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Abstract
Global warming impacts everyone, private initiatives and the government are taking actions to
prompt regenerative agricultural practices that can sequester carbon in the soil and vegetation to
tackle climate change. It is critical to understand the yield effects of these practices on crops to
facilitate the promotion. Many findings on yield effect of conservation tillage (CT) are based on
the field experiments, only a few observational studies have been done. This study uses county-
level data covering 631 counties across 12 states from 2005 to 2018 and the post-double-
selection method to examine the average effect of CT on corn and soybean yields. | find that CT
has no impact on corn but small negative impact on soybeans. In counties with an average CT
adoption rate, the soybean yields would decline by 3.2%, this can be translated to an average loss
of 1.5 bushels per acre. The average loss for each county due to 10% increase in CT adoption for
soybeans could be 346,720 US dollars based on the latest price data.
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1 Introduction

Global warming is mainly driven by emissions from human activities (Masson-Delmotte et al.,
2021). Climate change caused by global warming has increased the frequency and intensity of
weather and climate extremes such as heavy precipitation, droughts, and hot extremes (Masson-
Delmotte et al., 2021). These climate hazards have negative impacts on human’s life, and
increase the risk of food security; thus, actions are needed to slow down the climate change
induced by human activities. As part of the efforts to tackle climate change, private initiatives
and the government are seeking ways to reduce Greenhouse Gases emissions and enhance the
agricultural carbon sink. In recent years, the private sector has initiated several carbon emissions
offset and supply chain inset markets (Bruner & Brokish, 2021; Plastina & Wongpiyabovorn,
2021; Thompson et al., 2021) to incentivize farmers to adopt practices such as conservation
tillage and cover crops that sequester atmospheric carbon in soils and vegetation. The US
president’s Climate 21 Project also called for the establishment of a ‘carbon bank’ that would
pay farmers to store carbon using regenerative agriculture practices. Conservation tillage (CT),
which leaves at least thirty percent of the soil surface covered by residue after planting (CTIC,
1992), is one such practice that has been recommended for adoption for years because of its soil
conservation benefits. However, CT may reduce yields due to weed and insect problems, low
soil temperature, and high soil moisture caused by residues (Toliver et al., 2012), thus, farmer
concerns about yield loss following adoption have been a major impediment to expanding
adoption of this practice (Kragt et al., 2017; Prokopy et al., 2019). Understanding the effects of
CT adoption on corn and soybean yields is necessary to quantify the economic impact of CT
adoption on farmers, and evaluate carbon market prices or conservation payments to farmers for

adopting CT.



Many studies have been done based on field experiments to assess the yield effects of CT,
however, the results are mixed because yield effects can be influenced by other factors, yields for
crops with CT tend to be higher under crop rotation, with well-drained soil, and in warmer
locations (DeFelice et al., 2006; Toliver et al., 2012). Though side-by-side field experiments
provide direct assessment of the yield effects of CT, the results of these studies can have limited
real-world implications because same management for CT and conventional tillage was used in
many field experiments (DeFelice et al., 2006), and the field experiments were conducted in
certain locations (Chen et al., 2021), therefore, the results from these experiments cannot be
generalized. Large-scale observational data that captures real-world applications in different
locations may be used to address these limitations and identify the average effect of CT adoption
on corn and soybean yields.

There are only a few observational studies on this topic, two most recent ones are Deines et al.
(2019) and Chen et al. (2021). Deines et al. (2019) used the fine-scale satellite imagery data of
tillage practices and model derived crop yields in the US Corn Belt from 2005 to 2017, and
applied casual forest method to assess the yield effects of CT. They found that CT has slightly
positive yield effect for corn and insignificant effect for soybeans in the short run. (Chen et al.,
2021) used the county-level tillage data from the Operational Tillage Information System
(OpTIS) in the US Corn Belt and yield data from USDA survey from 2005 to 2018, and
specified a fixed-effects linear model to estimate the effects of CT adoption rates on corn and
soybean yields. They found that CT has no negative yield effects for corn or soybeans. Both
studies have limitations, first, they included no or only a few state-level and national level
socioeconomic variables that influence CT adoption and yields in their analysis, this could cause

omitted-variables bias (Chen et al., 2021; Deines et al., 2019), many studies have shown that CT



adoption and crop yields can be influenced by socioeconomic variables (Cabas et al., 2010;
Kaufmann & Snell, 1997; Prokopy et al., 2019); second, the linear model used in Chen et al.
(2021) might not be the correct specification for this problem, previous studies including the
quadratic terms of weather and socioeconomic variables to predict crop yields found significant
influences of quadratic terms on yields (Cabas et al., 2010; Tannura et al., 2008). This work
contributes to these existing observational studies on yield effects of conservation tillage
adoption using a county-level socioeconomic dataset and applying new empirical methods that
allow for nonlinear trends interacted with observed county-level time varying characteristics.
This study applies post-double-selection method (Belloni et al., 2014a) to a high-dimensional
regression model to examine the effects of CT adoption on county mean corn and soybean yields
by using corn and soybean yields, CT adoption rates, weather and climate levels, and
socioeconomic data from 631 counties across twelve Corn Belt states from 2005 to 2018. | apply
LASSO to the model for variable selection and predicting yields and CT adoption rates,
respectively, and identify the effect of CT adoption on corn and soybean yields by regressing the
differences of yields on the differences of CT adoption rates and the union of the selected
variables and the year fixed effect dummies.

This study suggests that CT has no impact on corn but small negative impact on soybeans. In
counties with an average CT adoption rate, the soybean yields would decline by 3.198% (Cl =
[4.577%, 1.820%]), this is equivalent to an average loss of 1.518 bushels per acre (Cl = [2.173,
0.864]). Farmers adopt CT might be because of the benefits from cost reduction through using
less fuel, labor, and insecticide; and the incentives from government payments. Smaller
confidence intervals and RMSE are obtained when using post-double-selection method, this

suggests that double selection method could provide more accurate estimations.



| discuss data in the next section, followed by methods used, results, discussions and conclusions.
2 Data

This study examines the yield effects of CT adoption rates on corn and soybeans by using: crop
yields from USDA-NASS (2020b); CT adoption rates from the Operational Tillage Information
System (OpTIS) (OpTIS, 2019); weather and climate data from the PRISM database (PRISM
Climate Group) and TerraClimate (Climatology Lab); and socioeconomic data obtained from
U.S. Bureau of Economic Analysis (BEA) (2021), USDA-Risk Management Agency (USDA-
RMA) and USDA-NASS (2020a). | use some data used in Chen et al. (2021) such as corn and
soybean yields, CT adoption rates, standardized precipitation-evapotranspiration index (SPEI),
price received, continuous crop (corn/soybeans), fraction insured, and GM adoption rates. In
addition, monthly weather and derived climate levels, Growing Degree Days (GDD), farm
incomes, farm expenses, and values of inventory changes are used in this analysis. The data
cover 631 counties across twelve Corn Belt states (lowa, Illinois, Indiana, Kansas, Michigan,
Minnesota, Missouri, Nebraska, Ohio, Oklahoma, South Dakota, Wisconsin) from 2005 to 2018.
In the following subsections, | discuss the dependent and independent variables, and explanatory
variables such as weather and climate variables and socioeconomic variables that are included in
this analysis, and the limitations of the data.

2.1 Dependent and independent variables

| use county mean corn and soybean yields as the dependent variables, and county-level corn and
county-level soybean CT adoption rates as the independent variables, respectively, for corn and
soybean regressions. The yields are from the survey data published on USDA-NASS; the corn
yields and soybean yields across counties and years vary from 19 bushel/acre to 246.7

bushel/acre and from 10.9 bushel/acre to 82.3 bushel/acre, respectively. CT adoption rates are



obtained by aggregating remotely sensed corn and soybean tillage data from crop level to county
level, the CT adoption rates for corn and soybean vary from 0.01% to 100% and from 0.01% to
100%, respectively. The summary statistics of yields and CT adoption rates can be found in
Appendix Table A2.

2.2 Explanatory variables

2.2.1 Weather and climate variables

Temperature and precipitation have been used in many studies to predict crop yields; some
studies include both seasonal climate variables and monthly climate variables (Cabas et al., 2010;
Deines et al., 2019; Tannura et al., 2008), and some studies use aggregated climate proxies such
as Growing Degree Days (GDD) during growing season (Anandhi, 2016; Deines et al., 2019),
while some studies also include climate variables out of crop growing season (Dixon & Segerson,
1999; Tannura et al., 2008). To capture the potential effects of different forms of temperature and
precipitation variables, | obtain the monthly weighted average precipitation, minimum and
maximum temperature; and Growing Degree Days (GDD) during growing season from April to
October calculated based on the daily precipitation, minimum temperature, and maximum
temperature from the original data sources.

In addition to temperature and precipitation, solar radiation is found to be an important factor in
determining crop yields (Dixon, 1994; Lobell et al., 2009). Precipitation, as one of the commonly
used factors to predict crop yields, may not represent the water condition for crop production
since water stress can be induced by increased vapor pressure deficit (VPD) (Zhang et al., 2017)
and water deficits in rainfed system could increase the yield gap (Lobell et al., 2009). Palmer
Drought Severity Index (PDSI) is a common variable used to measure drought, and it is highly

correlated with soil moisture (Mika et al., 2005); early season soil moisture (April to June) are



found to have significant effects on corn and soybean yields (Urban et al., 2015). While Lobell et
al. (2014) found that VVPD is a better predictor of crop water stress and yields than PDSI.
Farmers may adopt CT to reduce the risk of yield loss due to drought conditions because Chen et
al. (2021) found that CT adoption may mitigate some of the negative impacts of drought on corn
and soybean yields. Runoff as a measure of both waterflow to other areas and degradation of top
soil through leaching and erosion (Kerr, 2007) may influence both crop yields and CT adoption
since floods can reduce yields and farmers are more likely to adopt CT on high soil erosion land
(Wu et al., 2004). Wet soils in fall after harvesting and in Spring before planting may prevent
farmers from performing tillage (Chen et al., 2021), thus, these conditions may have influence on
CT adoption.

Climate Water Deficit (DEF), soil moisture, PDSI, VPD and runoff are derived directly or
indirectly based on the combinations of some of the primary climate variables including
maximum temperature, minimum temperature, vapor pressure (VAP), precipitation accumulation,
downward surface shortwave radiation (SRAD), and wind-speed (WS), respectively. Reference
evapotranspiration (PET) and actual evapotranspiration (AET) are two factors that determine
DEF, they are also derived based on the primary climate variables (Abatzoglou et al., 2018).
Obviously, the primary climate variables are correlated with one or more than one derived
climate variables. However, it is hard to determine if the primary climate variables are better
predictors of yields or if the one-year lag of the derived climate variables such as drought
conditions, soil moisture, and runoff can be better perceived by farmers to influence their CT
adoption decisions, and vice versa. In order to not miss the important information that influence
yields or CT adoption, | include all these variables in the study and rely on the variable selection

method to select the variables that are most important to predict yields or CT adoption.



The weather variable county-level means, such as monthly precipitation, monthly temperature,
and GDD for the growing season, are averaged or accumulated daily weighted means calculated
using R package ‘acdcR’ (Yun, 2022). The derived climate variable county-level means are
monthly weighted means calculated following Yun and Gramig (2019). Both weighed
calculations are only accounted for the agricultural fields and are calculated using the
agricultural field areas in the PRISM or TerraClimate data pixels as weight in the county.

2.2.2 Socioeconomic and crop management variables

Previous studies found that crop insurance, crop rotation, income, and input costs may be
correlated with CT adoption (Prokopy et al., 2019). High fuel costs and labor costs may
incentivize farmers to choose lower intensity tillage practices (Chen et al., 2021; Deines et al.,
2019; Uri, 2000), however, higher fertilizer prices may discourage farmers to adopt CT since
farmers tend to use more fertilizer in conservation tillage system (Laukkanen & Nauges, 2011).
Studies have shown that crop rotation adoption has influence on yields (Al-Kaisi et al., 2015;
Karlen et al., 2013; West et al., 1996) and CT adoption (Wu & Babcock, 1998). Input costs such
as seed expenses, fertilizer and lime expenses, petroleum product expenses, machinery expenses,
other expenses and value of materials and supplies inventory change can be treated as proxies for
the input usage which have a significant impact on corn and soybean yields (Van Roekel et al.,
2015). Technology adoption such as using Genetically Modified (GM) seeds could influence
crop yields (Lusk et al., 2017) and the adoption of CT (Chen et al., 2021); farm’s financial
position such as the lags of incomes and value of inventory changes may represent the farm’s
technology adoption such as adoption of precision agriculture and cropping management
capabilities which could also have impacts on crop yields (Egli, 2008). Thus, I include

socioeconomic and crop management variables such as the lags of farm incomes and value of



inventory changes, farm expenses, corn and soybean insured ratios, GM adoption, and crop
rotation proxies (continuous corn to corn and continuous soybean to soybean ratios) in the study,
details can be found in Appendix table 1.

2.3 Data limitations

County-level aggregated data cannot provide farm-level characteristics information, such as
farmer’s age and education level, and farm-level management information. | assume that
farmer’s personal characteristics are controlled since they may not be time-varying
characteristics, or they may change in a very small pace each year that can be ignored.
Farmer’s awareness of environmental issues, perceptions on climate change, and attitudes toward
conservation practices are very hard to be captured, however, these may affect the farmer’s
decision on CT adoption.

There are measurement errors in the CT adoption rates, these errors are introduced by using the
rates calculated based on the observed residue cover in part of the county to replace the missing
observations for the reminder of the county (Chen et al., 2021). To address this limitation, |
conduct robustness checks by excluding states with high missing data rates.

3 Methods

3.1 Methodology

As discussed earlier in the data section, many factors may be associated with yields and CT
adoption rates, thus, I include as many weather and socioeconomic variables that might be
relevant as possible in this analysis. To capture the evolution of yields and CT adoption rates
over a 14-year period, | adopt a model that allows for nonlinear trends interacted with observed
county-specific time-varying characteristics (Belloni et al., 2014b). High-dimensional data are

obtained by interacting and transforming the variables. To avoid collinearity and overfitting,



simply dropping some variables based on economic intuition or using a linear model to form a
small number of interaction terms might be problematic since it is hard to determine if correct
variables and functional forms were chosen. High-dimensional methods can use the data to learn
which variables are most important (Belloni et al., 2014b) and pick one variable among very
correlated predictors (Friedman et al., 2010); this helps us select the variables that are most
useful for predicting yields and CT adoption rates, respectively, and avoid collinearity and
overfitting. Because certain factors may be associated with both yields and CT adoption rates, a
naive approach to apply variable selection methods to a single regression model may lead to
omitted-variable bias if any variable that is highly related to CT adoption rates is dropped
(Belloni et al., 2014b) and lead to regularization biases because of variable selection
(Chernozhukov et al., 2018). Thus, I choose the double selection methods to overcome these
biases.
| apply post-double-selection method (Belloni et al., 2014a) to a high-dimensional regression
model (Belloni et al., 2014b) following the concept of partially linear regression (PLR) model
(Belloni et al., 2014a; Robinson, 1988) to examine the yield effect of CT adoption rates on
county mean corn and soybean yields in the Corn Belt.

Ay = Po+ aldCTy + zi P + pe + Aeyy, 1)

ACTye = vo + zi¥ + Vv + A€y, (2)

Where Ay;;: = it - Vie—1, Vie 1S the natural log of crop (corn or soybean) yield in county i in year
t; Bo and y, are constant terms; ACT;; = CT;; - CT;—4, CT;¢ is the CT adoptionrate iniand t; a

is a coefficient to be estimated; z;,B and z;,y are approximations to the true functions which are



unknown, z;, is the set of the technical regressors! that includes variables made up of the
differences and lags of weather and climate levels and values of socioeconomic factors, initial
levels (the level in the first year) and initial differences (the difference of the levels between the
second year and the first year) of weather and socioeconomic variables, the initial level and
initial difference of the CT adoption rate, quadratics in each of the preceding variables,
interaction of all differences, and interactions of all the variables with t and t2. This set of
technical regressors corresponds to a cubic trend for the level of crop yield and CT adoption rate
that is allowed to depend on the observed county-level characteristics. u, and v, are time fixed

effects. A¢;; and Ae;, are error terms which are defined similarly to 4y;, and ACT};.

To apply the variable selection method, | write the reduced form corresponding to (1) as:
Ayie = Bo + 1B + i + A, 3)

Where B_O = Yy + ﬁo, E =ay + ﬂ, ﬁt = av; + U, A(‘:Tit = aAEit + A&‘it.

| assume approximate sparsity condition hold for this case, which means that only a relatively
small number of non-zero coefficients in y and B could make the approximation errors small
relative to estimation error. This assumption may enable ACT;; be taken as exogenous
conditional on a relatively small number of control variables and ensure that important elements
are captured by a relatively small number of control variables to keep the residual variance small
when regressing 4y;; on ACT;;. The Least Absolute Shrinkage and Selection Operator (LASSO)
is used to select a relatively small and approximately right set of technical regressors to predict

yields and CT adoption rates, respectively. I apply LASSO to equations (2) and (3) to select

I Technical regressors refer to the regressors obtained through transformations and interactions of the control
variables, which is recommended by Belloni et al. (2014a).
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technical regressors that are useful for predicting ACT;; and Ay;;. The LASSO estimators ¥ and

B (Friedman et al., 2010) are solutions for the following optimization problems, respectively:

T I
1 P
i _— L — Yy —ZY — 2 ;
(YO'%égp+1 IZ(TX[)ZZI(ACTM Yo — Zi;Y — V¢) +/1yzj=1|y]|], 4)
=11i=
T 1
min 2y 2 2 @~ o= 2B =i+ y 1Bl ©
(Bo, B)ERP+1 Z(TXI)t 4 L i 0 i t B j=1 jll
=1 i=

where 4, and Az are the “penalty level”, I is the total number of counties, T is the total number

of years, and p is the total number of covariates, y, and 3, are constant terms. LASSO performs
variable selection by forcing the coefficients of “not-so-significant” variables to become zero
through the penalty. After the important regressors are selected using LASSO for predicting
ACT;; and Ay;., I use the union of the set of selected technical regressors, including time fixed
effects, as controls to estimate « in the ordinary least squares regression of Ay;, on ACT;,. This
approach ensures that any technical regressors that have large effects on Ay;, and ACT;, are
included in the model and omitted-variable bias is limited by excluding technical regressors that

are most mildly associated with 4y;; and ACT;;.

To test the performance of this post-double-selection approach, | also specify a model with first
differenced and lagged control variables for comparison:

Ay = 0y + agACT; + W0 + w, + Aty (6)
Where w;; is a set of variables derived from the differences and lags of weather and
socioeconomic variables (see Appendix Table Al); 8, is the constant term, w; is time fixed
effect; and At;; is the error term. This baseline specification controls for a small set of time-
varying county-specific factors, any time-invariant county-specific factors, and national
aggregate trends.
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| use two sets of control variables for both conventional estimator and double selection estimator
to compare the performance of them. For the first set of control variables, | use the variables that
were selected based on researchers’ knowledge and intuition as a baseline. For the second set of
control variables, | cover as many as the climate variables and socioeconomic variables that have
been found to be useful to predict yields and CT adoption and rely on the variable selection
method to select the variables that are most important.

In the first set of control variables for baseline model (conventional estimator), | include
variables that were used in Chen et al. (2021) but replace some weather and socioeconomic
variables with similar variables in different form or different regional level. As mentioned in the
data section, drought has influence on crop yields, | use the PDSI level in August as the proxy of
drought instead of drought indicator created based on PDSI in August used in Chen et al. (2021)
to show the year-on-year differences in PDSI. | use the lags of county level fertilizer expenses
and petroleum product expenses instead of the lags of national level fertilizer prices and fuel
prices because national level data tend to be dropped with time fixed effect. I include the
differences of some variables used in Chen et al. (2021) such as GM adoption rate, corn/soybean
insured rate, continuous corn/soybean rate, spring wetness and lags of some variables such as fall
wetness, price received, CT adoption rate for corn, and CT adoption rate for soybeans (Chen et
al., 2021). The discussion of these variables can be found in the previous data section and in the
paper of Chen et al. (2021). | use all control variables? (before differenced and lagged)
mentioned above to perform transformation and interaction to generate technical regressors for

post-double-selection estimator.

2 The lags of CT adoption rates for corn and soybeans are not included in both sets of control variables for post-
double-selection estimator.
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| add the differences of monthly primary climate variables from April to October, monthly
derived climate variables from April to October, GDD between 8 and 30 and above 30 during
growing season from April to October, and other production expenses; and the lags of some
subcategory incomes and inventory changes to the first set of control variables as the second set
of control variables for the baseline model (conventional estimator), I don’t include climate
variables that are out of growing season because some derived climate variables may exhibit
series correlations (Chen et al., 2021), such as PDSI for a given month can reflect the weather
condition in previous months (Alley, 1984; Palmer, 1965). Similar as the first set of variables, |
use all variables (before differenced and lagged) for conventional estimator to perform
transformation and interaction to generate the second set of technical regressors for post-double-
selection estimator.

The summary statistics for the dependent and independent variables used in the regressions are
reported in Appendix Table 3.

3.2 Robustness check

3.2.1 Overfitting

Overfitting bias is a concern for highly complex fitting methods such as random forests, boosting,
and hybrid machine learning methods (Bach et al., 2021), the Double Machine Learning (DML)
method (Chernozhukov et al., 2018) developed the cross-fitting concept to overcome overfitting
without loss of efficiency. LASSO is less concerned on overfitting, but the DML method can
also be used for LASSO estimation. Thus, | adopt the DML method (Chernozhukov et al., 2018)
to perform robustness check for the post-double-selection method. The detailed explanation of

DML method can be found in Appendix B.
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3.2.2 Irrigation counties

For the counties that use irrigation for corn and soybean production, the effects of CT on corn
and soybean yields might be different compared with the counties don’t use irrigation or use less
irrigation. | obtain the total harvested cropland area and the harvested cropland area that is
irrigated in the county reported in the 2002, 2007, 2012, and 2017 censuses, and then calculate
the proportion of harvested cropland in the county that is irrigated in each census year by
dividing the irrigated harvested cropland area by the total harvested cropland area. | identify and
drop the counties (132 counties) that have equal to or more than 5 percent of the harvested
cropland irrigated in any of the Census year (Kuwayama et al., 2019) to test the effects of CT on
corn and soybean yields as robustness checks.

3.2.3 Counties with high residue cover data missing rates

Robustness check is conducted to verify the model performance by excluding states with high
missing rates of residue cover data. The states excluded are lowa, Kansas, Minnesota, and
Oklahoma.

4 Results

4.1 Primary Results

| apply LASSO (use R package ‘cv.glmnet’ (Friedman et al., 2022)) to equations (3) and (2),
respectively, to select the lambda to obtain minimum mean squared error (MSE) and select the
technical regressors that are important to predict yields and CT adoption rates. The number of
folds used for cross validation when implementing LASSO variable selection process is 10; the
time fixed effect dummies are excluded from the variable selection, which means that they are

included in any cases. After the regressors are selected for predicting yields and CT adoption
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rates, the union of the technical regressors and the time fixed effect dummies are used as controls
to estimate a in the ordinary least squares regression of Ay, on ACT;;.

The variables selected may vary each time because the samples are randomly split for training
data set and test data set when performing cross validation. To make the results more robust, |
repeat the variable selection process and regression 1000 times, and follow the median method
used in Chernozhukov et al. (2018) to obtain the median estimate and the standard error adjusted
for variation across 1000 regressions. The confidence interval is calculated based on the estimate
and standard error calculated using median method; adjusted R-squared, RMSE, and control
variables excluding time-fixed effect dummies are reported as the ones for the median estimate.
The lambda selection process for the median lambda among the 1000 repeats can be found in
Appendix Figure Al and Figure A2.

Table 1 reports the regression results of difference of corn yields on the difference of CT
adoption rates applying conventional estimator and post-double-selection estimator to the two
sets of control variables in Appendix Table Al, respectively. Regardless of the model
specifications and variables used, the results suggest that CT adoption has no significant impact
on corn yields. Double selection estimator uses the control variables that captures a cubic trend
for the level of crop yield and CT adoption rate, the results of the double selection estimators
show a smaller confidence interval and a smaller RMSE compared to the conventional estimators
when using the same variables (before transformation and interaction). The less accurate
estimation obtained by conventional estimators might be because of potentially incorrect linear
specification. If I assume the linear specification is correct, the performance of conventional
estimator is improved after adding more variables, this can be seen from the smaller confidence

interval and RMSE of conventional (2) compared to those of the conventional (1), thus, the less
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accurate estimation obtained by conventional estimator (1) can be partially explained by omitted
variable biases. The estimate of Double Selection estimator (1) is less accurate compared with
that of Conventional estimator (2) even if there are more regressors used for the regression, this
might be explained by larger impact of omitted variable bias on the model performance
compared with the impact of misspecification when the information included in the model is
limited. The number of technical regressors that are selected by double-selection-LASSO for the
first set of variables is 267 out of 270 (total number of technical regressors before selection),
which means that almost all the regressors provided for selection are important to predict yields
or CT adoption. For the second set of variables, 1,539 regressors are selected from 14,262 total
regressors. Most technical regressors selected though double selection method are differences
and lags of some climate variables and socioeconomic variables with or without interactions with
linear or nonlinear time trend, initial differences of some climate variables and socioeconomic
variables interacted with linear or nonlinear time trend, climate variables interacted with climate
variables and with or without interacted with linear or nonlinear time trend, socioeconomic
variables interacted with climate variables or socioeconomic variables and with or without
interacted with linear or nonlinear time trend. These selected variables suggest the presence of a
nonlinear trend that depends on county-specific characteristics.

Table 2 reports the regression results of difference of soybean yields on the difference of CT
adoption rates applying conventional estimator and double selection estimator to the two sets of
control variables in Appendix Table A1, respectively. Regardless of the model specifications and
variables used, the results suggest that CT adoption has significant and negative impact on
soybean yields. The performance of the estimators for soybeans follows the similar pattern as

that for corn, double selection estimator using the second set of control variables yields the most
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accurate estimation. The number of regressors selected for soybeans are similar as that for corn,
264 regressors are selected from 270 regressors for the first set of variables; 1,473 regressors are
selected from 14,262 regressors for the second set of variables. There are less regressors selected
for soybeans, this is mainly because that less regressors for predicting CT adoption for soybeans
are selected. |1 use the same set of variables for both corn and soybeans, however, there might be
some factors important for CT adoption for corn but not for soybeans, or some factors that are
important to influence CT adoption for soybeans are not included in the analysis. Similar as corn,
different forms and interactions of climate and socioeconomic variables are selected, the selected
variables suggest the presence of a nonlinear trend that depends on county-specific
characteristics. The coefficient on CT adoption from double selection (2) suggests that a 1%
increase in CT adoption can lead to about 0.058% (average effect, 95% Confidence Interval, Cl
=[0.083%, 0.033%]) decrease in soybean yield, this translate to an average loss of 0.028
bushel/acre (CI =[0.039, 0.016]) given that the average soybean yield across counties and 14
years is 47.47 bu/acre (Appendix Table A2). The average CT adoption rate across counties and
years is 55.14%, this means that soybean yields would decline by 3.198% (Cl = [4.577%,
1.820%]), this is equivalent to an average loss of 1.518 bushel per acre (Cl =[2.173, 0.864]).

4.2 Robustness check

4.2.1 Overfitting check

For the robustness check, | use R package DoubleMLPLR (Bach et al., 2021) to estimate the
effect of CT adoption on corn and soybean yields. The number of folds used for cross validation
when implementing LASSO is 10; the time fixed effect dummies are excluded from the variable
selection, which means that they are included in any cases. | choose a 5-fold cross-fitting and

repeat the cross-fitting 200 times, the median of 200 coefficients is reported as the estimate. Row
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1 of Appendix Table A4 and A5 show the regression results of using DML method for corn and
soybeans, respectively, similar results are obtained. This suggests that overfitting is not a big
concern when using double selection method.

4.2.2 Dropping counties with Irrigation effect

Row 2 of Appendix Table A4 and A5 show the regression results of using data dropping counties
that have 5% harvested cropland irrigated for corn and soybeans, respectively. Similar effects for
both corn and soybeans are obtained, this suggests that the primary results are robust when
including counties with more than 5% harvested cropland irrigated.

4.2.3 Dropping states with high residue cover data missing rates

Row 3 of Appendix Table A4 and A5 show the regression results of using data dropping states
that have residue cover missing rate for corn and soybeans, respectively. Similar effects for both
corn and soybeans are obtained, this suggests that the primary results are robust when including

observations with high residue cover data missing rates.
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Table 1. Regressions of difference of corn yield on difference of CT adoption.

Robust Confidence
Estimator Effect Std. Interval
Error 25% 97.5%

Adjusted Obs. Control
R-squared RMSE N  Var. N

Conventional

(1) 0.027 0.028 -0.028 0.082 0.413 0.201 6501 13

Conventional

%) 0.008 0.018 -0.027 0.043 0.757 0.128 6501 116

Double
Selection 0.033 0.025 -0.015 0.081 0.562 0.170 6501 267

)

Double
Selection -0.000 0.016 -0.031 0.030 0.883 0.078 6501 1539

()

Notes: The table shows the results from two different estimators using two different sets of
variables. Conventional is the model specified with first differencing the variables and using lags
of the variables; Double selection is the estimator to apply the post-double-selection method to
the partially linear regression model. (1) means using the first set of control variables and (2)
means using the second set of control variables listed in Appendix Table Al; for the
conventional estimator using the first or second set of control variables, the variables are
differenced and lagged control variables, while, for double selection estimator, the variables
enter the model after transformations and interactions. Results are obtained by applying the
median method (Belloni et al., 2014a) to 1000 repeats with point estimates. The robustness
standard errors are calculated by applying the median method to clustered standard errors from
the 1000 repeats to adjust for the variation across the repeats. Confidence intervals are calculated
based on the reported median estimates and the adjusted clustered standard errors. Other
statistics are reported using the statistics for median estimates. Obs. N is the total number of
observations used in the regression. Control Var. N is the number of technical regressors (not
including time fixed effect dummies) used as controls.

Significant codes: 0 “***> 0.001 “**> 0.01 “** 0.05“.> 0.1 *’ 1.
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Table 2. Regressions of difference of soybean yield on difference of CT adoption.

Robust Confidence
Estimator Effect Std. Interval
Error 25% 97.5%

Adjusted Obs.  Control
R-squared RMSE N Var. N

Conventional

(1) -0.116*** 0.019 -0.154 -0.078 0.262 0.155 6501 13

Conventional

@) -0.107*** 0.016 -0.138 -0.076 0.624 0.110 6501 116

Double
Selection -0.076*** 0.018 -0.112 -0.041 0.434 0.133 6501 264

)

Double
Selection -0.058*** 0.013 -0.083 -0.033 0.806 0.070 6501 1473

()

Notes: The table shows the results from two different estimators using two different sets of
variables. Conventional is the model specified with first differencing the variables and using lag
of the variables; Double selection is the estimator to apply the post-double-selection method to
the partially linear regression model. (1) means using the first set of variables and (2) means
using the second set of variables listed in Appendix Table Al; for the conventional estimator
using the first and second variables, the variables are used as original, while, for double selection
estimator, the variables enter the model after transformation and interaction. Double selection
estimator results are obtained by applying the median method (Belloni et al., 2014a) to 1000
repeats with point estimates. The robustness standard errors are calculated by applying the
median method to clustered standard errors from the 1000 repeats to adjust for the variation
across the repeats. Confidence intervals are calculated based on the reported median estimates
and the adjusted clustered standard errors. Other statistics are reported using the statistics for
median estimates. Obs. N is the total number of observations used in the regression. Control Var.
N is the number of technical regressors (not including time fixed effect dummies) used as
controls.

Significant codes: 0 “***> 0.001 “**> 0.01 “** 0.05 ‘> 0.1 *’ 1.
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5 Discussions and Conclusions

| find that CT adoption has no impact on corn yield and has significant but small negative impact
on soybean yield. The analyses suggest that soybean yields would decline by approximately 3.2%
in counties with an average CT adoption rate of about 55%. The finding for corn is consistent
with the studies conducted by Chen et al. (2021), and the finding for soybean is slightly different
from theirs but is consistent with their results when county-year fixed effect specification is used.
The finding for soybeans is also slightly different from that of Deines et al. (2019), the
differences might be caused by avoiding some omitted variable bias through adding
socioeconomic variables in this study.

Ten percent increase in CT adoption can lead to an average yield loss of about 0.28 bushel/acre
(C1=1[0.39, 0.16]) for soybeans based on the mean of historical soybean yields across counties
from 2005 to 2018. The average harvested acre for soybeans is 82,830 acres (Appendix Table A2)
across counties and years, this gives us an average yield loss of about 23,192 bushels (Cl =
[32,340, 13,253]) for each county. Then the dollar amount loss for each county due to 10%
increase in CT adoption for soybeans would be 346,720.40 US dollars (Cl = [483,483.00,
198.132.35]) given that the average price received for soybeans for the first five months of Year
2022 is 14.95 $/bushel (USDA-NASS, 2022).

Some farmers adopt CT may be because CT can lower labor and fuel costs, and reduce
expenditures on weed management and insecticide (Claassen et al., 2018; Murphy et al., 2006;
Uri, 2000), meanwhile, farmers adopting CT can receive government payments though joining
the Conservation Stewardship Program (CSP), the Environmental Quality Incentives Program
(EQIP), and other cost-share programs. These factors could influence the profits with adopting
CT adoption. Farmers may adopt CT purely because of the environmental benefits of CT, the

differences of perception of climate change or awareness of soil conservation caused by
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differences of individual characteristics are hard to be captured at a county level. Other time-
varying variables that are hard to be reflected in a county-level data but are important to yield
and CT adoption might lead to omitted-variable bias.

The post-double-selection method used in this study provides more accurate estimation than the
conventional approach. The attempt to avoid some omitted variable biases using post-double-
selection method seems effective in this context. The performance of the post-double-selection is
not so well when the information used to explain the dependent and independent variables are

limited.
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Appendix A. Tables and Figures

Table Al. Regression variables and data sources

Variables Definition Level  Source

Crop yields Crop produced perarea of land, . v spA — NASS (2020b)
units = bu/acre

CT adoption rates® Percent acres having 30 percent County OpTIS (2019)
or greater residue cover

Ppt2 Monthly total precipitation PRISM database

(April - October) Err]?rl]n + melted snow), units = County (prism.oregonstate.edu)

Tmax? Daily maximum temperature PRISM database

o (Averaged over all days inthe ~ County .

(April - October) month) units = C (prism.oregonstate.edu)

Tmin? Daily minimum temperature PRISM database

(April - October) (Averaged 0 ve_r alldaysinthe  County (prism.oregonstate.edu)
month), units = C

GDD302 Growing degree days over 30 Count PRISM database
Celsius degree y (prism.oregonstate.edu)
Growing degree days between 8

2

GDD8_30 and 30 Celsius degree

Fall wetness® 2 34 Standardized Precipitation- county PRISM database

SPEI in September Evapotranspiration Index y (prism.oregonstate.edu)

Spring wetness®:2

SPEl in April
Actual evapotranspiration,

AET? liquid water supply plus the soil Count TerraClimate (www.

(April - October) water utilized, monthly total, y climatologylab.org)
units = mm
Climate water deficit, the

DEF? difference between m(_)nthly TerraClimate (www.

(April - October) reference evapotranspiration County climatologylab.org)
and actual evapotranspiration, '
monthly total, units = mm
The excess of liquid water

Runoff? 4 supply used by monthly TerraClimate (www.

(April - October) reference evapotranspiration County climatologylab.org)
and soil moisture recharge, '
monthly total, units = mm

. . ) Water stored in the soil, total .

Soil moisture column at end of month. units = Count TerraClimate (www.

(April - October) 3 ' B y climatologylab.org)
m

SRAD? Downward surface shortwave TerraClimate (www.

County

(April - October)

radiation, units = W/m?

climatologylab.org)
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Variables Definition Level  Source
’ Vapor pressure (Fick & .
2//6\'66?” - October) Hijmans, 2017), average for County L?:;Z%':g?& évxé\;\;v)v
month, units = kPa '
VPD? Vapor pressure deficit, average Count TerraClimate (www.
(April - October) for month, units = kPa y climatologylab.org)
PDSI? Palmer Drought Severity Index, Count TerraClimate (www.
(April - October) at end of month y climatologylab.org)
Average price received for crop
Price received? 3 o the last year by farmers; g0 USDA-NASS (2020b)
roxy for expected commodity
prices
, Percent acres in continuous
Continuous crop® corn/soybeans, constructed
(corn/soybeans) from Cropland Data Layer County - USDA —NASS (20202)
(CDL)
Percent acres enrolled in
Fraction insured®:2 federally subsidized crop County USDA -~ RMA
. (www.rma.usda.gov)
insurance program
GM adoption rates®:2 Percent acres used genetically 00 yspa — NASS (2020b)
modified seeds
Cash receipts from S_um of cash receipts frpm
A livestock and crops, units = County BEA (www.bea.gov)
marketing®
1000 dollars
Gross cash income from all
Cash receipts from crops sold from the farm or
crops?# ranch during the calendar year, County - BEA (www.bea.gov)
units = 1000 dollars
The sum of government
payments and imputed and
Other income? miscellaneous income received County BEA (www.bea.gov)
during the calendar year, units
= 1000 dollars
Value of all government (State
Government payments? or Federal) agr_icultural_
4 payments received during the County BEA (www.bea.gov)
calendar year, units = 1000
dollars
Production expenses during the
Production expenses? calendar year, units = 1000 County BEA (www.bea.gov)
dollars
See purchased during the
Seed expenses? calendar year, units = 1000 County BEA (www.bea.gov)

dollars
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Variables Definition Level  Source
Fertilizer and lime (including
Fertilizer and lime ag. chemicals) purchased
expenses® 234 during the caler?dar year, units County  BEA (www.bea.gov)
= 1000 dollars
Petroleum product Petroleum product purchaseq
expensest 234 during the calendar year, units ~ County BEA (www.bea.gov)
= 1000 dollars
Hired farm labor expenses
Hired labor expenses®*  during the calendar year, units ~ County BEA (www.bea.gov)
= 1000 dollars
. All other production expenses
,eb;(légrtlzggzproductlon during the calendar year, units ~ County BEA (www.bea.gov)
= 1000 dollars
The sum of value of livestock,
Value of inventory crops, an_d materials and
change? * supplies inventory change for County BEA (www.bea.gov)
during the calendar year, units
= 1000 dollars
Value of crops Value of i_nventory change for
inventory change? * crops during the calendar year, County BEA (www.bea.gov)
units = 1000 dollars
. Value of inventory change for
Value_ of_materlals and materials and supplies during
supplies inventory County BEA (www.bea.gov)

change?

the calendar year, units = 1000

dollars

Notes: This set of data provides monthly data for 631 counties across twelve Corn Belt states from 2005 to 2018.
! means this variable is included in the first set of variables for double selection methods.

2 means this variable is included in the second set of variables for the double selection methods.

3 means this variable is included as lags in the first set of variables for the conventional methods.

4 means this variable is included as lags in the second set of variables for the conventional methods.

BEA is Bureau of Economic Analysis, NASS is National Agricultural Statistics Services, OpTIS is Operational
Tillage Information System, PRISM is Parameter-elevation Regressions on Independent Slopes Model, RMA is
Risk Management Agency, USDA is United States Department of Agriculture.
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Table A2. Summary Statistics of yields, CT adoption rates, priced received, harvested acres for
corn and soybeans and residue cover data missing rate.

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max
Corn yield (bu/acre) 7561 158.05 32.84 19 140.9 180.4 246.7
CT adoption rate, corn 7561 44.59 15.57 0.01 3359 54.92 100

x 100

Price received, corn 7561 4.21 1.29 1.90 3.46 4.76 6.98
Harvested acres, corn 7561 94,358 61,988 600 46,500 132,600 394,000

Soybean yield (bu/acre) 7561 47.47 9.11 10.9 42.1 535 82.3
CT adoption rate, soybeans 7561 55.14 15.81 0.01 44.19 66.67 100

x 100

Price received, soybeans 7561 10.36 2.35 5.50 9.22 12.3 14.28
Harvested acres, soybeans 7561 82,830 44,530 2,100 48,800 109,000 311,500

Government payment 7561 6,562 5,975 0 2,808 8,415 79,888
(1,000 $)
Residue cover missing rate 7561  18.09 25.02 0 2.52 21.25 100

Table A3. Summary Statistics of dependent and independent variables.

) Std. . Pctl. Pctl.
Variable N Mean Dev. Min o5 75 Max

Difference of logged yield,
corn

Difference of CT adoption rate,
corn

Difference of logged yield,
soybeans

Difference of CT adoption rate,
soybeans

6501 0.013 0.263 -1.991 -0.083 0.104 2.129

6501 0 0.147 -0.598 -0.085 0.082 0.623

6501 0.012 0.181 ~-1.124 -0.08 0.104 1.329

6501 0.004 0.139 -0.663 -0.081 0.085 0.683
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Table A4. Robustness checks for corn.

Robust Confidence

Estimator Effect Std. Interval Ff\ gjliatfedd RMSE OIEIS' (\:/(;r:trl(\)ll

Error 25% 97.5% g '

DML-lasso 0.015 0.015' -0.015 0.044 - - 6501 -
Double

Selection -0.004 0.018 -0.039 0.031 0.893 0.076 5133 1454
1)
Double
Selection

2)2 -0.018 0.021 -0.059 0.023 0.900 0.076 4488 1384

Notes: Regressions of difference of corn yields on difference of CT adoption rate for robustness checks. DML-lasso
estimator is used to conduct the robustness check for overfitting. Double selection estimator (1) uses data dropping
counties that have 5% harvested cropland irrigated to perform the robustness check. Double selection estimator (2)
uses data dropping states that have high residue cover missing rate. DML estimator results are calculated using
median method (Belloni et al., 2014a) based on 200 splits with point estimates. Double selection estimator results
are obtained by applying the median method (Belloni et al., 2014a) to 1000 repeats with point estimates. The
robustness standard errors are calculated by applying the median method to clustered standard errors from the 1000
repeats to adjust for the variation across the repeats. Confidence intervals are calculated based on the reported
median estimates and the adjusted clustered standard errors. Other statistics are reported using the statistics for
median estimates. Obs. N is the total number of observations used in the regression. Control Var. N is the number of
technical regressors (not including time fixed effect dummies) used as controls.

! the standard error for DML-lasso is not robust standard error and it is smaller than the robust standard error and
the confidence interval can be bigger and shift a little bit for robust standard error.
2 the number of folds used for cross-validation for this estimator is 5 given much lesser observations.

Significant codes: 0 “*** (0.001 “*** 0.01 “** 0.05°.> 0.1 “’ 1
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Table A5. Robustness checks for soybeans.

Robust Confidence .
Estimator Effect Std. Interval F)QA\ Sjllj;tff q RMSE Olt\)ls. (\:/(;r:trl(\)ll
Error 25% 97.5% d ]
DML-lasso  -0.070%**  0.012! -0.095 -0.047 - - 6501 -
Double
Selection  -0.075*** 0014 -0.103 -0.047 0815 0065 5133 1398
1)
Double
Se'(ezc)tz'on -0.061*** 0015 -0.091 -0.031 0832  0.066 4488 1249

Notes: Regressions of difference of corn yields on difference of CT adoption rate for robustness checks. DML -lasso
estimator is used to conduct the robustness check for overfitting. Double selection estimator (1) uses data dropping
counties that have 5% harvested cropland irrigated to perform the robustness check. Double selection estimator (2)
uses data dropping states that have high residue cover missing rate. DML estimator results are calculated using
median method (Belloni et al., 2014a) based on 200 splits with point estimates. Double selection estimator results
are obtained by applying the median method (Belloni et al., 2014a) to 1000 repeats with point estimates. The
robustness standard errors are calculated by applying the median method to clustered standard errors from the 1000
repeats to adjust for the variation across the repeats. Confidence intervals are calculated based on the reported
median estimates and the adjusted clustered standard errors. Other statistics are reported using the statistics for
median estimates. Obs. N is the total number of observations used in the regression. Control Var. N is the number of
technical regressors (not including time fixed effect dummies) used as controls.

! the standard error for DML-lasso is not robust standard error and it is smaller than the robust standard error and
the confidence interval can be bigger and shift a little bit for robust standard error.
2 the number of folds used for cross-validation for this estimator is 5 given much lesser observations.

Significant codes: 0 “**** 0.001 “**’ 0.01 “** 0.05 > 0.1 "1
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Figure Al. Variable selection curves for corn.
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Notes: Figures Ala and Alb show the lambda selection process for the median lambda among the 1000 repeats. The
cross-validation curve is shown using red dotted line, the error bars form the upper and lower standard deviation
curves along the A sequence. The left vertical dotted line indicates lambda.min which is the value of A that gives
minimum mean cross-validated error, and the right vertical dotted line indicates lambda.1se which represents the
value of A that gives the most regularized model such that the cross-validated error is within one standard error of
the minimum.
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Figure A2. Variable selection curves for soybeans.
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895 830 742 638 575 497 424 383 319 280 228 196 167 136 103 84 71 60 43 36 32 28 24 20 17 17 16 15 13

Mean-Squared Error
0.020 0.025
| |

0.015
1
-

0.010
1

Log(i)

A2b. curves for variable selection for CT adoption

1784 1512 1307 1147 962 855 730 656 567 480 410 333 276 222 194 160 127 98 81 68 54 48 36 31 16 14 13

0.015 0.016 0.017
| | |

M ean-Squared Error

0.014
|
"

Ttessdsaqertet

.
11t
.

Log(x)

Notes: Figures A2a and A2b show the lambda selection process for the median lambda among the 1000 repeats. The
cross-validation curve is shown using red dotted line, the error bars form the upper and lower standard deviation
curves along the A sequence. The left vertical dotted line indicates lambda.min which is the value of A that gives
minimum mean cross-validated error, and the right vertical dotted line indicates lambda.1se which represents the
value of A that gives the most regularized model such that the cross-validated error is within one standard error of

the minimum.
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Appendix B. Robustness check details using the DML approach
| apply LASSO to equations (1) and (2) separately to predict Ay, and ACT;;. This DML

approach approximately removes the direct effect of confounding from Ay, through equation (1)
and approximately partials out the effect of z;, from ACT;; though equation (2) to obtain the
orthogonalized regressor 4¢€;;, then the estimate of coefficient a can be obtained by using DML
estimator (Chernozhukov et al., 2018) as below:

-1
1 1 -
“=(_ Z AEit“”it) - Z Aéi; (Ayie — 2B — o), (B.1)

n L EL,tET i ELLtET
| adopt the K-fold cross-fitting approach® from Chernozhukov et al. (2018) to split full sample
randomly to K equal-sized folds, for each k € {1, ..., K}, observations from all other folds
(auxiliary sample) are used to apply LASSO and the rest of observations (main sample) are used
to estimate the coefficient, the estimator is obtained by averaging the results from K estimates.
Sample splitting can eliminate the bias induced by overfitting but it can lead efficiency loss,

swapping roles of auxiliary and main samples and averaging the results from multiple estimates

can regain full efficiency (Chernozhukov et al., 2018).

3 Sampling splitting doesn’t change the prediction structure in the model.

35



