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Prior Information and Heuristic Ridge
Regression for Production

Function Estimation

Oscar R. Burt, Michael D. Frank, and Bruce R. Beattie

A heuristic criterion for choosing an acceptable level of bias in ridge regression is
presented. The criterion is based on a noncentral F-test of the stochastic restrictions
implicit in the ridge estimator. An appropriate significance level for the test is based
on conjunctive use of strong and weak mean square error criteria. The procedure is
illustrated in estimating a Cobb-Douglas production function for the Central Valley of
California using factor shares as priors rather than the null vector. Preliminary results
suggest that a conjunctive SMSE/WMSE criterion with more “reasonable” priors

selects an estimator with smaller bias than ridge trace.

Key words: factor shares, mean-squared error, prior information, ridge regression.

It has been shown that ridge regression may
be a viable estimation procedure for mitigating
the deleterious effects of multicollinearity
(Hoerl and Kennard 1970a, b; Swindel). Brown
and Beattie demonstrated the applicability of
ordinary ridge regression (ORR) to Cobb-
Douglas production function estimation. Yet,
two problems seriously hamper the efficacy of
ORR in production function applications: (a)
the lack of a good sample-based criterion for
determining the bias of the estimator, and ()
the implicit shrinkage of the OLS estimator
toward an untenable prior, namely, the null
vector. The purpose of this paper is to outline
and demonstrate a procedure for ameliorating
these major shortcomings of ORR.

Fomby and Johnson have suggested an al-
ternative form of the ridge estimator based on
stochastic prior information. Their stochastic
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prior ridge (SPR) estimator allows for esti-
mator selection based on a noncentral F-test
of the implicit restrictions. However, the pro-
cedure has an objective statistical basis which
does not depend on the individual analyst only
when taking the biasing variable as given and
making a comparison with -ordinary least
squares (OLS): the important practical prob-
lem of choosing the level of bias is not ad-
dressed directly.

This paper develops a heuristic criterion for
choosing the level of bias in the SPR model.
An alternative formulation of the SPR pro-
cedure is utilized in conjunction with a sam-
ple-based criterion to determine the level of
bias in estimating Cobb-Douglas production
function parameters for the central California
valley. Because factor shares provide a robust
point estimate of factor elasticities, they are
used as the point toward which the ridge es-
timator is forced instead of the null vector. We
begin by reviewing mean square error (MSE)
criteria and the ORR and SPR estimators. A
strategy for comparing alternative ridge esti-
mators is then proposed. The OLS, ORR, and
SPR parameter estimates for the application
are presented and discussed and conclusions
are drawn.
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A Review of MSE Criteria and OLS, ORR,
and SPR Estimators

Consider the classical linear model,
1 y=XB+¢

where y is an (n x 1) vector of observations
on the dependent variable, X is an (n x p)
matrix of fixed observations on the explana-
tory variables, 8isa(p x 1) vector of unknown
parameters, and e is an (# X 1) vector of ran-
dom disturbances distributed N(0, ¢21,). Also,
assume that y and each column of X have been
standardized to have zero sample means and
unit variances.

MSE Criteria

Two mean square error criteria are commonly
used in comparisons of estimators of the un-
known parameter vector 8. For any estimator
of 8 (denoted b), let MSE(b) be the mean square

error matrix of b, i.e., MSE(b) = E(b — 8)(b —.

B)'. The strong mean square error (SMSE) cri-
terion ranks estimator b' superior to 5* when
MSE(B?) — MSE(b") is a positive semidefinite
matrix. This implies that any arbitrary linear
combination of the components of 8 is esti-
mated with at least as small MSE using 4! as
using »2. The weak mean square error (WMSE)
criterion ranks estimator 5! superior to 42 when
the trace of MSE(b*) — MSE(b') is non-neg-
ative.!

The latter criterion can be interpreted geo-
metrically as a preference for the estimator with
a smaller expected squared distance from the
unknown parameter vector. It is also the cri-
terion traditionally used in the evaluation of
ridge regression estimators, such as in the sem-
inal paper of Hoerl and Kennard (1970b).

The OLS and ORR Estimators

The OLS estimator is

2 B= XXXy,

which is unbiased and efficient. As an alter-
native to (2), Hoerl and Kennard suggest aug-
menting the diagonal elements of the X’ X ma-

trix with some constant, k. Their ORR
estimator takes the form

3) B* = (X'X + kD' X'y.

! This is what Wallace calls first WMSE.
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This estimator, unlike the OLS estimator,
is biased; but for any arbitrary vector /
var(/' 8*) = var(/'8). Hoerl and Kennard
(1970b) further show that there always exists
a ridge estimator which has a smaller WMSE
than that of OLS. However, since there exists
an entire family of ORR estimators (one for
each k-value, 0 < k < o0), selecting the opti-
mal estimator or even a relatively good esti-
mator presents a problem because the opti-
mum depends on unknown parameters. Hoerl
and Kennard (1970a) suggest selection by
means of the ridge trace, i.e., a graphic por-
trayal of the relationship between each ¥ and
k. Tt is suggested that k be chosen at the small-
est value where the components of 8* tend to
“stabilize” in some subjective sense. As Fom-
by and Johnson point out, selecting k based
on the point estimates of the parameters is
questionable.

The SPR Estimator

Fomby and Johnson argue that the addition
of k to the estimation procedure is in effect the
introduction of some prior information on 3.2
They showed that given prior information of
the form

@ VkB = VkB + Vi,

with B a random variable and » an error vector
representing the uncertainty of the prior B,?
the resulting ridge estimator (referred to as the
SPR estimator) is

(3) B* = (X'X + kI)"(X'y + kB).

Notice that the magnitude of k affects the weight
assigned to the prior information. For k = 0,
the prior information is not considered and (5)
becomes the OLS estimator. As kK — oo, the
prior information dominates the sample in-
formation and 8* equals B.* Also, note that for
B=0and 0 < k < oo, (5) would appear to be
the ORR estimator; but B identically zero, as
in ORR, is inconsistent with (4), where Bis a
random variable.

Clearly, the prior information represented
by B must be a random variable and not the
mean of a prior distribution for 3 as in a Bayes-

2 Brown and Beattie referred to this but without proof. Later,
Smith showed that the ridge estimator could be written in a mixed
estimator framework.

'3 The covariance matrix of » is (¢%/k)I. .

¢ This result is illustrated by rewriting (5) as (X'X/k + 1,)8* =

X'y/k + B, and taking the limit of both sides as k — oo,
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ian interpretation of ridge regression or Chip-
man’s minimum mean-square-error esti-
mator. In a production function application,
B could be factor shares from an independent
set of data which was considered comparable
to the sample at hand or factor shares from
the sample itself. The latter estimate involves
only the set of independent variables, so there
is no violation of the assumed independence
of e and w in (6) below.

The methodology of Fomby and Johnson
for applying the SMSE criterion to ridge regres-
sion can be described by the mixed estimation
model,

©®) [\/;yB] - [i)( \/E(}] m ’ m ’

where the distrubance vector is assumed to
obey the classical assumptions of the regres-
sion model. Both 8 and v are p-component
vectors of unknown parameters, but v is more
of an artifice than a genuine parameter vector.’
In the unrestricted case where v is a free pa-
rameter vector, the observation vector \VkB
in (6) is a set of “artificial” observations, and
the least squares estimators of 8 and v are
unrelated. Hence, 3 is the OLS estimator for
the classical model given in (2) while 4 = B.

The test statistic for the SMSE criterion is
the ordinary F-statistic for testing the hypoth-
esis ¥ = # against the general case of y as a
free parameter vector. Let SSE, be the sum of
squares for error in the unrestricted case and
SSE, be the same measure for the restricted
case when using a particular value of k in (6).
Both sums of squares are associated with the
model in (6). The test statistic, which follows
the noncentral F distribution, is

_{n—p\(SSE, — SSE,

? F‘( ’ )( SSE. )

where SSE, is simply the sum of squared re-
siduals from a least squares fit to (1) since nec-

essarily VkI,¥ = \VkB.
For the restrlcted case, (6) can be written as

o [allalel)

and the least squares estimator of 3 is given
by (5). SSE, is the sum of squared residuals

s This method of extending the parameter space to transform
stochastic restrictions on the linear model into an exactly restricted
least squares model is due to Judge, Yancey, and Bock.
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associated with the observation vector y and
the ridge estimator 8* in (5) plus k times the
sum of squared deviations of B, from B¥, i =
1,2,...

The advantage of the SPR estimator is that
since it is, in effect, a formulation of an exactly
restricted least-squares model, the estimator
for a specific k and B can be evaluated by the
mean square error criterion. Toro-Vizcarron-
do and Wallace have shown that a restricted
estimator such as 3* is better in SMSE than
an unrestricted estimator, i.c., B, if the non-
centrality parameter, 0, of the classical F-sta-
tistic of the restriction is less than or equal to
15, Since @ is an unknown parameter, a test
procedure was outlined. The null hypothesis
8 < Y is not rejected at an « level of signifi-
cance if the F-value of a standard test of the
restrictions is less than the critical value as-
sociated with a noncentral F-distribution with
6 = 1 and probability « to the right of the
critical value.

The SMSE criterion applies to any linear
combination of the components of 8 and -,
but only those involving 8 alone are of interest
because v is merely an artifice to implement a
formal statistical test. The restricted estimator
in the extended parameter space from (8) is
[8* 3*], while the OLS estimator is [84']. If
the restricted estimator is superior to the QLS
estimator in SMSE, then 8* is superior to 3 as
well because 3 is a set of linear combinations
of the extended parameter vector [8'v']. Also,
3* would be superior to 3 by the WMSE cri-
terion because each component of §* has
smaller MSE than the respective component
of 8. But the methods given in Wallace to apply
the WMSE criterion are not appropriate here
because the results would have to apply to the
extended parameter vector [§'y'], not to 8
alone.

Strategies for Choosing an SPR Estimator

Let H be an hypothesis to be tested by classical
methods and the marginal significance level
(often called the p-value) for a given outcome
from the sample data is denoted MSL. De
Groot has presented a logical basis for inter-
preting MSL as an aproximation to the pos-
terior probability that H is true. By a different
approach, Lindley also provides justification
for the same type of Bayesian interpretation
of tail areas for the F-statistic when the sample
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Table 1. Factor Elasticity Estimates and Related Statistics, Central California Valley, 1974

Factor Elasticity Estimates®

Estimator Intercept Land Labor Machinery Water
Factor Shares
(ES) 215 187 .0344 325
OLS 4.999 .191 -.0770 —-.0257 —.225
(.105) (.178) (.171) (.152)
ORR¢ 11.917-17.223 .212-.189 .162-.159 .145-.153 .0953-.110
(.0275-.0186) (.0260-.0182) (.0230-.0142) (.0238-.0163)
SPR(B = 0) 5.695 276 124 .0684 —.0260
(.0800) (111) (.136) (.0965)
SPR(B = FSy 7.973 292 .204 .0330 .0650
(.074) (.0950) (.121) (.0840) -

* Values in parentheses are standard errors. Their limitation should be recognized in interpretation of biased estimators.
® The sum of the factor elasticity estimates may not equal the returns to scale reported due to rounding error.

¢ Degrees of freedom are 6 and 8 for the two versions of the SPR estimator.

¢ The ranges represent the resulting estimates which might be subjectively chosen from the ridge trace (see fig. 1).

¢ Each prior factor elasticity set equal to the estimated factor share (FS) of each input (see footnote 6).

size is large. This interpretation of MSL as a
posterior probability that H is true is applied
to the noncentral F-distribution in the evalu-
ation of the SPR estimator using an MSE cri-
terion.

The upper bound for the noncentrality pa-
rameter § above which the OLS estimator is
superior in MSE and below which the linearly
restricted estimator is better is # = %. The null
hypothesis, H, to be tested is § < 2 against
alternatives 6 > Y. Because > Y2 implies that
the OLS estimator is better than the linearly
restricted estimator in SMSE, a posterior prob-
ability of less than .50 that H is true against
the one-sided alternative that § > Y2 would
make OLS the preferred estimator, i.e., the
probability that the restricted estimator is
“better” is less than the implicit probability
that OLS has smaller MSE. An alternative in-
terpretation of an MSL < .50 is that the pos-
terior odds ratio favors OLS. However, in cer-
tain cases, e.g., ridge regression, the main
purpose of the test is to identify those instances
where the implicit posterior odds favor the
biased estimator. Therefore, .50 is a lower
bound on the appropriate significance level in
a choice between OLS and a biased linearly
restricted estimator when using SMSE.

For given k, the F-statistic in (7) can be used
to compare OLS and SPR estimators at some
significance level between .50 and 1.0, the ex-
act level depending on the analyst’s subjective
choice. However, the more fundamental prob-
lem is to make a good choice of k, and the
objective test permitted between OLS and any
particular SPR estimator only provides a heu-

ristic basis for some strategies in this regard.
As k - 0, the F-statistic in (7) will approach
zero, and the implied MSL will go to 1.0 for
the SPR estimator. As k increases, the MSL
will decline for any given sample, and its ex-
pected value will decline in an ex ante sense.
Taking the sample as given data, there will be
a value of k = k' at which MSL = .50. If k >
k', then MSL < .50 and posterior odds would
favor the OLS estimator over the implied ridge
estimator. This line of reasoning led the au-
thors to consider strategies which take k' as
the upper bound on k for a given sample. One
possible exception to the existence of k' is when
the hypothesis 8 = B cannot be rejected at the
50% level, in which case, B would be an ap-
propriate choice for the estimator of 8.

The above reasoning provides a value of k
such that in a statistical sense the OLS and
SPR estimators are equally good in SMSE, but
the real task is to choose a value of k which is
near optimal, not just as good as OLS. On the
basis of the previous arguments, the optimal
choice of k should lie between zero and k'.
Because k' is associated with the value 6, = Y2
in a test of the hypothesis § < 8, and MSL =
.50, the search for a near-optimal choice of k
can be focused on a value of 8, < %2 and an
MSL = .50 to obtain a value of k£ < k'. Such
an estimator would have an MSE matrix for
each value of 6,. If a scalar measure such as

the determinant of this matrix, say D(d,), were

graphed against 8, on the interval (0, '2), one
would expect D to decline as #, increased from
zero, reach a minimum, and then continue in-
creasing monotonically. If this relationship is
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Table 1. Extended
Factor Elasticity Estimates Returns
Energy Misc. R? to Scale® k Fe a
.0315 .207 1.000
354 748 995 966
(.243) (:283)
.170-.170 .173-.162 .969-.952 .957-942 .125-.225
(.0194-.0121) (.0138-.00859)
182 .345 -.992 .969 .009 1.095 .50
(.163) (161
.0890 274 992 957 .016 1.109 .50

(.139) (132)

fairly symmetric on the interval (0, 1), 8, = Y4
should yield a relatively good estimator in
SMSE.

The specific value 8, = 6* is defined as that
value (unknown) of 6, such that in the test of
the hypothesis § < 6, and a search over k yield-
ing a marginal significance level of .50, 6, = §*
gives the smallest MSE based on the SMSE
criterion. Under the hypothesis § < 6*, choos-
ing k such that the MSL = .50 would imply a
posterior probability of .50 that k is too large,
i.e., the associated value of 6 is greater than 6*.
If 0% were known, k determined in this way
would play the same role for an upper bound
on the optimal choice of k as k&' did for choos-
ing an upper bound on & in the comparison of
OLS with the biased estimator. The final choice
of k is an approximation where 8, = % is used
as an estimate of 8* by appealing to symmetry
in MSE on the interval (0, '~).

However, let it be clear that the above ar-
gument has only heuristic appeal because it
leans heavily on a logical basis that is appro-
priate for a fixed value of k from sample to
sample. But the actual ridge estimator is based
on a value of k which is determined by in-
creasing k incrementally for a given sample
until an MSL of .50 is reached under the null
hypothesis. Only Monte-Carlo studies can ul-
timately determine how effective this strategy
is within various structures for the parameters
and the matrix X.

Critical values of the noncentral F-distri-
bution for 8, = Y are not available in printed
tables, but these critical values at the .50 level
of significance are needed to implement the
above method of choosing k. The computer

algorithm in the appendix of Goodnight and
Wallace provides a satisfactory approximation
to the upper tail of the noncentral F-distri-
bution with degrees of freedom and 6 as given
data. This algorithm can be used in an efficient
search procedure to find the value of & asso-
ciated with the SPR estimator which yields
MSL = .50 for any given value of 6, % in
particular.

Another strategy used in the application re-
ported later implicitly utilizes the strong and
weak MSE criteria jointly. The SMSE criterion
may be more stringent than is feasible for a
severely collinear data set in that the resulting
biased estimates may suffer many of the same
limitations as OLS. In other words, the low
information content of the implicit design ma-
trix, X, in (1) might prompt the analyst to re-
sort to a more biased estimator than SMSE
would justify, nevertheless defensible under the
WMSE criterion. As mentioned earlier, the
WMSE criterion cannot be applied logically in
the SPR framework because the minimum ex-
pected-squared-distance measure would in-
volve the extended parameter space. However,
the fact that WMSE is unidimensional and a
less demanding criterion than SMSE makes it
clear that the logical upper bound of 8, = ¥
for SMSE might be quite conservative under
the WMSE criterion.® This argument suggests
what might be called a conjunctive SMSE/

. WMSE criterion for estimator selection.

Arguments given earlier suggested a strategy
to delineate an upper bound on k for an SPR

§ As a practical matter, the critical values for the F-statistic are
available for 6, = 12 (Wallace and Toro-Vizcarrondo).
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estimator under the SMSE criterion; it is the
smallest value of k at which MSL = .50 when
testing the hypothesis that § < ‘2. This value
of k is denoted k,,,,,. Posterior odds would fa-
vor OLS over the SPR estimator if k > k,,,,
because MSL would be less than .50. The con-
junctive SMSE/WMSE criterion is to choose
the SPR estimator associated with k. that
gives the maximum defensible bias under the
SMSE criterion, i.e., test the hypothesis that
§ < Y with MSL = .50. But under the WMSE
criterion, the biasis expected to be rather mod-
est.

Another consideration which justifies a
greater amount of bias is the possibility of sub-
stantial specification error. This justification is
particularly appropriate if the bias point is an
a priori point estimate of the parameter vector
instead of the null vector. The authors suspect
that practitioners of ridge regression have a
propensity to use larger k values than might
be justified by MSE criteria because of the per-
vasion of specification error in empirical work.

The highly collinear data set of Gorman and
Toman provides an illustration of the results
of applying the two methods discussed for a
“good” choice of k, i.e., 8, = Ys and 8, = Y2 with
a MSL = .50. The shrinkage point is the null
vector and the data involve ten independent
variables and thirty-six observations. Fomby
and Johnson present paired values of k and
the F-statistic in (7) which were used to make
the necessary calculations. The results are not
very accurate (for purposes here) because of
the large interval on k used by Fomby and
Johnson. Calculations of k were made by linear
interpolation and reported accuracy is exces-
sive, but the purpose is to provide comparative
results.

The criterion based on an approximation to
the optimal choice of 6, under SMSE, which
led to 6 = V4, gave an F-statistic and value of
k equal to 1.007 and .0183, respectively; while
the conjunctive SMSE/WMSE criterion (0, =
i5) gave 1.056 and .0193, respectively. These
values are far removed from those obtained
by Hoerl and Kennard (1970a) based on the
“stable region” using the ridge trace, where the
F-statistic was around six and k was in the
interval .2 to .3. As a practical matter for this
data set and shrinkage point, the choice of 8,
at ¥ or Y2 is not important. The authors suspect
that this result emanates largely from the il-
logical shrinkage point. Strictly speaking, the
SPR model is not appropriate here, but it was
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applied for illustrative purposes under the ar-
tificial assumption that the null vector is the
a priori estimate of 3.

The Application ¢

The study region chose for this application was
the irrigated central California valley. County-
level data were taken from the 1974 Census of
Agriculture. A Cobb-Douglas production func-
tion was hypothesized where output was value
of crops harvested ($/county), and inputs were
value of cropland harvested ($/county), labor
expenditures ($/county), value of machinery
($/county), quantity of irrigation water applied
(acre-feet/county), energy expenditures ($/
county), and miscellaneous expenditures ($/
county). OLS, ORR, and SPR parameter es-
timates are presented in table 1. Not surpris-
ingly, the OLS estimates reveal the usual prob-
lems (unexpected signs, large standard errors)
associated with a collinear data set.

ORR results. As originally suggested by Hoerl
and Kennard (1970b), the ORR estimates were
chosen using a ridge trace which is a subjective
graphical method to evaluate the effects of the
level of k on the individual parameter esti-
mates. The ORR estimates in table 1 are pre-
sented in interval form (corresponding to the
bound of a “stable range,” see fig. 1) to dem-
onstrate the subjectivity of the method. Of
course, nothing can be inferred about the MSE
properties of the ORR estimates, even by
Monte-Carlo studies, because of the very sub-
jective criterion for choosing k.

SPR results. Fomby and Johnson’s SPR es-
timator was applied in two versions. The first
sets the factor elasticity priors at the zero vec-
tor (B = 0). Each prior factor elasticity estimate
for the second version of the SPR estimator,
SPR(B = FS), was set equal to its respective
factor share.” Factor shares are appealing as
priors because there should be a tendency for
factor shares to approximate factor elasticities

7 The factor share of the ith factor is defined as total expenditure
in the time period divided by value of output. In this application,
factor shares are easily determined for those inputs expressed in
dollar terms but must be fabricated for the water input. In partic-
ular, assuming constant returns to scale, the factor share for water
is determined as the difference between one and the sum of the
factor shares of those inputs which were expressed in dollar terms.
Such estimates of the factor shares do violate the assumed co-
variance structure in (6) because B is correlated with y since the
factor shares estimates involve y. However, since all factor shares
were estimated using the mean value of y, this correlation is only
of order 1/\/n.



Burt, Frank, and Beattie Heuristic Ridge Regression 141

.60

.50 H

.40

.30

<«-""Stable range"—>

.20

W
N

B~

.10

DN e o — — w—

.225 .275 .325 K

.025 .075 .125 .175

-.10

-.20 L

(Note: The numbers 1-6 conform to subscripts of ,é,f for corresponding variables defined in
the text.)

Figure 1. Ridge trace of estimates for California Central Valley region
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in agriculture (Tyner and Tweeten). For SPR

(B = FS) all coefficients were positive as ex-
pected, which was not the case for SPR(B =
0). A marginal level of significance of .5 and
8, = V2 under the SMSE criterion were used to
determine the biasing parameter k in both ap-
plications of the SPR estimator.?

It is informative to note that the k-values
associated with the estimators for both SPR
(B = 0) and SPR(B = FS) are substantially
lower than those corresponding to the “stable
range” of the ridge trace (see fig. 1). The k-val-
ue for SPR(B = 0) is .009; the comparable k-
value for SPR(B = FS) is .016. Yet, for ORR
the lower-bound k-value appears to be in the
vicinity of .125. It is conceivable that one might
even choose a k-value as high as .225 when
relying on visual interpretation of the ridge
trace, a value about 14 times that for SPR(B =
FS). It would appear that “stability” of the
ridge trace occurs at a point where too much
bias is introduced according to SMSE. If one
were to accord the prior information greater
relative weight in the estimation, a lower sig-
nificance level would be chosen which would
allow a larger k-value and hence the introduc-
tion of greater bias. However, we find no jus-
tification for a significance level less than 50%.

Concluding Remarks

The results of this paper and empirical appli-
cation suggest four conclusions:

(a) The SPR estimator in conjunction with
an objective sample criterion for choosing the
level of bias appears to work well in empirical
estimation of Cobb-Douglas production func-
tions, especially when good a priori estimates
of the factor elasticities are used to determine
the point in parameter space toward which the
estimation vector is biased.

(b) The ridge trace estimator-selection pro-
cedure appears to introduce too much bias in
the estimation, at least more bias than can be
justified by MSE criteria. There is always the
possibility that such estimators are closer to
the true parameter vector because of specifi-
cation error in the model and errors in the
independent variables, but these consider-
ations defy any objective analysis.

8 The SPR(B = FS) was also applied using 6, = Y. However,
similar to the results obtained for the Gorman and Toman data
set, the choice of 8, had little impact on the final parameter esti-
mates.
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(¢) Standard errors under biased estimation
methods are of limited value because the bias
component of MSE is unknown. However,
these standard errors do give a lower bound
on root MSEs and therefore are useful infor-
mation in a one-sided context. That is, while
low standard errors associated with biased es-
timators do not imply small MSE, large stan-
dard errors demonstrate weak precision and
thus large MSE. The SPR standard errors in
table 1 do provide information in the case of
machinery, water, and energy—each standard
error is close in magnitude to the point esti-
mate of the respective elasticity which indi-
cates that these estimates are not very reliable.
This unpleasant result should not be surprising
in that multicollinearity reflects serious limi-
tations of the sample data for which no esti-
mation method can really compensate.

(d) Of course, any conclusions based on the
application such as this are only suggestive of
the properties of various estimators. A Monte-
Carlo study in the context of production func-
tion estimation would be most helpful.

[Received July 1986, final revision
received May 1987.]
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