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Introduction 

Weather shocks can destroy crops globally and cause widespread damage across all sectors of 

agriculture-cropping systems, fisheries and aquaculture, and livestock (Cottrell et al., 2019; Park et al., 

2019; Vogel et al., 2019) (IPCC, 2021). The impact of such shocks on yields (Schlenker & Roberts, 2009), 

cropped area (Lesk et al., 2016), cropping patterns (Cui, 2020) and crop quality (Dalhaus et al., 2020) 

depends on the vulnerability and coping mechanism of the farms. To offset and counter-balance these 

effects of weather shocks, farmers continuously adapt their farming practices such as the planting date 

(Korres et al., 2017) and cultivar choice (Fisher et al., 2015), among many others. Where these practices 

increase productivity, contribute to climate adaptation, and/or reduce greenhouse gas emissions they 

are considered to be climate-smart agriculture (CSA) (Lipper et al., 2014). CSA has the potential to 

achieve food security goals under changing climate, by adapting farming systems to extreme weather, 

and also contribute towards mitigation goals (De Pinto et al., 2020). While these farming practices 

(classified as CSA) have been promoted for over a decade as the cornerstone of agricultural climate 

change adaptation and mitigation, little understanding exists on how different CSA farming practices 

affect the crop production response to weather shocks. This understanding is crucial as there is a greater 

likelihood of frequent and severe weather shocks across the world due to climate change (Jehanzaib et 

al., 2020; Sun et al., 2019; Tabari, 2020).  

We address this research gap by analysing how different farming practices under climate-smart 

agriculture perform under different types of weather shocks. We define weather shocks as deviations 

from the average exposure at a production location as proxied by temperature and rainfall. We use a 

unique dataset from the climate-smart villages project in India (covering in total 53,616 yield by year 

observations), which aims to scale CSA activities in vulnerable smallholder farming systems with diverse 

cropping patterns include wheat, maize and soybean production (Aggarwal et al., 2018). The study 

contributes to the growing discourse on climate-smart agriculture, by quantifying the production (and 
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income) response to extreme weather under different CSA management practices. We also identify 

thresholds of weather indices that significantly affect crop production, which are useful to design risk 

management policies like agricultural insurance for farmers to cover weather impacts beyond 

managable weather thresholds.  

Several studies have presented evidence on the impacts of weather shocks on food systems (Gisbert-

Queral et al., 2021; Moore and Lobell, 2014; Ortiz-Bobea et al., 2021; Schlenker and Roberts, 2009; 

Turvey et al., 2021) through the use of different methods (Auffhammer et al., 2013; Blanc and Schlenker, 

2017; Kolstad and Moore, 2020). However, such evidence is limited for low and middle income countries 

(Ortiz-Bobea et al., 2019; Powell and Reinhard, 2016) and different farm management practices (Tack et 

al., 2017; T. J. Troy et al., 2015) due to data scarcity. Data scarcity is one of the most important 

challenges in scaling adaptation and risk management policies throughout the world, especially for 

smallholder agriculture. Advances in remote sensing have filled this information gap to an extent, 

however, most of the publicly available data focus on weather and other biophysical characteristics (like 

vegetation greenness, soil moisture and water stress, among others) (Jung et al., 2021; Karthikeyan et 

al., 2020) whereas information on long-term (panel) farm management is still missing. How farmers 

manage their fields, is a key determinant to farm production and climate vulnerability. The management 

effects on crop production can exceed the effects of weather and management information is thus key 

for designing risk management policies like agricultural insurance. Due to a lack of information about the 

farm management practices, the design of risk management instruments can be strongly 

impaired(Aggarwal et al., 2019; Norton et al., 2016; Vyas et al., 2021). In addition, evidence on how CSA 

farm management practices and weather events interact is even more limited (Keil et al., 2021).  

We use farm-level data of 29,524 farms in India collected from 2015 to 2020. The dataset includes 

information on crop production (i.e. yields of major crops in the study area including rice, wheat, maize, 

gram, greengram and soybean) under different CSA practices. Using the spatial coordinates of the 
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sample farms, we complement the farm information with heat and drought indicators at the farms’ 

locations. More specifically, we use the number of extreme heat days above critical thresholds and the 

rainfall sum during the growing season. The study focuses on heat and drought indicators as these farms 

are located in hot, arid agro-climatic zones of India (in Rajasthan and Madhya Pradesh states), 

characterized by low precipitation, high aridity and frequent occurrence of heat stress and droughts. In 

addition, extreme heat and drought events are the most important risks affecting farm production 

according to the farmers in the study area (as determined during baseline farm survey-please refer 

supplementary information for more details). We use regression analysis to causally link a change in 

weather conditions with variation in crop yields. By sub-sampling by CSA measures, we can compare 

production responses to weather extremes along different management practices. By doing so we 

provide the first systematic assessment of how CSA practices affect the vulnerability of smallholders to 

weather shocks.   

The rest of the paper is divided in four sections—we first provide a background on how the crops in our 

study region respond to heat and drought shocks. Using available literature, we discuss the crop 

physiological consequences of extreme weather events, and derive hypotheses on the role of 

adaptation in offsetting these responses. In the data and methods section, we describe the farm survey 

conducted to collect management information, discuss the choice of weather indices used (and the data 

sources), and explain the panel regression model. This is followed by the results section where we 

describe in detail how different farm management practices affect the response of farms to heat shocks, 

and finally the implications of the results in the context of climate change adaptation and broader risk 

management are summarized in the discussion and conclusion section.  
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Background 

Impact of extreme weather events on crop production 

Extreme weather events are known to impact food systems, causing food production shocks, decline in 

crop quality and farming efficiency, among others. In particular, drought and heat stress are known to 

trigger a range of morphological and physiological processes across growth stages in crops—ranging 

from poor germination and decline in germination potential, loss of biomass accumulation and cell 

growth, reduction in grain formation (sterility), reduction in grain filling and a resulting decline in grain 

yields (Daryanto et al., 2016; Dubey et al., 2020; Fahad et al., 2017). Droughts and extreme heat have 

shown to reduce national cereal production by 10% (Lesk et al., 2016), at the cost of 190 billion dollars 

globally, unevenly distributed among major food producing countries (Mehrabi and Ramankutty, 2017). 

In particular, the cropping systems of the study area also show significant vulnerability to drought and 

heat stress in India. For instance, rice crop shows upto 85% decline in productivity and 35% reduction in 

spikelet fertility when exposed to drought and extreme temperature, especially during the reproductive 

stage (Kumar et al., 2020; Nath et al., 2017). Similarly for wheat, literature shows 56% reduction in grain 

yield in India, when exposed to heat (accumulated degree days) and drought stress during crop 

reporoductive stage, apart from changes in grain quality (Qaseem et al., 2019; Song et al., 2020). For 

soybean, the reduction in seed yield was up to 64% under different temperature exposure levels 

(Jumrani and Bhatia, 2017). Gram crop also shows significant yield reduction by 40-50% and grain quality 

decline from drought and heat stress during flowering and grain filling stages (Devasirvatham and Tan, 

2018; Rani et al., 2020). 

The plant responses to drought and heat stress risks are highly dependent on the type and severity of 

event, the physiological stage of the crop, and changing interactions between weather events and 

agricultural systems (Glotter and Elliott, 2017). These responses are often non-linear, with higher losses 

observed with increasing growing season temperature (Burke et al., 2015; Friedrich et al., 2016; 
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Gammans et al., 2017a; Lobell et al., 2011), having implications for climate change. With expected 

increase in frequency and intensity of droughts and heat events from climate change , the plant 

responses can further be exacerbated (Xu et al., 2019).  

Farm management practices including adaptation to changing climate can influence how crops respond 

to such events. Farm management practices such as stress tolerant cultivars (Martey et al., 2020; 

Wossen et al., 2017), change in planting dates and irrigation (Tack et al., 2017; T J Troy et al., 2015) and 

fertilizer management can help in limiting the damage from drought and heat stress, by escaping risk 

exposure, shifting the response thresholds or/and decoupling crops from climate sensitivity. Climate-

smart agriculture combines these farm adaptation (and mitigation) strategies to increase farm resilience 

and enhance food security. Reported evidence of CSA suggests improvement in yields, farm income and 

enhanced drought resilience for CSA practicing farms in low and middle income countries (Acevedo et 

al., 2020; Dinesh et al., 2015; Lopez-Ridaura et al., 2018; Martey et al., 2020; Pal et al., 2021; Wossen et 

al., 2017), and changes in productivity, soil quality, resource-use efficiency and mitigation potential in 

rice-wheat systems in South Asia (Jat et al., 2021, 2020; Kakraliya et al., 2018; Roy et al., 2022; Singh et 

al., 2020). Combining multiple adaptation and mitigation activites together in the farm, can lead to 

synergies and trade-offs between different portfolios of activities, and can be useful to understand farm 

adoption of different CSA practices (Jagustović et al., 2021).  

Hypothesis 

The farm data used in this analysis has detailed information on farm management practices adopted in 

the study region. The data are available individually for each farm and farmers are also classified as 

super-champion, champion, and CSA farmers (based on portfolio of CSA activities adopted in their 

farms-please refer supplementary information for more details). Previous literature has documented the 

risk-reducing effects of specific CSA practices. We therefore test the response of production being 
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managed under different types of CSA portfolios to weather shocks. In particular, we test the hypothesis 

that as the number of CSA activities increase, the farm response to weather risk decreases (due to 

compound risk-reducing effects of adaptation activities under CSA). Therefore, farm production 

response (production, yield and income loss) to weather shocks of the super champion farmers is 

hypothesized to be less (in magnitude) than champion farmers, followed by CSA farmers (with least 

number of CSA activities). We also hypothesize that the production response of individual farm 

management activities like (presence or absence of) irrigation, fertilizer, improved seed/cultivar, seed 

treatment, tillage interventions, precision nutrient management, intercropping and farm risk 

management activities (climate information services and crop insurance) to weather shocks is less in 

magnitude (than the absence of these practices) and compare the results with available literature. 

Data and Methods 

Farm data 

The CGIAR research program on Climate Change, Agriculture and Food Security (CCAFS) has 

implemented the “climate-smart village project” with different national and international partners to 

promote climate-smart agriculture. Climate-smart agriculture aims to integrate climate change into 

policy design, planning and implementation of sustainable agriculture practices from local to regional 

scales. It focuses on three key aspects of food production—adaptation, mitigation and food security, in 

addition to building food systems resilience to climate extremes. Climate-smart village (CSV) is a 

community approach to leverage local institutions, public and private partnerships to scale climate-

smart agriculture across different geographies (Aggarwal et al., 2013). The climate-smart village 

activities are based on five key dimensions of interventions—weather, water, seed, carbon and 

institutions (Aggarwal et al., 2018). These interventions are implemented through different mechanisms 

(involving individual farmers and farmer groups) and local institutions, depending on location and 

https://ccafs.cgiar.org/
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context-specific characteristics. The CSV approach is thus flexible and is implemented in different 

regions accordingly.      

For this study, the panel data collected from the Climate-smart village project in India will form the basis 

of analysis. A survey was conducted to collect data on farm management across different portfolios of 

CSA across two different states in India (Madhya Pradesh and Rajasthan) from 2015-2020. Three levels 

of CSA packages were implemented by farmers and the farmers were categorized into super champion, 

champion and CSA farmers based on their portfolios and activities in the field. The super champion 

farmers are the influential promoters of CSA activities in the project area and have highest number of 

CSA activities in their farms, followed by champion and CSA farmers (Chanana et al., 2020) The survey 

includes farm-specific information on management conditions like farm inputs used (crop variety, 

fertilizer and irrigation amount, labour), farm size, outputs (yield and income) and type of 

adaptation/mitigation strategies implemented (including precision nutrient management, agro-

advisories, insurance, intercropping, conservation tillage, among others-please refer supplementary 

information for more details). The farm data (unbalanced panel data) is available for 29,524 households 

in 695 villages from the year 2015 to 2020, with a total of 51,707 yield observations. The data covers 

maize, rice, wheat, gram, green gram and soybean crops. The survey data has detailed information on 

farm management inputs and adaptation practices including calendar dates of key agricultural 

operations, type, amount and frequency of inputs used, and types of CSA practices followed (the details 

are given in supplementary information). Since the objective of the project is to scale-out CSA 

interventions across target villages, the data was collected only for farms with project interventions and 

not for control farms (with no CSA interventions). This study thus focuses on the effect of different types 

of CSA intervetions and compares farm responses under different levels of CSA portfolios (and does not 

compare CSA with control non-CSA farms).  

https://ccafs.cgiar.org/news/transforming-million-hectare-farmland-climate-smart-village-approach
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Fig 1: Spatial distribution of the villages selected for this study. Colors differentiate two project states-

blue (Rajasthan) and orange (Madhya Pradesh). 
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Table 1: Summary statistics of farm management data (categorical variables) 

Summary statistics of key categorical variables 
Variable  
code 

Variable name Categories N 

Q8 Type of farmer Super champion = 2334;  
Champion= 46,832; CSA= 5,777; Others= 50  

54,993 

Q18 Seed treatment Yes= 45,199; No= 7,970 53,536 
Q22 Zero Tillage Yes= 5071; No= 49,285 54,356 
Q26 Use of broad-based furrow (BBF) Yes= 10,272; No= 43,760 54,032 

Q29 Crop Insurance Yes= 41,348; No=  13,534 54,992 
Q31 Irrigation Yes= 20,695; No= 28,214 49,412 
Q56 Intercropping with legumes, 

vegetable 
Yes= 519; No=  52,330 52,849 

Q53 Use of Precision nutrient 
management 

Yes= 33,837; No= 19,103 52,940 

Q68 Climate information, agro-
advisory and market information 

Yes= 50,468, No= 2470 52,940 

Q89 Season  Summer= 30,186;  
Winter= 24,817 

55,003 

Q12 Crop  Gram= 620; Maize= 4,346; Rice= 248; Soybean= 24,028;  
Wheat=  23,854;  
Green gram= 176 

53,616 

Q90 Year 2015= 482;  2016= 483, 
2017=  1,085; 2018= 19,259 , 2019=  24,153  , 2020= 9,541 

55,003 

 

Table 2: Summary statistics of farm management data (numeric variables) 

Summary statistics of key numeric variables 
Variable  
code 

Variable name N Mean Min Max St dev 

Q71 Total Cost of 
Cultivation (Rs/Acre) 

  
51,026 

7111.38 1030 27350 2695.99 

Q80 Net Return (Rs)   
51,461 

14,805.22 -17849 1,64,752 12,360.4 

Q76 Market price of 
grain (Rs/Qt) 

  
52,373 

2605.05 1000 7350 848.87 

Q30 Cost of Crop 
Insurance (Rs/Acre) 

  
35,798 

229.42 0 8750 185.97 

Q9 Total  Cultivated 
Area (in Acre) 

  
41,169 

2.533 0.081 480 4.988 
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Fig 2: Overview of select CSA practices implemented in the study area 

Weather data 

The study areas (states of Madhya Pradesh and Rajasthan) have semi-arid and dry crop-growing 

conditions with high temperatures, dry spells and droughts, especially in the summer season. The 

seasonal rainfall volume ranges from 300 to 1500 mm in summer and 15 to 200 mm in winters1, and the 

maximum temperature varies from 25 to 45 degrees in summers (with records of even upto 50 degrees 

in a few places). The region is also characterized by intense and frequent droughts (Guhathakurta et al., 

2017). During the baseline survey for the project, the farmers reported the following as the most 

 
1 https://ccafs.cgiar.org/resources/publications/ccafs-agriculture-monitor-cam 
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important weather-related risks for their farms—high temperature, less rainfall and drought, 

heatwaves, frequent hailstorm, frost, strong wind/storms causing crop lodging, changes in rainfall 

volume, cold wave and intense spells of rainfall. 

Based on observed weather risk exposure and farmers’ perception of weather risks in the case study 

region, we focus on heat stress and drought (including dry spells) as main hazards in the study area. 

Daily temperature data will be used for assessing heat stress in the region. For drought, we focus on 

different sub-seasonal drought indicators—standardized precipitation index, soil moisture index and 

number of dry days. These indices are selected as drought and heat stress are major climatic risks for 

our region of interest and they can capture complex crop physiological-water stress interactions and soil 

moisture dynamics comprehensively (instead of using a single drought indicator). In addition, they can 

be useful for designing risk financing policies (Bucheli et al., 2021). The weather data sources are 

described in table 3.  

Table 3: Weather data sources 

Risk/Data 
source 

Source Year  Timescale  Resolution 

Heat stress 
Daily max and 
min 
temperature 

ERA5  
(ECMWF Reanalysis 5th Generation 
Description)  
https://www.ecmwf.int/en/forecasts/d
atasets/reanalysis-datasets/era5 

1979-
present 

Daily  .25 X .25 
degree 

Drought 
SPI  a) Calculated from CHIRPS rainfall data 

 
 
 

1901-
present 
 

Monthly  .05 X .05 
degree 
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The weather data were aggregated at different time steps to compute sub-seasonal and sesaonal 

indices. Daily temperature data was used to compute temperature bins for heat stress. Daily (soil 

moisture), number of dry days and monthly SPI are used in the analysis. 

Methodology  

We use fixed effects panel regression to estimate the impact of a random and exogenous weather shock 

on crop yield. We subset our dataset by different CSA portfolios and test for differences in the weather 

response along different CSA strategy bundles to show their effectiveness in offsetting the impact of 

extreme weather. We therefore estimate the following model:  

𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗 = 𝛽𝛽𝑗𝑗𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 + 𝛾𝛾1𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 +  𝛾𝛾1𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖2 + 𝑎𝑎𝑖𝑖𝑖𝑖 +   𝑎𝑎𝑡𝑡𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡   

where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖  is the log yield  at farm 𝑖𝑖 in year 𝑡𝑡. We subset the overall dataset by crop 𝑗𝑗 ∈

{𝑆𝑆𝑆𝑆𝑆𝑆,𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀} and estimate three different models. 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 is the number of extreme heat days 

at farm 𝑖𝑖 in year 𝑡𝑡 defined by the daily maximum temperature exceeding a threshold temperature of 30 

°C. The extreme heat days are calculated based on the growing season for the crop—June to September 

for summer crops and October to March for winter crops. We systematically shift this threshold 

between 30°C and 45°C. Consequently, 𝛽𝛽𝑗𝑗 is the marginal impact of one extreme heat day on yields of 

crop 𝑗𝑗. Since the number of extreme heat days likely correlated with the precipitation sum during the 

growing season, we control for 𝛾𝛾1𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛾𝛾1𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖2 , which captures the potentially inverse u-

shaped impact of precipitation on yields. 𝑎𝑎𝑖𝑖𝑖𝑖  is a farm fixed effects that controls for all time invariant 

characteristics of the farm and the farm’s location. Besides, 𝑎𝑎𝑡𝑡𝑘𝑘 is a year fixed effect that controls for all 

factors that are similar for all farms within one year, such as technological development, market, or 

policy changes. Our specificaition thus allows us to estimate the effect of weather shocks on production 

shocks. That is, how does a deviation from normal heat exposure at a farm’s location cause a deviation 

from its normal production quantity. We can assume that these weather shocks occur random and 
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exogenously, which is why we are able to interpret the effect of weather on production as a causal 

effect. 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  is the error term that is likely correlated in space and time. We therefore, cluster the error by 

farm and year to allow for spatial and temporal autocorrelation. Since the fixed effects model requires 

atleast three years of panel data, only farms who have three or more years of data are included in the 

model. Distribution of different variables used in the regression model are provided as a supplementary 

file.  

Various studies have used a similar reduced form model to to estimate (non-linear) response of different 

cropping systems to weather (Gammans et al., 2017b; Lobell et al., 2013; Schlenker and Roberts, 2009a) 

(Gammans et al., 2017b; Lobell et al., 2013; Schlenker and Roberts, 2009a). However, while these 

studies were able to establish causality between the weather shock (in our case extreme heat days) and 

the outcome variable, little data has been available on management decisions that potentially affect the 

mechanisms between weather and production. Reduced form models with observational farm- or 

county-level data estimate an adapted response to weather. That is, the production response that 

remains after farmers potentially applied agronomic management practices such as irrigation (see Tack 

et al. 2015). Thereby, the boundaries beyond which weather becomes harmful that arise from these 

estimates can differ from experimental crop physiology literature. We here have explicit information on 

CSA practices that were applied to reduce the effect of weather shocks. The extent to which these are 

able to achieve this is however unknown. We therefore estimate our above model across subsets of 

different CSA practice bundles and compare the estimated responses. 
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Results 

We here present preliminary result on the impact of heat shocks (number of days with a daily maximum 

temperature above 45°C) on soybean yields. A total of 4,733 farm-yield observations were used in this 

model. As mentioned in the previous section, the region of study experiences very high heat stress and 

drought. We therefore choose the threshold of daily maximum tempetaure above 45 degree Celsius as 

extreme heat day. Our results show a significant negative impact of extreme heat days on soybean 

yields (table 4). A unit increase in extreme heat days compared to the average at the farm location, 

causes a 0.38 decline in log of soybean yields compare to the average production at the farm.   

Table 4: Regression results 

Dependent Variable: log(Soybean yield Kg/Ha) 

Extreme heat days (no. of days above 45 C) -0.3840** (0.0755) 

Summer rain -0.00003936 

Summer rain square 3.88e-6** (9.07e-7) 

Fixed-Effects by farm and year, S.E. Clustered by farm and year 

Observations= 4,733, R-squared= .58, Within R-square= .18 

 

Discussion  

Our results show a significant yield decline for soybean crop for a temperature threshold of 45 degrees. 

The results are in agreement with published literature which describe the optimum growing 

temperature at 32 degrees after which the crops show steady decline (Cook et al., 2021; Parent and 

Tardieu, 2012; Thomey et al., 2019). Here we show the impact of extreme heat on soybean yield for only 

one threshold of 45 degrees, we plan to systematically shift this threshold between 30 to 45 degrees to 

assess the sequential impact of extreme heat on soybean yield (and returns). Further, we will subset 
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these results by different farming practices to better understand the impact of CSA practices on crop 

exposure to extreme heat. We will also replicate this analysis for other drought and heat indicators like 

SPI, and crops (like maize and wheat).  

This analysis has important implications for farm risk management and agricultural insurance policies. 

Risk management often combines two or more strategies to safeguard crop production from shocks. 

Adaptation should ideally cover moderate to severe climate stress, insurance should kick in for the right 

tail (extreme climate risk). In CSA, a combination of adaptation, climate information services and 

financial risk management (through insurance) are used to protect farms from shocks, while increasing 

their efficiency and production levels. There are many synergies and trade-offs between different 

management activities implemented under CSA (Prestele and Verburg, 2020). In such a scenario, risk 

management needs to be aligned with these management conditions, to design an effective policy. 

Limited literature is available on the risk management dimensions of CSA, with respect to climate stress 

and extreme weather events (Awondo et al., 2020). Therefore, it is important to establish the risk-

reducing properties of CSA and identify the risk thresholds. We capitalize on a detailed farm survey on 

CSA farms to identify the effects of management portfolios on yield/income response to climate risks. 

This helps in identifying thresholds beyond which CSA might not work, which is essential to design risk 

management policies like an agroicultural insurance products for CSA. According to these thresholds, 

index insurance products can be designed with customized deductibles and premiums. For instance, 

farmers with intensive CSA portfolios may have a higher deductible or lower premiums. The results from 

this study can be used to develop a more comprehensive and efficient insurance scheme for CSA farms 

(by reducing design and basis risk) (Vyas et al., 2020).  
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