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Introduction and Objectives Specialty Crop Percentage of Insured Acres 2000-2021
e Not all specialty crops are covered by the popular Federal Crop Insurance Program (FCIP)
o Commodities with relatively low acreages and little production histories face delays getting covered by FCIP % Specialty
o Expanding the FCIP requires an intensive process to estimate the degree of risk the insurance offering would face p—
e The relative importance of a risk factor depends on region, commodity, and interaction effects with weather
e \We use machine learning to identify key aspects of risk prediction functions without assuming simplistic functional forms a-priori
o Project Base Premium Rates (BPR) for specialty crops not currently covered by FCIP or not covered in certain counties
o Use derived functions to project future risk to illustrate heterogeneity in risk profiles for specialty crops 40%
o If successful, these models could serve as a baseline for estimating future USDA offerings ,?_Igﬁ
Relative Share of Specialty Crop Indemnities by Cause
I Data
'- Cause Groups e Create a dataset of BPR’s by specialty crop policy with their associated local history of loss

o Combining USDA data on recorded FCIP indemnities with actuarial records
o Data is specific to specialty crop ‘buckets’, such as Citrus Fruit or Root Vegetables
| Floods, Hurricanes, and Rain e Describe loss by the frequency and average severity losses over the past decade

B Winter Weather o Use groups of causes, e.g. “Drought” or “Pests/Disease”

. Drought, Heat and Fire

T

Preserved Drivers of Base Premium Rates
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Lost to
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Citrus # of
BPR Hurricanes

LASSO

Machine Learning: Reducing Dimensionality

e Utilize a LASSO regression algorithm to eliminate unnecessary
variables from the many created above

e Lambda, the punishment parameter eliminates irrelevant
variables, determined by 10-fold cross validation

e After removing the variables whose coefficients are forced to

zero, we have a more parsimonious regression function Root % Acres Lost % Acres
predicting aggregate risk from local history with risk factors Vegetable to Winter | ost to

BPR Weather Flood

HAGE % Lostto # of Pests
BPR Pests Outbreaks

Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58:267—-88

Loss Climate
Frequency

Loss Severity Variables

Types of Specialty Crops

, # of % Acres Lost .
cltrus Droughts  to Drought Rainfall
Berries Next Steps:
Root Vegetables % Acres Lost e Evaluate model fit
5 # of Freezes Temperature o Can training sets precisely estimate BPR out of sample?

to Freeze
o ACross crops, across space, or both

Act 1 Dat e Model Extensions
ctuarial bata olnclude PRISM weather data, FEMA disaster declarations, etc.

Base Premium Rate oExpand to additional loss causes and explore grouping
Coverage Level Interactions e Contrast the accuracy and precision of our LASSO regression functions
location against simple, ‘rule of thumb’” methods
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