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Spatial Autocorrelation in Groundwater Levels
Saif Ali, Gaurav Arora

Department of Social Science and Humanities, Indraprastha Institute of Information Technology, Delhi (IIITD)

Spatial auto-correlation implies that groundwater level at a 
location is more similar to that at nearby locations than further 
away. The opposite is spatial randomness.

- Spatial Auto-Correlation at 
the district (left) and zoomed to the 
well scale (right). Signi�cant spatial 
autocorrelation at both scales. 

 • Arises from sub-surface water flows, well interference, spatially-con                  
t    tiguous climatic conditions and land use land cover (LULC)..

 • Can be exploited to perform spatial prediction.

 • Needs to be formally characterized in a given realization of data.

 • Violates classical assumptions in econometrics if left unaccounted.

Spatial dependence model characterizes the groundwater level at each loca-
tion in a domain D as a realization of a random variable which has a (global) 
spatial trend component and a (local) spatial dependence component. 

A stochastic spatial process is a family of inde�nitely many random variables 
indexed by location in a spatial domain D in R2 expressed as {Y(w) : w in D} 
where Y(w) refers to the family of random variables and w to an arbitrary loca-
tion in D [2].

Intrinsic spatial stationarity requires a constant mean and that the variance 
of the di�erences between two random variables separated by spatial lag h 
depend only on h and not on absolute positions.

    E[Y(w)] = μ    for all    w in D 

    Var[Y(w+h) − Y(w)] = 2γ(h)   for all   w  in D and h > 0 

where γ(h) is called the “semivariogram” of the stochastic spatial process [2,3]. 

Spatial Characterization: the Semivariogram is a mea-
sure of spatial dissimilarity.  It is the inverse of the “covar-
iogram” which is a measure of spatial similarity. 

                 γ(h) = C(0) − C(h)   

As spatial lag increases, 
variation in realizations increases. 

Semivariogram Estimation and Model Fitting

Spatial Prediction: the Kriging Estimator
Predict unknown value as a weighted sum of neighboring values 
using semivariogram, subject to: 
1. Unbiasedness

E[Y(w0)] = E[Y(w0)] = µ
Satis�ed if ∑λi = 1 and the mean is stationary i.e E[Y(wi)] = µ for 
all i, where µ is a constant.
2. Minimum Variance
Find weights that minimize prediction variance, σ2 subject to un-
biasedness constraints

σ2  = Var[Y(w0) − Y(w0)]

Variogram Model Cross Validation

Above Left: spatial prediction of groundwater levels using administrative data for UP, 2009. 
Right: Prediction variance.  White dots represent the wells where observations were made by 
the monitoring agency. Source of data: UPGWD 

 Kriging Vs Deterministic Spatial Interpolation

 • Accounts for data redundancy due to spatial clustering.

 • Provides confidence interval for estimates.

Aim and Scope
To characterize spatial auto-correlation in groundwater levels using a functional
instrument called a semivariogram and use it to perform spatial prediction. 
To estimate the range within which groundwater levels are spatially 
auto-correlated. This is useful for determining groundwater “localities” 
for management of groundwater resources. 

Conclusions
Semivariogram was estimated using groundwater levels data for 
Uttar Pradesh, India in the year 2009, post-monsoon (Aug). Groundwater 
levels were kriged to get a high-res map for an agro-climatic sub-region of 
UP and were auto-correlated within a 27 km radius. There was high 
correlation (0.81) between predicted and observed values         .   
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Experimental semivariogram (dotted)

Fitted “spherical” model semivariogram (solid)

We estimate a semivariogram from the Western half of the state of Uttar Pradesh. This sub-region is considered distinctly 
from the Eastern half because of greater uniformity of agro-climatic and hydro-geological conditions and groundwater 
levels in this region can be reasonably considered as being the realizations of a single stochastic spatial proces. 

Step 1: Variogram cloud

Spherical Semivariogram Model (Cressie, 1993)

Estimated and Fitted Semivariograms

c0 - Nugget effect (micro-scale variation)
cs - Partial Sill (max. variance)
as - Range (distance of max. variance)
h - Spatial lag (separation between wells)

Nugget ~ 1.7 m2

Step 2: Experimental 
Semivariogam
The experimental semivariogram
is obtained by binning the points
in the cloud and taking expected
values within each bin. 

Step 3: Fitted Model
Semivariogam
A closed form model is �tted to the
experimental semivariogram using
either MLE, restricted MLE or OLS 
fitting criteria (Cressie, 1993). 

A �tted model can be used to 
perform spatial prediction as it 
provides a measure of variance at
arbitrary values of spatial lag h. 

The important parameters of a �tted
semivariogram are the nugget, sill 
and range which are de�ned 
below-left and visualized in the 
�gure to the left and below. 

Spherical Model
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