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Abstract 

Global warming impacts everyone, private initiatives and the government are taking actions to 

prompt regenerative agricultural practices that can sequester carbon in the soil and vegetation to 

tackle climate change. It is critical to understand the yield effects of these practices on crops to 

facilitate the promotion. Many findings on yield effect of conservation tillage (CT) are based on 

the field experiments, only a few observational studies have been done. This study uses county-

level data covering 631 counties across 12 states from 2005 to 2018 and the post-double-

selection method to examine the average effect of CT on corn and soybean yields. I find that CT 

has no impact on corn but small negative impact on soybeans. In counties with an average CT 

adoption rate, the soybean yields would decline by 3.2%, this can be translated to an average loss 

of 1.5 bushels per acre. The average loss for each county due to 10% increase in CT adoption for 

soybeans could be 346,720 US dollars based on the latest price data. 
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1 Introduction 

Global warming is mainly driven by emissions from human activities (Masson-Delmotte et al., 

2021). Climate change caused by global warming has increased the frequency and intensity of 

weather and climate extremes such as heavy precipitation, droughts, and hot extremes (Masson-

Delmotte et al., 2021). These climate hazards have negative impacts on human’s life, and 

increase the risk of food security; thus, actions are needed to slow down the climate change 

induced by human activities. As part of the efforts to tackle climate change, private initiatives 

and the government are seeking ways to reduce Greenhouse Gases emissions and enhance the 

agricultural carbon sink. In recent years, the private sector has initiated several carbon emissions 

offset and supply chain inset markets (Bruner & Brokish, 2021; Plastina & Wongpiyabovorn, 

2021; Thompson et al., 2021) to incentivize farmers to adopt practices such as conservation 

tillage and cover crops that sequester atmospheric carbon in soils and vegetation. The US 

president’s Climate 21 Project also called for the establishment of a ‘carbon bank’ that would 

pay farmers to store carbon using regenerative agriculture practices. Conservation tillage (CT), 

which leaves at least thirty percent of the soil surface covered by residue after planting (CTIC, 

1992), is one such practice that has been recommended for adoption for years because of its soil 

conservation benefits. However, CT may reduce yields due to weed and insect problems, low 

soil temperature, and high soil moisture caused by residues (Toliver et al., 2012), thus, farmer 

concerns about yield loss following adoption have been a major impediment to expanding 

adoption of this practice (Kragt et al., 2017; Prokopy et al., 2019). Understanding the effects of 

CT adoption on corn and soybean yields is necessary to quantify the economic impact of CT 

adoption on farmers, and evaluate carbon market prices or conservation payments to farmers for 

adopting CT.  
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Many studies have been done based on field experiments to assess the yield effects of CT, 

however, the results are mixed because yield effects can be influenced by other factors, yields for 

crops with CT tend to be higher under crop rotation, with well-drained soil, and in warmer 

locations (DeFelice et al., 2006; Toliver et al., 2012). Though side-by-side field experiments 

provide direct assessment of the yield effects of CT, the results of these studies can have limited 

real-world implications because same management for CT and conventional tillage was used in 

many field experiments (DeFelice et al., 2006), and the field experiments were conducted in 

certain locations (Chen et al., 2021), therefore, the results from these experiments cannot be 

generalized. Large-scale observational data that captures real-world applications in different 

locations may be used to address these limitations and identify the average effect of CT adoption 

on corn and soybean yields.  

There are only a few observational studies on this topic, two most recent ones are Deines et al. 

(2019) and Chen et al. (2021). Deines et al. (2019) used the fine-scale satellite imagery data of 

tillage practices and model derived crop yields in the US Corn Belt from 2005 to 2017, and 

applied casual forest method to assess the yield effects of CT. They found that CT has slightly 

positive yield effect for corn and insignificant effect for soybeans in the short run. (Chen et al., 

2021) used the county-level tillage data from the Operational Tillage Information System 

(OpTIS) in the US Corn Belt and yield data from USDA survey from 2005 to 2018, and 

specified a fixed-effects linear model to estimate the effects of CT adoption rates on corn and 

soybean yields. They found that CT has no negative yield effects for corn or soybeans. Both 

studies have limitations, first, they included no or only a few state-level and national level 

socioeconomic variables that influence CT adoption and yields in their analysis, this could cause 

omitted-variables bias (Chen et al., 2021; Deines et al., 2019), many studies have shown that CT 
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adoption and crop yields can be influenced by socioeconomic variables (Cabas et al., 2010; 

Kaufmann & Snell, 1997; Prokopy et al., 2019); second, the linear model used in Chen et al. 

(2021) might not be the correct specification for this problem, previous studies including the 

quadratic terms of weather and socioeconomic variables to predict crop yields found significant 

influences of quadratic terms on yields (Cabas et al., 2010; Tannura et al., 2008). This work 

contributes to these existing observational studies on yield effects of conservation tillage 

adoption using a county-level socioeconomic dataset and applying new empirical methods that 

allow for nonlinear trends interacted with observed county-level time varying characteristics. 

This study applies post-double-selection method (Belloni et al., 2014a) to a high-dimensional 

regression model to examine the effects of CT adoption on county mean corn and soybean yields 

by using corn and soybean yields, CT adoption rates, weather and climate levels, and 

socioeconomic data from 631 counties across twelve Corn Belt states from 2005 to 2018. I apply 

LASSO to the model for variable selection and predicting yields and CT adoption rates, 

respectively, and identify the effect of CT adoption on corn and soybean yields by regressing the 

differences of yields on the differences of CT adoption rates and the union of the selected 

variables and the year fixed effect dummies.  

This study suggests that CT has no impact on corn but small negative impact on soybeans. In 

counties with an average CT adoption rate, the soybean yields would decline by 3.198% (CI = 

[4.577%, 1.820%]), this is equivalent to an average loss of 1.518 bushels per acre (CI = [2.173, 

0.864]). Farmers adopt CT might be because of the benefits from cost reduction through using 

less fuel, labor, and insecticide; and the incentives from government payments. Smaller 

confidence intervals and RMSE are obtained when using post-double-selection method, this 

suggests that double selection method could provide more accurate estimations.  
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I discuss data in the next section, followed by methods used, results, discussions and conclusions. 

2 Data 

This study examines the yield effects of CT adoption rates on corn and soybeans by using: crop 

yields from USDA-NASS (2020b); CT adoption rates from the Operational Tillage Information 

System (OpTIS) (OpTIS, 2019); weather and climate data from the PRISM database (PRISM 

Climate Group) and TerraClimate (Climatology Lab); and socioeconomic data obtained from 

U.S. Bureau of Economic Analysis (BEA) (2021), USDA-Risk Management Agency (USDA-

RMA) and USDA-NASS (2020a). I use some data used in Chen et al. (2021) such as corn and 

soybean yields, CT adoption rates, standardized precipitation-evapotranspiration index (SPEI), 

price received, continuous crop (corn/soybeans), fraction insured, and GM adoption rates. In 

addition, monthly weather and derived climate levels, Growing Degree Days (GDD), farm 

incomes, farm expenses, and values of inventory changes are used in this analysis. The data 

cover 631 counties across twelve Corn Belt states (Iowa, Illinois, Indiana, Kansas, Michigan, 

Minnesota, Missouri, Nebraska, Ohio, Oklahoma, South Dakota, Wisconsin) from 2005 to 2018. 

In the following subsections, I discuss the dependent and independent variables, and explanatory 

variables such as weather and climate variables and socioeconomic variables that are included in 

this analysis, and the limitations of the data.  

2.1 Dependent and independent variables 

I use county mean corn and soybean yields as the dependent variables, and county-level corn and 

county-level soybean CT adoption rates as the independent variables, respectively, for corn and 

soybean regressions. The yields are from the survey data published on USDA-NASS; the corn 

yields and soybean yields across counties and years vary from 19 bushel/acre to 246.7 

bushel/acre and from 10.9 bushel/acre to 82.3 bushel/acre, respectively. CT adoption rates are 
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obtained by aggregating remotely sensed corn and soybean tillage data from crop level to county 

level, the CT adoption rates for corn and soybean vary from 0.01% to 100% and from 0.01% to 

100%, respectively. The summary statistics of yields and CT adoption rates can be found in 

Appendix Table A2.  

2.2 Explanatory variables 

2.2.1 Weather and climate variables 

Temperature and precipitation have been used in many studies to predict crop yields; some 

studies include both seasonal climate variables and monthly climate variables (Cabas et al., 2010; 

Deines et al., 2019; Tannura et al., 2008), and some studies use aggregated climate proxies such 

as Growing Degree Days (GDD) during growing season (Anandhi, 2016; Deines et al., 2019), 

while some studies also include climate variables out of crop growing season (Dixon & Segerson, 

1999; Tannura et al., 2008). To capture the potential effects of different forms of temperature and 

precipitation variables, I obtain the monthly weighted average precipitation, minimum and 

maximum temperature; and Growing Degree Days (GDD) during growing season from April to 

October calculated based on the daily precipitation, minimum temperature, and maximum 

temperature from the original data sources. 

In addition to temperature and precipitation, solar radiation is found to be an important factor in 

determining crop yields (Dixon, 1994; Lobell et al., 2009). Precipitation, as one of the commonly 

used factors to predict crop yields, may not represent the water condition for crop production 

since water stress can be induced by increased vapor pressure deficit (VPD) (Zhang et al., 2017) 

and water deficits in rainfed system could increase the yield gap (Lobell et al., 2009). Palmer 

Drought Severity Index (PDSI) is a common variable used to measure drought, and it is highly 

correlated with soil moisture (Mika et al., 2005); early season soil moisture (April to June) are 



6 
 

found to have significant effects on corn and soybean yields (Urban et al., 2015). While Lobell et 

al. (2014) found that VPD is a better predictor of crop water stress and yields than PDSI. 

Farmers may adopt CT to reduce the risk of yield loss due to drought conditions because Chen et 

al. (2021) found that CT adoption may mitigate some of the negative impacts of drought on corn 

and soybean yields. Runoff as a measure of both waterflow to other areas and degradation of top 

soil through leaching and erosion (Kerr, 2007) may influence both crop yields and CT adoption 

since floods can reduce yields and farmers are more likely to adopt CT on high soil erosion land 

(Wu et al., 2004). Wet soils in fall after harvesting and in Spring before planting may prevent 

farmers from performing tillage (Chen et al., 2021), thus, these conditions may have influence on 

CT adoption.  

Climate Water Deficit (DEF), soil moisture, PDSI, VPD and runoff are derived directly or 

indirectly based on the combinations of some of the primary climate variables including 

maximum temperature, minimum temperature, vapor pressure (VAP), precipitation accumulation, 

downward surface shortwave radiation (SRAD), and wind-speed (WS), respectively. Reference 

evapotranspiration (PET) and actual evapotranspiration (AET) are two factors that determine 

DEF, they are also derived based on the primary climate variables (Abatzoglou et al., 2018). 

Obviously, the primary climate variables are correlated with one or more than one derived 

climate variables. However, it is hard to determine if the primary climate variables are better 

predictors of yields or if the one-year lag of the derived climate variables such as drought 

conditions, soil moisture, and runoff can be better perceived by farmers to influence their CT 

adoption decisions, and vice versa. In order to not miss the important information that influence 

yields or CT adoption, I include all these variables in the study and rely on the variable selection 

method to select the variables that are most important to predict yields or CT adoption.  
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The weather variable county-level means, such as monthly precipitation, monthly temperature, 

and GDD for the growing season, are averaged or accumulated daily weighted means calculated 

using R package ‘acdcR’ (Yun, 2022). The derived climate variable county-level means are 

monthly weighted means calculated following Yun and Gramig (2019). Both weighed 

calculations are only accounted for the agricultural fields and are calculated using the 

agricultural field areas in the PRISM or TerraClimate data pixels as weight in the county. 

2.2.2 Socioeconomic and crop management variables 

Previous studies found that crop insurance, crop rotation, income, and input costs may be 

correlated with CT adoption (Prokopy et al., 2019). High fuel costs and labor costs may 

incentivize farmers to choose lower intensity tillage practices (Chen et al., 2021; Deines et al., 

2019; Uri, 2000), however, higher fertilizer prices may discourage farmers to adopt CT since 

farmers tend to use more fertilizer in conservation tillage system (Laukkanen & Nauges, 2011). 

Studies have shown that crop rotation adoption has influence on yields (Al-Kaisi et al., 2015; 

Karlen et al., 2013; West et al., 1996) and CT adoption (Wu & Babcock, 1998). Input costs such 

as seed expenses, fertilizer and lime expenses, petroleum product expenses, machinery expenses, 

other expenses and value of materials and supplies inventory change can be treated as proxies for 

the input usage which have a significant impact on corn and soybean yields (Van Roekel et al., 

2015). Technology adoption such as using Genetically Modified (GM) seeds could influence 

crop yields (Lusk et al., 2017) and the adoption of CT (Chen et al., 2021); farm’s financial 

position such as the lags of incomes and value of inventory changes may represent the farm’s 

technology adoption such as adoption of precision agriculture and cropping management 

capabilities which could also have impacts on crop yields (Egli, 2008). Thus, I include 

socioeconomic and crop management variables such as the lags of farm incomes and value of 
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inventory changes, farm expenses, corn and soybean insured ratios, GM adoption, and crop 

rotation proxies (continuous corn to corn and continuous soybean to soybean ratios) in the study, 

details can be found in Appendix table 1.  

2.3 Data limitations 

County-level aggregated data cannot provide farm-level characteristics information, such as 

farmer’s age and education level, and farm-level management information. I assume that 

farmer’s personal characteristics are controlled since they may not be time-varying 

characteristics, or they may change in a very small pace each year that can be ignored.  

Farmer’s awareness of environmental issues, perceptions on climate change, and attitudes toward 

conservation practices are very hard to be captured, however, these may affect the farmer’s 

decision on CT adoption.  

There are measurement errors in the CT adoption rates, these errors are introduced by using the 

rates calculated based on the observed residue cover in part of the county to replace the missing 

observations for the reminder of the county (Chen et al., 2021). To address this limitation, I 

conduct robustness checks by excluding states with high missing data rates. 

3 Methods 

3.1 Methodology 

As discussed earlier in the data section, many factors may be associated with yields and CT 

adoption rates, thus, I include as many weather and socioeconomic variables that might be 

relevant as possible in this analysis. To capture the evolution of yields and CT adoption rates 

over a 14-year period, I adopt a model that allows for nonlinear trends interacted with observed 

county-specific time-varying characteristics (Belloni et al., 2014b). High-dimensional data are 

obtained by interacting and transforming the variables. To avoid collinearity and overfitting, 
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simply dropping some variables based on economic intuition or using a linear model to form a 

small number of interaction terms might be problematic since it is hard to determine if correct 

variables and functional forms were chosen. High-dimensional methods can use the data to learn 

which variables are most important (Belloni et al., 2014b) and pick one variable among very 

correlated predictors (Friedman et al., 2010); this helps us select the variables that are most 

useful for predicting yields and CT adoption rates, respectively, and avoid collinearity and 

overfitting. Because certain factors may be associated with both yields and CT adoption rates, a 

naive approach to apply variable selection methods to a single regression model may lead to 

omitted-variable bias if any variable that is highly related to CT adoption rates is dropped 

(Belloni et al., 2014b) and lead to regularization biases because of variable selection 

(Chernozhukov et al., 2018). Thus, I choose the double selection methods to overcome these 

biases. 

I apply post-double-selection method (Belloni et al., 2014a) to a high-dimensional regression 

model (Belloni et al., 2014b) following the concept of partially linear regression (PLR) model 

(Belloni et al., 2014a; Robinson, 1988) to examine the yield effect of CT adoption rates on 

county mean corn and soybean yields in the Corn Belt.  

 𝛥𝑦𝑖𝑡 =  𝛽0 + 𝛼𝛥𝐶𝑇𝑖𝑡 +  𝒛𝑖𝑡
′ 𝜷 + 𝜇𝑡 + 𝛥𝜀𝑖𝑡,   (1) 

 𝛥𝐶𝑇𝑖𝑡 =  𝛾0 + 𝒛𝑖𝑡
′ 𝜸 + 𝜈𝑡 + 𝛥𝜖𝑖𝑡,         (2) 

Where 𝛥𝑦𝑖𝑡 = 𝑦𝑖𝑡 - 𝑦𝑖𝑡−1, 𝑦𝑖𝑡 is the natural log of crop (corn or soybean) yield in county 𝑖 in year 

𝑡; 𝛽0 and 𝛾0 are constant terms; 𝛥𝐶𝑇𝑖𝑡 = 𝐶𝑇𝑖𝑡 -  𝐶𝑇𝑖𝑡−1, 𝐶𝑇𝑖𝑡 is the CT adoption rate in 𝑖 and 𝑡; 𝛼 

is a coefficient to be estimated; 𝒛𝑖𝑡
′ 𝜷 and 𝒛𝑖𝑡

′ 𝜸 are approximations to the true functions which are 
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unknown, 𝒛𝑖𝑡 is the set of the technical regressors1 that includes variables made up of the 

differences and lags of weather and climate levels and values of socioeconomic factors, initial 

levels (the level in the first year) and initial differences (the difference of the levels between the 

second year and the first year) of weather and socioeconomic variables, the initial level and 

initial difference of the CT adoption rate, quadratics in each of the preceding variables, 

interaction of all differences, and interactions of all the variables with 𝑡 and 𝑡2. This set of 

technical regressors corresponds to a cubic trend for the level of crop yield and CT adoption rate 

that is allowed to depend on the observed county-level characteristics. 𝜇𝑡 and 𝜈𝑡 are time fixed 

effects. 𝛥𝜀𝑖𝑡 and 𝛥𝜖𝑖𝑡 are error terms which are defined similarly to 𝛥𝑦𝑖𝑡 and 𝛥𝐶𝑇𝑖𝑡.  

To apply the variable selection method, I write the reduced form corresponding to (1) as: 

 𝛥𝑦𝑖𝑡 = 𝛽̅0 + 𝒛𝑖𝑡
′ 𝜷̅ + 𝜇̅𝑡 + 𝛥𝜀𝑖̅𝑡,  (3) 

where  𝛽̅0 = 𝛼𝛾0 + 𝛽0, 𝜷̅ = 𝛼𝜸 + 𝜷, 𝜇̅𝑡 = 𝛼𝜈𝑡 + 𝜇𝑡, 𝛥𝜀𝑖̅𝑡 = 𝛼𝛥𝜖𝑖𝑡 + 𝛥𝜀𝑖𝑡. 

I assume approximate sparsity condition hold for this case, which means that only a relatively 

small number of non-zero coefficients in 𝜸 and 𝜷 could make the approximation errors small 

relative to estimation error. This assumption may enable 𝛥𝐶𝑇𝑖𝑡 be taken as exogenous 

conditional on a relatively small number of control variables and ensure that important elements 

are captured by a relatively small number of control variables to keep the residual variance small 

when regressing 𝛥𝑦𝑖𝑡 on 𝛥𝐶𝑇𝑖𝑡. The Least Absolute Shrinkage and Selection Operator (LASSO) 

is used to select a relatively small and approximately right set of technical regressors to predict 

yields and CT adoption rates, respectively. I apply LASSO to equations (2) and (3) to select 

 
1 Technical regressors refer to the regressors obtained through transformations and interactions of the control 
variables, which is recommended by Belloni et al. (2014a). 
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technical regressors that are useful for predicting 𝛥𝐶𝑇𝑖𝑡 and 𝛥𝑦𝑖𝑡. The LASSO estimators 𝜸̂ and 

𝜷̂ (Friedman et al., 2010) are solutions for the following optimization problems, respectively: 

min
(𝛾0,𝜸)∈R𝑝+1

[
1

2(𝑇 × 𝐼)
∑ ∑(𝛥𝐶𝑇𝑖𝑡 − 𝛾0 − 𝒛𝑖𝑡

′ 𝜸 − 𝜈𝑡)2

𝐼

𝑖=1

𝑇

𝑡=1

+ 𝜆𝛾 ∑ |𝛾𝑗|
𝑝

𝑗=1
] , (4) 

min
(𝛽̅0, 𝜷̅)∈R𝑝+1

[
1

2(𝑇 × 𝐼)
∑ ∑(𝛥𝑦𝑖𝑡 − 𝛽̅0 − 𝒛𝑖𝑡

′ 𝜷̅ − 𝜇̅𝑡 )2

𝐼

𝑖=1

𝑇

𝑡=1

+ 𝜆𝛽̅ ∑ |𝛽̅𝑗|
𝑝

𝑗=1
] , (5) 

where  𝜆𝛾 and 𝜆𝛽̅ are the “penalty level”, 𝐼 is the total number of counties, 𝑇 is the total number 

of years, and 𝑝 is the total number of covariates, 𝛾0 and 𝛽̅0 are constant terms. LASSO performs 

variable selection by forcing the coefficients of “not-so-significant” variables to become zero 

through the penalty. After the important regressors are selected using LASSO for predicting 

𝛥𝐶𝑇𝑖𝑡 and 𝛥𝑦𝑖𝑡, I use the union of the set of selected technical regressors, including time fixed 

effects, as controls to estimate 𝛼 in the ordinary least squares regression of 𝛥𝑦𝑖𝑡 on 𝛥𝐶𝑇𝑖𝑡. This 

approach ensures that any technical regressors that have large effects on 𝛥𝑦𝑖𝑡 and 𝛥𝐶𝑇𝑖𝑡 are 

included in the model and omitted-variable bias is limited by excluding technical regressors that 

are most mildly associated with 𝛥𝑦𝑖𝑡 and 𝛥𝐶𝑇𝑖𝑡.  

To test the performance of this post-double-selection approach, I also specify a model with first 

differenced and lagged control variables for comparison: 

 𝛥𝑦𝑖𝑡 =  𝜃0 + 𝛼𝑑𝛥𝐶𝑇𝑖𝑡 +  𝒘𝑖𝑡
′ 𝜽 + 𝜔𝑡 + 𝛥𝜏𝑖𝑡. (6) 

Where 𝒘𝑖𝑡 is a set of variables derived from the differences and lags of weather and 

socioeconomic variables (see Appendix Table A1); 𝜃0 is the constant term, 𝜔𝑡 is time fixed 

effect; and 𝛥𝜏𝑖𝑡 is the error term. This baseline specification controls for a small set of time-

varying county-specific factors, any time-invariant county-specific factors, and national 

aggregate trends. 
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I use two sets of control variables for both conventional estimator and double selection estimator 

to compare the performance of them. For the first set of control variables, I use the variables that 

were selected based on researchers’ knowledge and intuition as a baseline. For the second set of 

control variables, I cover as many as the climate variables and socioeconomic variables that have 

been found to be useful to predict yields and CT adoption and rely on the variable selection 

method to select the variables that are most important.  

In the first set of control variables for baseline model (conventional estimator), I include 

variables that were used in Chen et al. (2021) but replace some weather and socioeconomic 

variables with similar variables in different form or different regional level. As mentioned in the 

data section, drought has influence on crop yields, I use the PDSI level in August as the proxy of 

drought instead of drought indicator created based on PDSI in August used in Chen et al. (2021) 

to show the year-on-year differences in PDSI. I use the lags of county level fertilizer expenses 

and petroleum product expenses instead of the lags of national level fertilizer prices and fuel 

prices because national level data tend to be dropped with time fixed effect. I include the 

differences of some variables used in Chen et al. (2021) such as GM adoption rate, corn/soybean 

insured rate, continuous corn/soybean rate, spring wetness and lags of some variables such as fall 

wetness, price received, CT adoption rate for corn, and CT adoption rate for soybeans (Chen et 

al., 2021). The discussion of these variables can be found in the previous data section and in the 

paper of Chen et al. (2021). I use all control variables2 (before differenced and lagged) 

mentioned above to perform transformation and interaction to generate technical regressors for 

post-double-selection estimator.  

 
2 The lags of CT adoption rates for corn and soybeans are not included in both sets of control variables for post-
double-selection estimator.  
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I add the differences of monthly primary climate variables from April to October, monthly 

derived climate variables from April to October, GDD between 8 and 30 and above 30 during 

growing season from April to October, and other production expenses; and the lags of some 

subcategory incomes and inventory changes to the first set of control variables as the second set 

of control variables for the baseline model (conventional estimator), I don’t include climate 

variables that are out of growing season because some derived climate variables may exhibit 

series correlations (Chen et al., 2021), such as PDSI for a given month can reflect the weather 

condition in previous months (Alley, 1984; Palmer, 1965). Similar as the first set of variables, I 

use all variables (before differenced and lagged) for conventional estimator to perform 

transformation and interaction to generate the second set of technical regressors for post-double-

selection estimator.  

The summary statistics for the dependent and independent variables used in the regressions are 

reported in Appendix Table 3. 

3.2 Robustness check 

3.2.1 Overfitting 

Overfitting bias is a concern for highly complex fitting methods such as random forests, boosting, 

and hybrid machine learning methods (Bach et al., 2021), the Double Machine Learning (DML) 

method (Chernozhukov et al., 2018) developed the cross-fitting concept to overcome overfitting 

without loss of efficiency. LASSO is less concerned on overfitting, but the DML method can 

also be used for LASSO estimation. Thus, I adopt the DML method (Chernozhukov et al., 2018) 

to perform robustness check for the post-double-selection method. The detailed explanation of 

DML method can be found in Appendix B. 
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3.2.2 Irrigation counties 

For the counties that use irrigation for corn and soybean production, the effects of CT on corn 

and soybean yields might be different compared with the counties don’t use irrigation or use less 

irrigation. I obtain the total harvested cropland area and the harvested cropland area that is 

irrigated in the county reported in the 2002, 2007, 2012, and 2017 censuses, and then calculate 

the proportion of harvested cropland in the county that is irrigated in each census year by 

dividing the irrigated harvested cropland area by the total harvested cropland area. I identify and 

drop the counties (132 counties) that have equal to or more than 5 percent of the harvested 

cropland irrigated in any of the Census year (Kuwayama et al., 2019) to test the effects of CT on 

corn and soybean yields as robustness checks.  

3.2.3 Counties with high residue cover data missing rates 

Robustness check is conducted to verify the model performance by excluding states with high 

missing rates of residue cover data. The states excluded are Iowa, Kansas, Minnesota, and 

Oklahoma. 

4 Results  

4.1 Primary Results 

I apply LASSO (use R package ‘cv.glmnet’ (Friedman et al., 2022)) to equations (3) and (2), 

respectively, to select the lambda to obtain minimum mean squared error (MSE) and select the 

technical regressors that are important to predict yields and CT adoption rates. The number of 

folds used for cross validation when implementing LASSO variable selection process is 10; the 

time fixed effect dummies are excluded from the variable selection, which means that they are 

included in any cases. After the regressors are selected for predicting yields and CT adoption 
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rates, the union of the technical regressors and the time fixed effect dummies are used as controls 

to estimate 𝛼 in the ordinary least squares regression of 𝛥𝑦𝑖𝑡 on 𝛥𝐶𝑇𝑖𝑡.  

The variables selected may vary each time because the samples are randomly split for training 

data set and test data set when performing cross validation. To make the results more robust, I 

repeat the variable selection process and regression 1000 times, and follow the median method 

used in Chernozhukov et al. (2018) to obtain the median estimate and the standard error adjusted 

for variation across 1000 regressions. The confidence interval is calculated based on the estimate 

and standard error calculated using median method; adjusted R-squared, RMSE, and control 

variables excluding time-fixed effect dummies are reported as the ones for the median estimate. 

The lambda selection process for the median lambda among the 1000 repeats can be found in 

Appendix Figure A1 and Figure A2.  

Table 1 reports the regression results of difference of corn yields on the difference of CT 

adoption rates applying conventional estimator and post-double-selection estimator to the two 

sets of control variables in Appendix Table A1, respectively. Regardless of the model 

specifications and variables used, the results suggest that CT adoption has no significant impact 

on corn yields. Double selection estimator uses the control variables that captures a cubic trend 

for the level of crop yield and CT adoption rate, the results of the double selection estimators 

show a smaller confidence interval and a smaller RMSE compared to the conventional estimators 

when using the same variables (before transformation and interaction). The less accurate 

estimation obtained by conventional estimators might be because of potentially incorrect linear 

specification. If I assume the linear specification is correct, the performance of conventional 

estimator is improved after adding more variables, this can be seen from the smaller confidence 

interval and RMSE of conventional (2) compared to those of the conventional (1), thus, the less 
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accurate estimation obtained by conventional estimator (1) can be partially explained by omitted 

variable biases. The estimate of Double Selection estimator (1) is less accurate compared with 

that of Conventional estimator (2) even if there are more regressors used for the regression, this 

might be explained by larger impact of omitted variable bias on the model performance 

compared with the impact of misspecification when the information included in the model is 

limited. The number of technical regressors that are selected by double-selection-LASSO for the 

first set of variables is 267 out of 270 (total number of technical regressors before selection), 

which means that almost all the regressors provided for selection are important to predict yields 

or CT adoption. For the second set of variables, 1,539 regressors are selected from 14,262 total 

regressors. Most technical regressors selected though double selection method are differences 

and lags of some climate variables and socioeconomic variables with or without interactions with 

linear or nonlinear time trend, initial differences of some climate variables and socioeconomic 

variables interacted with linear or nonlinear time trend, climate variables interacted with climate 

variables and with or without interacted with linear or nonlinear time trend, socioeconomic 

variables interacted with climate variables or socioeconomic variables and with or without 

interacted with linear or nonlinear time trend. These selected variables suggest the presence of a 

nonlinear trend that depends on county-specific characteristics.  

Table 2 reports the regression results of difference of soybean yields on the difference of CT 

adoption rates applying conventional estimator and double selection estimator to the two sets of 

control variables in Appendix Table A1, respectively. Regardless of the model specifications and 

variables used, the results suggest that CT adoption has significant and negative impact on 

soybean yields. The performance of the estimators for soybeans follows the similar pattern as 

that for corn, double selection estimator using the second set of control variables yields the most 
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accurate estimation. The number of regressors selected for soybeans are similar as that for corn, 

264 regressors are selected from 270 regressors for the first set of variables; 1,473 regressors are 

selected from 14,262 regressors for the second set of variables. There are less regressors selected 

for soybeans, this is mainly because that less regressors for predicting CT adoption for soybeans 

are selected. I use the same set of variables for both corn and soybeans, however, there might be 

some factors important for CT adoption for corn but not for soybeans, or some factors that are 

important to influence CT adoption for soybeans are not included in the analysis. Similar as corn, 

different forms and interactions of climate and socioeconomic variables are selected, the selected 

variables suggest the presence of a nonlinear trend that depends on county-specific 

characteristics. The coefficient on CT adoption from double selection (2) suggests that a 1% 

increase in CT adoption can lead to about 0.058% (average effect, 95% Confidence Interval, CI 

= [0.083%, 0.033%]) decrease in soybean yield, this translate to an average loss of 0.028 

bushel/acre (CI = [0.039, 0.016]) given that the average soybean yield across counties and 14 

years is 47.47 bu/acre (Appendix Table A2). The average CT adoption rate across counties and 

years is 55.14%, this means that soybean yields would decline by 3.198% (CI = [4.577%, 

1.820%]), this is equivalent to an average loss of 1.518 bushel per acre (CI = [2.173, 0.864]). 

4.2 Robustness check 

4.2.1 Overfitting check 

For the robustness check, I use R package DoubleMLPLR (Bach et al., 2021) to estimate the 

effect of CT adoption on corn and soybean yields. The number of folds used for cross validation 

when implementing LASSO is 10; the time fixed effect dummies are excluded from the variable 

selection, which means that they are included in any cases. I choose a 5-fold cross-fitting and 

repeat the cross-fitting 200 times, the median of 200 coefficients is reported as the estimate. Row 
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1 of Appendix Table A4 and A5 show the regression results of using DML method for corn and 

soybeans, respectively, similar results are obtained. This suggests that overfitting is not a big 

concern when using double selection method. 

4.2.2 Dropping counties with Irrigation effect 

Row 2 of Appendix Table A4 and A5 show the regression results of using data dropping counties 

that have 5% harvested cropland irrigated for corn and soybeans, respectively. Similar effects for 

both corn and soybeans are obtained, this suggests that the primary results are robust when 

including counties with more than 5% harvested cropland irrigated.  

4.2.3 Dropping states with high residue cover data missing rates 

Row 3 of Appendix Table A4 and A5 show the regression results of using data dropping states 

that have residue cover missing rate for corn and soybeans, respectively. Similar effects for both 

corn and soybeans are obtained, this suggests that the primary results are robust when including 

observations with high residue cover data missing rates.  
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Table 1. Regressions of difference of corn yield on difference of CT adoption. 

Estimator Effect 

Robust 

Std. 

Error 

Confidence 

Interval 
Adjusted  

R-squared 
RMSE 

Obs.

N 

Control 

Var. N 
2.5% 97.5% 

Conventional 

(1) 
0.027 0.028 -0.028 0.082 0.413 0.201 6501 13 

Conventional 

(2) 
0.008 0.018 -0.027 0.043 0.757 0.128 6501 116 

Double 

Selection 

(1) 

0.033 0.025 -0.015 0.081 0.562 0.170 6501 267 

Double 

Selection 

(2) 

-0.000 0.016 -0.031 0.030 0.883 0.078 6501 1539 

Notes: The table shows the results from two different estimators using two different sets of 

variables. Conventional is the model specified with first differencing the variables and using lags 

of the variables; Double selection is the estimator to apply the post-double-selection method to 

the partially linear regression model. (1) means using the first set of control variables and (2) 

means using the second set of control variables listed in Appendix Table A1; for the 

conventional estimator using the first or second set of control variables, the variables are 

differenced and lagged control variables, while, for double selection estimator, the variables 

enter the model after transformations and interactions. Results are obtained by applying the 

median method (Belloni et al., 2014a) to 1000 repeats with point estimates. The robustness 

standard errors are calculated by applying the median method to clustered standard errors from 

the 1000 repeats to adjust for the variation across the repeats. Confidence intervals are calculated 

based on the reported median estimates and the adjusted clustered standard errors. Other 

statistics are reported using the statistics for median estimates. Obs. N is the total number of 

observations used in the regression. Control Var. N is the number of technical regressors (not 

including time fixed effect dummies) used as controls. 

Significant codes: 0 ‘***’  0.001 ‘**’  0.01 ‘*’  0.05 ‘.’  0.1 ‘ ’ 1. 
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Table 2. Regressions of difference of soybean yield on difference of CT adoption. 

Estimator Effect 

Robust 

Std. 

Error 

Confidence 

Interval 
Adjusted  

R-squared 
RMSE 

Obs.

N 

Control 

Var. N 
2.5% 97.5% 

Conventional 

(1) 
-0.116*** 0.019 -0.154 -0.078 0.262 0.155 6501 13 

Conventional 

(2) 
-0.107*** 0.016 -0.138 -0.076 0.624 0.110 6501 116 

Double 

Selection 

(1) 

-0.076*** 0.018 -0.112 -0.041 0.434 0.133 6501 264 

Double 

Selection 

(2) 

-0.058*** 0.013 -0.083 -0.033 0.806 0.070 6501 1473 

Notes: The table shows the results from two different estimators using two different sets of 

variables. Conventional is the model specified with first differencing the variables and using lag 

of the variables; Double selection is the estimator to apply the post-double-selection method to 

the partially linear regression model. (1) means using the first set of variables and (2) means 

using the second set of variables listed in Appendix Table A1; for the conventional estimator 

using the first and second variables, the variables are used as original, while, for double selection 

estimator, the variables enter the model after transformation and interaction. Double selection 

estimator results are obtained by applying the median method (Belloni et al., 2014a) to 1000 

repeats with point estimates. The robustness standard errors are calculated by applying the 

median method to clustered standard errors from the 1000 repeats to adjust for the variation 

across the repeats. Confidence intervals are calculated based on the reported median estimates 

and the adjusted clustered standard errors. Other statistics are reported using the statistics for 

median estimates. Obs. N is the total number of observations used in the regression. Control Var. 

N is the number of technical regressors (not including time fixed effect dummies) used as 

controls. 

Significant codes: 0 ‘***’  0.001 ‘**’  0.01 ‘*’  0.05 ‘.’  0.1 ‘ ’ 1. 
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5 Discussions and Conclusions 

I find that CT adoption has no impact on corn yield and has significant but small negative impact 

on soybean yield. The analyses suggest that soybean yields would decline by approximately 3.2% 

in counties with an average CT adoption rate of about 55%. The finding for corn is consistent 

with the studies conducted by Chen et al. (2021), and the finding for soybean is slightly different 

from theirs but is consistent with their results when county-year fixed effect specification is used. 

The finding for soybeans is also slightly different from that of Deines et al. (2019), the 

differences might be caused by avoiding some omitted variable bias through adding 

socioeconomic variables in this study.  

Ten percent increase in CT adoption can lead to an average yield loss of about 0.28 bushel/acre 

(CI = [0.39, 0.16]) for soybeans based on the mean of historical soybean yields across counties 

from 2005 to 2018. The average harvested acre for soybeans is 82,830 acres (Appendix Table A2) 

across counties and years, this gives us an average yield loss of about 23,192 bushels (CI = 

[32,340, 13,253]) for each county. Then the dollar amount loss for each county due to 10% 

increase in CT adoption for soybeans would be 346,720.40 US dollars (CI = [483,483.00, 

198.132.35]) given that the average price received for soybeans for the first five months of Year 

2022 is 14.95 $/bushel (USDA-NASS, 2022).  

Some farmers adopt CT may be because CT can lower labor and fuel costs, and reduce 

expenditures on weed management and insecticide (Claassen et al., 2018; Murphy et al., 2006; 

Uri, 2000), meanwhile, farmers adopting CT can receive government payments though joining 

the Conservation Stewardship Program (CSP), the Environmental Quality Incentives Program 

(EQIP), and other cost-share programs. These factors could influence the profits with adopting 

CT adoption. Farmers may adopt CT purely because of the environmental benefits of CT, the 

differences of perception of climate change or awareness of soil conservation caused by 
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differences of individual characteristics are hard to be captured at a county level. Other time-

varying variables that are hard to be reflected in a county-level data but are important to yield 

and CT adoption might lead to omitted-variable bias. 

The post-double-selection method used in this study provides more accurate estimation than the 

conventional approach. The attempt to avoid some omitted variable biases using post-double-

selection method seems effective in this context. The performance of the post-double-selection is 

not so well when the information used to explain the dependent and independent variables are 

limited. 
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Appendix A. Tables and Figures 

Table A1. Regression variables and data sources 

Variables Definition Level Source 

Crop yields 
Crop produced per area of land, 

units = bu/acre 
County USDA – NASS (2020b) 

CT adoption rates3, 4 
Percent acres having 30 percent 

or greater residue cover 
County OpTIS (2019) 

Ppt2  

(April - October) 

Monthly total precipitation 

(rain + melted snow), units = 

mm 

County 
PRISM database 

(prism.oregonstate.edu) 

Tmax2  

(April - October) 

Daily maximum temperature 

(Averaged over all days in the 

month) units = C 

County 
PRISM database 

(prism.oregonstate.edu) 

Tmin2  

(April - October) 

Daily minimum temperature 

(Averaged over all days in the 

month), units = C 

County 
PRISM database 

(prism.oregonstate.edu) 

GDD302  
Growing degree days over 30 

Celsius degree 
County 

PRISM database 

(prism.oregonstate.edu) 

GDD8_302  
Growing degree days between 8 

and 30 Celsius degree 
  

Fall wetness1, 2, 3, 4 

SPEI in September 

Standardized Precipitation-

Evapotranspiration Index 
County 

PRISM database 

(prism.oregonstate.edu) 

Spring wetness1, 2 

SPEI in April 
   

AET2  

(April - October) 

Actual evapotranspiration, 

liquid water supply plus the soil 

water utilized, monthly total, 

units = mm 

County 
TerraClimate (www. 

climatologylab.org) 

DEF2  

(April - October) 

Climate water deficit, the 

difference between monthly 

reference evapotranspiration 

and actual evapotranspiration, 

monthly total, units = mm 

County 
TerraClimate (www. 

climatologylab.org) 

Runoff2, 4  

(April - October) 

The excess of liquid water 

supply used by monthly 

reference evapotranspiration 

and soil moisture recharge, 

monthly total, units = mm 

County 
TerraClimate (www. 

climatologylab.org) 

Soil moisture2  

(April - October) 

Water stored in the soil, total 

column at end of month, units = 

m3 

County 
TerraClimate (www. 

climatologylab.org) 

SRAD2  

(April - October) 

Downward surface shortwave 

radiation, units = W/m2 
County 

TerraClimate (www. 

climatologylab.org) 
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Variables Definition Level Source 

VAP2  

(April - October) 

Vapor pressure (Fick & 

Hijmans, 2017), average for 

month, units = kPa 

County 
TerraClimate (www. 

climatologylab.org) 

VPD2  

(April - October) 

Vapor pressure deficit, average 

for month, units = kPa 
County 

TerraClimate (www. 

climatologylab.org) 

PDSI2    

(April - October) 

Palmer Drought Severity Index, 

at end of month 
County 

TerraClimate (www. 

climatologylab.org) 

Price received1, 3 

Average price received for crop 

in the last year by farmers; 

Proxy for expected commodity 

prices 

State  USDA-NASS (2020b) 

Continuous crop1, 2 

(corn/soybeans)  

Percent acres in continuous 

corn/soybeans, constructed 

from Cropland Data Layer 

(CDL) 

County USDA – NASS (2020a) 

Fraction insured1, 2  

Percent acres enrolled in 

federally subsidized crop 

insurance program 

County 
USDA – RMA 

(www.rma.usda.gov) 

GM adoption rates1, 2  
Percent acres used genetically 

modified seeds 
State USDA – NASS (2020b) 

Cash receipts from 

marketing2, 4  

Sum of cash receipts from 

livestock and crops, units = 

1000 dollars 

County BEA (www.bea.gov) 

Cash receipts from 

crops2, 4 

Gross cash income from all 

crops sold from the farm or 

ranch during the calendar year, 

units = 1000 dollars 

County BEA (www.bea.gov) 

Other income2, 4  

The sum of government 

payments and imputed and 

miscellaneous income received 

during the calendar year, units 

= 1000 dollars 

County BEA (www.bea.gov) 

Government payments2, 

4 

Value of all government (State 

or Federal) agricultural 

payments received during the 

calendar year, units = 1000 

dollars 

County BEA (www.bea.gov) 

Production expenses2  

Production expenses during the 

calendar year, units = 1000 

dollars 

County BEA (www.bea.gov) 

Seed expenses2  

See purchased during the 

calendar year, units = 1000 

dollars 

County BEA (www.bea.gov) 
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Variables Definition Level Source 

Fertilizer and lime 

expenses1, 2, 3, 4  

Fertilizer and lime (including 

ag. chemicals) purchased 

during the calendar year, units 

= 1000 dollars 

County BEA (www.bea.gov) 

Petroleum product 

expenses1, 2, 3, 4 

Petroleum product purchased 

during the calendar year, units 

= 1000 dollars 

County BEA (www.bea.gov) 

Hired labor expenses2, 4  

Hired farm labor expenses 

during the calendar year, units 

= 1000 dollars 

County BEA (www.bea.gov) 

All other production 

expenses2  

All other production expenses 

during the calendar year, units 

= 1000 dollars 

County BEA (www.bea.gov) 

Value of inventory 

change2, 4  

The sum of value of livestock, 

crops, and materials and 

supplies inventory change for 

during the calendar year, units 

= 1000 dollars 

County BEA (www.bea.gov) 

Value of crops 

inventory change2, 4  

Value of inventory change for 

crops during the calendar year, 

units = 1000 dollars 

County BEA (www.bea.gov) 

Value of materials and 

supplies inventory 

change2, 4 

Value of inventory change for 

materials and supplies during 

the calendar year, units = 1000 

dollars 

County BEA (www.bea.gov) 

Notes: This set of data provides monthly data for 631 counties across twelve Corn Belt states from 2005 to 2018.  
1 means this variable is included in the first set of variables for double selection methods. 
2 means this variable is included in the second set of variables for the double selection methods. 
3 means this variable is included as lags in the first set of variables for the conventional methods. 
4 means this variable is included as lags in the second set of variables for the conventional methods. 

BEA is Bureau of Economic Analysis, NASS is National Agricultural Statistics Services, OpTIS is Operational 

Tillage Information System, PRISM is Parameter-elevation Regressions on Independent Slopes Model, RMA is 

Risk Management Agency, USDA is United States Department of Agriculture. 
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Table A2. Summary Statistics of yields, CT adoption rates, priced received, harvested acres for 

corn and soybeans and residue cover data missing rate. 

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max 

Corn yield (bu/acre) 7561 158.05 32.84 19 140.9 180.4 246.7 

CT adoption rate, corn 

× 100 

7561 44.59 15.57 0.01 33.59 54.92 100 

Price received, corn 7561 4.21 1.29 1.90 3.46 4.76 6.98 

Harvested acres, corn 7561 94,358 61,988 600 46,500 132,600 394,000 

Soybean yield (bu/acre) 7561 47.47 9.11 10.9 42.1 53.5 82.3 

CT adoption rate, soybeans 

× 100 

7561 55.14 15.81 0.01 44.19 66.67 100 

Price received, soybeans 7561 10.36 2.35 5.50 9.22 12.3 14.28 

Harvested acres, soybeans 7561 82,830 44,530 2,100 48,800 109,000 311,500 

Government payment 

(1,000 $) 

7561 6,562 5,975 0 2,808 8,415 79,888 

Residue cover missing rate 7561 18.09 25.02 0 2.52 21.25 100 
 

Table A3. Summary Statistics of dependent and independent variables. 

Variable N Mean 
Std. 

Dev. 
Min 

Pctl. 

25 

Pctl. 

75 
Max 

Difference of logged yield,  

corn 
6501 0.013 0.263 -1.991 -0.083 0.104 2.129 

Difference of CT adoption rate,  

corn 
6501 0 0.147 -0.598 -0.085 0.082 0.623 

Difference of logged yield,  

soybeans 
6501 0.012 0.181 -1.124 -0.08 0.104 1.329 

Difference of CT adoption rate, 

soybeans 
6501 0.004 0.139 -0.663 -0.081 0.085 0.683 
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Table A4. Robustness checks for corn. 

Estimator Effect 

Robust 

Std. 

Error 

Confidence 

Interval 
Adjusted  

R-squared 
RMSE 

Obs.

N 

Control 

Var. N 
2.5% 97.5% 

DML-lasso 0.015 0.0151 -0.015 0.044 - - 6501 - 

Double 

Selection 

(1) 

-0.004 0.018 -0.039 0.031 0.893 0.076 5133 1454 

Double 

Selection 

(2)2 

 

-0.018 0.021 -0.059 0.023 0.900 0.076 4488 1384 

Notes: Regressions of difference of corn yields on difference of CT adoption rate for robustness checks. DML-lasso 

estimator is used to conduct the robustness check for overfitting. Double selection estimator (1) uses data dropping 

counties that have 5% harvested cropland irrigated to perform the robustness check. Double selection estimator (2) 

uses data dropping states that have high residue cover missing rate. DML estimator results are calculated using 

median method (Belloni et al., 2014a) based on 200 splits with point estimates. Double selection estimator results 

are obtained by applying the median method (Belloni et al., 2014a) to 1000 repeats with point estimates. The 

robustness standard errors are calculated by applying the median method to clustered standard errors from the 1000 

repeats to adjust for the variation across the repeats. Confidence intervals are calculated based on the reported 

median estimates and the adjusted clustered standard errors. Other statistics are reported using the statistics for 

median estimates. Obs. N is the total number of observations used in the regression. Control Var. N is the number of 

technical regressors (not including time fixed effect dummies) used as controls. 

1 the standard error for DML-lasso is not robust standard error and it is smaller than the robust standard error and 

the confidence interval can be bigger and shift a little bit for robust standard error.  
2 the number of folds used for cross-validation for this estimator is 5 given much lesser observations. 

 

Significant codes: 0 ‘***’  0.001 ‘**’  0.01 ‘*’  0.05 ‘.’  0.1 ‘ ’ 1 
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Table A5. Robustness checks for soybeans. 

Estimator Effect 

Robust 

Std. 

Error 

Confidence 

Interval 
Adjusted  

R-squared 
RMSE 

Obs. 

N 

Control 

Var. N 
2.5% 97.5% 

DML-lasso -0.070*** 0.0121 -0.095 -0.047 - - 6501 - 

Double 

Selection 

(1) 

-0.075*** 0.014 -0.103 -0.047 0.815 0.065 5133 1398 

Double 

Selection 

(2)2 

 

-0.061*** 0.015 -0.091 -0.031 0.832 0.066 4488 1249 

Notes: Regressions of difference of corn yields on difference of CT adoption rate for robustness checks. DML-lasso 

estimator is used to conduct the robustness check for overfitting. Double selection estimator (1) uses data dropping 

counties that have 5% harvested cropland irrigated to perform the robustness check. Double selection estimator (2) 

uses data dropping states that have high residue cover missing rate. DML estimator results are calculated using 

median method (Belloni et al., 2014a) based on 200 splits with point estimates. Double selection estimator results 

are obtained by applying the median method (Belloni et al., 2014a) to 1000 repeats with point estimates. The 

robustness standard errors are calculated by applying the median method to clustered standard errors from the 1000 

repeats to adjust for the variation across the repeats. Confidence intervals are calculated based on the reported 

median estimates and the adjusted clustered standard errors. Other statistics are reported using the statistics for 

median estimates. Obs. N is the total number of observations used in the regression. Control Var. N is the number of 

technical regressors (not including time fixed effect dummies) used as controls. 

1 the standard error for DML-lasso is not robust standard error and it is smaller than the robust standard error and 

the confidence interval can be bigger and shift a little bit for robust standard error.  
2 the number of folds used for cross-validation for this estimator is 5 given much lesser observations. 

 

Significant codes: 0 ‘***’  0.001 ‘**’  0.01 ‘*’  0.05 ‘.’  0.1 ‘ ’ 1 
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Figure A1. Variable selection curves for corn. 

A1a. curve for variable selection for yield 

 
A1b. curve for variable selection for CT adoption 

 
Notes: Figures A1a and A1b show the lambda selection process for the median lambda among the 1000 repeats. The 

cross-validation curve is shown using red dotted line, the error bars form the upper and lower standard deviation 

curves along the λ sequence. The left vertical dotted line indicates lambda.min which is the value of λ that gives 

minimum mean cross-validated error, and the right vertical dotted line indicates lambda.1se which represents the 

value of λ that gives the most regularized model such that the cross-validated error is within one standard error of 

the minimum.  
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Figure A2. Variable selection curves for soybeans. 

A2a. curves for variable selection for yield 

 
A2b. curves for variable selection for CT adoption 

 
Notes: Figures A2a and A2b show the lambda selection process for the median lambda among the 1000 repeats. The 

cross-validation curve is shown using red dotted line, the error bars form the upper and lower standard deviation 

curves along the λ sequence. The left vertical dotted line indicates lambda.min which is the value of λ that gives 

minimum mean cross-validated error, and the right vertical dotted line indicates lambda.1se which represents the 

value of λ that gives the most regularized model such that the cross-validated error is within one standard error of 

the minimum.  
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Appendix B. Robustness check details using the DML approach 

I apply LASSO to equations (1) and (2) separately to predict 𝛥𝑦𝑖𝑡 and 𝛥𝐶𝑇𝑖𝑡. This DML 

approach approximately removes the direct effect of confounding from 𝛥𝑦𝑖𝑡 through equation (1) 

and approximately partials out the effect of 𝒛𝑖𝑡 from 𝛥𝐶𝑇𝑖𝑡 though equation (2) to obtain the 

orthogonalized regressor 𝛥𝜖𝑖̂𝑡, then the estimate of coefficient 𝛼 can be obtained by using DML 

estimator (Chernozhukov et al., 2018) as below: 

 𝛼̂ = (
1

𝑛
∑ 𝛥𝜖𝑖̂𝑡

𝑖 ∈𝐼,𝑡∈𝑇 

𝛥𝐶𝑇𝑖𝑡)

−1
1

𝑛
∑ 𝛥𝜖𝑖̂𝑡

𝑖 ∈𝐼,𝑡∈𝑇

(𝛥𝑦𝑖𝑡 − 𝒛𝑖𝑡
′ 𝜷̂ − 𝜇𝑡),         (B.1) 

I adopt the K-fold cross-fitting approach3 from Chernozhukov et al. (2018) to split full sample 

randomly to K equal-sized folds, for each 𝑘 ∈ {1, … , 𝐾}, observations from all other folds 

(auxiliary sample) are used to apply LASSO and the rest of observations (main sample) are used 

to estimate the coefficient, the estimator is obtained by averaging the results from K estimates. 

Sample splitting can eliminate the bias induced by overfitting but it can lead efficiency loss,  

swapping roles of auxiliary and main samples and averaging the results from multiple estimates 

can regain full efficiency (Chernozhukov et al., 2018). 

 

 

 

 

 

 

 

 

 
3 Sampling splitting doesn’t change the prediction structure in the model. 


