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Comparative Effectiveness of Machine Learning Methods for Causal Inference

ML methods for causal inference may find significant estimates that were not found before due to confoundedness or nonlinearity
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Department of Agricultural and Applied Economics, Texas Tech University
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RESEARCH QUESTIONS

* Are machine learning-based methods able to extract causal treatment

DHURANDHAR ET AL: ATE=NULL

RF/ RF/ RF/ RF/  Lasso/ XGB/ OLS/ Lasso/
Logit NN Lasso RF NN XGB Logit Lasso

ATE 026 -0.16 -020 -011 -023 -020 -026 -0.12
(SD) (0.44) (0.45) (0.44) (0.45) (0.46) (0.40) (0.44) (0.04)

etfects in presence of confoundedness or nonlinearity in the model?

* How do these MI.-based causal models compare in terms of bias in the

estimation of the average treatment effect (ATE)?

MOTIVATION

* Traditional regression techniques can produce biased estimates of causal

Causal PSM- PSM- PSM- PSM-
Forest Probit NN RF XGB
ATE -0.09 -0.27 0.15 -0.08 -0.18
(SD) (0.47) (0.49) (0.62) (0.51) (0.44)

effects due to dimensionality, heterogenous treatment effects. and
pL S > Note. For Double M1, Method=Response Model/Treatment Model

BRYAN ET AL. (2014): ATE=44.43
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functional form misspecification.
* In big data sets, confoundedness is more likely.
* Three popular ML approaches to address these issues are:

* Double machine learning (Chernozhukov et al. 2018) utilizes the non-

inversion feature to learn the ATE & ATT under unconfoundedness.
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DML also corrects for bias through orthogonalization and cross-

validation.

* Causal forest (Wager and Athey 2018) utilizes MLs classification SYNTH ETIc D ATA- ATE= 1
|

power to maximize difference across recursively generated data
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partitions in the relationship between outcome and treatment, thus ' ' — ==
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uncovers heterogeneity in causal effect.

* A matching method, e.g., using ML for propensity matching (Ikezawa

RF/LOQ# _

et al. 2022) to minimize the distance between treatment and control

groups.

* Many studies have adopted these methods for more flexible and
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Note. For Double M1, Method=Response Model/Treatment Model
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informative causal analysis. However, no study so far has compared the

|
effectiveness of these models. S REMAR Ks
D AT A & M ETH ODS Iz § * Many data sets, e.g., agricultural and food-related data sets are often high
geographic information, demographics, climate, etc. that are closely
* Data from (Dhurandhar et al., 2014) to obtain the impact of breakfast | | i related, and controlling for one’s movement implicitly controls for
recommendations on weight loss.

dimensional and involve variables related to soil, plant, animal, market,

1.10° others. We show that ML approach may offer a viable alternative to

* Data from (Bryan et al.; 2014) to obtain the impact ot cash transfer to % traditional ATE regression for their tlexible, data-driven nature,
promote out-migration on seasonal food security. 0 — predictive accuracy, and dimension reduction capabilities.
Z
* Synthetic data generation with continuous dependent variable and 10 n 1.0 ‘ .
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