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Aim and Scope

To characterize spatial auto-correlation in groundwater levels using a functional
instrument called a semivariogram and use it to perform spatial prediction.

To estimate the range within which groundwater levels are spatially
auto-correlated. This is useful for determining groundwater “localities”

for management of groundwater resources.

Department of Social Science and Humanities, Indraprastha Institute of Information Technology, Delhi (llITD)

Spatial auto-correlation implies that groundwater level at a
location is more similar to that at nearby locations than further

away. The opposite is spatial randomness.
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- Spatial Auto-Correlation at

the district (left) and zoomed to the
well scale (right). Significant spatial
autocorrelation at both scales.

- Arises from sub-surface water flows, well interference, spatially-con
tiguous climatic conditions and land use land cover (LULC)..

- Can be exploited to perform spatial prediction.

- Needs to be formally characterized in a given realization of data.

- Violates classical assumptions in econometrics if left unaccounted.

Spatial dependence model characterizes the groundwater level at each loca-

tion in a domain D as a realization of a random variable which has a (global)
spatial trend component and a (local) spatial dependence component.

A stochastic spatial process is a family of indefinitely many random variables

indexed by location in a spatial domain D in R? expressed as {Y(w):win D}
where Y(w) refers to the family of random variables and wto an arbitrary loca-

tionin D [2].

Intrinsic spatial stationarity requires a constant mean and that the variance

of the differences between two random variables separated by spatial lag h

depend only on h and not on absolute positions.

E[Yw)]=u forall winD

Var[Y(w+h) - Y(w)] =2y(h) forall w inDandh>0

where y(h) is called the “semivariogram” of the stochastic spatial process [2,3].
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Spatial Characterization: the Semivariogram is a mea-
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Spatial Autocorrelation in Groundwater Levels

sure of spatial dissimilarity. It is the inverse of the “covar-
iogram” which is a measure of spatial similarity.
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Semivariogram Estimation and Model Fitting

As spatial lag increases,
variation in realizations increases.

We estimate a semivariogram from the Western half of the state of Uttar Pradesh. This sub-region is considered distinctly
from the Eastern half because of greater uniformity of agro-climatic and hydro-geological conditions and groundwater
levels in this region can be reasonably considered as being the realizations of a single stochastic spatial proces.
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== Density

Step 1:Variogram cloud

Classical estimator for an
isotropic semivariogram:
(N. A. Cressie, 1993).

25(h) =)

(Y(w;) — Y(w;))*

[l

n(lh|)

(5)

h| - all pairs of wells w;, w;
distance h apart
n(|h|) number of such wells

GWL - Western Half
Min. 1st Qu. Median Mean 3rd Qu. Max.
04 5.0 9.1 10.0 13.4 36.3

Step 2: Experimental

Estimated and Fitted Semivariograms

Semivariogam
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Conclusions

Semivariogram was estimated using groundwater levels data for

Jttar Pradesh, India in the year 2009, post-monsoon (Aug). Groundwater
evels were kriged to get a high-res map for an agro-climatic sub-region of
UP and were auto-correlated within a 27 km radius. There was high
correlation (0.81) between predicted and observed values

Spatial Prediction: the Kriging Estimator

Predict unknown value as a weighted sum of neighboring values
using semivariogram, subject to:
1. Unbiasedness

ETY(w0)] = E[Y(wO)] =

Satisfied if > A; = 1 and the mean is stationary i.e E[Y(wi)] = u for
all i, where uis a constant.

2. Minimum Variance

Find weights that minimize prediction variance, 02 subject to un-
biasedness constraints

oZ = Var| {>( wQ0) — Y(w0)]

Kriging Vs Deterministic Spatial Interpolation

- Accounts for data redundancy due to spatial clustering.

« Provides confidence interval for estimates.

Variance map
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Above Left: spatial prediction of groundwater levels using administrative data for UP, 2009.
Right: Prediction variance. White dots represent the wells where observations were made by
the monitoring agency. Source of data: UPGWD

Variogram Model Cross Validation
Spherical Variogram Model, Range ~ 27 km, Sill ~ 25 m2, Nugget ~ 1.7 m2

The experimental semivariogram
is obtained by binning the points
in the cloud and taking expected
values within each bin.

Step 3: Fitted Model
Semivariogam

A closed form model is fitted to the
experimental semivariogram using

fitting criteria (Cressie, 1993).

A fitted model can be used to
perform spatial prediction as it
provides a measure of variance at
arbitrary values of spatial lag h.

The important parameters of a fitted
semivariogram are the nugget, sill
and range which are defined
below-left and visualized in the
figure to the left and below.
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