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ABSTRACT

To avoid significant negative climate change consequences, the Intergovernmental Panel

on Climate Change (IPCC) advises that global warming be limited to 1.5◦ C from pre-

industrial times, a target adopted under the Paris Agreement framework. The University

of Maryland Center for Global Sustainability suggests that the U.S. would remain con-

sistent with the IPCC target by reducing emissions 51% below 2005 levels by 2030, or

44.8% below 2012 levels, my base year. This paper examines the changes necessary in

primary energy sources in order for the U.S. agri-food system to reduce its emissions from

electricity use by 44.8% from 2012 to 2030.

First, an environmental input-output (EIO) model is used to determine electricity con-

sumption associated with different activities, commodities, and final uses within the U.S.

food system. Additionally, electricity consumption is disaggregated by primary energy

source, to which emissions levels are attributed using life cycle emissions estimates. Sec-

ond, the EIO model output serves as an input into two optimization problems. Subject

to the same constraints on energy use and total emissions, the first problem minimizes

the cost of meeting the emissions target, while the second minimizes the change from ex-

isting electricity consumption patterns. United States Energy Information Agency (EIA)

projections through 2030 for the growth of fossil-fuels, renewable energies, and nuclear

are key data parameters for the optimization constraints.

Given the EIA projections, my principal finding is that the U.S. food system is not on

track to reduce emissions from electricity use in a manner consistent with the 1.5◦C

target. That is, the optimization problems cannot yield a feasible solution given the

projected growth of each energy source used for electricity generation. However, solutions

for both problems become feasible by relaxing the energy type constraint—adding eight
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percentage points to the EIA projected growth for all energy types. The paper concludes

with a discussion of policy implications, model limitations, and the potential for future

research.
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Introduction

In 2018, the Intergovernmental Panel on Climate Change (IPCC) advised that global

warming must be limited to 1.5◦C from pre-industrial times to avoid significant negative

consequences (IPCC 2018). At 2◦C warming, the IPCC predicts increased prevalence of

heat waves, food insecurity, drought, flooding, and migration crises, together with greater

incidence of disease, reduced GDP growth, sea-level rise, ecosystem loss, and species

extinction, which all contribute to more premature deaths. Research suggests that less

than ten years remain to avert “catastrophic” climate change; that the climate system

is approaching “tipping points” (IPCC 2021) and a “point of no return” (Aengenheyster

et al. 2018) beyond which certain damages are irreversible. Achieving the 1.5◦C target

requires substantial emissions reductions across all sectors of the economy, including the

agri-food system, which accounted for 19.8% of emissions in the U.S. in 2019 (FAOSTAT

2021).

To meet the target, the 2021 UN Environment Programme (UNEP) Emissions Gap Report

(EGR) suggests that global emissions must be reduced from 58.1 gigatons of carbon

dioxide equivalent (CO2e) emissions in 2019 to 25 gigatons by 2030, a 57% reduction.

Due to unprecedented Covid-19 measures, global emissions fell 5.4% in 2020 (UNEP

2021). However, preliminary estimates suggest emissions could grow 4.8% in 2021 (UNEP

2021). In contrast to the global trend, the U.S. has achieved minor emissions reductions

in recent years. Excluding downturns during the Great Financial Crisis and Covid-19

pandemic, which generated reductions, the U.S. averaged an annual 0.69% decline in

emissions between 2010-2019 (see Figure 1.1 ).
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According to the University of Maryland Center for Global Sustainability, “emissions

reductions of 51% below 2005 levels by 2030 [would] put the U.S. on a trajectory to

net-zero emissions in 2050, consistent with limiting global warming to 1.5◦C” (Hultman

et al. 2021), which was the target announced by the Biden administration in April 2021

(Friedman and Davenport 2021). This means reducing U.S. annual CO2e emissions from

7,423 million metric tons (MMt) in 2005 to 3,637 by 2030.

Figure 1.1: Carbon dioxide equivalent emissions (MMt), U.S. 1990-2030

Data source: USEPA (2022) and USFED (2022).
Note: Recessions are shaded gray.

This paper examines the energy input changes for electricity generation that are required

in the U.S. food system to remain consistent with the IPCC target of 1.5◦C, assum-

ing reductions in line with national targets. Starting from 2012—my base year—this

implies a 44.8% necessary reduction in food system emissions by 2030. Using an envi-

ronmental input-output (EIO) analysis framework, I model the U.S. agri-food system,

identifying major energy sources and their associated emissions. Additionally, applying

mathematical programming (MP) models, I determine separately the change-minimizing

and cost-minimizing adjustments to energy inputs that satisfy the emissions reduction
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constraint while producing the same amount of food to satisfy existing demand.

1.1 Organization of the Paper

The Introduction provides an overview of agri-food system emissions, background on EIO

and MP models, and the contribution of this paper to existing literature. The Data and

Methods section outlines data sets used and develops the EIO and MP models. Results

are presented in the Findings Section. The Discussion section reviews policy implications,

model limitations, potential for future research, and concluding thoughts.

1.2 Agri-food System Emissions

The share of total emissions attributable to agri-food systems varies by country. In

2019, agri-food systems were estimated to contribute roughly one third of total emissions

globally, while accounting for only 19.8% of emissions in the U.S. (Crippa et al. 2021;

FAOSTAT 2021). Agri-food system emissions can be defined as “those generated by farm

production activities (crops and livestock), land use change and pre- and post-production

processes” (FAOSTAT 2021). The first category is considered to be emissions directly

attributable to agriculture and has been regularly tracked by the Food and Agriculture

Organization of the United Nations (FAO) and the IPCC (FAOSTAT 2021). The lat-

ter two categories expand upon this traditional emissions category, moving beyond the

“farm-gate” to form the broader agri-food system definition, which more comprehensively

identifies the emissions generated from food production, distribution, and consumption.

Land use change refers to the conversion of land to agricultural purposes, with promi-

nent examples including deforestation and peatland degradation (FAOSTAT 2021). Pre-

and post-production processes include: “i) the production of inputs (fertilizers, materials
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for food packaging); ii) energy generation and consumption in food supply chains (food

processing, transport and retail) and at the household level (cooking and refrigeration);

and iii) waste disposal (such as in landfilling, incineration and wastewater management)”

(FAOSTAT 2021).

Whereas the narrower category of agricultural emissions has long been studied, the study

of agri-food system emissions is more recent. For the share of total emissions generated by

agri-food systems, Rosenzweig et al. (2020) produced global estimates, at 21–37%, while

Crippa et al. (2021), Tubiello et al. (2021), and FAOSTAT (2021) have generated both

global and country-level estimates 1. As delineated by the United Nations Framework

Convention on Climate Change (UNFCCC), the traditional economic sectors to which

emissions have been attributed include agriculture, land use, land use change and forestry

(LULUCF), energy, industrial processes and product use (IPPU), and waste (FAOSTAT

2021). Distinct from the UNFCCC classification, the agri-food system measure cuts

across these sectors, encompassing agriculture, LULUCF, waste, and energy use at all

stages 2. Recent literature argues that this broader measure supports more effective

policy responses to climate change (Crippa et al. 2021; Rosenzweig et al. 2020; Tubiello

et al. 2021).

Based on the UNFCCC sector classification, the greatest contributor to global emissions

is energy, at 70%, while agriculture and LULUCF combined contribute 14% (FAOSTAT

2021). Industrial processes and product use accounts for 9%, with waste at 5% (FAOSTAT

2021). However, using the FAO sector classification for the agri-food system, energy

emissions associated with food are captured in the overarching “pre- and post-production

processes” category (see Appendix Figure A.1). Accordingly, within the agri-food system
1Common among these studies, the measure of carbon dioxide equivalent (CO2e) emissions combines

multiple greenhouse gases into a single metric, based on their warming potential. FAOSTAT (2021)
includes carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated substances. In this
paper, the reader can assume that “emissions” refers to CO2e emissions.

2For a visual of food supply chain activities by category, see Appendix Figure A.1.
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globally in 2019, roughly 7 billion tonnes of CO2e emissions were attributable to farm-

gate activities, 6 billion to pre- and post-production processes, and 4 billion to land use

change (FAOSTAT 2021). Pre- and post-production processes account for a larger share

of food system emissions in developed countries, while emissions from farm-gate activities

and land use change predominate in developing countries (FAOSTAT 2021).

In the U.S., the largest share of agri-food system emissions comes from energy, at 36-37%3.

As the focus of this paper, electricity use accounts for 57% of energy consumed by the food

system (Canning, Rehkamp, Waters, et al. 2017). This includes electricity use embodied

in inputs for the agricultural stage of production, as well as the post farm-gate stages of

processing, packaging, transport, wholesale, retail, and household consumption. Out of

scope are emissions from waste, land-use change, and farm-gate activities (agriculture),

except for on-farm electricity use. Because electricity accounts for a major portion of

emissions in the U.S. food system, this paper is analyzing a significant emissions source.

However, in addition to other primary energy sources, the categories agriculture and

land use change are vitally important, particularly in developed countries, where these

sources generate the majority of emissions. Hitaj et al. (2019) accounts for agriculture

and land use change by supplementing their EIO model with a biophysical model, which

captures sources such as enteric fermentation and burning of crop residues and savanna.

Incorporating additional emissions sources beyond electricity is taken up in the Discussion

section.
3FAOSTAT (2021) estimates that energy accounted for 36.2% of agri-food system emissions in 2019.

However, the LULUCF and IPCC Agriculture categories combined accounted for 39.4%. With a similar
categorization, Crippa et al. (2021) estimates that energy and “land-based” sectors each accounted 39%
of emissions in 2015.
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1.3 Environmental Input-Output Analysis

As a way to model national economies and represent the interrelationships among dif-

ferent economic sectors, input-output (I-O) analysis was originally developed by Wassily

Leontief beginning in the 1920s, for which he was awarded the Nobel Memorial Prize in

Economic Sciences in 1973. Building on the I-O framework, Leontief (1970) introduced the

theoretical foundation for EIO, which was further developed in subsequent studies (Wied-

mann 2009). Like I-O models that analyze national economic sectors—e.g., assessing how

changes in final demand impact production and output—EIO models can analyze the en-

vironmental impact of production activities throughout the economy (Canning, Rehkamp,

and Yi 2022; Kitzes 2013) 4.

Impacts are categorized as direct or indirect. First, “direct impacts account for production

activities that provide direct outputs to meet a specified demand,” considered a first-tier

activity (Canning, Rehkamp, and Yi 2022). As an example, a direct impact of meat

production includes emissions generated when transporting meat products to market—

transportation services being a direct input. Second, indirect impacts account for sec-

ondary inputs, considered “second-tier activities to support first-tier activities” (Canning,

Rehkamp, and Yi 2022). For the meat commodity, whereas the grain fed to livestock is

a direct input, an indirect impact includes the emissions generated by operating a com-

bine to harvest the grain (second-tier activity). A third-tier could include emissions from

producing steel, an input into combine harvester production, and so on.

A major strength of input-output models is their ability to fully capture these direct and

indirect economic relationships throughout the production process, and EIO models are

ideal for capturing their corresponding environmental impacts (Canning, Rehkamp, and
4While national economies were the original unit of observation, I-O analysis has also been applied

at lower levels—sub-national, regional models—and at higher levels—multi-country regional or global
models.
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Yi 2022). Moreover, along with accounting for emissions in production, EIO models can

associate those emissions with final consumption categories, either at the sectoral level or

for disaggregated commodity groups. While EIO offers a “top-down” sectoral approach,

Life Cycle Analysis (LCA) is a “bottom-up” alternative that analyzes the environmental

impact across the supply chain of individual products. Unlike EIO analysis, which can

comprehensively account for direct and indirect impacts, the LCA analyst must determine

an eventual cutoff point in the supply-chain, beyond which impacts are not recorded 5

(Hitaj et al. 2019; Ingwersen and Li 2020).

In addition to offering a comprehensive accounting at lower or higher levels of aggregation,

benefits of EIO models include consistency, ability for decomposition, and data reliability.

First, EIO models are structured in a manner such that double-counting of emissions

sources across products is avoided (Kitzes 2013). Second, these models facilitate supply

chain analysis via decomposition techniques. Third, EIO data inputs are reliably tracked

by national governments, using common international standards, the United Nations Sys-

tem of National Accounts (SNA) and its companion System of Environmental Economic

Accounting (SEEA).

Limitations of EIO models are based in part on certain grounding assumptions. Core

assumptions are that:

1. there are no supply constraints, “because the supply of primary factors (labor, cap-

ital, natural resources) exceed the demand for these production inputs” (Canning,

Rehkamp, and Yi 2022);

2. inputs do not experience diminishing marginal productivity, because “any additional

use of these primary factors is equally productive as what is already in use” (Can-

ning, Rehkamp, and Yi 2022);
5Depending on the LCA design, this issue may be negligible. Additionally, hybrid EIO-LCA models

can also avoid this issue, gaining the benefits of each methodology (Yang et al. 2017).

7



3. prices are constant over the period of analysis, because “the new scenario being

studied does not change existing relative prices in factor and commodity markets or

existing production technologies such as factor productivities and material discharge

rates” (Canning, Rehkamp, and Yi 2022);

4. because a Type I model is used—explained under methods—“all proceeds accruing to

primary factor owners from the scenario induced production outcomes do not induce

further spending by factor owners in the period of analysis” (Canning, Rehkamp,

and Yi 2022); and

5. a given commodity group contains homogeneous products (Kitzes 2013).

One potential limitation is that these assumptions preclude the analysis of how a given

final demand scenario can induce additional changes in final demand or in primary factors6

(Canning, Rehkamp, and Yi 2022). However, this study is interested in how production

inputs can be optimized to reduce emissions while meeting a fixed level of final demand.

Thus, induced demand is not a point of focus here. By assuming homogeneity within a

commodity group, the EIO analyst cannot account for product variation—e.g., organic

versus conventional food products—whereas the LCA analyst can (Hitaj et al. 2019). The

EIO approach adopts a kind of average, flattening any variation in product characteristics.

Regarding prices, if they are stable, then EIO modeling can be appropriate (Canning,

Rehkamp, and Yi 2022). Further, final demand being held constant mitigates the issue of

potential price changes.
6See the Methods section for the difference between Type I and Type II models with respect to induced

effects.
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1.4 Mathematical Programming

Mathematical programming (MP) is a well-established method—particularly in opera-

tions research—that has increasingly been used for environmental applications (Miller

and Blair 2009; Vogstad 2009). The I-O model itself can be interpreted as a type of linear

programming (LP) problem (Miller and Blair 2009; Vogstad 2009). This paper defines

an LP problem and a non-linear programming (NLP) problem, corresponding to cost-

and change-minimizing objective functions, respectively. These LP and NLP optimiza-

tion problems minimize their objective functions (total energy cost and change in energy

source) subject to various environmental and energy constraints.

Utilizing the MP methodology enables me to extend the initial EIO model analysis, using

its output as an input for the optimization problems described above. Whereas the

EIO model yields a detailed accounting of existing electricity consumption patterns and

corresponding emissions, the MP models examine how those patterns must change in

order to meet the IPCC 1.5◦ target.

1.5 Contribution

Previous papers applying EIO analysis to study emissions from food production include

Hitaj et al. (2019) and Boehm et al. (2018), examining the U.S. food system, Hendrie et al.

(2014), examining Australia, and Camanzi et al. (2017), examining the EU. This paper is

a unique contribution to these past studies because it assesses the impact of a supply-side

change, rather than changes in final demand, and estimate least-cost and least-change

energy input changes consistent with a 1.5◦C target. This supply-side approach can serve

as a benchmark for understanding the magnitude of energy input changes required in the

generation of electricity.
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My focus is on the reduction of U.S. food system emissions from electricity use. While

this represents only a subset of total U.S. emissions, the methodology developed could be

applied to other energy sources as well as other sectors of the economy beyond the food

system. Additionally, electricity generation is a critical component of decarbonization

strategies. In their 2015 study, Jacobson et al. (2015) argued there exist viable “solutions

to the grid reliability problem with 100% penetration of [wind, water, and solar] (WWS)

across all energy sectors in the continental United States between 2050 and 2055.” That

is, powering the U.S. economy entirely with WWS. Doing so would entail an unprece-

dented expansion of electricity generating capacity and battery production, to power

everything that currently requires fossil fuels or nuclear (Jacobson et al. 2015; Griffith

2021). Although these findings were challenged (Clack et al. 2017), the study raises the

question of whether renewable energy potential is underestimated (Creutzig et al. 2017)

and highlights the importance of electricity generation (Griffith 2021).
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Data and Methods

Data requirements for this paper can be broadly categorized as economic and environ-

mental. First, I use an EIO model and associated data developed by Canning, Rehkamp,

and Yi (2022). Then, output from the EIO model is an input into the MP model, sup-

plemented by additional parameter data. This section discusses data inputs and then

develops the EIO and MP methodology.

2.1 Data

The EIO model includes an input-output table (IOT) characterizing the U.S. economy

and data for electricity consumption by primary energy source. For the 2012 U.S. national

economy, the IOT covers high-level economic sectors as well as more detailed food indus-

tries and commodities. Data for 2012 is the most recent available 1, but other key energy

use metrics are updated to recent years, as described below. Canning, Rehkamp, and

Yi (2022) follow a standard methodology for constructing their IOT from an underlying

Supply and Use table (SUT) 2.

In turn, the SUT is constructed from three data sets. Published by the U.S Department of

Commerce, Bureau of Economic Analysis (USDOC-BEA), these include a more detailed
1Input-output modeling is data-intensive but uses high-quality data sources compiled by government

statistical agencies. Representing entire economies, comprehensive nationwide surveys musts be admin-
istered, followed by additional compilation, which contributes to the gap between publication year and
year of analysis.

2See Appendix A Figure A.2 for a schematic showing an example of mapping Supply and Use tables
to an IOT.
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Benchmark SUT and a less detailed Summary table, released every five years and annually,

respectively (Canning, Rehkamp, and Yi 2022; USDOC-BEA 2021). An SUT published

annually by the U.S. Department of Labor, Bureau of Labor Statistics is utilized as

well (Canning, Rehkamp, and Yi 2022; USDOC-DOL 2021). Additionally, to develop

a more granular picture of the food system—achieving further disaggregation than is

possible in the Benchmark and Summary tables noted above—the Personal Consumption

Expenditures (PCE) Bridge table 3 from the National Income and Product Accounts

(NIPAs) is also utilized. Lastly, the economic data used in the EIO model includes

multiple secondary sources that enable the identification of “expenditures and uses of

goods and services for U.S. households to run their home kitchens,” a process described

in Canning, Rehkamp, Waters, et al. (2017) (Canning, Rehkamp, and Yi 2022).

As described by Canning, Rehkamp, and Yi (2022), the resulting IOT developed from

these sources contains:

• 229 activities (A001 to A229),

• 231 commodities (C001 to C231),

• four leakage matrix elements (L01 to L04),

• four non-food expenditure related institutional matrix elements (X01 to X04), and

32 food commodity and home kitchen operation expenditure matrix elements (XF01

to XF32) 4

The EIO model section below provides definitions and context for these matrices and

Appendix Tables B.1, B.2, B.3, and B.4 list each matrix element along with a brief

description. This paper adopts the Social Accounting Matrix (SAM) terminology—in
3This data is located under the ‘Underlying Estimates’ section of the USDOC-BEA Input-Output

Accounts Data page (USDOC-BEA 2021).
4Only 27 categories are relevant to this paper, denoted XF01 to XF27.
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accordance with Canning, Rehkamp, and Yi (2022)—where the “leakage” matrix corre-

sponds to “value-added” from IO models and the “institutional”, or “injection”, matrix

corresponds to “final demand.” The above data elements are depicted in an IOT for a

simplified economy in Appendix A Figure A.3.

A core attribute of EIO models is supplementing economic with environmental data.

Following Canning, Rehkamp, and Yi (2022), this paper uses primary energy consumption

and price 5 data from the State Energy Data System (SEDS), published by Department

of Energy, Energy Information Administration (USDOE-EIA 2021; Canning, Rehkamp,

and Yi 2022). As shown in Table 2.1 below, total primary energy use in the U.S. in 2012

was 94 quadrillion BTUs (quads), of which electricity was the largest contributor, with 38

quads. As a user of electricity, the food system accounted for 7 quads (Canning, Rehkamp,

and Yi 2022), which is the focus of this paper. In turn, total bBTU from electricity can

be disaggregated into primary energy sources, using SEDS data for electricity generation

by source (USDOE-EIA 2021; Canning, Rehkamp, and Yi 2022).

In order to conduct a detailed supply chain analysis of food system electricity usage,

total electricity used by source is allocated among every commodity, activity, and insti-

tutional element of the IOT. Population (USDOC-BEA 2022b; DMDC 2022) and em-

ployment (USDOC-DOL 2022; Census Bureau 2022; USDOT 2022) data are used to

estimate electricity consumed by every element, as detailed by Canning, Rehkamp, and

Yi (2022). As the primary output of interest from the EIO model, this result 6, Σ3f
0 , is

a three-dimensional matrix showing bBTUs of electricity consumed by the food system

by energy source, food category, and supply chain stage 7. Examples of the 27 food cat-

egories include “food at home: cereals,” “food away from home,” (eating out), and “home
5From SEDS, only the natural gas and petroleum prices are used in a price ratio, as a replacement for

levelized cost of electricity (LCOE) estimates used for all energy sources except petroleum, as described
in Appendix C.

6See “Supplemental_info.xlsx” for a table of 2012 baseline electricity consumption.
7See Table 2.2 for all energy sources. See Appendix B Table B.4 for food categories and Table B.5 for

supply chain stages.
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Table 2.1: Primary energy use by source and user, U.S. 2012, bBTU
Source Industrial Commercial Transportation Residential Total
All petroleum
products

8,054,349 550,001 25,272,426 869,788 34,746,564

Biofuel 710,871 710,871
Coal 1,516,013 43,650 1,559,663
Electricity 10,287,524 13,640,682 73,842 14,149,504 38,151,552
Geothermal 4,200 19,702 39,600 63,502
Hydroelectric 22,393 261 22,654
Natural gas 8,822,590 2,968,401 781,762 4,252,794 16,825,547
Solar 7,196 33,300 78,844 119,340
Wind 182 513 695
Wood 438,094 438,094
Wood and
biomass
waste

1,621,149 105,929 1,727,078

Total 31,046,467 17,362,439 26,128,030 19,828,624 94,365,560

Source: Canning, Rehkamp, and Yi (2022)

kitchen operations: utilities,” while the 13 supply chain stages include “agribusiness,”

“crops,” “transportation and storage,” and “utilities for kitchen” (Canning, Rehkamp, and

Yi 2022). Aggregating Σ3f
0 to two dimensions, Figure 2.1 shows how the food system

consumed electricity by energy source and supply chain stage. Figure 2.2 shows the same

for food categories.
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Figure 2.1: Food system electricity by energy and stage (bBTU), U.S. 2012

Figure by author based on data from Canning, Rehkamp, and Yi (2022).

In 2012, coal generated the most electricity consumed by the U.S. food system, followed

by gas, while “utilities for kitchen” was the largest supply chain stage consumer, followed

by “foodservice”. In Figures 2.1 and 2.2, the most emitting energy sources are darker

brown (coal), while the least emitting sources are darker green (wind).
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Figure 2.2: Food system electricity by energy and food category (bBTU), U.S. 2012

Figure by author based on data from Canning, Rehkamp, and Yi (2022).

In Figure 2.2, food and beverage final uses are categorized by “food at home” (FAH),

“food away from home” (FAFH), “beverage at home” (BAH), “beverage away from home”

(BAFH), “food at work” (FAW), and “home kitchen operations” (HKO). Among these,

HKO - Utilities accounted for the largest electricity consumption, followed by FAFH.
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Together with food system electricity consumption by energy source—as output from the

EIO model—the MP model require additional data inputs as parameters. These include

data for life cycle emissions, electricity growth rates by energy source, total growth rates,

depreciation rates of fossil fuel plants, and estimates of the levelized cost of electricity

(LCOE).

First, Life Cycle Assessment (LCA) provides a methodology for considering emissions

generated from all life cycle stages of energy technologies, including upstream, operation,

and downstream (NREL 2022b). This paper uses energy source life cycle CO2e emissions

estimates by the National Renewable Energy Laboratory (NREL), compiled from their

meta-analysis of roughly 3,000 publications (NREL 2022a; NREL 2022b). According to

this analysis, wind and nuclear power are the least emissions-intensive energies, while

petroleum and coal are the most emissions-intensive (see Table 2.2) 8. Model results were

derived with the median NREL 9 estimate.

Table 2.2: Life Cycle Emissions Factors (g CO2e / mBTU)
Generation Technology 1Q Median 3Q
Biopower (All Technologies) 8,206 15,240 32,238
Photovoltaic (All Technologies) 8,792 12,719 18,170
Geothermal (All Technologies) 6,418 10,756 15,093
Hydropower (All Technologies) 2,452 6,008 8,021
Wind (All Technologies) 2,373 3,810 6,515
Nuclear - Light Water Reactor (LWR) 2,257 3,810 9,085
Natural Gas - Conventional Gas 125,215 142,433 161,336
Oil 211,597 246,180 265,816
Coal (All Technologies) 261,126 293,364 332,343

Source: NREL (2022a)

The life cycle emissions factor data is combined with the EIO model output for bBTU

consumption to yield total CO2e emissions by energy, supply stage, and food category.
8The original data set in grams CO2e per kWh was converted to grams CO2e per mBTU.
9The NREL category “biopower” is used for estimating the EIA combined categories of “wood” and

“waste”, denoted in this paper as “wood and waste biomass”.
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As done for Figures 2.1 and 2.2, this three-dimensional data, Θ3f
0 , can be visualized along

two dimensions. Figure 2.3 shows emissions by energy and stage, while figure 2.4 shows

emissions by energy and food category. As can be seen, in 2012 coal accounted for an

outsized proportion of emissions, 888 MMt, at 76% of the total. Natural gas is the second

largest emitter, 22%, while all other sources contribute less than 1%.

Figure 2.3: Food system CO2e emissions by energy and stage (MMt), U.S. 2012

Figure by author based on data from Canning, Rehkamp, and Yi (2022).
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Figure 2.4: Food system Co2e emissions by energy and food category (MMt), U.S. 2012

Figure by author based on data from Canning, Rehkamp, and Yi (2022).

Relative to the left-hand side (energy source), the right-hand side of Figures 2.3 and 2.4

do not show the same disproportional relationship with respect to Figures 2.1 and 2.2.

The stages and food categories are assumed to consume electricity with the same energy

mix—as if a single utility—and so their CO2e emissions output has a linear relationship

to bBTU consumption. Thus, because the utilities for kitchen stage is largest electricity
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consumer, it also generates to most emissions. Likewise, as the energy mix is optimized

to reduce emissions, the largest electricity consumers will necessarily yield the largest

emissions reductions.

Electricity growth rate data includes actual rates achieved and projections. First, the EIO

model output, Σ3f
0 , is updated to reflect 2021 electricity generation. Summing over Σ3f

0 by

supply chain stage, z, and food and beverage final demand category, f , yields total electric-

ity consumption by energy type, d, for the U.S. food system in 2012—
27∑
f=1

13∑
z=1

σd,z,f , σ ∈ Σ.

In the MP model, these 2012 energy totals are multiplied by actual national energy growth

rates 10 (USDOE-EIA 2022c) to yield 2021 totals, which are then multiplied by the pro-

jected national energy growth rates to yield 2030 totals (USDOE-EIA 2022a; USDOE-EIA

2022b) (See Table 2.3) 11. This represents the projected total bBTUs by energy source

available for the U.S. food system in 2030, serving as a theoretical upper bound in the

optimization problem. However, as we will see in the Findings section, a feasible solution

for meeting the emissions reduction target does not exist if renewable energy growth is

restricted according to these EIA projections.

In addition to upper bounds on energy sources, a lower bound on total electricity generation—

the minimum bBTU required to support the food system—also requires actual and pro-

jected growth rates. Total electricity growth is derived by aggregating the same figures for

actual and projected electricity generation by source (See Tables 2.3 “Total”) (USDOE-

EIA 2022c; USDOE-EIA 2022a; USDOE-EIA 2022b). The resulting total projected elec-

tricity growth term from 2012 to 2030 is:

ρ = (1 + ρ2021)× (1 + ρ2030) = (1 + (−.016))× (1 + .043) = 1.02

10This assumes that national trends apply to the food system. The growth rate is derived from EIA
kWh totals in the EIA Monthly Energy Review March 2022.

11My category “wood and waste biomass” combines EIA categories “wood” and “waste”, sub-categorized
under their biomass category.
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Table 2.3: Electricity by source, U.S. Food System, bBTU
Source 2012 % change

2012-21 (na-
tional actual)

2021 % change 2021-
30 (national pro-
jection)

2030

Coal 3,030,046 -40.6% 1,798,521 -28.3% 1,290,164
Hydropower 499,103 -5.8% 470,167 15.6% 543,415
Natural gas 1,783,567 28.5% 2,291,820 -1.4% 2,258,852
Nuclear 1,543,979 1.1% 1,561,681 -9.1% 1,419,746
Petroleum 41,012 -19.0% 33,216 -25.7% 24,672
Solar 7,589 2550.5% 201,143 250.1% 704,287
Geothermal 28,362 4.3% 29,593 48.5% 43,933
Wood
and waste
biomass

86,689 -3.7% 83,465 15.3% 96,260

Wind 256,512 169.7% 691,760 57.2% 1,087,140
Total 7,276,860 -1.6% 7,161,366 4.3% 7,468,469

Data Source: Canning, Rehkamp, and Yi (2022), USDOE-EIA (2022c), USDOE-EIA (2022a), and USDOE-EIA (2022b)

Using depreciation rates from USDOC-BEA (2022a), a lower bound on fossil fuel energy

types is enforced in the optimization problem. This prevents the model from reducing a

high-emitting energy by more than that amount projected by depreciation (See Appendix

Table B.6). As an example, this means existing coal power plants cannot be shut down

and replaced before their natural lifespan.

Lastly, levelized cost of electricity (LCOE) data from the International Energy Agency

(IEA) is used to determine the cost-minimizing changes in energy sources that will meet

emissions reduction targets. Levelized cost of electricity is a widely used metric despite

some limitations (IEA 2020), which will be reviewed in the Discussion section. The

USDOE suggests three useful characteristics of this metric: that it (i) “measures lifetime

costs divided by energy production,” (ii) “calculates present value of the total cost of

building and operating a power plant over an assumed lifetime,” and (iii) “allows the

comparison of different technologies (e.g., wind, solar, natural gas) of unequal life spans,

project size, different capital cost, risk, return, and capacities” (USDOE 2022). For these

reasons, LCOE is an ideal tool for evaluating the long-term cost of different energy sources
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in this paper. As shown in Table 2.4 12, the IEA finds that natural gas and wind have

lowest cost, while coal and petroleum have the highest cost. Note that solar is estimated to

be higher cost than nuclear. On the one hand, the inclusion of residential and commercial

solar in a weighted average raises overall solar LCOE, being relatively more expensive

than utility-scale solar. On the other hand, averaging “new build” nuclear with ten- and

twenty-year “long-term operation” (LTO) nuclear lowers its LCOE. Whereas new nuclear

plants are more costly, extending the life of existing plants—long-term operation—can

make nuclear the “most cost-effective low-carbon solution,” according to the IEA (IEA

2020). Also note that while the IEA reference estimates include a $30 carbon price, my

estimates exclude carbon pricing, which would raise the cost of fossil fuels further. In

Appendix C, additional detail is provided on the core assumptions and key decisions in

compiling LCOE estimates.

Table 2.4: Levelized Cost of Electricity, U.S. 2020
Source LCOE (USD /

MWh)
LCOE (USD /
bBTU)

Petroleum 95.25 27,916.27
Coal 84.34 24,716.89
Hydropower 78.89 23,120.39
Geothermal 77.69 22,767.24
Wood and waste
biomass

76.00 22,273.41

Solar 70.75 20,735.64
Nuclear 46.38 13,592.12
Wind 39.02 11,435.64
Natural gas 34.78 10,193.02

Source: IEA (2020), IEA (2022), and IRENA (2022)

12All Table 2.4 estimates are provided by the IEA for the U.S., except wood and waste biomass, a
global estimate from the International Renewable Energy Agency (IRENA). See Appendix C for details
on the compiling each LCOE estimate.
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2.2 Methods

This paper utilizes an EIO model, the output from which is an input into optimization

problems, together with additional parameter data as outlined above. This section devel-

ops the EIO model and optimization problems in turn, where the latter is the primary

contribution of this paper.

2.2.1 The Environmental Input-Output Model

As noted in the introduction, this paper adopts the Type I EIO multiplier model devel-

oped by Canning, Rehkamp, and Yi (2022), which “provides a measurement of how $1

injected into the economy as an expenditure on a specific good or service (commodity)

changes total production or output of each activity and commodity across the entire econ-

omy.” Further, the multiplier effect of a $1 injection increasing production activity has an

analogous effect on increasing electricity required to support that production. A Type I

model measures direct and indirect effects but not induced effects. When households are

endogenous to the model—Type II model—greater production activity induces greater

consumption, which in turn increases production. Because we are interested in the elec-

tricity required for a fixed level of food consumption, the Type I model is appropriate,

excluding induced effects.

The key result of a standard I-O model derivation is a matrix equation describing how

a change in final demand—$1 injected into the economy—will impact output, mediated

by a multiplier matrix that contains elements for every economic activity. The derivation

gives:

y = M × x, (2.1)
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where y is the gross output vector, x is the injection, or final demand, vector, and M is

the total requirement matrix 13. The total requirement matrix 14 represents the direct and

indirect monetary amount of every activity and commodity element that is required for

production in order to meet final demand. When considering only food-related purchases,

equation 2.1 becomes:

yf = M × xf , (2.2)

where yf and xf denote the food-related gross output and injection vectors, respectively.

This basic I-O model is extended to an EIO model by introducing our environmental

metric, electricity consumption, which is further translated to CO2e emissions as a linear

relationship. The environmental matrix, E, shows electricity required by energy source

(matrix rows) for every activity and commodity (matrix columns), measured in bBTU

per $1 output 15. Including E in the model gives:

σf = E × yf + σx, (2.3)

where the σf vector represents the total bBTU consumed by energy source d 16. The

σx vector represents electricity consumed directly by end users through home kitchen

operations—e.g., running a coffee maker—which is added to E×yf , total bBTU required

by activities and commodities in the production process. Diagonalizing yf and introducing
13See Appendix D Section D.1 for notes on matrix notation and Section D.2 for a listing of all matrices

and vectors with brief descriptions. See Appendix D for a complete derivation of the EIO model, as
adapted from the supplemental information of Canning, Rehkamp, and Yi (2022)

14The total requirement matrix is sometimes termed the Leontief inverse.
15In their model, Canning, Rehkamp, and Yi (2022) have the rows of E correspond to the energy sources

listed in Table 2.1. This paper instead selects only the electricity row from Table 2.1 and disaggregates
electricity by its primary energy source, as seen in Table 2.3. The model equations detailed in this section
are applicable in either case.

16Table 2.3 shows the nine energy sources.
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E∗, the gives:

Σ2f =
[
E∗ × (yf )′′|σf

]
, (‘|’ denotes horizontal concatenation) (2.4)

where:

• Σ2f is a two-dimensional matrix representing the total bBTU consumed by energy

source d (rows) and food category f (columns);

• E∗ is the environmental multiplier matrix derived through a supply chain analysis

procedure 17 using “double-inversion”, as outlined in Canning, Rehkamp, and Yi

(2022), with (rows) for energy source d and (columns) for supply chain stage z; and

• The (yf )′′ matrix is yf diagonalized.

The supply chain analysis procedure reduces the full set of activities and commodities (See

Table B.1) to a smaller set of supply chain stages (See Table B.5), attributing electricity

use to these stages, rather than to an activity or commodity. Equation (2.4) can be

restated as:

Σ2f =
[
E∗ × (yf1|yf2|...|yf23)|E × (yf24|yf24|yf26)|σf27

]
(2.5)

In equation (2.5):

• yf1 to yf23 are gross output vectors corresponding to the food-related demand

categories XF1 to XF23 from Table B.4, and The rows of yf1 to yf23 are the

supply chain stages z;
17See Appendix D.3.1.
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• E is the standard environmental multiplier matrix;

• yf24 to yf26 are gross output vectors corresponding XF24 to XF26; and

• σf27 is the final demand vector for energy consumed directly through home kitchen

operations, corresponding to XF27, with rows for energy source d.

Lastly, the two-dimensional matrix Σ2f can be rewritten as a three-dimensional matrix,

Σ3f :

Σ3f =
[
E∗ ×

(
(yf1)

′′ |(yf2)
′′ |...|(yf23)

′′
)
|E ×

(
(yf24)

′′|(yf24)
′′|(yf26)

′′
)
|σf27

]
(2.6)

The result Σ3f represents the entire annual food system electricity budget allocated across

three indices. The matrix rows are energy source d, while the columns are supply chain

stage z and food-related final demand category f . The electricity consumed for the

baseline year 2012 is denoted Σ3f
0 , which is represented graphically in Figures 2.1 and 2.2

above. Below, we will see how Σ3f
0 is a key parameter input into the MP model.

Letting gd be a vertical vector of emissions coefficients by energy sources (See Table 2.2),

a matrix for food system emissions is given by:

Θ3f
0 = Σ3f

0 ◦G, (2.7)

In equation (2.7):

• G = (gd|...|gd), with gd repeatedly column-concatenated such that Σ3f and G have

the same dimensions; and

• ◦ denotes an element-wise multiplication.
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2.2.2 The Mathematical Programming Model

Mathematical programming (MP) problems are executed for two objective functions, with

both achieving a certain level of emissions reduction. First, change is minimized relative

to existing electricity consumption patterns. Second, cost is minimized. Both objective

functions are subject to the same constraint on total emissions and various constraints

on electricity use and primary energy sources. The choice variable is indexed over energy

source, d = {1, ..., 9}. As a model input, Σ3f
0 is collapsed from a matrix to a vector by

taking the row sums:

ϕf
0 = Σ3f

0 × i,

where i is a unit vector. The given MP parameters are denoted:

• gd, for life cycle emissions factors (g CO2e / mBTU)

• ϕ0
d, for 2012 baseline bBTU by energy source, as the row sum of Σ3f

0

• δd, for the annual depreciation rate for physical plant by energy source

• λd = (1+λ2021
d )× (1+λ2030

d +λplus
d ), for the growth rate of electricity generation by

source d from 2012 to 2030

– λ2021
d , for the actual recorded growth rate from 2012 to 2021

– λ2030
d , for the projected growth rate from 2021 to 2030

– λplus
d , for the extra percentage points growth beyond EIA projections required

for a feasible solution

• ρ = (1 + ρ2021)× (1 + ρ2030), for the growth rate of total electricity generation from

2012 to 2030
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– ρ2021, for the actual recorded growth rate from 2012 to 2021

– ρ2030, for the projected growth rate from 2021 to 2030

• LCOEd, for the levelized cost of electricity for every energy source

The choice variable is σ1
d, the optimal bBTU in 2030 by energy source. With these

parameters and variable, the optimization problem that meets the emissions target while

minimizing change is:

min
ϕ1
d

Z1 =
9∑

d=1

(ϕ1
d − ϕ0

d)
2

ϕ0
d

, (2.8)

subject to:

9∑
d=1

ϕ1
d × gd ≤ 0.552×

9∑
d=1

ϕ0
d × gd (2.9)

9∑
d=1

ϕ1
d ≥ ρ×

9∑
d=1

ϕ0
d (2.10)

ϕ1
1 ≥ ϕ0

1 × eδ1×18 (2.11)

ϕ1
3 ≥ ϕ0

3 × eδ3×18 (2.12)

ϕ1
5 ≥ ϕ0

5 × eδ5×18 (2.13)

ϕ1
1 ≤ ϕ0

1 × λ1 (2.14)

ϕ1
2 ≤ ϕ0

2 × λ2 (2.15)

... ≤ ... (2.16)

ϕ1
9 ≤ ϕ0

9 × λ2, (2.17)

where:
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• equation (2.8) is the change minimizing objective function;

• equation (2.9) is the total emissions constraint, requiring that CO2e emissions in

2030 meet the reduction target, 55.2% of baseline 2012 emissions;

• equation (2.10) is the total energy constraint, requiring that bBTUs used in 2030

not be less than bBTU used in 2012, increased by the EIA projected rate of total

electricity growth, ρ;

• equations (2.11) to (2.13) are the energy lower bound constraints—for coal, natural

gas, and petroleum respectively—requiring that bBTU used in 2030 not be reduced

by a rate greater than depreciation, δd;

• and equations (2.14) to (2.17) are the energy upper bound constraints—for nine

energy types—requiring that bBTU used in 2030 not be increased by a rate greater

than EIA projections, λd.

Note that the energy lower bounds only apply to the fossil fuels. This is because the GAMS

optimization program seeks to replace high-emissions energy sources by low-emissions

sources, where consumption of all non-fossil fuel sources increases relative to the baseline.

Subject to the same constraints, the cost minimization problem is given as:

min
ϕ1
d

Z1 =
9∑

d=1

ϕ1
d × LCOEd (2.18)

Both MP models yield total electricity use by energy source, from which energy shares are

derived. The 2030 three-dimensional matrix for electricity use, Σ3f
1 , for both objective

functions is computed by a matrix multiplication of the baseline 2012 electricity use row

totals vector,
((

Σ3f
0

)′
× i

)
, and the energy shares vector, π, together with the scalar

growth term, ρ (See equation 2.19).
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Σ3f
1 = ρ×

((
Σ3f

0

)′

× i

)
× π′ (2.19)

Given equation (2.19), target 2030 emissions are derived by:

Θ3f
1 = Σ3f

1 ◦G (2.20)

As will be seen, the cost- and change-minimization problem yield similar results for elec-

tricity and corresponding emissions.
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Findings

This section first presents my principal findings, detailing energy mix changes for the food

system’s electricity use that are consistent with the IPCC target of limiting warming to

1.5 ◦C. Then, the supply chain stages and food categories are analyzed. Because stages

and food categories are assumed to consume electricity generated by the same energy

mix, emissions reductions are directly proportional to their total energy use. That is, the

largest electricity consumers realize the largest emissions reductions.

3.1 Overall energy mix

My principal finding is that the EIA projected changes in electricity generation—with

declining fossil fuels and increasing renewables as shown in Table 2.3—are not consistent

with limiting warming to 1.5◦C. If the U.S. food system were to consume electricity as

projected by the EIA through 2030, then it would exceed its share of the CO2e emissions

budget, assuming that a 44.8% emissions reduction from 2012 is required to meet the

IPCC target.

Before presenting estimates, a note on totals is needed. For a given year, total life cycle

CO2e emissions generated by U.S. food system electricity consumption can be derived

by multiplying bBTU consumed by energy source (see Table 2.3) by the respective life

cycle emissions estimates (see Table 2.2). For 2012, this yields 1,164 MMt CO2e life cy-

cle emissions from U.S food system electricity consumption. By comparison, annual 2012

CO2e emissions for the entire U.S. economy were estimated at 6,585 MMt (USEPA 2022),
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with U.S. food system generating an estimated 1,448 MMt (Crippa et al. 2021). In the

U.S. in 2012, 36% of food system emissions were attributed to energy (FAOSTAT 2021)

while 57% of food system energy use was from electricity (Canning, Rehkamp, Waters,

et al. 2017). Thus, my life cycle emissions estimate from annual electricity consumption

is significantly larger than the annual estimates cited elsewhere. This is because LCA

considers the entire life of energy sources, encompassing upstream, operation, and down-

stream emissions. Whereas burning coal generates 95.7 kg CO2/mBTU (USDOE-EIA

2022d), coal as an energy source generates an estimated 293 kg CO2e/mBTU life cycle

emissions (NREL 2022a). As an example, the latter includes methane from coal mines,

as well as other upstream emissions. I argue it is appropriate to model the lifetime emis-

sions of energy choices because i) these choices entail significant investment in new energy

infrastructure, ii) this paper considers long-term energy consumption, and iii) cumulative

emissions drive climate change. Additionally, the LCA approach enables a more accurate

trade-off between fossil fuels, nuclear, and renewables, where the latter categories gener-

ate zero or negligible emissions from operation but have emissions embedded elsewhere in

their supply chain. That is, expanding generating capacity from renewables will produce

emissions.

To meet the IPCC target, life cycle emissions from U.S food system electricity consump-

tion must decline from 1,164 MMt CO2e in 2012 to 643 MMt in 2030. However, if energy

source growth followed EIA projections, CO2e emissions would reach only 730 MMt. Us-

ing EIA projections, no feasible solution exists for the MP model, for either the cost- or

change-minimizing objective functions. Given this infeasibility, I incrementally relaxed

the upper constraint on energy source until a solution was feasible. Across all energy

sources, adding eight percentage points to the EIA growth projections yields the first

feasible solution limiting emissions for both objective functions (See Figure 3.1). Thus,

rather than nuclear energy declining 9.1% from 2021 to 2030, as projected by EIA (see

Table 2.3), a solution is just feasible when nuclear declines 1.1%. Likewise, solar energy
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growth is adjusted from 250.1% to 258.1% and so on. Under cost-minimization, total

CO2e is 632 MMt, while change-minimization yields 642 MMt. This small difference is

partially attributed to the former model choosing more of the lower cost energy, solar,

whereas the latter chooses the higher-cost, change-minimizing energy, petroleum.

Figure 3.1: Agri-food system emissions totals (actual, projected, target)

The category “EIA + 8 points” denotes 8 percentage points added to EIA projected energy growth.

Under both change- and cost-minimization optimization problems, coal’s share of elec-

tricity declines substantially from 41% in 2012 to 12% and 11.8% in 2030, respectively,

representing declines of 70% and 71%. For both optimization problems, the lower bound

on coal is not binding: coal is not reduced the maximum amount allowed by deprecia-

tion of existing infrastructure. The EIA projections also predict a lower than baseline coal

share of electricity, 17%, albeit higher than the target solutions (See Figure 3.2). The only

energy source decreased the maximum amount is petroleum, under the cost-minimizing
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solution, as it is the costliest source.

Also of note, the share of wind and solar is substantially higher under the EIA projections,

change-minimization, and cost-minimization scenarios. The solar share of electricity in-

creases from 0.1% to 9.4%, 9.1%, and 9.6%, respectively 1. The change minimization

solution yields less solar than EIA projections, whereas cost minimization yields more.

For wind, change- and cost-minimization yield identical results, 15.3%, slightly higher

than EIA projections, 14.6%. Because the solution is just feasible—with an incremental

relaxation of the energy upper bound—both optimization problems yield similar results

overall. Both problems maximize the use of hydropower, natural gas, nuclear, geother-

mal, wind, and biomass such that the upper bound in binding (see Appendix Table E.2.1).

The key difference between the two solutions is that cost-minimization maximizes the use

of solar—lower LCOE—whereas change-minimization maximizes the use of petroleum—

higher LCOE 2. Another key difference between EIA projections and the target solutions

is that the former have a greater share of natural gas, which is maximized.

Figure 3.2: Percent total electricity bBTU by source

1Appendix Table E.2.3 reports the shares for each energy source.
2See Appendix E for full results
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In terms of percent change from the 2012 baseline, results suggest that solar experiences by

far the largest growth, increasing by a factor of more than 88 across all three scenarios—

the EIA projections, cost- and change-minimization solutions (See Figure 3.3). With the

exception of petroleum, solar, and coal, both optimization solutions increase all energy

sources by a greater percentage than projected by the EIA. Both solutions decrease coal

more than what the EIA projects. For solar and petroleum, the solutions yield opposite

results with respect to the EIA. However, because the energy provided by petroleum

is relatively small in 2012, the change minimization solution increasing this source has

minimal impact on total emissions.
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Figure 3.3: Percent change bBTU generation by source, 2012-2030

Note the different axes scales for solar and wind energy, relative to other energy source.
Solar increases by a factor of more than 88 under all three scenarios.

3.2 Emissions in the Food Supply Chain

First, in terms of electricity consumption derived from cost-minimization, Figures 3.4 and

3.5 show how 2030 projected coal generation has decreased relative to 2012—shown in

Figures 2.1 and 2.2. Generating capacity is shifted from coal to various other energy
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sources, except petroleum, which also decreases under the cost-minimization problem 3.

Both optimization problems yield solutions with the greatest generating capacity coming

from natural gas, nuclear, wind, coal, and solar, in that order. Due largely to their relative

baseline totals, coal-powered electricity still exceeds solar-powered, despite the significant

decline and growth experienced by each respectively.

On the right side of Figures 3.4 and 3.5, the supply chain stages and food categories,

respectively, all increase by the same factor, ρ, and do not change their relative composi-

tion. Thus, “utilities for kitchen” and the corresponding “HKO: utilities” remain the two

largest stage and food category consumers of electricity.
3Figures 3.4 and 3.5 show the solution for cost minimization, where change minimization is nearly

identical, as discussed above.
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Figure 3.4: Food system electricity by energy and stage (bBTU), U.S. 2030
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Figure 3.5: Food system electricity by energy and food category (bBTU), U.S. 2030

By holding the demand side constant, adjusted for overall electricity demand growth,

reductions in emissions are achieved entirely through changes in production. Electricity

is demanded in the same proportions, but electricity production generates less emissions

by replacing high-emitting energy—coal and petroleum—with lower-emitting alternatives.

As the counterparts to Figures 2.3 and 2.4, emissions for the cost-minimization solutions

are shown in Figures 3.6 and 3.7. Whereas coal was the primary emitter in 2012, natural
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gas becomes the primary emitter in the 2030 solution, at 347 MMt CO2e emissions (54%),

followed by coal at 257 MMt (40%). The remaining 6% of emissions are attributed to the

other seven energy sources, with solar accounting for the third most emissions, 9 MMt

(1.4%).

Figure 3.6: Food system CO2e by energy and stage (MMt), U.S. 2030
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Figure 3.7: Food system CO2e by energy and food category (MMt), U.S. 2030

As is clear from comparing Figures 3.4 and 3.6, nuclear and wind generate a compara-

tively small amount of emissions, despite becoming the second and third largest electricity

providers. As the largest provider of electricity, natural gas becomes the largest emitter.

For its part, coal becomes the fourth largest provider of electricity, slightly ahead of solar,

while still generating the second most emissions. Of note, even if all fossil fuels were

eliminated from electricity generation, the remaining energy sources would still produce
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emissions. This point will be discussed further below, when considering the path to net

zero emissions by 2050.

The right hand sides of Figures 3.5 and 3.6 are directly proportional to Figures 3.3 and

3.4—greater electricity consumption generating greater emissions. As the largest electric-

ity consumers, the largest emissions reduction is achieved by “utilities for kitchen” and

“HKO: utilities”. Emissions from the stage “utilities for kitchen” are nearly cut in half,

declining from 449,552 MMt in 2012 to 233,325 MMt in 2030.

42



Discussion

This final section presents the policy implications of my findings, model limitations, po-

tential for future research, and concluding remarks.

4.1 Policy Implications

My findings suggest that more must be done to reduce emissions from food system elec-

tricity use, if the IPCC target of 1.5◦ is to be achieved. Given the latest EIA projections

for growth of primary energy sources—grounded in their analysis of expected market and

policy trends—sufficient decarbonization would not be realized in electricity generation

for the U.S. food system to meet the IPCC target. This finding is consistent with other

research suggesting the U.S. economy as a whole is not on track to limit warming to 1.5◦C

(UNEP 2021).

However, my findings suggest that the additional growth required is modest relative to

EIA projected changes, in some cases. Whereas I added 8 percentage points of growth

across all energy sources to achieve a feasible solution, the EIA predicts solar will increase

250% from 2021 to 2030 (See Table 2.3). Likewise, the EIA predicts wind, geothermal, and

hydropower will grow 57%, 48%, and 15%, respectively. With a projected 9% decline for

nuclear, the added growth would instead mean declining at a slower rate, nearly holding

steady. Relative to the projections, the growth rates seem achievable.
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4.2 Model Limitations and Future Research

A primary limitation of my model is the supply-side focus. While holding demand fixed

enables the analysis of production changes specifically, in reality changes in food demand

could have a significant impact on energy use and corresponding emissions (Hitaj et al.

2019). Moreover, because a solution is not feasible at existing EIA projections for energy

growth, I incrementally increase the percentage growth of all sources. This uniform

increase does not capture the true nature of energy supply.

Additionally, key model parameters—LCOE and life cycle emissions factors—are assumed

constant over the period of analysis even though these are expected to change. Given this

paper’s assumptions, the path to net zero in 2050 would be impossible. This is because

non-fossil fuel energy sources still have emissions embedded in their supply chains—with

rates assumed constant through 2030 (See Table 2.2)—and because negative emissions

technology is not modeled. This limitation of the model reflects real-world challenges:

i) the need to invent negative emissions technologies that are as yet unproven at scale,

and ii) the need to decarbonize “clean” energy sources. Because the former is unproven,

more researchers are advocating an emphasis on the latter, with a strategy of “electrifying

everything” and generating that electricity through a combination of renewable energy

and potentially nuclear (Prentiss 2015; Griffith 2021).

These limitations point towards potential research opportunities. First, developing energy

supply functions could more accurately model energy growth beyond the EIA projections,

incorporating energy prices and elasticity. In turn, food demand could be allowed to vary

in response to changing food prices generated by energy production changes. Under this

model, emissions reduction would be achieved by both supply- and demand-side changes.

Negative emissions technologies—principally carbon capture and storage—could be mod-

eled based on estimates of when such technology will be deployed at scale. This modeling
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is standard in IPCC climate pathways (IPCC 2018). Additionally, instead of holding life

cycle emissions factors constant across time through 2030, these factors could be projected

annually, reflecting changes in production processes that reduce the energy source’s em-

bodied supply chain emissions. Likewise, the LCOE estimates could be annual, incorpo-

rating “learning by doing” rates such that cost decreases as deployment increases, lowering

the costs of those sources projected to grow the most. Regarding cost, the IEA suggests

that supplementing LCOE estimates with the value-adjusted levelized cost of electricity

(VALCOE) could more accurately model deregulated electricity markets 1 (IEA 2020).

To expand modeling scope, incorporating the other energy sources listed in Table 2.1

would provide a comprehensive view of energy consumption and emissions in the U.S.

food system. Further, incorporating all economic sectors tracked by USDOL-BLS would

enable the modeling of energy use for the entire U.S. economy. However, such modeling

would likely entail greater data aggregation, sacrificing the specificity of supply chain

analysis.

4.3 Conclusion

My principal finding is that the U.S. food system is not on track reduce emissions from

its electricity use in a manner consistent with limiting warming to 1.5◦ C. Neither the

cost- nor change-minimizing MP problems yield a feasible solution given EIA projections
1The IEA states: “The LCOE is the principal tool for comparing the plant-level unit costs of different

baseload technologies over their operating lifetimes. The LCOE indicates the economic costs of a generic
technology, not the financial costs of a specific project in a specific market. Due to the equality between
discounted average costs and the stable remuneration over lifetime electricity production, which is at
its heart, LCOE is in spirit closer to the costs of electricity production in regulated electricity markets
with stable tariffs, for which it was developed, than to the variable prices in deregulated markets. By
adjusting the discount rate for the implicit cost of price volatility, the LCOE concept can, in principle,
also be applied in the context of deregulated markets.... While there is an increasing need to complement
it with information, such as provided by VALCOE, on the system contribution of different technologies
under different constellations, the LCOE retains its fundamental usefulness as a widely used tool for
modelling, policy making and public debate” (IEA 2020).
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for energy source growth through 2030. However, solutions become feasible when adding

eight percentage points to the EIA projections, suggesting that the target remains within

reach. Notably, the solutions yield results showing natural gas as the largest source of

electricity and the largest source of CO2e emissions in 2030. While this may satisfy the

model constraints as designed—a 44.8% emissions reduction from 2012 levels by 2030—

investment in natural gas electricity generation would not lead to net zero emissions

by 2050, absent the deployment at scale of unproven negative emissions technologies.

Further research can model the potential impacts of such technology, as well as the impacts

of dynamic LCOE estimates and emissions factors. Modeling energy supply and food

demand response could more accurately capture market behavior. Lastly, expanding the

scope of energy sources and economic sectors can enable comprehensive modeling of the

U.S. economy.
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Charts and Schematics

Figure A.1: Agri-food systems categories: Mapping from IPCC to FAO

Source: FAO (2021)
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Figure A.2: Supply, Use, and Input-Output tables — example

Source: Canning, Rehkamp, and Yi (2022)
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Figure A.3: EIO model schematic for simplified IOT

Source: Canning, Rehkamp, and Yi (2022).
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Tables

B.1 Input-Output table elements

Table B.1 shows the activities and commodities from the IOT used for the EIO model.

Because the first 222 commodities are a one-to-one match with activities, only the re-

maining commodities are shown. The combined activities and commodities form the first

rows and columns of the IOT, which are symmetrical, as shown in Figure A.3.

Table B.1: IOT activities and commodities

Row Row Description Row Row Description

A001 Oilseed farming A120 Other durable goods merchant

wholesalers

A002 Grain farming A121 Drugs and druggists sundries

A003 Vegetable and melon farming A122 Petroleum and petroleum prod-

ucts

A004 Fruit and tree nut farming A123 Other nondurable goods mer-

chant wholesalers

A005 Greenhouse nursery and floricul-

ture production

A124 Wholesale electronic markets and

agents and brokers

A006 Other crop farming A125 Customs duties
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A007 Beef cattle ranching and farming

including feedlots and dual pur-

pose ranching and farming

A126 Grocery and related product

wholesalers

A008 Dairy cattle and milk production A127 Motor vehicle and parts dealers

A009 Animal production except cattle

and poultry and eggs

A128 Food and beverage stores

A010 Poultry and egg production A129 General merchandise stores

A011 Forestry and logging A130 All other retail

A012 Fishing hunting and trapping A131 Air transportation

A013 Support activities for agriculture

and forestry

A132 Rail transportation

A014 Oil and gas extraction A133 Water transportation

A015 Coal mining A134 Truck transportation

A016 Metal ore mining A135 Transit and ground passenger

transportation

A017 Nonmetallic mineral mining and

quarrying

A136 Pipeline transportation

A018 Support activities for mining A137 Scenic and sightseeing trans-

portation and support activities

for transportation

A019 Electric power generation trans-

mission and distribution

A138 Couriers and messengers

A020 Natural gas distribution A139 Warehousing and storage

A021 Water sewage and other systems A140 Newspaper periodical book and

directory publishers

A022 Construction A141 Software publishers
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A023 Dog and cat food manufacturing A142 Motion picture video and sound

recording industries

A024 Other animal food manufacturing A143 Radio and television broadcasting

A025 Flour milling and malt manufac-

turing

A144 Cable and other subscription pro-

gramming

A026 Wet corn milling A145 Wired telecommunications carri-

ers

A027 Soybean and other oilseed pro-

cessing

A146 Wireless telecommunications car-

riers (except satellite)

A028 Fats and oils refining and blend-

ing

A147 Satellite telecommunications re-

sellers and all other telecommu-

nications

A029 Breakfast cereal manufacturing A148 Data processing hosting and re-

lated services

A030 Sugar and confectionery product

manufacturing

A149 Other information services

A031 Frozen food manufacturing A150 Monetary authorities credit inter-

mediation and related activities

A032 Fruit and vegetable canning pick-

ling and drying

A151 Securities commodity contracts

fund trusts and other financial

investments and vehicles and re-

lated activities

A033 Cheese manufacturing A152 Insurance carriers

A034 Dry condensed and evaporated

dairy product manufacturing

A153 Agencies brokerages and other in-

surance related activities
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A035 Ice cream and frozen dessert man-

ufacturing

A154 Real estate

A036 Fluid milk and butter manufac-

turing

A155 Owner occupied dwellings

A037 Animal (except poultry) slaugh-

tering rendering and processing

A156 Automotive equipment rental and

leasing

A038 Poultry processing A157 Consumer goods rental and gen-

eral rental centers

A039 Seafood product preparation and

packaging

A158 Commercial and industrial ma-

chinery and equipment rental and

leasing

A040 Bread and bakery product manu-

facturing

A159 Lessors of nonfinancial intangible

assets (except copyrighted works)

A041 Cookie cracker pasta and tortilla

manufacturing

A160 Legal services

A042 Snack food manufacturing A161 Accounting tax preparation book-

keeping and payroll services

A043 Coffee and tea manufacturing A162 Architectural engineering and re-

lated services

A044 Flavoring syrup and concentrate

manufacturing

A163 Specialized design services

A045 Seasoning and dressing manufac-

turing

A164 Computer systems design and re-

lated services

A046 All other food manufacturing A165 Management scientific and tech-

nical consulting services
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A047 Soft drink and ice manufacturing A166 Scientific research and develop-

ment services

A048 Breweries A167 Advertising and related services

A049 Wineries A168 Other professional scientific and

technical services

A050 Distilleries A169 Management of companies and

enterprises

A051 Tobacco manufacturing A170 Office administrative services

A052 Textile mills and textile product

mills

A171 Facilities support services

A053 Apparel leather and allied prod-

uct manufacturing

A172 Employment services

A054 Sawmills and wood preservation A173 Business support services

A055 Veneer plywood and engineered

wood product manufacturing

A174 Travel arrangement and reserva-

tion services

A056 Pulp paper paperboard mills

other wood product manufactur-

ing including wood tv radio and

sewing machine cabinet manufac-

turing

A175 Investigation and security ser-

vices

A057 Converted paper product manu-

facturing

A176 Services to buildings and

dwellings

A058 Printing and related support ac-

tivities

A177 Other support services

A059 Petroleum and coal products

manufacturing

A178 Waste management and remedia-

tion services
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A060 Basic chemical manufacturing A179 Elementary and secondary

schools

A061 Resin synthetic rubber and artifi-

cial synthetic fibers and filaments

manufacturing

A180 Junior colleges colleges universi-

ties and professional schools

A062 Pesticide fertilizer and other agri-

cultural chemical manufacturing

A181 Other educational services

A063 Pharmaceutical and medicine

manufacturing

A182 Offices of physicians

A064 Paint coating and adhesive man-

ufacturing

A183 Offices of dentists

A065 Soap cleaning compound and toi-

let preparation manufacturing

A184 Offices of other health practition-

ers

A066 Other chemical product and

preparation manufacturing

A185 Outpatient care centers

A067 Plastics product manufacturing A186 Medical and diagnostic laborato-

ries

A068 Rubber product manufacturing A187 Home health care services

A069 Clay product and refractory man-

ufacturing

A188 Other ambulatory health care ser-

vices

A070 Glass and glass product manufac-

turing

A189 Hospitals

A071 Cement and concrete product

manufacturing

A190 Nursing and residential care facil-

ities
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A072 Lime gypsum and other non-

metallic mineral product manu-

facturing

A191 Individual and family services

A073 Iron and steel mills and ferroalloy

manufacturing

A192 Community and vocational reha-

bilitation services

A074 Steel product manufacturing

from purchased steel

A193 Child day care services

A075 Alumina and aluminum produc-

tion and processing

A194 Performing arts companies

A076 Nonferrous metal (except alu-

minum) production and process-

ing

A195 Spectator sports

A077 Foundries A196 Promoters of events and agents

and managers

A078 Forging and stamping A197 Independent artists writers and

performers

A079 Cutlery and handtool manufac-

turing

A198 Museums historical sites and sim-

ilar institutions

A080 Architectural and structural met-

als manufacturing

A199 Amusement parks and arcades

A081 Boiler tank and shipping con-

tainer manufacturing

A200 Gambling industries (except

casino hotels)

A082 Hardware manufacturing A201 Other amusement and recreation

industries

A083 Spring and wire product manu-

facturing

A202 Accommodation
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A084 Machine shops turned product

and screw nut and bolt manufac-

turing

A203 Service at full service restaurants

A085 Coating engraving heat treating

and allied activities

A204 Service at limited service restau-

rants

A086 Other fabricated metal product

manufacturing

A205 Service at all other food and

drinking places

A087 Agriculture construction and

mining machinery manufacturing

A206 Automotive repair and mainte-

nance

A088 Industrial machinery manufac-

turing

A207 Electronic and precision equip-

ment repair and maintenance

A089 Commercial and service industry

machinery manufacturing includ-

ing digital camera manufacturing

A208 Commercial and industrial ma-

chinery and equipment (except

automotive and electronic) repair

and maintenance

A090 Ventilation heating air condition-

ing and commercial refrigeration

equipment manufacturing

A209 Personal and household goods re-

pair and maintenance

A091 Metalworking machinery manu-

facturing

A210 Personal care services

A092 Engine turbine and power trans-

mission equipment manufactur-

ing

A211 Death care services

A093 Other general purpose machinery

manufacturing

A212 Drycleaning and laundry services
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A094 Computer and peripheral equip-

ment manufacturing excluding

digital camera manufacturing

A213 Other personal services

A095 Communications equipment

manufacturing

A214 Religious organizations

A096 Audio and video equipment man-

ufacturing

A215 Grantmaking and giving services

and social advocacy organizations

A097 Semiconductor and other elec-

tronic component manufacturing

A216 Civic social professional and sim-

ilar organizations

A098 Navigational measuring elec-

tromedical and control instru-

ments manufacturing

A217 Private households

A099 Manufacturing and reproducing

magnetic and optical media

A218 Federal enterprise

A100 Electric lighting equipment man-

ufacturing

A219 Federal general government (de-

fense)

A101 Household appliance manufactur-

ing

A220 Federal general government (non-

defense)

A102 Electrical equipment manufactur-

ing

A221 State and local government

A103 Other electrical equipment and

component manufacturing

A222 State and local enterprise

A104 Motor vehicle manufacturing A223 Export assembly

A105 Motor vehicle body and trailer

manufacturing

A224 Food at full service restaurants
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A106 Motor vehicle parts manufactur-

ing

A225 Food at limited service restau-

rants

A107 Aerospace product and parts

manufacturing

A226 Food at all other food and drink-

ing places

A108 Railroad rolling stock manufac-

turing

A227 Vouchers for full service restau-

rants

A109 Ship and boat building A228 Vouchers for limited service

restaurants

A110 Other transportation equipment

manufacturing

A229 Vouchers for all other food and

drinking places

A111 Household and institutional fur-

niture and kitchen cabinet manu-

facturing excluding wood tv radio

and sewing maching cabinet man-

ufacturing

C223 Used second hand and scrap

A112 Office furniture (including fix-

tures) manufacturing

C224 Noncomprable imports and rest

of world adjustment

A113 Other furniture related product

manufacturing

C225 Export assembly

A114 Medical equipment and supplies

manufacturing

C226 Food at full service restaurants

A115 Other miscellaneous manufactur-

ing

C227 Food at limited service restau-

rants

A116 Motor vehicle and motor vehicle

parts and supplies

C228 Food at all other food and drink-

ing places
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A117 Professional and commercial

equipment and supplies

C229 Vouchers for full service restau-

rants

A118 Household appliances and electri-

cal and electronic goods

C230 Vouchers for limited service

restaurants

A119 Machinery equipment and sup-

plies

C231 Vouchers for all other food and

drinking places
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Table B.2 shows the last rows of the IOT (leakage matrix rows) used for the EIO model.

Table B.2: Leakage rows

Row Row Description

L01 Compensation of employees

L02 Taxes on production and imports

less subsidies

L03 Gross operating surplus

L04 Imports

Table B.3 shows the columns of the IOT representing non-food injection matrix categories.

Table B.3: Injection columns (non-food)

Column Column Description

X01 Nonfood personal consumption expenditures

X02 Investment

X03 Government

X04 Exports
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Table B.4 shows the columns of the IOT representing food injection matrix categories.

Table B.4: Injection columns (food)

Column Column Description

XF1 Beverages at home: Beer

XF2 Beverages at home: Nonalcoholic beverages

XF3 Beverages at home: Spirits

XF4 Beverages at home: Wine

XF5 Beverages away from home

XF6 Food at home: Fresh vegetables

XF7 Food at home: Bakery products

XF8 Food at home: Beef, pork and other meats

XF9 Food at home: Cereals

XF10 Food at home: Consumed on farms

XF11 Food at home: Eggs

XF12 Food at home: Fats and oils

XF13 Food at home: Fish and seafood

XF14 Food at home: Fresh Fruits

XF15 Food at home: Fresh milk

XF16 Food at home: Other foods

XF17 Food at home: Poultry

XF18 Food at home: Processed dairy products

XF19 Food at home: Processed fruits and vegetables

XF20 Food at home: salt and chemical additives

XF21 Food at home: Sugar and sweets

XF22 Food at work: Vouchers

72



XF23 Food away from home

XF24 Home kitchen operations: appliances

XF25 Home kitchen operations: equipment and supplies

XF26 Home kitchen operations: fleet

XF27 Home kitchen operations: Utilities

Table B.5 shows food system supply chain stages.

Table B.5: Supply Chain Stages

Stage Stage Description

1 Agribusiness

2 Appliances

3 Crops

4 Fleet

5 Food processing

6 Food retailers

7 Food wholesalers

8 Foodservice

9 Kitchenware

10 Livestock

11 Other ag forestry fisheries

12 Transportation and storage

13 Utilities for kitchen
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B.2 Depreciation

Table B.6 shows depreciation rates for coal, petroleum, and natural gas plants. Because

the optimization model naturally seeks to reduce high-emitting energies and increase

low-emitting energies, the lower bound imposed by depreciation rates does not constrain

the choice variables for nuclear and renewables. The rate of decay formula is eδd×18, for

d ∈ {coal, natural gas, petroleum}.

Table B.6: Depreciation and rate of decay

Source BEA Depreciation rate Rate of decay

Coal -0.0780 0.2456125

Natural gas -0.0237 0.6527246

Petroleum -0.0780 0.2456125

Data Source: USDOC-BEA (2022a)
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LCOE Estimates

This paper uses LCOE estimates prepared by IEA from their latest report published every

five years, “Projected Costs of Generating Electricity 2020 Edition” (IEA 2020). However,

rather than use the reference estimates, I use the IEA “Levelised Cost of Electricity

Calculator” to generate estimates with a zero carbon price (IEA 2022). Where multiple

technologies are used in a given category—e.g., commercial, residential, and utility-scale

solar—if data was available for their respective share of total capacity, then a weighted

average was computed based on capacity shares. If such data was not available, a simple

average was taken. In either case, technologies not yet deployed or with negligible use—

less than 1% of total capacity—were not included in the LCOE estimate. Additional key

assumptions include a 7% discount rate and an 85% capacity factor 1. Below each energy

source is discussed in turn.

C.1 Solar

For each solar category, the IEA “median case” was selected, and all IEA estimates are

given in Table C.1. Although utility-scale solar cost is cost-competitive, at $44.25, the

LCOE estimates for residential solar, commercial solar, and solar thermal power are

$126.54, $94.18, and $112.34, respectively, measured as USD / MWh. These LCOE

estimates were weighted by market shares for utility, commercial, residential, and solar

thermal of 56%, 29%, 12%, and 2%, respectively (Rodríguez 2022; Trabish 2022).
1The capacity factor “is defined as the actual electricity production divided by the maximum possible

electricity output of a power plant, over a period of time” (Neill and Hashemi 2018).
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C.2 Coal

Equal weighting was given to the IEA coal categories of “Coal (641 MW),” “Pulverised

(138 MW),” “Pulverised (140 MW),” and “Pulverised (650 MW),” with prices of $93.28,

$99.79, $81.26, and $63.02. Because ultra-supercritical coal and carbon capture and

storage technologies have not been deployed in the U.S., these categories were not included

in the average (Gianfrancesco 2017; Calma 2022).

C.3 Natural Gas

For natural gas, a single LCOE estimate of $34.78 was used. As with coal, because carbon

capture and storage has not been widely deployed—with only one plant in the U.S. as of

late 2021—this category was excluded (Anchondo and Klump 2022).

C.4 Nuclear

Equal weighting was given to the IEA nuclear categories of “LTO (10 years) (1000 MW),”

“LTO (20 years) (1000 MW),” and “LWR (1100 MW),” with prices of $36.04, $33.25, and

$71.25.

C.5 Petroleum

Neither IEA, EIA, nor IRENA provide LCOE estimates for petroleum, likely because it

remains an exceedingly small share of total electricity generation, less than 1%. Thus,
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to estimate a petroleum LCOE, I multiply the ratio of petroleum to natural gas prices—

obtained from SEDS (USDOE-EIA 2021; Canning, Rehkamp, and Yi 2022)—by the nat-

ural gas LCOE estimate from IEA. This gives:

LCOEpetro = LCOEgas ×
pricepetro
pricegas

C.6 Other

For hydropower, a simple average is taken of the two median cases, listed as “Run of river

(>= 5 MW) (median case) (44.7 MW),” and “Run of river (>= 5 MW) (median case)

(94.0 MW),” with respective LCOE estimates of $70.58 and $87.2. A single onshore wind

median estimate is given, $39.02, while offshore wind is excluded because only one plant

exists in the U.S. (Brown 2022). Despite a Biden Administration goal to reach 30 GW

of offshore wind power by 2030, onshore wind had already accounted for 118.3 GW in

2020, and that same year a record 14.2 GW in new capacity was added (USDOE-EIA

2022e; Brown 2022). Thus, offshore wind should remain a negligible share overall in the

near term. A simple average is taken of the two geothermal estimates, of $93.54 and

$61.83. Lastly, biomass is the only estimate taken from IRENA, rather than the IEA.

This estimate of $76.00 is global, rather than specific to the U.S. (IRENA 2022).

Table C.1: IEA LCOE Estimates

Category Plant type LCOE (USD /

MWh)

Coal Coal (641 MW) 93.28

Coal Coal (CCUS) (499 MW) 143.23
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Gas Gas (CCGT) (727 MW) 34.78

Gas Gas (CCGT, CCUS) (646 MW) 69.07

Geothermal Geothermal (25.0 MW) 93.54

Geothermal Geothermal (30.0 MW) 61.83

Nuclear LTO (10 years) (1000 MW) 36.04

Nuclear LTO (20 years) (1000 MW) 33.25

Nuclear LWR (1100 MW) 71.25

Coal Pulverised (138 MW) 99.79

Coal Pulverised (140 MW) 81.26

Coal Pulverised (650 MW) 63.02

Coal Pulverised (CCUS) (650 MW) 115.43

Hydro Run of river (< 5 MW) (3.7 MW) 128.67

Hydro Run of river (< 5 MW) (4.2 MW) 90.52

Hydro Run of river (< 5 MW) (4.8 MW) 117.72

Hydro Run of river (>= 5 MW) (44.1 MW) 100.77

Hydro Run of river (>= 5 MW) (82.2 MW) 90.21

Hydro Run of river (>= 5 MW) (median case)

(44.7 MW)

70.58

Hydro Run of river (>= 5 MW) (median case)

(94.0 MW)

87.20

Solar Solar PV (commercial) (0.30 MW) 116.44

Solar Solar PV (commercial) (0.30 MW) 100.45

Solar Solar PV (commercial) (0.30 MW) 80.59

Solar Solar PV (commercial) (0.30 MW) 74.46

Solar Solar PV (commercial) (median case)

(0.30 MW)

94.18
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Solar Solar PV (residential) (0.005 MW) 156.35

Solar Solar PV (residential) (0.005 MW) 135.42

Solar Solar PV (residential) (0.005 MW) 153.12

Solar Solar PV (residential) (0.005 MW) 140.17

Solar Solar PV (residential) (median case)

(0.005 MW)

126.54

Solar Solar PV (utility scale) (100 MW) 54.96

Solar Solar PV (utility scale) (100 MW) 47.69

Solar Solar PV (utility scale) (100 MW) 38.06

Solar Solar PV (utility scale) (100 MW) 34.59

Solar Solar PV (utility scale) (median case)

(100 MW)

44.25

Solar Solar thermal (CSP) (100 MW) 142.21

Solar Solar thermal (CSP) (100 MW) 117.11

Solar Solar thermal (CSP) (median case)

(100 MW)

112.34

Coal Supercritical pulverised (650 MW) 63.66

Coal Supercritical pulverised (CCUS) (650

MW)

114.10

Wind Wind offshore (600 MW) 61.35

Wind Wind offshore (600 MW) 63.53

Wind Wind offshore (600 MW) 68.07

Wind Wind offshore (600 MW) 70.63

Wind Wind offshore (600 MW) 82.40

Wind Wind offshore (600 MW) 111.78

Wind Wind offshore (600 MW) 59.37
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Wind Wind offshore (600 MW) 61.19

Wind Wind offshore (600 MW) 64.21

Wind Wind offshore (600 MW) 68.18

Wind Wind offshore (600 MW) 74.09

Wind Wind offshore (600 MW) 93.59

Wind Wind offshore (600 MW) 119.21

Wind Wind offshore (median case) (600 MW) 65.62

Wind Wind onshore (>= 1 MW) (100 MW) 35.19

Wind Wind onshore (>= 1 MW) (100 MW) 36.80

Wind Wind onshore (>= 1 MW) (100 MW) 37.81

Wind Wind onshore (>= 1 MW) (100 MW) 41.17

Wind Wind onshore (>= 1 MW) (100 MW) 48.13

Wind Wind onshore (>= 1 MW) (100 MW) 55.50

Wind Wind onshore (>= 1 MW) (100 MW) 73.29

Wind Wind onshore (>= 1 MW) (100 MW) 92.88

Wind Wind onshore (>= 1 MW) (100 MW) 155.13

Wind Wind onshore (>= 1 MW) (median

case) (100 MW)

39.02
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EIO Model Derivation

Appendix D defines the EIO notation, lists all model indices, matrices, and vectors with a

short description, and then presents the EIO model derivation, as developed by Canning,

Rehkamp, and Yi (2022).

D.1 Notation

• Matrices are uppercase bold

• Vectors are lowercase bold

• Scalars are lowercase non-bold

• Matrix transpose is denoted by ′

• Vector diagonalization is denoted by ′′

• Matrix inverse is denoted by −1

• Element-wise multiplication is denoted by ◦

• The column concatenation of two vectors or matrices with the same number of rows

is denoted by |

• The row concatenation of two vectors or matrices with the same number of columns

is denoted by /
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D.2 Indices, Vectors, and Matrices

Table D.1: Indices, vectors, and matrices

Term Description

ACT =

{1, ..., 299}

Index for activities (See Table B.1 for list)

COM =

{230, ..., 458}

Index for commodities (See Table B.1 for list)

i Column unit vector

I Identity matrix

T Transaction matrix

y Gross output vector

A Direct requirement matrix

x Injection vector

M Total requirement matrix

v Value-added multiplier vector

l Leakage vector

yf Food-related gross output vector

xf Food-related injection vector

E Environmental factors matrix (bBTUs)

E∗ Supply-chain modified environmental factors matrix (bBTUs)

σ Electricity consumption for the national economy (bBTUs), vector

σf Electricity consumption for the food system (bBTUs), vector

Σ2f Electricity consumption by energy source and food category for food-

related items (bBTUs), two-dimensional matrix
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Σ3f Electricity consumption by energy source, supply chain stage, and food

category for food-related items (bBTUs), three-dimensional matrix

gd Vertical vector of emissions coefficients by energy sources

G Matrix of column concatenated emissions vectors

Θ3f CO2e emissions by energy source, supply chain stage, and food cate-

gory for food-related items (MMt), three-dimensional matrix

πd Energy shares computed from optimization solutions, vertical vector

Π Row concatenation of π′

d
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D.3 Derivation

The model elements are represented in the EIO model schematic in Appendix A Figure

A.3. Each element name and description is listed in the Appendix B tables. This deriva-

tion follows the method defined in the supplemental information of Canning, Rehkamp,

and Yi (2022).

To derive the multiplier model, we first divide each element in the the internal transactions

matrix, T , by its corresponding column total, y, which yields the direct requirement

matrix, A:

A = T × {y′′}−1 (D.1)

Alternatively, post-multiplying boths sides of equation (D.1) by {y′′}−1 yields A×y = T .

Then, adding the final demand, or injection, vector, x, gives the gross output vector, y:

A× y + x = y

The equation for gross output can be manipulated as follows:

x = y −A× y

x = i′′ × y −A× y,

x = (i′′ −A)× y, (applying the distributive property of matrix multiplication)

(i′′ −A)−1 × x = y, (multiplying both sides by the inverse of the parenthetical term)
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Denoting the above parenthetical term as M yields:

M × x = y (D.2)

In equation (D.2), M is termed the Leontief or “total requirements" matrix, which is a key

component of our EIO model. Equation (D.2) states that multiplying the final demand

vector, x, by the total requirements matrix yields the gross output vector, y. That is, M

represents the total requirements necessary—for activities and commodities—to deliver a

given level of final demand, x.

The second key component of our EIO model is derived by “dividing” 1 each element of the

leakage vector, l, by its corresponding gross output total, y. This yields the value-added

multiplier vector:

v = {y′′}−1 × l (D.3)

Pre-multiplying both sides of equation (D.3) by y′ yields:

y′ × v = i′ × l, (where y′ × {y′′}−1 = i′) (D.4)

Equation (D.4) tells us that gross domestic income (GDI) plus imports, i′× l—the sum of

the leakage vector—is equal to the product of transposed gross output and the value-added

multiplier. By Walras Law, GDI plus imports equals GDP plus exports, and this point

is elaborated in Canning, Rehkamp, and Yi (2022). Also by Walras Law, this identity

holds:

v′ ×M × x = i′ × x, (D.5)

1Division is not a defined operation in matrix algebra. Instead, matrices can be multiplied by the
inverse of another matrix to achieve division.
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which means that totals from corresponding elements of the leakage vector, l, and the

injection vector, x, are equal.

Linear homogeneity is a core property and assumption of EIO models. This means that

“a proportional change to any element of the injection vector, x, produces the same

proportional change in the gross output vector, y” (Canning, Rehkamp, and Yi 2022).

As an example, if final demand, x , increases threefold, then output, y, must increase

threefold—defined as M × (x× 3) = y × 3.

This property also holds for a subset of the final demand vector. In our case, for f = 1,

we let xf be the vector representing final demand specifically for food purchases. Then,

modifying equation (D.2), linear homogeneity implies that the gross output—including

both activities and commodities—required to meet final demand for food expenditure is

given by:

yf = M × xf , (f = 1) (D.6)

If we let f = 2 represent the projected food final demand for another period, then the

equality capturing the change in gross output resulting from a change in food final demand

is given by:

(y2 − y1) = M × (x2 − x1) (D.7)

The environmental factors matrix, E, can be incorporated into a modified equation (D.7),

yielding the change in electricity use by energy source:

(σ2 − σ1) = E ×M × (x2 − x1) (D.8)

In equation (D.8), σ has rows d for primary energy sources.
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D.3.1 Supply Chain Modeling

Supply chain analysis enables us to track electricity use for specific stages of the food

system. Leontief (1967) developed an alternative to aggregation that facilitates supply

chain analysis. Following the Leontief method, as outlined in Canning, Rehkamp, and

Yi (2022), data is organized into supply chain activities, SA ⊂ ACT , non-supply chain

activities, NA ⊂ ACT—where SA ∪ NA = ACT—supply chain commodities, SC ⊂

COM , and non-supply chain commodities, NC ⊂ COM—where SC ∪NC = COM .

With this framework, equation (D.2)—M × x = y—can be represented as follows:



{MSA,SA} {MSA,NA} {MSA,SC} {MSA,NC}

{MNA,SA} {MNA,NA} {MNA,SC} {MNA,NC}

{MSC,SA} {MSC,NA} {MSC,SC} {MSC,NC}

{MNC,SA} {MNC,NA} {MNC,SC} {MNC,NC}


×



{0SA}

{0NA}

{xSC}

{xNC}


=



{ySA}

{yNA}

{ySC}

{yNC}


(D.9)

All non-supply chain enterprises—e.g, hospitals 2—can be considered subcontractors such

that their required inputs and environmental flows (electricity use) are purchased by the

supply chain enterprise to which they subcontract. That is, the contractor (supply chain

enterprise) purchases items on behalf of the subcontractor (non-supply chain enterprise).

This relationship is modeled as:

E∗ = Ed,SCA +Ed,NCA ×MNCA,SCA × {MSCA,SCA}−1, (D.10)

As an example, let xf be the subset of final demand representing personal consumption

expenditure on food. As seen in Table B.1, a commodity consumed within xf would be

“C226 Food at full service restaurants.”
2Table B.1 shows all activities and commodities, including A189 Hospitals. An example of a supply

chain activity is A002 Grain farming.
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Now, before applying supply chain analysis, or limiting final demand to food-related

expenditure, we can represent the electricity budget for the entire economy as:

σ = E × y + σx (D.11)

Then, applying supply chain analysis and considering only a subset of final demand,

denoted by f , the analog to equation (D.11) is:

Σ2f =
[
E∗ × (yf )′′|σf

]
(D.12)

Note, equation (D.12) corresponds to equation (2.4) of the Methods section, where I

also elaborate on converting from a two-dimensional matrix, Σ2f , to a three-dimensional

matrix, Σ3f . This derivation focuses on the steps preceding those outlined in the Methods

section.

Lastly, equation (D.12) can be restated as:

Σ2f =
[
E∗ × (yf1|yf2|...|yf23)|E × (yf24|yf24|yf26)|σf27

]
, (D.13)

which corresponds to equation (2.5) from Methods. To create the environmental factor

matrix, E, as used above, additional matrices are introduced which allocate state-level en-

ergy usage to specific activities and commodities, which is described in Canning, Rehkamp,

and Yi (2022).
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Full Optimization Results

The GAMS software yields solutions with results for “level”, “marginal”, “lower”, and “up-

per”. Level denotes the solved solution while, while lower and upper denote the respective

lower and upper bounds, where applicable. As an example, in Table E.1, the cost min-

imizing solution yields a total emissions level of 632,955,867,326 thousand grams CO2e,

which is less than the upper bound enforced by the IPCC target, 642,871,802,500.

The marginal results show the impact on the objective function by reducing a given

constraint by one unit. As an example, for the cost-minimization energy upper bound

results in Table E.2.1, the marginal result for natural gas is -14,523.87. This means

that relaxing the natural gas bBTU constraint by one unit—adding one percentage point

of growth—will generate a 14,523.87 reduction in the objective function, total LCOE.

Because natural gas has the lowest LCOE, it follows that allowing more usage of that

energy will have the greatest impact on reducing total LCOE. The marginal values have

an interpretable significance for the energy upper bounds depending on the given results

and meaning of each constraint.

E.1 Emissions Totals

Table E.1: Emissions Totals - Cost-Minimization
Level Marginal Upper
632,955,867,326 0 642,871,802,500

Thousands grams CO2e.
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Table E.2: Emissions Totals - Change-Minimization
Level Marginal Upper
642,871,802,500 -0.000638 642,871,802,500

Thousands grams CO2e.

E.2 Energy Totals

E.2.1 Energy Upper Bound

Table E.3: Energy Upper Bound - Cost-Minimization
Energy source Level Marginal Upper
Coal 878,305.43 0.00 1,434,120.97
Hydropower 581,006.28 -1,596.50 581,006.28
Natural Gas 2,442,238.72 -14,523.87 2,442,238.72
Nuclear 1,544,751.39 -11,124.77 1,544,751.39
Petroluem 10,073.00 0.00 27,330.22
Solar 720,378.80 -3,981.25 720,378.80
Geothermal 46,301.29 -1,949.65 46,301.29
Wood and waste biomass 102,934.77 -2,443.48 102,934.77
Wind 1,142,477.63 -13,281.25 1,142,477.63

bBTU

Table E.4: Energy Upper Bound - Change-Minimization
Energy source Level Marginal Upper
Coal 899,282.31 0.000 1,434,120.97
Hydropower 581,006.28 -181.732 581,006.28
Natural Gas 2,442,238.72 -94.219 2,442,238.72
Nuclear 1,544,751.39 -183.462 1,544,751.39
Petroluem 27,330.22 -29.386 27,330.22
Solar 682,144.70 0.000 720,378.80
Geothermal 46,301.29 -177.764 46,301.29
Wood and waste biomass 102,934.77 -175.791 102,934.77
Wind 1,142,477.63 -176.555 1,142,477.63

bBTU
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E.2.2 Energy Lower Bound

Table E.5: Energy Lower Bound - Cost-Minimization
Energy Source Level Marginal Lower
Coal 878,305.43 0.00 744,217.415
Natural Gas 2,442,238.72 0.00 1,164,178.244
Petroluem 10,073.00 3,199.38 10,072.996

bBTU

Table E.6: Energy Lower Bound - Change-Minimization
Energy Source Level Marginal Lower
Coal 899,282.31 0 744,217.415
Natural Gas 2,442,238.72 0 1,164,178.244
Petroluem 27,330.22 0 10,072.996

bBTU
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E.2.3 Energy Source Share of Total

Table E.7: Energy Source Share - Cost-Minimization
Energy Source Level Share of total
Coal 878,305 0.118
Hydropower Gas 581,006 0.078
Natural Gas 2,442,239 0.327
Nuclear 1,544,751 0.207
Petroluem 10,073 0.001
Solar 720,379 0.096
Geothermal 46,301 0.006
Wood and waste biomass 102,935 0.014
Wind 1,142,478 0.153
Total 7,468,467 NA

Table E.8: Energy Source Share - Change-Minimization
Energy Source Level Share of total
Coal 899,282 0.120
Hydropower Gas 581,006 0.078
Natural Gas 2,442,239 0.327
Nuclear 1,544,751 0.207
Petroluem 27,330 0.004
Solar 682,145 0.091
Geothermal 46,301 0.006
Wood and waste biomass 102,935 0.014
Wind 1,142,478 0.153
Total 7,468,467 NA
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E.2.4 Total Electricity Minimum Requirement

Table E.9: Total Electricity Minimum - Cost-Minimization
Level Marginal Lower
7,468,467 24,716.89 7,468,467

bBTU

Table E.10: Total Electricity Minimum - Change-Minimization
Level Marginal Lower
7,468,467 185.8956 7,468,467

bBTU

E.3 Totals Stage and Food Category

Totals for electricity consumption (bBTUs) and CO2e emissions (MMt) by i) energy

source, ii) supply chain stage, and iii) food demand category are provided in the document:

“Supplemental_info.xlsx”
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