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Abstract

A new footprint-based mechanism was introduced to the Corporate Average Fuel Econ-
omy (CAFE) standard in 2012, and we observe a substantial change in the relationship
between fuel economy and other primary vehicle attributes. To the extent that the new
mechanism affects the optimal set of vehicle attributes, it would also affect the driv-
ing behavior of households owning vehicles that are newly remodeled after 2012. In
this paper, we estimate the fuel-economy rebound effect in a way that distinguishes
the per-mile cost reduction (fuel-cost effect) and bundle quality adjustment (quality-
adjustment effect), both of which occur when fuel economy is improved. Using the
2017 National Household Travel Survey (NHTS) of approximately 110,000 vehicles
representative of U.S. population, we estimate the rebound effects by taking a two-
step approach and utilizing vehicle remodeling cycles as a new source of variation. The
results show that the fuel-cost rebound effect was 8.9% between 2005 and 2016. We
then find that the quality-adjustment effect was as much as 9.2% during the period.
This quality-adjustment effect completely offsets the fuel-cost rebound effect and yields
a 0% fuel-economy rebound effect. The quality-adjustment effect reduced to 2.0% after
2012, suggesting that the fuel economy improvement was achieved with milder quality
adjustment than before. Failing to account for the quality-adjustment effect resulted
in an overestimation of the true fuel economy rebound effect by 11.0%-points between
2005 and 2011 and by 3.1%-points after 2012.
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1 Introduction

Aiming to curb greenhouse gas and other pollutant emissions, the U.S. government has in-

troduced energy-efficiency standards to a variety of household appliances and automobiles

over the past decades. Energy economists, however, have found that such standards entail

a type of behavioral failure called “rebound effects,” suggesting that ex-ante engineering

estimates of energy savings will unlikely be achieved due to increased energy consumption

by consumers encouraged by the saved energy costs.1 Precisely estimating the magnitude

of rebound effects is essential to attaining the intended energy savings and evaluating the

efficiency and welfare effects of such standards. In the U.S. automobile sector, the Corporate

Average Fuel Economy (CAFE) standard has been recognized as one of the most influential

energy-efficiency standards, which has almost doubled the industry-wide average fuel econ-

omy since its enactment in 1975 through 2018 (US EPA, 2019). The U.S. Environmental

Protection Agency (EPA) had employed a 10% rebound effect in their cost-benefit analysis

of the CAFE standard. In 2018, however, the EPA of Trump Administration proposed a

rollback of the CAFE standard (U.S. EPA and DOT, 2018), where they doubled the magni-

tude of the rebound effect to inflate the benefits from avoided accident-related fatalities. A

group of economists swiftly criticized that the agency justified the change based on selected

rebound estimates in favor of their scenario, and that they ignored more recent and reliable

estimates which suggested smaller rebound effects. (Bento et al., 2018).

In the economics literature, rebound effects of the CAFE standard are typically esti-

mated as the elasticity of Vehicle Miles Traveled (VMT) with respect to either fuel economy

or per-mile driving costs. To obtain more reliable rebound estimates, recent studies have

increasingly utilized micro data such as odometer readings of individual vehicles in some

1In this paper, we use the term “rebound effects” to indicate direct rebound effects unless otherwise
noted. The direct rebound effect refers to the percentage of forgone energy savings from the regulated good
due to an increase in energy efficiency of the good. There is another type of rebound effect, called an indirect
rebound effect. The indirect rebound effect refers to the percentage change of energy consumption from other
goods and services that is induced by the increased energy efficiency of the regulated good. See Gillingham
et al. (2016) for more comprehensive explanation.
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major U.S. states (Knittel and Sandler, 2018; Langer et al., 2017) and large-scale surveys

such as the National Household Travel Survey (NHTS) (Linn, 2016; Su, 2012).2 Gillingham

(2020) tabulates a long list of relevant studies of this class and reports that the average of

the estimated fuel-economy rebound effects is 14%,3 with a relatively wide range of estimates

between 0% and 40%. Small and Van Dender (2007) directly estimate the rebound effects of

the CAFE standard using state-level data and report short-run and long-run rebound effects

at 4.5% and 22.2%, respectively.

In this paper, we address two important challenges that are unmet in the literature to

obtain a more accurate and policy-relevant estimate of the rebound effects of the CAFE

standards. First, most of the economic studies estimate the fuel-economy rebound effect by

implicitly assuming that the increase in fuel economy is achieved without changing other ve-

hicle attributes. Anderson and Sallee (2016) and West et al. (2017) analytically show that re-

bound estimates that hold vehicle characteristics constant (henceforth “quality-unadjusted”)

can overestimate (underestimate) the rebound effects of fuel economy standards when vehicle

quality is degraded (improved) for compliance.4 Gillingham (2020) also emphasizes that con-

flating fuel-efficiency improvements that materialize exogenously5 and those that forgo other

attributes results in incorrect evaluations of rebound effects. Examining the effect of this

trade-off between fuel economy and other vehicle quality on VMT seems more relevant under

the new regime of the CAFE standard started in 2012. The new standard imposes increas-

ingly stringent standards every year but instead offers a new “footprint-based” mechanism,6

which allows more lenient (stringent) standards for large (small) vehicles than the previous

2Another focus has been on the the heterogeneity in the VMT elasticity across households: household
location types (i.e., road network and population density) (Su, 2012), residential density (Brownstone and
Golob, 2009), and nature of vehicle trips (Dillon et al., 2015). Heterogeneity in the VMT elasticity across
vehicle types are also estimated (Bento et al., 2009).

3He also notes that the average of the rebound estimates in the odometer-reading-based studies is 8.1%
and emphasizes that this estimate appears to be more reliable.

4West et al. (2017) further show that the extent to which the correlation between fuel economy and
other vehicle quality that affects driving patterns and the price range where this trade-off occurs can have
an important implication in evaluating the effect of rebound effect.

5They refer to this type of energy-efficiency improvements as “zero-cost breakthrough.”
6Footprint is defined as the rectangular area surrounded by the center of four tires of a vehicle and thus

used as one measure of a vehicle’s size.
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version. This regulatory change was intended to encourage automakers to adopt fuel-saving

technologies in increasing fuel economy by preempting their incentives to utilize the trade-

off between fuel economy and vehicle size, which was salient before the revision (Klier and

Linn, 2012; Knittel, 2011). Anderson and Sallee (2016) suggest that the quality-unadjusted

rebound estimates likely overstated the true rebound effect under the previous CAFE stan-

dard because such quality adjustments would reduce consumer utility from driving. Under

the footprint-based standard, in contrast, they suggest that the quality-unadjusted rebound

estimates are more likely to measure the true rebound effect to the extent that the new

mechanism neutralizes such incentives. West et al. (2017) provide the first and only empir-

ical causal evidence that quality adjustments offset the rebound effects from improved fuel

economy in Texas in 2009 and 2010. Under the footprint-based standard, Leard et al. (2020)

conclude that improvements in fuel economy were still achieved mostly by the trade-off be-

tween fuel economy and other attributes between 2012 and 2016. Yet, no empirical evidence

has been offered about the existence, magnitude, and direction of the quality adjustment in

the rebound estimate of the footprint-based CAFE standard.

Second, the estimated VMT elasticity with respect to fuel economy in the literature does

not seem to measure the effect of the CAFE standard precisely. This stems from the busi-

ness practice in the automobile industry that primary vehicle attributes are altered at the

timing of remodeling, which usually occurs every four to six years and at different timings

for different vehicle models (Klier and Linn, 2016). Then, for example, the vehicle lineup

offered in 2014 includes both vehicle models continued since before 2012 without reference

to the footprint-based standard and those newly remodeled after 2012 whose attributes are

optimized for the new standard. To the extent that the two regimes of the CAFE standard

affect the optimal set of vehicle attributes differently, driving behavior would also be affected

differently between households owning continued and remodeled vehicles.7 Therefore, esti-

7Unlike gasoline taxes, the CAFE standard does not directly affect households’ driving behavior instan-
taneously at one time. This is also in contrast to the “Cash for Clunkers” program that directly provides
financial incentives to consumers so that households would replace fuel-inefficient vehicles with fuel-efficient
ones.
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mating VMT elasticities with respect to fuel economy by averaging out the vehicle lineup is

equivalent to averaging the effects of two different regimes of the CAFE standard. Suppose

the new standard increases the sales of fuel-efficient vehicles with milder trade-offs with other

vehicle attributes. In that case, such an average elasticity underestimates the rebound effects

that are directly attributable to the new CAFE standard. This is especially true in earlier

years after new regulatory mechanisms are introduced or when regulatory stringency keeps

changing. We address this issue by utilizing the timing of remodeling of each individual

vehicle model as a source of variation. This variation enables us not only to estimate the

difference in the size of the rebound effect before and after the regulatory change, but also

to compare the net fuel-economy rebound effect with and without quality adjustment while

circumventing the omitted variable bias.

We estimate the fuel-economy rebound effects in ways that distinguish VMT changes that

are attributable to the per-mile cost reduction and bundle quality changes, both of which

occur when fuel economy is improved by vehicle remodeling. We take a two-step approach

similar to Klier and Linn (2016). First, we estimate the VMT demand function in ways that

separately identify the movements along and shifts of the VMT demand curve under fairly

plausible assumptions. The movement is identified by the change in gasoline price, and the

shift is identified non-parametrically by the vehicle model by model year fixed effects. Then,

we estimate how the estimated shift of the VMT demand curve is associated with changes in

fuel economy and bundle vehicle quality, and examine whether the relationship differs before

and after 2012. We use the 2017 National Household Travel Survey (NHTS), a large-scale

survey of nationally representative sample households with ample demographic information.

Using the estimated VMT elasticity, we compute the medium-run fuel-economy rebound

effect, which applies to the four to six year window and reflects the variation of fuel economy

induced by either regime of the CAFE standard.

The results show that the VMT rebound effect with respect to per-mile fuel cost, which

corresponds to the movement along the VMT curve, was 8.9% between 2005 and 2016. This
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rebound estimate is close to the ones obtained in recent studies that use the most reliable

odometer reading data. We then find that the vehicle quality adjustment that occurs with

vehicle remodeling was as much as 9.2% and completely offset the fuel-cost rebound effect

between 2005 and 2011, which corroborates the 0% rebound estimate offered by West et al.

(2017). Failing to account for quality adjustments in the rebound estimate resulted in an

overestimation by 11.0%-points before 2011. The quality-adjustment effect then reduced

to 2.0% after 2012. This attenuation suggests that the fuel efficiency increased with much

milder quality adjustment than before, but we still find evidence about overestimation by

3.1%-points after 2012. Furthermore, the differences in the size and direction of the qual-

ity adjustment effect strongly suggest that such adjustments were the result of the CAFE

standard and its regulatory change in 2012. For trucks, we find that the quality-adjustment

effect was almost double that for cars before 2011, but it turned to reinforcing rather than

offsetting the fuel-cost rebound effect after 2012. For cars, the quality-adjustment effect still

offset the fuel-cost rebound effect after 2012 even though the magnitude was smaller than

before. This contrast between cars and trucks before and after 2012 conforms closely to what

Anderson and Sallee (2016) and Leard et al. (2020) suggest about the consequences of the

regulatory change. That is, automakers were forced to rely more on forgoing vehicle quality

for truck fuel economy before 2011 when only the truck standard was raised under the CAFE

standard that was disadvantageous to larger trucks. After 2012, in contrast, they benefited

from avoiding unnecessary quality adjustments only in trucks under the new footprint-based

CAFE standard that was in favor of larger trucks. This is the first empirical evidence that

quantifies both the direction and magnitude of the quality-adjustment effect in the rebound

estimate, which has been one of the lingering questions. Moreover, our findings highlight the

heterogeneity in the effect between cars and trucks. These results contribute to refining the

existing rebound estimate and benefit-cost analysis of the footprint-based CAFE standard.

The rest of this paper is organized as follows. Section 2 provides a theoretical framework

to explain how changes in fuel economy will shift the VMT demand curve by the trade-off
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with other vehicle attributes and provides observations about the historical development of

some primary vehicle attributes. Section 3 describes our data set, develops our empirical

model, and details how we identify the changes in VMT that are associated with changes

in vehicle quality. Section 4 reports and interprets the estimation results. Additional tables

and figures are presented in the appendices.

2 Conceptual Framework

2.1 Decomposition of Fuel-economy Elasticity of VMT

West et al. (2017) show that VMT elasticity estimates obtained by holding vehicle attributes

constant will be biased when changes in fuel economy accompany systematic changes in other

vehicle attributes. To reiterate their framework, let PGASi and MPGj denote gasoline

prices at household i’s location and fuel economy of vehicle j, respectively. Suppose VMT of

household i from vehicle j is determined by the cost per mile C(PGASi,MPGj) =
PGASi

MPGj

,

non-fuel-economy vehicle attributes (Xj), and household demographics (Zi). Suppose further

that Xj is technologically correlated with fuel economy, namely Xj = X(MPGj). Then, the

household’s total volume of gasoline consumption on the vehicle can be expressed as

QGASij =
VMTij

MPGj

=

V

(
C(PGASi,MPGj), X(MPGj), Zi

)
MPGj

. (1)

Taking the natural log of both sides and differentiating with respect to MPGj yields the

elasticity of gasoline consumption with respect to fuel economy as

ϵMPG = −1− ηC + gal−1 × ∂V

∂X
× ∂X

∂MPG
. (2)

The first term indicates that gasoline consumption decreases by the same percentage as the

fuel economy improvement. The second term ηC is the VMT elasticity with respect to the

cost per mile at a particular gasoline price (i.e., ceteris-paribus rebound effect) and takes

6



negative values. The last product term is referred to as the quality-adjustment term, which

measures the portion of the elasticity of gasoline consumption from bundle changes in vehi-

cle attributes that are technologically induced by fuel economy improvements. This product

term is most likely to be negative as a whole because fuel economy and other vehicle at-

tributes such as acceleration and size are negatively correlated, whereas such attributes are

typically positively correlated with VMT. Therefore, to the extent that the negative corre-

lation between fuel economy and other vehicle attributes is salient, the quality-adjustment

term offsets the ceteris-paribus rebound effect. If we assume away the correlation between

fuel economy and other vehicle attributes, then the quality-adjustment term vanishes. In

contrast, taking the natural log and differentiating equation 1 with respect to the gasoline

price yields

ϵMPG = ηC , (3)

indicating that gasoline consumption decreases at the same rate as VMT decreases following

a gasoline price increase.

We now turn to derive econometric implications. Figure 1 shows the stylized (inverse)

VMT demand curve that governs the relationship between the cost per mile and VMT as

defined in Equation (1). Suppose that only the gasoline price decreases without any change

in vehicle attributes. Then, VMT is expected to increase from VMT0 to VMT1 along the

VMT demand curve ν0. Next, suppose that the fuel economy of the vehicle increases by

reducing its acceleration performance due to the automaker’s incapability of introducing

cutting-edge fuel-saving technologies. Then, consumers become less willing to drive the car

because the decreased acceleration has made it less fun to drive. This response is described as

the inward shift of the VMT demand curve from ν0 to ν1. Given this inward shift, the VMT

increases from VMT0 only to VMT ′
1. If we correctly recognize the quality change and the

inward shift of the VMT demand curve, we would observe the inelastic VMT demand curve

ν̃. However, if we estimate the changes in VMT holding other vehicle attributes constant,

we estimate the elastic VMT demand curve ν0. In such a case, we overestimate the true
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rebound effect with respect to fuel economy. In contrast, if automakers successfully improve

fuel economy while enhancing vehicle quality that consumers value, the VMT curve shifts

outward and we underestimate the true rebound effects.

Thus, whether and how to control for vehicle attributes in an econometric model can

introduce biases in the estimation of the true rebound effect, which in turn results in biased

cost and benefit estimates.

2.2 Trade-offs Among Vehicle Attributes, and Timing of the Change

Now we turn to investigating how fuel economy improvements have been offered in the real

world, with a special focus on the relationship between other primary vehicle attributes

and the timing of the improvements. Figure 2 describes the historical relationship between

fuel economy and acceleration performance, measured as the horsepower to weight ratio, for

passenger cars and light trucks between 1975 and 2016. For both cars and trucks, we observe

that fuel economy increased sharply until the mid 1980s, while acceleration barely increased

or slightly decreased. Most recently, after the mid 2000s, fuel economy kept increasing

accompanied by increasing acceleration. Only between the mid 1980s and mid 2000s we

find fuel economy did not increasing, while we observe a rapid increase in acceleration. This

pattern almost perfectly matches the historical development of the Corporate Average Fuel

Economy (CAFE) Standards.8 The CAFE standard was introduced in 1978 and raised

sharply until 1985,9 followed by a two-decade-long lull until the mid to end of the 2000s.

The standards have been raised since 2005 for trucks and since 2012 for cars. This apparent

coincidence between the CAFE standards, fuel economy, and acceleration suggests that

automakers took full advantage of the trade-off between fuel economy and acceleration.

That is, when CAFE stringency sharply increased, automakers devoted their resources to

improving fuel economy at the cost of acceleration, but once the CAFE stringency stopped

8See Figure A.1 in Appendix A
9Standards for cars were raised from 18 mpg to 27.5 mpg, a 52% increase, between 1978 and 1985.

Standards for trucks were raised from 17.5 mpg to 19.5 mpg between 1982 to 1985.
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increasing, they turn to enhancing acceleration at the cost of fuel economy.10

Aggregated statistics often exhibit a rather gradual change in fuel economy and other

attributes. If we observe individual vehicle models, however, their attributes have evolved

discontinuously over time. Figure 3 shows the distribution of year-on-year percentage changes

in the four primary vehicle attributes for vehicle models that were continued from the pre-

vious year and those remodeled in the year. In either of the attributes, we find greater

percentage changes in the years when vehicle models are remodeled. On the other hand, we

observe barely discernible percentage changes when vehicle models are continued. This is a

well-known business practice in the automobile industry called “remodel cycles”, which is

typically every four to six years, on average.

These observations suggest that vehicle remodeling is a useful source of variation to iden-

tify the relationship between fuel economy and VMT, and that it is essential to appropriately

deal with the trade-off between vehicle attributes.

3 Empirical Strategy

3.1 The Data

We use the National Household Travel Survey (NHTS) published in 2017 as the main data

set. The NHTS contains demographic information of some 130,000 households along with

ownership and usage information of about 240,000 light-duty vehicles and self-reported an-

nual VMT. Each household was surveyed in a month between April 2016 and April 2017.

The major benefits of the NHTS are that the households are nationally representative and

that an extensive list of demographic information is provided. We use self-reported annual

VMT as the dependent variable. We acknowledge that self-reported VMT is a less accurate

measure of true VMT than odometer-reading-based VMT due to potential errors in esti-

mating and reporting VMT. However, Li et al. (2014) and Linn (2016) conclude that such

errors do not necessarily introduce biases in one direction or the other, on average, and yield

10See Figure A.2 for the trade-off between fuel economy, horsepower, and curb weight. We see clearer
trade-offs between them.
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broadly similar results. The NHTS also provides “Estimated VMT,” which is calculated

based on a combination of the agency’s simple econometric models. This version of VMT

is attractive in that it increases the number of observations available for estimation, but we

prefer not to use this version of VMT since we are not confident enough about the direction

and magnitude of the subsumed estimation errors in each step. We omit vehicle models

older than 12 years old, which were produced before 2005. Although this omission results

in a 30% loss of observation, we do so because vehicles that are too old may not be imme-

diately capable of driving with valid registration and the operation of such old vehicles may

be determined beyond economic theory. We choose the 12-year-old criterion because the

U.S. Bureau of Transportation Statistics reports that the average age of light-duty vehicles

“in operation” in 2017 was 11.2 years old. We also omit observations with missing data for

either of the variables we use in our estimation. Although we lose more observations, we

would rather gain unbiasedness than gain efficiency of our estimates. As a result, we are left

with some 110,000 observations of vehicles.

Since one of our primary interests is the VMT elasticity with respect to gasoline prices,

we need to have sufficient meaningful identifying variation in gasoline prices. Due to confi-

dentiality, the NHTS provides only annual average gasoline prices that vary only across 102

distinct regions.11 Instead, we use quarterly gasoline prices obtained from the Cost of Living

Index (COLI) by the Council for Community and Economic Research12 of the American

Chamber of Commerce for some 270 Combined Core-Based Statistical Areas (CBSAs). For

the anonymized regions in the NHTS, we impute quarterly gasoline prices as follows. First,

we obtain monthly gasoline prices from the Energy Information Agency (EIA) at the PADD

level and compute the quarterly average gasoline prices in each PADD. We also compute the

average quarterly gasoline prices for each CBSAs. Then, we compute deviations between the

COLI-based and EIA-based gasoline prices and impute the quarterly gasoline prices for the

11Fifty-two Combined Core-Based Statistical Areas (CBSAs) with more than 1 million population are
specified and the remaining areas are anonymized and subsumed at the state level.

12Previously known as the American Chamber of Commerce Research Association (ACCRA).
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anonymized regions.13 As a result, we have 252 distinct regions (52 major CBSAs plus 200

small ones) over four quarters from the second quarter of 2016.

Other relevant vehicle attributes, including model generation, are obtained from Ward’s

Automotive Yearbook. Since the NHTS data set specifies vehicles only at the vehicle model

level (rather than the vehicle trim level), we merge the vehicle attributes of “base grade”

within each vehicle model and model year. Table 1 tabulates the summary statistics of the

main variables.

3.2 The Empirical Model

3.2.1 Estimating VMT Demand Curve (1st Step)

We now estimate how households’ annual vehicle miles traveled (VMT) is associated with

changes in fuel economy through two channels: per-mile fuel cost and vehicle quality. In

the literature that uses household-level data, variants of the following Cobb-Douglas VMT

function have been widely estimated:

log(VMTij) = β0 + β1 log(FCOSTij) + x
′

jγ + z
′

iϕ+ εij, (4)

where i indexes households and j indexes vehicles. FCOSTij denotes the fuel cost of vehicle j

that household i owns, in terms of either gasoline prices that household i faces, fuel economy

of vehicle model j, or the ratio of the two, which is per-mile fuel cost. xj and zi are the

vectors of vehicle attributes and household characteristics, respectively, and can be replaced

with vehicle and household fixed effects depending on the data structure. The β1 should of

primary interest, which shows the VMT elasticity of fuel costs. This specification, however,

suffers from a dilemma. Adding xj means that the β1 is identified as a fuel-cost VMT

elasticity holding vehicle attributes constant, which precludes the effect of vehicle quality

13This is similar to the approach by Linn (2016). Another example is Banzhaf and Kasim (2019) , who
regress COLI gasoline prices on those of NHTS and use the predicted values. However, Banzhaf and Kasim
(2019) uses confidential NHTS data and identify the household location at the zip code level, which is not
applicable in our analysis.
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changes accompanied by the change in fuel economy. Removing or reducing xj triggers

identification issues pertaining to omitted variable biases.

To distinguish the movement along and the shift of the VMT demand curve, we take

a two-step approach similar to Klier and Linn (2016) and Knittel (2011), who identify the

shift of the technology trade-off curve between fuel economy and other attributes as the

year or year by vehicle model dummy variables. We isolate the portion of VMT that is

attributable to vehicle attributes using vehicle model by model year fixed effects. In the first

step, we estimate the following Cobb-Douglas VMT demand function by Ordinary Least

Squares (OLS):

log(VMTid,jt) = β0 + β1 log(GASPi) + β2 log(DPM ij) + ξjt + ϕ(i, d, j) + τq + εid,jt, (5)

where i indexes households, j vehicles, d primary drivers of vehicle j, q survey quarter, and

t vehicle model year.14 VMTidq,jt is the self-reported annual VMT of vehicle j produced

in year t that household i owns (in survey quarter q)15 whose primary driver is reported

as person d. GASPi is the average retail gasoline price that household i faces (in surveyed

quarter q).

Following Linn (2016), we add DPM ij, the natural log of the average dollar per mile

of other vehicles within a household that owns multiple light-duty vehicles. This is defined

as the ratio of gasoline prices in the surveyed quarter to the average fuel economy of other

vehicles within the same household. To single-vehicle households, a value of zero is assigned.

We add this variable for two reasons. First, DPM ij is expected to account for within-

household substitution effects for multi-vehicle households. As Linn (2016) points out, it

seems plausible to regard the decision about VMT on each vehicle as part of a problem of

allocating household VMT to each vehicle they own, such as a combination of a minivan

14Note that index t is one of the vehicle attributes and not the time dimension of the variables. However,
we will recover the time dimension of vehicle attributes later so we show t separated by comma in equation
(5).

15Since all vehicles within a household are surveyed in the same survey quarter, there is no variation over
survey quarters within a household. Therefore, the index i suffices.
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for leisure and a sedan for commuting. Then, changes in “relative” driving costs, due either

to changes in gasoline price or fuel economy, will encourage the household to drive more on

one vehicle and less on the other. Second, DPM ij virtually generates variation in GASPi

over j within a household. If the substitution exists, the VMT responds to changes in

the driving cost differently across vehicles even at the same gas price. Given the relatively

limited variation in gas prices in our data, we expect that the within-household variation

increases the identifying power of GASPi. In equation (5), β1 and β2 exhibit the VMT

elasticity with respect to fuel price without the within-household substitution effect and the

substitution effect for multi-vehicle households, respectively. β1 is expected to be negative

and β2 is expected to be positive. The economy-wide average VMT elasticity with respect

to fuel economy is then calculated by β̂∗ = β̂1 +0.539× β̂2, where 0.539 is the average share

of multi-vehicle households in our data during our sample period.

The key to identifying the fuel-cost VMT elasticity and the VMT change caused by vehicle

quality change is the vehicle model by model-year fixed effect ξj,t. This term captures any

time-varying vehicle-model specific VMT and serves as a vehicle quality index measured as

the (natural log of) VMT. Since ξj,t absorbs all the vehicle quality, β1 identifies the average

VMT elasticity with respect to fuel cost that is independent of the vehicle attributes of any

vehicle model and model year. We estimated the effect of changes in vehicle quality on the

VMT using ξj,t in the second step.

The benefit of using the NHTS is the abundance of household demographic information.

By ϕ(i, d, j) we control for an extensive list of household demographics. For example, we

control for household income category, state, size, number of children under age 16. We

also control for age/race/sex/education of the primary driver of each vehicle. Additionally,

we include sets of triple interactions between vehicle class, brands, and such household

characteristics as vehicle count, income group, number of children under age 16. These triple

interactions account for any heterogeneous correlation between household characteristics and
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their choice of vehicles over vehicle classes such as SUV and over brands such as Cadillac.16

Finally, τq is the survey quarter fixed effects to account for seasonal factors that affect all

the surveyed households in the same way in each quarter.

With the above identification of the VMT demand function, we implicitly make the fol-

lowing conceptual and econometric assumptions, which we believe to be reasonably plausible

in our setting. First, VMT responds to changes in cost per mile by the same magnitude re-

gardless of whether the changes stem from gasoline prices and fuel economy. Although studies

do not unanimously agree with the validity of this assumption,17 careful examination by Linn

(2016), whose data and framework have much in common with ours, finds it ambiguous but

the magnitude is small enough to make the difference statistically distinguishable. Second,

changes in fuel economy almost always accompany changes in other vehicle attributes that

consumers value in their decision on driving mileage. This is consistent with our finding in

Section 2.2 that major performance-related vehicle attributes vary almost exclusively at the

timing of vehicle remodeling. Third, gasoline prices are exogenous to the individual VMT

decision. This assumption is commonly supported in the relevant literature that uses micro-

data (Gillingham et al., 2015; Knittel and Sandler, 2018). Fourth, the relationship between

VMT and gasoline prices is governed by the Cobb-Douglas functional form with a set of

fixed effects. Gillingham and Munk-Nielsen (2019) conclude that the log-log functional form

is approximately linear over a broad range of gasoline prices. Moreover, Gillingham et al.

(2015) and Gillingham and Munk-Nielsen (2019) prefer the log-log functional form over other

semi- or non-parametric specifications, emphasizing that the vehicle model fixed effect is the

key to identifying the VMT elasticity.

16In our setting, adding household fixed effects is not appropriate because it completely absorbs the
variation in gas prices.

17Greene et al. (1999) and Frondel et al. (2012) conclude that there is no statistically significant difference
in the VMT elasticity between gasoline price and fuel economy, but Gillingham et al. (2012) finds that VMT
responds more to gasoline prices than fuel economy.
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3.2.2 Estimating Shift of VMT by Vehicle Quality Adjustment (2nd Step)

In the second step, we investigate how much of the estimated quality-index VMT is at-

tributable to the bundle changes in vehicle attributes before and after 2012, when the

footprint-based CAFE standard was introduced. To do so, we take out ξ̂j,t from the es-

timation of equation (5), and then estimate the following specification by OLS:

ξ̂jt = δ0 + δ1 log(MPGjt) + δ2 log(MPGjt)× Aftert

+ δ3GENjt + δ4GENjt × AFTERt + θj + τt + ϵjt.

(6)

MPGjt is the fuel economy of vehicle model j of model year t. Aftert takes the value of unity

if the vehicle model is offered after 2012, and captures the difference in the average bundle

quality that is not technologically related to fuel economy. GENjt is the model generation

of vehicle model j in year t, which increases in years when the vehicle model is remodeled. It

shows the average changes in bundle quality of vehicles at the timing of remodeling. θj is the

vehicle model fixed effect that accounts for time-invariant vehicle model-specific quality that

is correlated with VMT. Note that τt plays a different role than what the typical time fixed

effect does. That is, it absorbs a systematic difference in VMT associated with the vintage

of vehicles. It is reported in the NHTS that annual VMT almost linearly decreases with

vehicle age. Although we remain agnostic about the underlying mechanism of this vintage

effect, τt absorbs such systematic changes in VMT along vehicle age.

After all, δ1 is identified by the correlation between changes in fuel economy and changes

in quality-index VMT at the timing of remodeling before 2011 within the same vehicle model.

The identifying variation is, for example, the difference in fuel economy between Ford F-150

of kth generation and its k + 1th generation before 2011. δ3 is identified by the correlation

between the average changes in the bundle vehicle quality other than fuel economy between

generations of a vehicle and the change is VMT before 2011. δ2 and δ4 indicate the difference

in the extent of the correlations referenced in δ1 and δ3 after 2012.
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We also estimate the following specification that is augmented with vehicle attributes

Xjt that are observed and technologically correlated with fuel economy:

ξ̂jt = δ̃0 + δ̃1 log(MPGjt) + δ̃2 log(MPGjt)× AFTERt +X
′

jtδ̃

+ δ̃3GENjt + δ̃4GENjt × AFTERt + θj + τt + ϵjt.

(7)

Xjt includes the natural log of horsepower, curb weight,18 and torque, and each variable

is also interacted with AFTERt.
19 It is widely known that these vehicle attributes are

highly negatively correlated with fuel economy (Knittel, 2011; Klier and Linn, 2016). This

strong negative correlation enables us to derive different implications for the effect of fuel

economy on the shift of VMT between specifications (6) and (7). In specification (6), MPGjt

implicitly involves the technological trade-off between horsepower, curb weight, and torque

to the extent that they explain the variation inMPGjt. Importantly, the remaining variation

in MPGjt is absorbed by GENjt rather than by ϵjt because vehicle attributes are updated

when vehicles are remodeled,20 that is, when GENjt increases. Therefore, MPGjt and

GENjt jointly suffice to explain almost all bundle changes in vehicle quality when vehicle j

is remodeled. Accordingly, δ2 and δ3 are interpreted as the VMT elasticity with respect to fuel

economy that with forgone horsepower, curb weight, and torque. In contrast, specification

(7) includes all these variables, suggesting that MPGjt should be interpreted as the change

in fuel economy holding horsepower, curb weight, and torque constant. Such fuel economy

improvements are achieved through advances in fuel-saving technologies. GENjt absorbs

bundle quality changes pertaining to this remodeling that are irrelevant to fuel economy,

horsepower, curb weight, and torque, which can be thought of as luxury and comfort features.

Turning to economic interpretation, our main question is to identify the difference in

the rebound effects depending on whether to account for vehicle quality adjustments. This

18A measure of vehicle weight with a full tank of fuel and other necessary fluids without passengers and
cargo loaded.

19Interaction terms are omitted in Equation (7) for notational brevity.
20Although MPG is indexed by t and g, the variation is dominated by generation.
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gap appears through the difference in how we control vehicle attributes in our econometric

model. The quality-unadjusted elasticity of VMT shift is identified only by the coefficients

on log(MPG) in Equation (9): δ̃1 before 2011 and
̂̃
δ1+

̂̃
δ2 after 2012. The elasticity of VMT

shift that accounts for the quality trade-off is identified by all δ̂s in Equation (7): δ̂1 + δ̂3

before 2011 and δ̂1+δ̂2+δ̂3+δ̂4 after 2012. This summation is valid because almost all vehicle

qualities, including fuel economy and other unobserved vehicle attributes, are to change with

remodeling. Since δ̂s and
̂̃
δs are the percentage change in the “shift” of VMT with respect

to a percentage change in fuel economy, we need to translate it into the percentage change

in VMT. We approximate this by using the average percentage change in the shift of VMT

for both periods. Adding the fuel cost rebound effect β̂∗, the total fuel-economy elasticity of

the VMT shift before 2011 is defined as follows:
̂̃η2011 = β̂∗ +∆VMT%,ξ,2011 ×

̂̃
δ1

η̂2011 = β̂∗ +∆VMT%,ξ,2011 × (δ̂1 + δ̂3)
, (8)

where ̂̃η is quality unadjusted and η̂ is quality adjusted. ∆VMT%,ξ,2011 denotes the average

percentage shift in the quality index VMT between 2005 and 2011. Those after 2012 are

calculated by 
̂̃η2012 = β̂∗ +∆VMT%,ξ,2012 × (

̂̃
δ1 +

̂̃
δ2)

η̂2012 = β̂∗ +∆VMT%,ξ,2012 × (δ̂1 + δ̂2 + δ̂3 + δ̂4)
. (9)

4 Empirical Results

4.1 Fuel-cost Elasticity of VMT

We estimate Equation (5) by OLS and tabulate the results in Table 2. The four specifications

are differentiated by the set of fixed effects. Specification (1) includes only survey quarter

fixed effects and vehicle model by model year fixed effects. Specification (2) is augmented

by household demographics fixed effects. Specification (3) further includes fixed effects that

control for the demographic characteristics of the primary driver of each vehicle. Finally,
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Specification (4) includes all sets of fixed effects. Economic theory predicts that β̂1 is negative

and β̂2 is positive. Specification (1) yields an irrational sign on β̂2. This is rather predicted

because household demographic characteristics are likely to be correlated with households’

vehicle portfolio. The other specifications yield point estimates that are of broadly similar

magnitude and consistent sign, among which Specification (4) is our most preferable one.

Interpreting the coefficients, we find that a one percent increase in the fuel cost is associated

with a 0.175 percent reduction in the annual VMT of a vehicle. However, households owning

multiple vehicles will increase VMT from other vehicles by 0.16 percent. Using the average

share of multi-vehicle households, which is 0.539, we obtain the economy-wide average VMT

elasticity at 0.089. This is translated as a 8.9% fuel-cost rebound effect. This 8.9% rebound

effect is within the range of estimates obtained by reliable studies, which is between 0% and

40%. Moreover, this is close to the central estimate among the studies that use vehicle-level

odometer reading.

Another result of interest in this estimation is ξ̂jt, which is the vehicle model by model

year fixed effect. This fixed effect nonparametrically captures the vehicle model and model

year specific VMT (in terms of natural log: call “quality-VMT”) that is attributable to

the bundle vehicle quality in terms of deviations from the overall average. Figure 4 shows

the distribution of this quality-VMT each year for passenger cars and light trucks. For

both vehicle categories, the quality-VMT has been gradually increasing over time, with at a

slightly higher rate between 2012 and 2015. The average cumulative increase between 2005

and 2016 is 2,107 miles for passenger cars and 4,391 miles for light trucks.

4.2 Shift of the VMT Demand Curve and Vehicle Quality Adjustment

Observations in Section 2.2 and empirical evidence in the previous subsection jointly suggest

that the VMT demand curve has gradually shifted outward since around the mid 2000’s.

Our next step is to examine whether and how changes in fuel economy have contributed to

the outward shift of the VMT demand curve through bundle changes in other vehicle quality.
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Table 3 tabulates the estimation results of Equations (6) and (7) by OLS and groups

them into (I) and (II). Each group offers the results from total observations as well as from

the subsamples of passenger cars and light trucks. Both specification groups include vehicle

model and model year fixed effects, but they are differentiated such that group (II) includes

the natural log of horsepower, curb weight, and torque. By this differentiation, coefficients on

log(MPG) in group (I) show the percentage change in the quality-VMT associated with a one

percent increase in fuel economy that entails an adjustment of vehicle quality to the extent

that the vehicle quality and fuel economy are correlated. GEN absorbs any other forgone

vehicle quality. Coefficients on log(MPG) in group (II) show the percentage change in the

quality-VMT associated with a one percent increase in fuel economy, holding horsepower,

curb weight, and torque constant. Therefore, such gains in fuel economy can be thought of

as the result of technology progress without adjusting such primary vehicle attributes.

Interpreting the results in group (I), a one percent increase in fuel economy is associated

with a 0.46 percent increase in the quality-VMT on average between 2005 and 2012, and the

magnitude is greater for passenger cars (0.62%) than light trucks (0.2%). This association

becomes weak after 2012 by 0.7%-point, and passenger cars exhibit a greater reduction than

light trucks. In terms of other vehicle quality, every vehicle remodeling is associated with a

2.7% decrease in the quality-VMT on average between 2005 and 2011, and the magnitude

is greater for passenger cars (-3.2%) than light trucks (-2.2%). After 2012, the reduction

becomes milder by 1%-point to 2%-points.

The results in group (II) show the changes in quality-VMT associated with a one percent

increase in fuel economy and one remodelling cycle, while holding horsepower, curb weight,

and torque constant. We obtain the opposite implication for passenger cars and light trucks.

For cars, a one percent increase in fuel economy is associated with a 0.8% increase in quality-

VMT between 2005 and 2011 and the increase will decline by 0.21%-point after 2012. In

contrast, a one percent increase in fuel economy for light trucks is associated with a 0.08%

decrease in quality-VMT between 2005 and 2011, but the association turns to positive after

19



2012. Remodeling is now associated with a substantially greater increase in the quality-VMT

than in group (I). This is primarily because GEN in group (II) is absolved of the quality

loss that would have incurred when vehicle quality was adjusted.

4.3 Medium-run Fuel Economy Rebound Effect

In this section, we estimate the fuel economy rebound effects for passenger cars and light

trucks in each period. More specifically, our rebound estimates are regarded as a medium-

run effect since the elasticity is identified by the quality change at vehicle remodeling, which

occurs every four to six years. We provide both quality-adjusted and unadjusted fuel economy

rebound effects and derive implications for the effect of the regulatory change in the CAFE

standard.

Table 4 tabulates the rebound effects for passenger cars and light trucks, both before

2011 and after 2012. Column (a) shows the fuel cost rebound effects estimated in the first

step. Columns (b) and (d) show the fuel economy rebound effects through the shift of the

VMT curve, with values in column (b) adjusted for the quality trade-off and (d) unadjusted.

Column (c) shows our best-guess estimates about the fuel economy rebound effects that are

expected to manifest over four to six years.

The numbers in column (b) show that the quality-adjustment effect was so large between

2005 and 2011 that it completely offset the fuel-cost rebound effect. The net fuel econ-

omy rebound effect was -0.3% economywide, suggesting that a one percent increase in fuel

economy will result in 0.3% extra fuel consumption savings. Especially, the quality adjust-

ment was substantially large for light trucks, nearly double that of passenger cars. However,

after 2012, the quality-adjustment effect diminished. Now light trucks exhibit a positive

quality-adjustment effect by 0.7%, resulting in the net fuel economy rebound effect of 9.6%,

suggesting that the expected fuel savings will be canceled by 8.9% through financial benefit

from reduced driving costs and by 0.7% by the quality change making it more fun to drive

trucks.
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Column (e) shows the quality-unadjusted rebound estimates, which are typically offered

in the economic literature. Since fuel economy improvements with horsepower, curb weight,

and torque being maintained at the same level appear to mean a pure quality improvement,

the quality effects are mostly positive. Then, the quality-unadjusted net rebound effects are

around 10%. Column (f) offers the difference between the two net fuel economy rebound

effects, and positive values mean that the quality-unadjusted rebound estimates overesti-

mate the true rebound effect. We find that failing to account for the quality-adjustment

effect resulted in an overestimation of the true fuel economy rebound effect by 11.0%-points

between 2005 and 2011 and by 3.1%-points after 2012.

The strong quality-adjustment effect between 2005 and 2011 reinforces the causal evi-

dence offered by West et al. (2017) that the quality adjustment completely offset fuel-cost

rebound effects in Texas 2009 and 2010. Our results provide new empirical evidence that

the effect attenuated but not completely vanished between 2012 and 2016. This lingering

quality-adjustment effect after 2012 is in line with Leard et al. (2020), who find automakers

increased fuel economy by exploiting quality trade-offs. The remarkable heterogeneity in

the effect between cars and trucks is also consistent with what Anderson and Sallee (2016)

suggest about the consequences of the regulatory change. Truck standards began sharply

increasing in 2005 (Figure A.1 in Appendix A), when the CAFE standard was disadvan-

tageous to larger vehicles. Therefore, automakers were more likely to rely on the quality

trade-off to squeeze fuel economy improvements during the period. In contrast, since the

new footprint-based CAFE standard is designed in favor of larger vehicles, it seems plausible

that automakers benefit from avoiding quality trade-offs when remodeling vehicles.

5 Conclusion

The size of the rebound effect is one of the key elements in evaluating the effectiveness and

cost and benefit of energy-efficiency standards. An extensive list of studies have provided

rebound estimates, however, economists have yet to find common ground on the true rebound
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effect. This paper contributes to the literature by providing new empirical evidence that

addresses two challenges in estimating fuel economy rebound effects. First, we separately

identify the fuel-economy rebound effects caused by a decrease in per-mile fuel cost and

by forgone vehicle quality. Second, we estimate the difference in the fuel economy rebound

effects before and after 2012 and offer implications for the possible effects of the new footprint-

based CAFE standard on the rebound effect.

We estimate a VMT demand function using the 2017 NHTS data set with some 110,000

vehicles representative of U.S. population. We identify the two rebound effects by taking

a two-step approach and utilizing vehicle remodeling cycles as a new source of variation.

The results show that the VMT rebound effect with respect to per-mile fuel cost, which

corresponds to the movement along the VMT curve, was 8.9% between 2005 and 2016.

We then find that the vehicle quality adjustment that occurs with vehicle remodeling was

as much as 9.2% and completely offset the fuel-cost rebound effect between 2005 and 2011,

which corroborates the 0% rebound estimate offered by West et al. (2017). Failing to account

for quality adjustments in the rebound estimate resulted in an overestimation by 11.0%-

points before 2011. The quality-adjustment effect then reduced to 2.0% after 2012. This

attenuation suggests that the fuel efficiency increased with much milder quality adjustment

than before, but we still find evidence about overestimation by 3.1%-points after 2012.

Two policy implications are immediately derived from our results. First, it is likely that

the 10% rebound effect on which most economists have agreed still appears to be slightly

overstating the fuel-economy rebound effect under the footprint-based CAFE standard. Sec-

ond, the footprint-based standard for trucks are too lenient in the sense that it is enhancing

the fuel-economy rebound effect. In a more general sense, the heterogeneity in the quality-

adjustment effect suggests that regulatory authorities should carefully evaluate the possible

effects of quality changes on rebound effects when energy-efficiency standards are likely to

affect primary product attributes.
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Table 1: Summary Statistics

N.Obs. Mean SD Min Max

Annual VMT (miles/year) 141,536 11,124.91 12,413.55 1 200,000

Fuel Cost ($/gallon equivalent) 190,847 2.41 0.30 2.13 9.86

Fuel Economy (miles/gallon) 191,677 31.94 10.60 8.56 176.92

Per-mile Cost ($/mile) 190,847 0.155 0.031 0.020 0.476

Avg. Per-mile Cost of Other Vehicles ($/mile) 155,318 0.120 0.030 0 0.431

Number of Household Members 191,677 2.44 1.22 1 13

Number of Drivers per Household 191,677 1.98 0.77 0 9

Number of Light-duty Vehicles per Household 191,677 2.48 1.25 1 12
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Table 2: VMT Demand Function (1st Step)

(1) (2) (3) (4)

β̂1: log(GASP ) -0.187∗∗∗ -0.184∗∗ -0.185∗∗ -0.175∗∗∗

(0.0245) (0.0695) (0.0738) (0.0628)

β̂2: log(DPM) -0.0256∗∗∗ 0.149∗∗∗ 0.162∗∗∗ 0.160∗∗∗

(0.00255) (0.0133) (0.0145) (0.00938)

β̂∗: Fuel-cost Elasticity 0.201 0.105 0.098 0.089

Survey Quarter FE Y Y Y Y

Model × Model year FE (ξjt) Y Y Y Y

Household Demographics FE N Y Y Y

Primary Driver Demographics FE N N Y Y

Household Demographics × Vehicle Class × Brand FE N N N Y

N 110,667 110,571 110,516 109,649

adj. R2 0.051 0.138 0.154 0.176

(Notes) Estimated by OLS. Dependent variable is log(VMT ). Standard errors in parentheses (clustered by CBSA). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 3: VMT Shift by MPG and Vehicle Remodeling (2nd Step)

(I) Vehicle Quality Adjusted (δ̂) (II) Not Quality Adjusted (
̂̃
δ)

All Car Truck All Car Truck

(1) (2) (3) (4) (5) (6)

δ1: log(MPG) 0.460∗∗∗ 0.624∗∗∗ 0.198∗∗∗ 0.449∗∗∗ 0.797∗∗∗ -0.0783∗∗∗

(0.0138) (0.0263) (0.0156) (0.0165) (0.0318) (0.0252)

δ2: log(MPG)× AFTER -0.0706∗∗∗ -0.0565∗∗∗ -0.00825 0.00488 -0.208∗∗∗ 0.406∗∗∗

(0.00462) (0.00743) (0.00946) (0.00832) (0.0120) (0.0228)

δ3: GEN -0.0272∗∗∗ -0.0323∗∗∗ -0.0215∗∗∗ 0.543∗∗∗ 0.476∗∗∗ 0.886∗∗∗

(0.00178) (0.00303) (0.00213) (0.0415) (0.119) (0.0770)

δ4: GEN × AFTER 0.0154∗∗∗ 0.0103∗∗∗ 0.0217∗∗∗ 0.206∗∗∗ 0.558∗∗∗ 0.106

(0.000327) (0.000650) (0.000400) (0.0337) (0.0675) (0.0770)

Model FE Y Y Y Y Y Y

Model Year FE Y Y Y Y Y Y

Performance Attributes (X) N N N Y Y Y

N 109,647 51,797 57,850 109,647 51,797 57,850

adj. R2 0.723 0.686 0.775 0.727 0.695 0.787

(Notes) Standard errors in parentheses (clustered by brand). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Quality Adjusted Fuel Economy Rebound Effects

Period Fuel Cost
RE

(I) Vehicle Quality Adjusted (II) Not Quality Adjusted

Quality RE Total RE Quality RE Total RE Difference

(a) (b) (c) = (a) + (b) (d) (e) = (a) + (d) (f) = (e)− (c)

Car
2005 - 2011

8.9%
-5.6% 3.3% 1.7% 10.6% 7.3%pt

2012 - 2016 -2.1% 6.7% 0.8% 9.6% 2.9%pt

Truck
2005 - 2011

8.9%
-10.6% -1.7% -0.4% 8.5% 10.2%pt

2012 - 2016 0.7% 9.6% 1.1% 10.0% 0.4%pt

All
2005 - 2011

8.9%
-9.2% -0.3% 1.8% 10.7% 11.0%pt

2012 - 2016 -2.0% 6.9% 1.1% 10.0% 3.1%pt

(Notes)
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Figure 1: Decomposing the Change in VMT from Increased Fuel Economy
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Figure 2: Trade-off between Fuel Economy and Acceleration Performance

(Notes) This figure plots and connects the pairs of average fuel economy and average
acceleration (measured as the ratio of horsepower to curb weight) for Cars and Light
trucks between 1975 and 2016. Horizontal (vertical) movements indicate an improve-
ment in fuel economy (acceleration).
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Figure 3: % Year-on-year Change in Vehicle Attributes for Continued and Remodeled Vehicles

(a) Fuel Economy (b) Horsepower

(c) Torque (d) Curb Weight

(Notes) Each figure shows the box plot of year-on-year % changes in each of the vehicle attributes for vehicle models that were continued from
previous years and those that newly remodeled.
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Figure 4: Yearly Distribution of Vehicle Quality Index in VMT

(a) Passenger Car

(b) Light Trucks

(Notes)
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Appendix A Supplemental Figures

Figure A.1: Historical Development of the CAFE Standard
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Figure A.2: Trade-off between Fuel Economy and Horsepower and Curb Weight

(a) Horsepower and Fuel Economy

(b) Curb Weight and Fuel Economy

(Notes)
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