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Output-oriented and environmental efficiency scores in the High Plains Aquifer 

 

Abstract 

This paper aims to calculate the output-oriented and irrigation-oriented efficiency scores 

in counties over the High Plains Aquifer (HPA) region. The main hypothesis of the paper 

is that the output-oriented scores will be overall greater than the irrigation-oriented 

efficiency scores (or environmental efficiency scores), as producers are more 

concerned about production than about water use. The data is from 1960 to 2018, and it 

includes 204 counties. The output is the county’s aggregated agricultural production. 

The inputs are fertilizers and chemicals indexes, as well as share of irrigated land. The 

inefficiency term is a function of climate variables, such as precipitation, degree-days, 

and extreme rainy days. Panel Stochastic Frontier Approach (PSFA) was used to 

calculate the elasticities of the inputs, as well as the marginal effects of the climate 

variables on the inefficiency term. The results showed that, overall, the output-oriented 

score was 0.87, meaning that counties produced 13% less than the efficient level. The 

overall environmental efficiency score was 0.20. After perform a t-test, it was concluded 

that the mean of the output-oriented score was greater than the mean of the 

environmental efficiency score, which was the hypothesis of the paper. Finally, 

precipitation appears to have more effect on the inefficiency than warm days (degree-

days above 33 Celsius degrees). For future papers, we aim to analyze the effect of 

climate change on counties’ agricultural production, and consequently, revenue.  
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1. INTRODUCTION 

In the last decades, there has been a growing concern about the depletion rate of the High 

Plains Aquifer, and some experts advocate that this phenomenon can have a significant impact 

on the ecosystem, food production, and species that live in the region (Rosegrant and Cline 2003; 

Scanlon et al. 2012). According to a report from McGuire (2017) – USGS, there was a decline in 

the water level the HPA of 15.8 feet from predevelopment years to 2015, and 0.6 feet from 2013 

to 2015.  

The irrigation plays an important and profitable role in the High Plains Aquifer Area. The 

HPA provides 30% of the U.S. irrigated groundwater (Steward et al. 2013). In addition, 

according to Garcia, Fulginiti, and Perrin (2019), the marginal productivity of irrigation across 

the High Plains Aquifer was worth approximately $3.5 billion in 2007. Therefore, farmers are 

willing to irrigate their planted areas in order to increase their production, and it can lead to a 

greater depletion rate of the water storage of the aquifer. 

Thus, it is important to address how efficiently the farmers are using irrigated land from the 

HPA, and how efficiently they are producing. In order to provide answers to these concerns, the 

main objectives of this paper are to measure the output-oriented and irrigated-land-oriented 

efficiency scores in the counties over the High Plains (Ogallala) Aquifer.  

The hypothesis is that, overall, the efficiency scores in the irrigation-oriented setting will be 

lower than the ones measured in the output-oriented setting, given that farmers are revenue-

maximizers rather than irrigation-minimizers. In addition to that, there is no cost for using the 

water from the aquifer other than operational costs (e.g., pumping).  



2 
 

In addition to that, climate change can affect technical efficiency in the farms, and 

consequently agricultural production. Chen, Dennis, and Featherstone (2021) analyzed the effect 

of weather variables on technical efficiency of 540 Kansas wheat farms from 2007/08 to 

2016/17. In order to estimate that, they used a panel stochastic frontier approach (PSFA). They 

found that extreme temperature is negatively related to technical efficiency. Moreover, they 

found a nonlinear relationship between precipitation and technical efficiency. Finally, they 

concluded that an increase in precipitation variability caused by climate change could 

significantly impact farms in Kansas.  

Based on that, this paper also aims to analyze the impact of weather variables on the 

technical efficiency scores in the counties over the HPA region. In order to do that, I will follow 

the methodology used by Chen, Dennis, and Featherstone (2021), and apply it for the whole 

HPA region. 

Lilienfield and Asmild (2007) measured the water use efficiency in the Western Kansas 

portion of the Ogalalla aquifer from 1992 to 1999. Using a DEA approach, they found that, on 

average, farms were using a water excess of 692m3/ha, representing almost half of the water 

used. However, differently from the present paper, these authors did not intend to compare the 

water-oriented efficiency scores to the output-oriented scores. In addition, they focused only in a 

small portion of the aquifer, while the present paper analyzes the whole region, and they use of 

water instead of irrigated land.  

2. THEORETICAL APPROACH 

This paper uses a production function to build the stochastic frontier model. Different types 

of technology can be imposed in the production function. The Cobb-Douglas technology was 
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chosen because it imposes that the production function is monotonic and concave with respect to 

inputs. The Cobb-Douglas production function can be defined as follows:  

 

𝑦 = 𝑓(𝑥, 𝑧) =  𝑒−𝜇(𝑧) ∏ 𝑥
𝑗

𝛽𝑗

𝐽

𝑗=𝑖

 

(1) 

where 𝑥𝑗’s refer to the traditional inputs, 𝛽𝑗’s are the parameters of each input, 𝜇(𝑧) is a term 

of inefficiency related to exogenous variables 𝑧. I adapted this model to include variables that are 

not traditional inputs, but affect the production function. Then:  

 

𝑦 = 𝑓(𝑥, 𝑧) =  𝑒−𝜇(𝑧)+∑ 𝛽𝑙𝑥𝑙
𝐿
𝑙=1 ∏ 𝑥

𝑗

𝛽𝑗

𝐽

𝑗=𝑖

 

(2) 

where 𝑥𝑙’s refer to variables that can shift the production, and 𝛽𝑙’s are the parameters related 

to these variables. Following Chen, Dennis and Featherstone (2021), we define the term of 

inefficiency as:  

 𝜇(𝑧) = exp (∑ 𝜓𝑚𝑧𝑚) (3) 

where 𝜓𝑖 are parameters to be estimated. 

By taking the logarithm of Equation (2), and plugging (3):  

  log 𝑦 = ∑ log(𝑥𝑗) 𝛽𝑗 + ∑ 𝑥𝑙𝛽𝑙 − exp (∑ 𝜓𝑚𝑧𝑚)  (4) 

 

a. Output-oriented analysis 

Technical efficiency can be calculated by using either an output-oriented model, or an input-

oriented model, or a model that is oriented for both inputs and outputs. In the output-oriented 
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model, the idea is to maximize the level of outputs, given the level of inputs. In this sense, the 

Panel Stochastic Frontier Approach (PSFA) can be used to estimate Equation (4): 

 log 𝑦𝑖𝑡 = 𝛼𝑖 + ∑ log 𝑥𝑖𝑡
𝑗

𝛽𝑗 + 𝑥𝑖𝑡
𝑙 𝛽𝑙 + 𝜆𝑇 − 𝜇(𝑧)𝑖𝑡 + 𝑣𝑖𝑡   (5) 

In this paper, i indexes counties and t indexes year. y is agricultural production per acre of 

land; the traditional inputs (j) are fertilizer and chemicals; the variable that shift the production 

function (l) is share of irrigated land; and z are climate variables. The term 𝛼𝑖 refer to fixed 

characteristics of cross-sectional units (in this paper, cross-sectional units are counties), and term 

𝜆𝑇 is a linear time trend parameter. 𝜇 is positive and it is the indicator of technical inefficiency, 

and 𝑣𝑖𝑡 is an error term with normal distribution, mean zero and variance 𝜎𝑣
2. To find the value of 

the output-oriented technical inefficiency for each county i in each year t, we need to take the 

exponential of −𝜇𝑖𝑡: 

 𝜃𝑖𝑡 = exp (−𝜇𝑖𝑡) (6) 

The technical inefficiency 𝜃𝑖𝑡 varies from zero to one: 0 ≤ 𝜃𝑖𝑡 ≤ 1. County i in year t is 

considered efficient if 𝜃𝑖𝑡 = 1. Consequently, any county i in year t that presents a technical 

efficiency value less than one is considered inefficient. 𝜃𝑖𝑡 can be interpreted as the ratio between 

observed quantity of output and the efficient level of output. Therefore, if 𝜃𝑖𝑡 is equal to 0.8, that 

means that county i in year t is producing 80% of the efficient level of output y – or, similarly, 

county i in year t is producing 20% less output than the efficient level.  

In Figure 1, DMU A is considered inefficient, whereas DMUs B and C are efficient. Note 

that A uses the same amount of inputs as B, but it produces fewer outputs.  In Figure 1, the level 

of output-oriented efficiency of A is given by 𝜃𝐴 =
𝑦𝐴

𝑦𝐵
=

4

12
= 0.33. Then, the amount that DMU 
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A should be producing is given by 𝑦𝐴∗ =
𝑦𝐴

𝜃𝐴 =
4

0.33
= 12. Therefore, in order to be output-

oriented efficient, DMU A should have produced three times the amount observed.  

Regarding the interpretation of the parameters related to inputs in Equation (5), 𝛽𝑗 refers to 

the elasticity of production with respect to input j, and 𝛽𝑙 is the semi-elasticity of production with 

respect to share of irrigated land.  

We are also interested on the effect of climate variables on technical efficiency. Chen, 

Dennis and Featherstone (2021) showed that the elasticity of technical efficiency with respect to 

climate variables is given by:  

 𝜕𝑙𝑜𝑔𝜃𝑖𝑡

𝜕𝑙𝑜𝑔𝑍𝑖𝑡
𝑚 = −𝜇𝑖𝑡𝑍𝑖𝑡

𝑚𝜓𝑚 
(7) 

Figure 1 – Illustration of efficient and inefficient DMUs 

 

b. Irrigation-oriented analysis 
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For the input-oriented setting, the idea is to minimize the level of inputs, given the level 

of output. Therefore, the level of inputs vary in order to reach a point in the efficient frontier. In 

Figure 1, this means that the DMU A should use the same level of input as the DMU C, as they 

both produce the same amount of output.  

The input-oriented score assumes that all inputs should be minimized. However, in this 

paper, we are concerned with the irrigation share only. From now on, I will be referring to the 

irrigation-oriented model as the environmental model. The irrigation-oriented score is given by 

the ratio of the efficient use of share of land irrigated over the observed value. Then: 

 
𝐸𝐸 =

𝑥𝑙
𝐹

𝑥𝑙
 

(8) 

where EE refers to the irrigation-oriented efficiency score and 𝑥𝑙
𝐹 is the efficient level of 

irrigation share. EE ranges from zero to one, and units with EE=1 are considered efficient. To calculate 

the irrigation-oriented score, there is no need to run another econometric model. This is because 

when a county is output-oriented efficient, it must be irrigation-oriented efficient as well 

(Kumbhakar, Wang, and Horncastle, 2015). Following (Reinhard, Knox Lovell, and Thijssen, 

1999), we can find the irrigation-oriented efficiency score using Equation (5). When the county 

is efficient, the term 𝜇𝑖𝑡 in Equation (5) is equal to zero. Therefore, we can rewrite the model as:  

 log 𝑦𝑖𝑡 = 𝛼𝑖 + ∑ log 𝑋𝑖𝑡
𝑗

𝛽𝑗 + 𝑥𝑖𝑡
𝑙 𝛽𝑙 + 𝜆𝑇 + 𝑣𝑖𝑡 (9) 

Then, by taking the difference between (5) and (9), it can be seen that:  

 𝛽𝑙(𝑥𝑖𝑡
𝑙 − 𝑥𝑖𝑡

𝑙𝐹) − 𝜇𝑖𝑡 = 0 

𝑥𝑖𝑡
𝑙 − 𝑥𝑖𝑡

𝑙𝐹 =
𝜇𝑖𝑡

𝛽𝑙
=> 𝑥𝑖𝑡

𝑙𝐹 = 𝑥𝑖𝑡
𝑙 −

𝜇𝑖𝑡

𝛽𝑙
 

(10) 

(11) 
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𝐸𝐸𝑖𝑡 =
𝑥𝑙,𝑖𝑡

𝑙𝐹

𝑥𝑖𝑡
𝑙 = 1 −

𝜇𝑖𝑡

𝑥𝑙𝛽𝑙
 

(12) 

If a unit is output-oriented efficient, 𝜇𝑖𝑡 = 0 => 𝐸𝐸𝑖𝑡 = 1, proving that output-oriented 

efficient counties must be irrigation-oriented efficient as well.  

Note that calculating 𝐸𝐸𝑖𝑡 only makes sense if 𝛽𝑙 > 0. Otherwise, the input is either 

neutral or bad for production, and 𝐸𝐸𝑖𝑡 is not useful. In addition, it is only possible to calculate 

the environmental efficiency for counties that have nonzero values for the share of irrigated land. 

Therefore, if a given county has zero irrigation share in a given year, it will not be possible to 

calculate its environmental efficiency for that specific year, even though it is still possible to 

calculate the output-oriented efficiency score for this observation.  

A possible problem that may arise from Equation (12) is the existence of negative scores 

for environmental efficiency. A negative score means that a given county in a given year should 

“produce” irrigation, instead of using it. It does not have any logical sense. Hence, in this paper, 

we replaced negative environmental efficiency scores by zero. That is, these DMUs should 

reduce irrigation to zero in order to be environmental efficient.  

Going back to Figure 1, note that the input-oriented score of DMU A is given by 𝜇𝐴 =

𝑥𝐶

𝑥𝐴 =
1

4
= 0.25. Therefore, the DMU A must have used one-quarter of the amount of inputs that it 

actually used. By multiplying the observed level of input by the input-oriented efficiency score, 

we find the quantity of inputs that DMU A must use to be efficient: 𝑥𝐴∗ = 𝑥𝐴 ∗ 𝜇𝐴 = 4 ∗ 0.25 =

1.  

 

 



8 
 

3. DATA AND ESTIMATION 

a. Data 

The dataset is an unbalanced panel data consisting of county-level data for 204 counties over 

the HPA for the period of 1960-2018. The dataset contains 11,629 observations. 

Crop production and land data were extracted from the agricultural surveys conducted by the 

National Agricultural Statistics Service of the U.S. Department of Agriculture (NASS, USDA) 

and from the Agricultural Census (both available online – QUICKSTATS). Fertilizers and 

chemicals data were extracted from the Agricultural Census. Climate data are from Trindade 

(2011). Capital and Labor were not included as inputs because they are not separated between 

crop and livestock production. That is, there is no information of the sector that capital and labor 

are employed in, and it could bias the estimators of other inputs. 

In this paper, the output is the agricultural production. First, we multiplied each commodity 

produced by each county and each year by its dry matter. Then, we transformed all commodities 

production into tons, and we aggregated them by county and year.  

Fertilizer and chemicals are index quantities based on information about expenditures and 

prices of these inputs. Adams, NE-1960 is the base county and year. Irrigated land is the ratio of 

the irrigated land over the total planted area. In some cases, both irrigated harvested area and 

irrigated planted area where reported. In these situations, it was used the one with the largest 

area.  

Climate variables are degree-days, precipitation, and extreme rainy days. The degree-days 

variables refer to the total of days in a year with reported temperature above a given temperature. 

In this paper, it is used five classification of degree-days: from -5 to 8 Celsius degrees; from 8 to 
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15 Celsius degrees; from 15 to 33 Celsius degrees, and above 33 Celsius degrees. Precipitation is 

the annual cumulated precipitation, in centimeters. Extreme rainy days is built based on Schär et 

al. (2016) and Myhre et al. (2019). First, for each county, it was calculated a threshold of 

extreme rain equal to the 99th percentile of precipitation in the period between 1960 and 1990. 

Then, it was constructed a dummy that assumed value 1 if the total amount of precipitation for a 

given day was greater than the threshold. Then, the variable “extreme rainy days” refer to the 

number of days in a year in which the threshold was trespassed. Table 1 shows the descriptive 

statistics of the variables used in the model.  

Table 1 – Descriptive Statistics 

Variable Unit Mean Std. Dev. Min Max 

Production (y) Tons 1.39 0.95 0.04 42.49 

Fertilizer  Index 2.08 1.81 0.00 11.07 

Chemical Index 5.60 6.33 0.01 41.52 

Irrigation  % 22.12 22.07 0.00 100.00 

Precipitation Inches 15.40 4.94 0.66 55.40 

Extreme rainy days Days 1.92 1.45 0.00 11.00 

DD: -05 ~ 08C Degree-days 36.68 10.17 0.00 77.12 

DD: 08 ~ 15C Degree-days 39.95 7.04 0.00 73.48 

DD: 15 ~ 33 Degree-days 103.00 14.57 0.00 146.01 

DD:  > 33 Degree-days 3.06 2.44 0.00 27.75 

 

The average production in the sample was 1.39 tons. The maximum level of production in 

the sample was close to 42.5 tons.  

The mean of share of irrigated land is 22.12%, with minimum of 0%. Since this variable was 

not included in the Cobb-Douglas production function as a traditional input, the observations 

with zero share of irrigated land will not have production equal to zero – that explains why the 

minimum value observed for production is greater than zero. However, as already mentioned, it 
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will not be possible to calculate the environmental efficiency scores for observations with zero 

irrigation (Equation 12). 

Minimum of precipitation was 15.40 inches per year. Overall, degree-days between 15C and 

33C were the most common in the sample period – 103 per year, overall. On the other hand, 

degree-days above 33C were the least common: around 3 days per year.  Extreme rainy days had 

a mean of around 2 days, and a maximum of 11 days. The maximum was observed once in the 

sample, and it happened in Donley County, Texas, in 2015. 

b. Estimation 

As in Wang and Ho (2010), the term 𝜇𝑖𝑡 in Equation 5 is defined as:  

 𝜇𝑖𝑡 = ℎ(𝑧𝑖𝑡) · 𝑢𝑖
∗, where 𝑢𝑖

∗ ~ 𝑁+(𝜇, 𝜎𝑢
2) (13) 

where 𝜎𝑢
2 = exp (𝐶𝑢). h(.) is a positive function (in this paper, in an exponential form) of a 

1x6 vector of climate variables –already presented in Table 1. 𝑢𝑖
∗ follows a half-normal 

distribution, and it exhibit a scaling property (Alvarez et al., 2006). 𝑢𝑖
∗ is unique to each county, 

and does not change over time. 

Equations (5) and (13) are jointly estimated using the same approach as in Wang and Ho 

(2010). The model is estimated using Maximum Likelihood. After the estimation, 𝜇𝑖𝑡 is 

calculated for each county and year. Then, the technical inefficiency scores in the output-

oriented model (𝜃𝑖𝑡) is calculated as in Equation (6).  

I programmed this model on Stata using the command sf_fixeff available in the package 

sfbook proposed by Kumbhakar, Wang and Horncastle (2015).  
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4. PRELIMINARY RESULTS 

a. Skewness Test 

Before running the PSFA model, Kumbhakar, Wang and Horncastle (2015) propose a 

skewness test to check the presence of inefficiency. According to the authors, it is only justified 

to apply the PSFA method if there is a negative skewness in the distribution of the error term 

when the inefficiency term is not inserted in the regression.  

Then, Equation (5) is run without the inefficiency term 𝜇𝑖𝑡. Consequently, the climate 

variables is not inserted in the regression, as it is included in the inefficiency term. After the 

estimation, the error term 𝑣𝑖𝑡 is stored, and its skewness is analyzed. Table 2 shows the summary 

of 𝑣𝑖𝑡. 

Table 2 – Summary of 𝑣𝑖𝑡 

Mean 4.36E-10 

Std. Dev. 0.9136849 

  
Variance 0.8348201 

Skewness -1.781128 

Kurtosis 7.414046 

 

The Skewness of 𝑣𝑖𝑡 is negative and has a value of -1.78, which is an evidence of the 

existence of an inefficiency term. In order to check if the statistic is significant, Stata’s sktest is 

run, and the values are presented in Table 3. The null hypothesis of the test is no skewness.  

Table 3 – Skewness/Kurtosis tests of 𝑣𝑖𝑡 

Skewness/Kurtosis tests for Normality 

        joint 

Variable Pr(Skewness) Pr(Kurtosis) chi2(2) Prob.>chi2 

v_it 0.000 0.000 290.04 0.000 
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The p-value related to skewness (first column) is very small – indistinguishable from zero. 

Therefore, the null hypothesis of no skewness is rejected. Thus, the error has a left-skewed 

distribution, and the skewness is statistically significant. According to Kumbhakar, Wang, and 

Horncastle (2015), this means that there is no need to revisit the specification of the model at this 

stage, and we can proceed to estimate the frontier model.  

b. Panel Stochastic Frontier Approach 

Equations (5) and (13) are estimated and results are presented in Table 4. As explained 

before, except for the share of irrigated land parameter, the parameters of ‘frontier’ variables 

represent the elasticity of production with respect to the inputs. The parameter related to the 

share of irrigated land represents semi-elasticity.  

Table 4 – Panel Stochastic Frontier Approach estimates 

log production Coeff. Std. Err. z P>z 
[95% Conf. 

Interval] 

Frontier 

log fertilizer 0.1022 0.0076 13.3700 0.0000 0.0872 0.1172 

log chemical 0.1731 0.0051 33.8500 0.0000 0.1631 0.1831 

irrigation share 0.2996 0.0243 12.3300 0.0000 0.2520 0.3472 

efficiency variables 

precipitation -0.0904 0.0106 -8.5000 0.0000 -0.1112 -0.0695 

extreme rainy days -0.0207 0.0016 -1.2500 0.2100 -0.0053 0.0012 

DD: -05 ~ 08C -0.0276 0.0039 -6.9900 0.0000 -0.0353 -0.0199 

DD: 08 ~ 15C -0.0315 0.0049 -6.3700 0.0000 -0.0411 -0.0218 

DD: 15 ~ 33 -0.0001 0.0030 -0.0300 0.9780 -0.0060 0.0058 

DD:  > 33 0.0508 0.0072 7.1000 0.0000 0.0368 0.0649 

Vsigmas 

_cons -2.2548 0.0133 -169.2200 0.0000 -2.2809 -2.2287 

Usigmas 

_cons 3.3895 1.0402 3.2600 0.0010 1.3507 5.4283 
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Fertilizer, chemicals and irrigation share appear to affect the production in our model. A 1% 

increase in fertilizers increase the production by 0.1%, whereas it increases by 0.17% when 

chemicals increase by 1%. Since the coefficient related to the irrigation share refers to the semi-

elasticity, a raise of 1 percentage point in the share of irrigated land increases agricultural 

production by 0.3%. 

The interpretation of the estimates of the climate variables is not straightforward. Climate 

variables are directly related to the inefficiency term. A piece of useful information that we can 

extract from Table 2 is that negative coefficients related to these variables mean that they reduce 

inefficiency, whereas positive values mean that the variables increase inefficiency. Therefore, we 

found that only degree-days above 33 Celsius degrees increase inefficiency. Precipitation, 

degree-days between -5 and 8 Celsius degrees, and degree-days between 8 and 15 Celsius 

degrees decrease inefficiency. Extreme rainy days and degree-days between 15 and 33 Celsius 

degrees do not appear to affect the inefficiency term.  

By using Equation 7, we can calculate the elasticity of technical efficiency with respect to 

climate variables. Since extreme rainy days and degree-days between 15 and 33C were not 

statistically significant, we will not calculate their elasticities. Table 5 summarizes the 

elasticities. 

Table 5 – Elasticities of climate variables on output-oriented score 

Variable Mean Std. Dev. Min Max 

Precipitation 0.1745 0.1615 0.66 2.1298 

DD: -05 ~ 08C 0.1325 0.1256 0.00 1.9273 

DD: 08 ~ 15C 0.1745 0.1921 0 3.1217 

DD:  > 33 -0.0319 0.0785 -2.2482 0 
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Precipitation and degree-days between 8 and 15C present the greatest elasticities. In fact, 

they have the same mean value: 0.1745. That means that if either precipitation or degree-days 

between 8 and 15C increases by 1%, the output-oriented efficiency score will increase by 0.17%. 

The lowest elasticity is related to degree-days above 33 Celsius degrees. If these increase by 1%, 

output-oriented efficiency score will decrease by 0.03%.  

The idea is that very warm days negatively affect the output efficiency score (and 

consequently the level of production), but it is not as important as other climate factors, such as 

precipitation. Then, the effect of climate change on agricultural production in the HPA region is 

more likely to occur through the change in the level (or even variability) of precipitation instead 

of a change in air temperature.   

c. Output and irrigation-oriented efficiency scores 

Between 1960 and 2018, the overall output-oriented efficiency score was 0.8738, meaning 

that counties are producing 87.38% of the efficient level, on average. Similarly, it means that 

counties are producing 12.62% less than the efficient level. Chen, Dennis and Featherstone 

(2021) found an overall efficiency score of 85% for wheat farms in Kansas between 2007/08 and 

2016/17, which is close to our estimate.  

Figure 1 shows the evolution of the mean of the output-oriented efficiency score between 

1960 and 2018. Overall, the mean of the output-oriented score in 2018 was the same as in 1960. 

However, the trajectory was not stable. There are some relevant peaks and troughs during the 

period. The most relevant trough occurred in 2012, when the average output-oriented score 

reached a value close to 0.75 – i.e., on average, counties were producing 25% less than the 
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efficient level in 2012. The highest peak was observed in 1992, when the output-oriented 

efficiency score was 0.93, approximately.   

Figure 1 – Evolution of the overall output-oriented score 

 

 

We also calculate the output efficiency scores by state. New Mexico presented the greatest 

output-oriented efficiency score in the sample period: 0.95. Wyoming presented the second 

greatest – 0.94. Nebraska was the other state with output efficiency score greater than 0.90 – it 

was 0.92. Texas was the state with the lowest output efficiency score in the sample period – 

around 0.78. 
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Figure 2 shows the evolution of the output-oriented efficiency score by state. The lowest 

value was observed in Texas, in 2011 – approximately 0.50. In that same year the second lowest 

score for the whole series was observed in Oklahoma – 0.56. New Mexico, Wyoming and 

Nebraska present the most stable series, overall. On the other hand, Texas, South Dakota and 

Oklahoma appear to have the least stable series.  

Figure 2 – Evolution of the overall output-oriented score, by state 

 

Another interesting finding from Figure 2 is that all states presented a negative variation of 

the output efficiency score between 2017 and 2018, except for New Mexico.  

The environmental efficiency score is also calculated. It refers to the efficiency with respect 

to the share of irrigated land. To calculate the environmental efficiency score, we used Equation 
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12. Out of 11,629 observations, 2,064 had zero irrigation. Therefore, as explained in the second 

section, the environmental efficiency score cannot be calculated for these observations. In 

addition to that, 5,769 observations had negative values for after Equation 12 was applied. For 

these cases, the efficiency score was denoted as zero.  

The mean of the environmental efficiency score was 0.20, meaning that counties could have 

produced the same level of output and still decrease the share of irrigated land by 80%. South 

Dakota had score equal to zero in the whole sample period. That is, all counties of South Dakota 

that are over the High Plains Aquifer could have reduced their shares of irrigated land 

completely and still kept the same level of production. The greatest environmental efficiency 

scores were observed in New Mexico (0.54), Wyoming (0.46), and Nebraska (0.28).  

In addition, a t-test was performed, and we found that the average output-oriented efficiency 

score was statistically greater than the average environmental efficiency score, and this was one 

of the hypothesis of this paper.  

5. CONCLUSIONS 

This paper aimed to analyze the output-oriented and irrigation-oriented efficiency scores for 

the High Plains Aquifer area, as well as the impact of climate variables on the technical 

efficiency scores. The hypothesis of the paper was that the output-oriented score would be 

greater than the irrigation-oriented efficiency score.  

The dataset consists of biomass production and relevant inputs (share of irrigation land, 

especially) in the counties over the High Plains Area between 1960 and 2018. 

Results showed that the overall output-oriented efficiency score was 0.87, meaning that 

counties are producing 13% less than the efficient amount, on average. This finding is really 
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close to the one reported by Chen, Dennis and Featherstone (2021). They found an overall 

efficiency score of 85% for wheat farms in Kansas between 2007/08 and 2016/17.  

The environmental efficiency score, which is related to the share of irrigated land, was 0.20, 

on average. That means that the share of irrigated land in the counties over the HPA could have 

been reduced by 80% while keeping the same level of production. 

After perform a t-test, we found that the output-oriented efficiency score was greater than the 

environmental efficiency score, on average. This was the hypothesis of the paper.  

In addition, fertilizers, chemicals, and share of irrigated land presented were positively 

correlated to agricultural production, as expected. The elasticities of production with respect to 

fertilizers and chemicals were 0.10 and 0.17, respectively. The semi-elasticity of production with 

respect to share of irrigated land was 0.30. 

Level of annual precipitation, degree-days between -5 and 8 Celsius degrees, and degree-

days between 8 and 15 Celsius degrees appeared to increase inefficiency in the counties during 

the sample period. On the other hand, degree-days above 33 Celsius degree appeared to increase 

inefficiency in the same period.  

For future research, we aim to further develop the calculation of the environmental efficiency 

score, as well as include other relevant climate variables, such as precipitation variability, in the 

model. Furthermore, we seek to analyze what is the potential impact of climate change on 

counties’ production, as well as on the use of irrigation.  
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