on capacity shares. If such data was not available, a simple
average was taken. In either case, technologies not yet deployed or with negligible use—
less than 1% of total capacity—were not included in the LCOE estimate. Additional key
assumptions include a 7% discount rate and an 85% capacity factor !. Below each energy

source is discussed in turn.

C.1 Solar

For each solar category, the IEA “median case” was selected, and all IEA estimates are
given in Table C.1. Although utility-scale solar cost is cost-competitive, at $44.25, the
LCOE estimates for residential solar, commercial solar, and solar thermal power are
$126.54, $94.18, and $112.34, respectively, measured as USD / MWh. These LCOE
estimates were weighted by market shares for utility, commercial, residential, and solar

thermal of 56%, 29%, 12%, and 2%, respectively (Rodriguez 2022; Trabish 2022).

!The capacity factor “is defined as the actual electricity production divided by the maximum possible
electricity output of a power plant, over a period of time” (Neill and Hashemi 2018).
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C.2 Coal

Equal weighting was given to the IEA coal categories of “Coal (641 MW),” “Pulverised
(138 MW),” “Pulverised (140 MW),” and “Pulverised (650 MW),” with prices of $93.28,
$99.79, $81.26, and $63.02. Because ultra-supercritical coal and carbon capture and
storage technologies have not been deployed in the U.S., these categories were not included

in the average (Gianfrancesco 2017; Calma 2022).

C.3 Natural Gas

For natural gas, a single LCOE estimate of $34.78 was used. As with coal, because carbon
capture and storage has not been widely deployed—with only one plant in the U.S. as of

late 2021—this category was excluded (Anchondo and Klump 2022).

C.4 Nuclear

Equal weighting was given to the IEA nuclear categories of “LTO (10 years) (1000 MW),”
“LTO (20 years) (1000 MW),” and “LWR (1100 MW),” with prices of $36.04, $33.25, and
$71.25.

C.5 Petroleum

Neither IEA, EIA, nor IRENA provide LCOE estimates for petroleum, likely because it

remains an exceedingly small share of total electricity generation, less than 1%. Thus,
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to estimate a petroleum LCOE, I multiply the ratio of petroleum to natural gas prices—
obtained from SEDS (USDOE-EIA 2021; Canning, Rehkamp, and Yi 2022)—by the nat-

ural gas LCOE estimate from IEA. This gives:

pricepetro

Priceyqs

LCOE oo = LCOE g, %

C.6 Other

For hydropower, a simple average is taken of the two median cases, listed as “Run of river
(>= 5 MW) (median case) (44.7 MW),” and “Run of river (>= 5 MW) (median case)
(94.0 MW),” with respective LCOE estimates of $70.58 and $87.2. A single onshore wind
median estimate is given, $39.02, while offshore wind is excluded because only one plant
exists in the U.S. (Brown 2022). Despite a Biden Administration goal to reach 30 GW
of offshore wind power by 2030, onshore wind had already accounted for 118.3 GW in
2020, and that same year a record 14.2 GW in new capacity was added (USDOE-EIA
2022¢; Brown 2022). Thus, offshore wind should remain a negligible share overall in the
near term. A simple average is taken of the two geothermal estimates, of $93.54 and
$61.83. Lastly, biomass is the only estimate taken from IRENA, rather than the IEA.
This estimate of $76.00 is global, rather than specific to the U.S. (IRENA 2022).

Table C.1: IEA LCOE Estimates

Category Plant type LCOE (USD /
MWHh)

Coal Coal (641 MW) 93.28

Coal Coal (CCUS) (499 MW) 143.23
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Gas Gas (CCGT) (727 MW) 34.78
Gas Gas (CCGT, CCUS) (646 MW) 69.07
Geothermal Geothermal (25.0 MW) 93.54
Geothermal Geothermal (30.0 MW) 61.83
Nuclear LTO (10 years) (1000 MW) 36.04
Nuclear LTO (20 years) (1000 MW) 33.25
Nuclear LWR (1100 MW) 71.25
Coal Pulverised (138 MW) 99.79
Coal Pulverised (140 MW) 81.26
Coal Pulverised (650 MW) 63.02
Coal Pulverised (CCUS) (650 MW) 115.43
Hydro Run of river (< 5 MW) (3.7 MW) 128.67
Hydro Run of river (< 5 MW) (4.2 MW) 90.52
Hydro Run of river (< 5 MW) (4.8 MW) 117.72
Hydro Run of river (>= 5 MW) (44.1 MW) | 100.77
Hydro Run of river (>= 5 MW) (82.2 MW) | 90.21
Hydro Run of river (>= 5 MW) (median case) | 70.58
(44.7 MW)
Hydro Run of river (>= 5 MW) (median case) | 87.20
(94.0 MW)
Solar Solar PV (commercial) (0.30 MW) 116.44
Solar Solar PV (commercial) (0.30 MW) 100.45
Solar Solar PV (commercial) (0.30 MW) 80.59
Solar Solar PV (commercial) (0.30 MW) 74.46
Solar Solar PV (commercial) (median case) | 94.18

(0.30 MW)
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Solar Solar PV (residential) (0.005 MW) 156.35
Solar Solar PV (residential) (0.005 MW) 135.42
Solar Solar PV (residential) (0.005 MW) 153.12
Solar Solar PV (residential) (0.005 MW) 140.17
Solar Solar PV (residential) (median case) | 126.54
(0.005 MW)
Solar Solar PV (utility scale) (100 MW) 54.96
Solar Solar PV (utility scale) (100 MW) 47.69
Solar Solar PV (utility scale) (100 MW) 38.06
Solar Solar PV (utility scale) (100 MW) 34.59
Solar Solar PV (utility scale) (median case) | 44.25
(100 MW)
Solar Solar thermal (CSP) (100 MW) 142.21
Solar Solar thermal (CSP) (100 MW) 117.11
Solar Solar thermal (CSP) (median case) | 112.34
(100 MW)
Coal Supercritical pulverised (650 MW) 63.66
Coal Supercritical pulverised (CCUS) (650 | 114.10
MW)
Wind Wind offshore (600 MW) 61.35
Wind Wind offshore (600 MW) 63.53
Wind Wind offshore (600 MW) 68.07
Wind Wind offshore (600 MW) 70.63
Wind Wind offshore (600 MW) 82.40
Wind Wind offshore (600 MW) 111.78
Wind Wind offshore (600 MW) 59.37
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Wind Wind offshore (600 MW) 61.19
Wind Wind offshore (600 MW) 64.21
Wind Wind offshore (600 MW) 68.18
Wind Wind offshore (600 MW) 74.09
Wind Wind offshore (600 MW) 93.59
Wind Wind offshore (600 MW) 119.21
Wind Wind offshore (median case) (600 MW) | 65.62
Wind Wind onshore (>= 1 MW) (100 MW) | 35.19
Wind Wind onshore (>= 1 MW) (100 MW) | 36.80
Wind Wind onshore (>= 1 MW) (100 MW) | 37.81
Wind Wind onshore (>= 1 MW) (100 MW) | 41.17
Wind Wind onshore (>= 1 MW) (100 MW) | 48.13
Wind Wind onshore (>= 1 MW) (100 MW) | 55.50
Wind Wind onshore (>= 1 MW) (100 MW) | 73.29
Wind Wind onshore (>= 1 MW) (100 MW) | 92.88
Wind Wind onshore (>= 1 MW) (100 MW) | 155.13
Wind Wind onshore (>= 1 MW) (median | 39.02

case) (100 MW)
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EIO Model Derivation

Appendix D defines the EIO notation, lists all model indices, matrices, and vectors with a

short description, and then presents the EIO model derivation, as developed by Canning,

Rehkamp, and Yi (2022).

D.1 Notation

e Matrices are uppercase bold

e Vectors are lowercase bold

e Scalars are lowercase non-bold

e Matrix transpose is denoted by ’

e Vector diagonalization is denoted by ”

e Matrix inverse is denoted by ~*

e Element-wise multiplication is denoted by o

e The column concatenation of two vectors or matrices with the same number of rows

is denoted by |

e The row concatenation of two vectors or matrices with the same number of columns

is denoted by /
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D.2 Indices, Vectors, and Matrices

Table D.1: Indices, vectors, and matrices

Term Description
ACT = | Index for activities (See Table B.1 for list)
{1,...,299}
COM = | Index for commodities (See Table B.1 for list)
{230, ...,458}
) Column unit vector
1 Identity matrix
T Transaction matrix
Y Gross output vector
Direct requirement matrix
x Injection vector
M Total requirement matrix
v Value-added multiplier vector
l Leakage vector
y' Food-related gross output vector
x/ Food-related injection vector
E Environmental factors matrix (bBTUs)
E* Supply-chain modified environmental factors matrix (bBTUs)
o Electricity consumption for the national economy (bBTUs), vector
o’ Electricity consumption for the food system (bBTUs), vector
»2f Electricity consumption by energy source and food category for food-

related items (bBTUs), two-dimensional matrix

82



=3

Electricity consumption by energy source, supply chain stage, and food

category for food-related items (bBTUs), three-dimensional matrix

ga Vertical vector of emissions coefficients by energy sources

G Matrix of column concatenated emissions vectors

o3/ CO2e emissions by energy source, supply chain stage, and food cate-
gory for food-related items (MMt), three-dimensional matrix

T4 Energy shares computed from optimization solutions, vertical vector

II Row concatenation of 7

83




D.3 Derivation

The model elements are represented in the EIO model schematic in Appendix A Figure
A.3. Each element name and description is listed in the Appendix B tables. This deriva-
tion follows the method defined in the supplemental information of Canning, Rehkamp,

and Yi (2022).

To derive the multiplier model, we first divide each element in the the internal transactions
matrix, T', by its corresponding column total, y, which yields the direct requirement

matrix, A:

A=T x {y! (D.1)

Alternatively, post-multiplying boths sides of equation (D.1) by {y”}~! yields Axy = T.

Then, adding the final demand, or injection, vector, x, gives the gross output vector, y:

Axy+x=y

The equation for gross output can be manipulated as follows:

r=y—AXxy
r=1"xy—Axuy,
x=(i"—A)xy, (applying the distributive property of matrix multiplication)

(i"—A) ' xx=uy, (multiplying both sides by the inverse of the parenthetical term)
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Denoting the above parenthetical term as M yields:

Mxxz=y (D.2)

In equation (D.2), M is termed the Leontief or “total requirements" matrix, which is a key
component of our EIO model. Equation (D.2) states that multiplying the final demand
vector, @, by the total requirements matrix yields the gross output vector, y. That is, M
represents the total requirements necessary—for activities and commodities—to deliver a

given level of final demand, «.

The second key component of our EIO model is derived by “dividing” ! each element of the
leakage vector, [, by its corresponding gross output total, y. This yields the value-added

multiplier vector:

v={y"} ! xl (D.3)

Pre-multiplying both sides of equation (D.3) by vy’ yields:

"xv=1 x1I, where v’ x {y"} ' =4 D.4
Y Y Yy

Equation (D.4) tells us that gross domestic income (GDI) plus imports, ¢’ x I—the sum of
the leakage vector—is equal to the product of transposed gross output and the value-added
multiplier. By Walras Law, GDI plus imports equals GDP plus exports, and this point
is elaborated in Canning, Rehkamp, and Yi (2022). Also by Walras Law, this identity
holds:

vVxXMxx=1xz, (D.5)

!Division is not a defined operation in matrix algebra. Instead, matrices can be multiplied by the
inverse of another matrix to achieve division.
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which means that totals from corresponding elements of the leakage vector, I, and the

injection vector, x, are equal.

Linear homogeneity is a core property and assumption of EIO models. This means that
“a proportional change to any element of the injection vector, x, produces the same
proportional change in the gross output vector, y” (Canning, Rehkamp, and Yi 2022).
As an example, if final demand, x , increases threefold, then output, y, must increase

threefold—defined as M x (z x 3) =y x 3.

This property also holds for a subset of the final demand vector. In our case, for f = 1,
we let ©/ be the vector representing final demand specifically for food purchases. Then,
modifying equation (D.2), linear homogeneity implies that the gross output—including
both activities and commodities—required to meet final demand for food expenditure is

given by:

y' =M x (f=1) (D.6)

If we let f = 2 represent the projected food final demand for another period, then the
equality capturing the change in gross output resulting from a change in food final demand

is given by:

(¥’ —y') =M x (z* — ') (D.7)

The environmental factors matrix, E, can be incorporated into a modified equation (D.7),

yielding the change in electricity use by energy source:

(0?—a')=E x M x (z* — z') (D.8)

In equation (D.8), o has rows d for primary energy sources.
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D.3.1 Supply Chain Modeling

Supply chain analysis enables us to track electricity use for specific stages of the food
system. Leontief (1967) developed an alternative to aggregation that facilitates supply
chain analysis. Following the Leontief method, as outlined in Canning, Rehkamp, and
Yi (2022), data is organized into supply chain activities, SA C ACT, non-supply chain
activities, NA C ACT—where SAU NA = ACT—supply chain commodities, SC C
COM, and non-supply chain commodities, NC C COM—where SC UNC = COM.

With this framework, equation (D.2)—M x & = y——can be represented as follows:

-{MSA,SA} {Msana}t {Msasc} {MSA,NC}- _{OSA}- _{ySA}-
{Mnasa} {Myana} {Mnasct {Mnyanc} y {Ona} _ {yna} (D.9)
{Mscsat {Mscnat {Mscsct {Mscnct {zsc} {ysc}

{Mnycsat {Myenay {Mnycsct {Mvenct| [{zne}] {ynct]

All non-supply chain enterprises—e.g, hospitals 2>~—can be considered subcontractors such
that their required inputs and environmental flows (electricity use) are purchased by the
supply chain enterprise to which they subcontract. That is, the contractor (supply chain
enterprise) purchases items on behalf of the subcontractor (non-supply chain enterprise).

This relationship is modeled as:

E*=E; 504+ Einca X Mycasca X {Mscascal™, (D.10)

As an example, let 7 be the subset of final demand representing personal consumption
expenditure on food. As seen in Table B.1, a commodity consumed within 2/ would be

“C226 Food at full service restaurants.”

2Table B.1 shows all activities and commodities, including A189 Hospitals. An example of a supply
chain activity is A002 Grain farming.
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Now, before applying supply chain analysis, or limiting final demand to food-related

expenditure, we can represent the electricity budget for the entire economy as:

c=Exy+o° (D.11)

Then, applying supply chain analysis and considering only a subset of final demand,

denoted by f, the analog to equation (D.11) is:

¥ = [E* x (y/)"|o] (D.12)

Note, equation (D.12) corresponds to equation (2.4) of the Methods section, where I
also elaborate on converting from a two-dimensional matrix, ¥2/, to a three-dimensional
matrix, 33/, This derivation focuses on the steps preceding those outlined in the Methods

section.

Lastly, equation (D.12) can be restated as:

7 = [B x (y" |y Jy") B < (" |y |y e 77T (D.13)

which corresponds to equation (2.5) from Methods. To create the environmental factor
matrix, F, as used above, additional matrices are introduced which allocate state-level en-
ergy usage to specific activities and commodities, which is described in Canning, Rehkamp,

and Yi (2022).
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Full Optimization Results

The GAMS software yields solutions with results for “level”; “marginal”, “lower”, and “up-
per”. Level denotes the solved solution while, while lower and upper denote the respective
lower and upper bounds, where applicable. As an example, in Table E.1, the cost min-
imizing solution yields a total emissions level of 632,955,867,326 thousand grams CO2e,
which is less than the upper bound enforced by the IPCC target, 642,871,802,500.

The marginal results show the impact on the objective function by reducing a given
constraint by one unit. As an example, for the cost-minimization energy upper bound
results in Table E.2.1, the marginal result for natural gas is -14,523.87. This means
that relaxing the natural gas bBTU constraint by one unit—adding one percentage point
of growth—will generate a 14,523.87 reduction in the objective function, total LCOE.
Because natural gas has the lowest LCOE, it follows that allowing more usage of that
energy will have the greatest impact on reducing total LCOE. The marginal values have
an interpretable significance for the energy upper bounds depending on the given results

and meaning of each constraint.

E.1 Emissions Totals

Table E.1: Emissions Totals - Cost-Minimization

Level Marginal Upper

632,955,867,326 0 642,871,802,500

Thousands grams CO2e.
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Table E.2: Emissions Totals - Change-Minimization

Level

Marginal

Upper

642,871,802,500

-0.000638

642,871,802,500

Thousands grams CO2e.

E.2 Energy Totals

E.2.1 Energy Upper Bound

Table E.3: Energy Upper Bound - Cost-Minimization

Energy source Level Marginal Upper

Coal 878,305.43 0.00 1,434,120.97
Hydropower 581,006.28 -1,596.50 581,006.28
Natural Gas 2,442,238.72 -14,523.87 2,442,238.72
Nuclear 1,544,751.39 -11,124.77 1,544,751.39
Petroluem 10,073.00 0.00 27,330.22
Solar 720,378.80 -3,981.25 720,378.80
Geothermal 46,301.29 -1,949.65 46,301.29
Wood and waste biomass | 102,934.77 -2,443.48 102,934.77
Wind 1,142,477.63 -13,281.25 1,142,477.63

bBTU

Table E.4: Energy Upper Bound - Change-Minimization

Energy source Level Marginal Upper

Coal 899,282.31 0.000 1,434,120.97
Hydropower 581,006.28 -181.732 581,006.28
Natural Gas 2,442,238.72 -94.219 2,442,238.72
Nuclear 1,544,751.39 -183.462 1,544,751.39
Petroluem 27,330.22 -29.386 27,330.22
Solar 682,144.70 0.000 720,378.80
Geothermal 46,301.29 -177.764 46,301.29
Wood and waste biomass | 102,934.77 -175.791 102,934.77
Wind 1,142,477.63 -176.555 1,142,477.63

bBTU
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E.2.2 Energy Lower Bound

Table E.5: Energy Lower Bound - Cost-Minimization

Energy Source Level Marginal Lower

Coal 878,305.43 0.00 744,217.415
Natural Gas 2,442,238.72 0.00 1,164,178.244
Petroluem 10,073.00 3,199.38 10,072.996

bBTU

Table E.6: Energy Lower Bound - Change-Minimization

Energy Source Level Marginal Lower

Coal 899,282.31 0 744,217.415
Natural Gas 2,442,238.72 0 1,164,178.244
Petroluem 27,330.22 0 10,072.996

bBTU
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E.2.3 Energy Source Share of Total

Table E.7: Energy Source Share - Cost-Minimization

Energy Source Level Share of total
Coal 878,305 0.118
Hydropower Gas 581,006 0.078
Natural Gas 2,442,239 0.327
Nuclear 1,544,751 0.207
Petroluem 10,073 0.001
Solar 720,379 0.096
Geothermal 46,301 0.006
Wood and waste biomass 102,935 0.014
Wind 1,142,478 0.153
| Total 7,468,467 | NA

Table E.8: Energy Source Share - Change-Minimization

Energy Source Level Share of total
Coal 899,282 0.120
Hydropower Gas 581,006 0.078
Natural Gas 2,442,239 0.327
Nuclear 1,544,751 0.207
Petroluem 27,330 0.004
Solar 682,145 0.091
Geothermal 46,301 0.006
Wood and waste biomass 102,935 0.014
Wind 1,142,478 0.153
| Total 7,468,467 | NA
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E.2.4 Total Electricity Minimum Requirement

Table E.9: Total Electricity Minimum - Cost-Minimization

Level Marginal Lower

7,468,467 24,716.89 7,468,467

bBTU

Table E.10: Total Electricity Minimum - Change-Minimization

Level Marginal Lower

7,468,467 185.8956 7,468,467

bBTU

E.3 Totals Stage and Food Category

Totals for electricity consumption (bBTUs) and CO2e emissions (MMt) by i) energy

source, ii) supply chain stage, and iii) food demand category are provided in the document:

“Supplemental _info.xlsx”
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