

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Five-Year Plans and Chinese Provincial Agricultural Productivity

Yongxia Tian¹, Saleem Shaik²

1. Department of Agricultural Economics, Kansas State University, amandatian@ksu.edu.

2. Economic Research Service (ERS), USDA, saleem.shaik@usda.gov

Selected Poster prepared for presentation at the 2022 Agricultural & Applied Economics Association Annual Meeting, Anaheim, CA; July 31-August 2

Copyright 2022 by Yongxia Tian, Saleem Sahik. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Five-Year Plans and Chinese Provincial Agricultural Productivity

Yongxia Tian¹, Saleem Shaik²

1. Department of Agricultural Economics, Kansas State University

2. Economic Research Service (ERS), USDA.

Overview

- China's average Total Factor Productivity (TFP) increased from 1.9 percent after the opening and reform policy in 1978 to 4.21 percent in the 1990s and grew as high as 3.5 percent which is almost the twice average of the global level during 2001 to 2015 (GAP report, 2018). The marvelous growth was attributed to the application of the Five-Year Plans (FYPs) (Mao and KOO, 1996; Lin, 1992; Lin and Wang, 2005).
- In the past seven decades, thirteen FYPs have been made and completed to promote production development.
- Though effects of individual policies have been measured, few attempts have been made to assess the comprehensive effects of FYPs for far.

Objective

- Calculate Malmquist productivity index across Chinese provinces given the research period
- Evaluate application of FYPs on provincial productivity in China

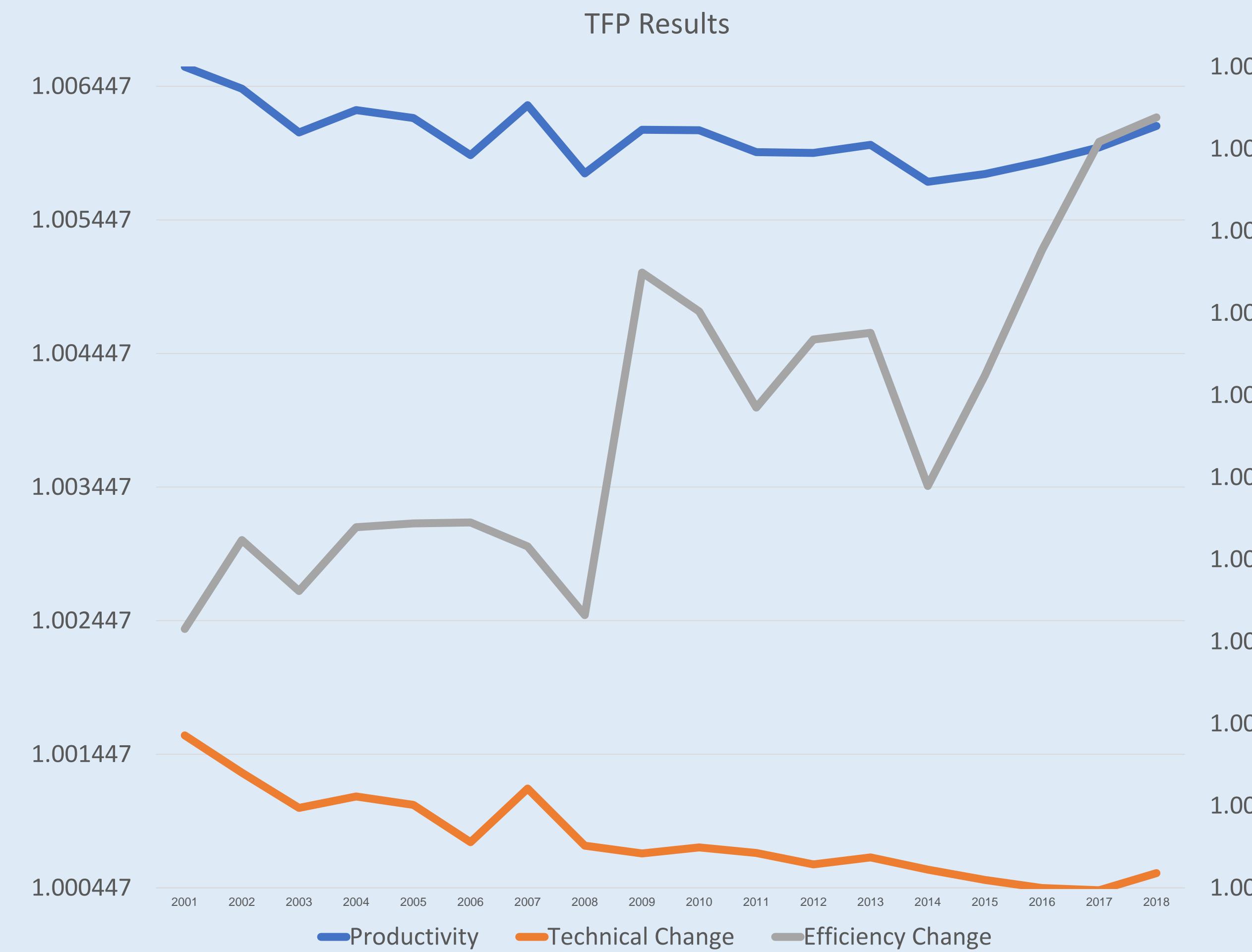
Importance and Impacts of the Five-Year Plans

- Various reform policies including household responsibility systems, price, market and planning reforms contributed up to 48.6 percent of output growth (Lin, 1992).
- The Five-Year Plans are credited with having made a major impact to Chinese agricultural modernization. Schneider and Sharma (2014) reported that owing to supportive policies about agricultural modernization from the 10th FYP, China's agricultural industrialization greatly developed, and the sales revenue of national level dragon head agriculture enterprises reached in 5.7 trillion RMB in 2011.

Data

- Production data comes from China's National Bureau of Statistics and includes output quantities of crop and livestock commodities, input quantities of total planting areas of farm crops, labor, capital, fertilizer, pesticide and energy between 2000 and 2019.

Models and Methodology


- The model used is the Malmquist productivity index (Fare et al, 1994) which can be decomposed into technical efficiency and technical progress and calculated using Malmquist Data Envelopment Analysis (MDEA).

$$\text{Productivity Change from A to } (A') = \frac{TFP_t}{TFP_{t-1}} = \frac{\frac{y_t}{x_t}}{\frac{y_{t-1}}{x_{t-1}}} = \frac{\Delta y}{\Delta x}$$

$$OPM_{t-1} = \left(\frac{D_0^t(x^{k,t}, y^{k,t})}{D_0^{t-1}(x^{k,t-1}, y^{k,t-1})} \right) \times \sqrt{\frac{D_0^{t-1}(x^{k,t}, y^{k,t})}{D_0^t(x^{k,t}, y^{k,t})} \times \frac{D_0^{t-1}(x^{k,t-1}, y^{k,t-1})}{D_0^t(x^{k,t-1}, y^{k,t-1})}}$$

- Two steps of calculation: first, we calculate the TFPs across provinces; second, we examine how successful the application of FYPs from 2000 to 2018 on TFP.

TFP calculation results from 2000 to 2019

Conclusions

- The average TFP calculation results indicate the technical growth has decreasing trend which is the major reason why the productivity growth is slightly in decline.
- 11th, 12th, and 13th FYPs are all negatively significant in comparison with the base 10th FYP. They decrease the productivity and technical progress on average by 4.43% and 3.94%, respectively. In addition, there are no significant effects of FYPs on the technical efficiency for the period of 2005 – 2019.
- The estimation results of FYPs application is consistent with the TFP calculation results.
- With the growth of farmer's income, the farmers show willingness to invest agricultural production and therefore it influences positively on the technical progress.
- Clearly, insufficient fiscal expenditure from governments on agriculture, the limited educated level of farmers and the shrinking population of farmers hinder the development of agricultural growth.
- Also, considering the impact of agricultural mechanization on the scale of land management, the fundamental agricultural policy "household responsibility systems" (issued in 1978, contract extended in 1997 and 2018, respectively) confirms the stability and continuity of this policy. But 135 million out of 200 million rural households have less than 1 acre (China's agricultural census, 2006). The large number and small scale of land operation is hard to standardize agricultural production (Gale and Hu, 2011) and meet the requirements of agricultural modernization.

Reference

2018 Global Agricultural Productivity Report (GAP report).
Mao W.N, Koo W.W (1996). Productivity Growth, Technology Progress, and Efficiency Change in Chinese Agricultural Production from 1984 to 1993. Agricultural Economics Report No 362, Sep 1996
Lin (1992). Rural Reforms and Agricultural Growth in China. Source: The American Economic Review, Mar. 1992, Vol. 82, No. 1 (Mar. 1992), pp. 34- 51
Lin and Wang (2005). Technical progress and Chinese agricultural growth in the 1990s. Chinese Economic Review, 16 (2005) 419-440.
Fare et al (1994). Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. The American Economic Review, Vol 84, No 1 (Mar 1994), pp. 66-83.
Schneider, M., Sharma, Shefali. (2014). China's Pork Miracle? Agribusiness and Development in China's Pork Industry. Minneapolis and Washington: Institute for Agriculture and Trade Policy
Gale and Hu (2011). Food Safety pressures push integration in China's agricultural sector. Amer. J. Agr. Econ. 94(2): 483-488; doi: 10.1093/ajae/aar069

Results

	Effects of Five-Year-Plans on Chinese Agricultural Productivity					
	Productivity		Technical Progress		Technical Efficiency	
	No FE	Fixed Effects	No FE	Fixed Effects	No FE	Fixed Effects
FYP_11	-0.0407*** (-0.0131)	-0.0658*** (-0.0165)	-0.0408** (-0.00945)	-0.0541*** (-0.0119)	0.00494 (-0.0115)	-0.00587 (-0.0146)
FYP_12	-0.0474*** (-0.0178)	-0.0946*** (-0.0261)	-0.0289** (-0.0128)	-0.0577*** (-0.0188)	-0.0151 (-0.0156)	-0.0307 (-0.0231)
FYP_13	-0.0448** (-0.0215)	-0.0915*** (-0.0298)	-0.0485** (-0.0155)	-0.0772*** (-0.0215)	0.0091 (-0.0188)	-0.00644 (-0.0263)
IntenPro ¹	-0.0028 (-0.0104)		-0.0034 (-0.00746)		0.00086 (-0.00908)	
FiscalSupport ²	0.00284 (0.00862)	0.00595 (-0.00891)	0.00355 (-0.00621)	0.0062 (-0.00642)	-0.0011 (-0.00755)	-0.00023 (-0.00786)
Urban ³	0.0645 (-0.0518)	0.0544 (-0.0648)	0.053 (-0.0373)	0.0319 (-0.0467)	0.00076 (-0.0454)	0.0136 (-0.0572)
AgriContr ⁴	0.0633 (-0.0906)	0.202 (-0.221)	-0.0123 (-0.0653)	0.0493 (-0.159)	0.0858 (-0.0795)	0.167 (-0.195)
Education ⁵	-0.0019 (0.00723)	0.0332 (-0.0295)	-0.0033 (-0.00521)	-0.00397 (-0.0213)	0.00259 (-0.00634)	0.0422 (-0.0261)
AgrilInfra ⁶	0.00850* (0.00506)	0.0250* (-0.0146)	0.0106*** (-0.00364)	0.012 (-0.0105)	-0.0018 (-0.00443)	0.00665 (-0.0128)
LnIncome ⁷	0.0204 (-0.0133)	0.012 (-0.0161)	0.0149 (-0.0096)	0.00956 (-0.0116)	0.00563 (-0.0117)	0.00246 (-0.0142)
Intrade ⁸	-0.0017 (0.00384)	0.0168 (-0.015)	-0.0006 (-0.00276)	0.0265** (-0.0108)	-0.0013 (-0.00336)	-0.00857 (-0.0132)
Constant	0.821*** (-0.0995)	0.275 (-0.25)	0.855*** (-0.0717)	0.540*** (-0.18)	0.957*** (-0.0872)	0.708*** (-0.221)
Standard errors in parentheses						
*** p<0.01, ** p<0.05, * p<0.1						

1. Agriculture intensive provinces

2. Proportion of fiscal spending from governments on agriculture

3. Urbanization rate which refers the proportion of urban population

4. Value added of the agriculture over the provincial GDP

5. Average educated levels for of farmers

6. Agricultural infrastructure which refers farmers' investment on agricultural fixed assets

7. Per capita income

8. Chinese general imports and exports of agricultural products

Discussion

- Why the 11th, 12th, and 13th FYP have deterioration effects on the TFP?
- Natural disasters are one main determinant hindering agricultural development. And the agricultural policy is better to tackle this issue with the help of agricultural insurance.
- The possible reason why they have deterioration effects on the TFP can be that they mainly targets the strategy structural adjustment of agricultural sector but lack sufficient supportive measures.
- We can estimate if the unexpected output such as agricultural carbon emissions works in the decline of production growth.

