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Estimating Demand Systems with Corner
Solutions: The Performance of Tobit-Based

Approaches

Abstract

Since Tobin’s (1958) innovative research on a censored regression equation, a great num-

ber of frameworks have been proposed for modeling consumers’ preferences in the pres-

ence of corner solutions from zero consumptions. However, practitioners have been facing

a clear trade-off between flexibility and theoretical plausibility; the virtual price approach

(or the Kuhn-Tucker approach) is based on rigorous choice theory but cannot be applied

to complex and flexible demand systems because of the need for closed-form solutions to

virtual prices, whereas the Tobit-based approach can be applied to any class of demand

systems but is deficient in the theoretical foundations on the underlying preferences under-

lying the observed choices. Hence, we assess the performance of Tobit-based approaches

and explore the extent of possible biases in elasticity estimates to provide reasonable cri-

teria for model selection. Our analysis concludes that theoretical restrictions implied by

the theory of choice are essential to the Tobit model and improve the ability to capture the

true underlying elasticities. Moreover, we also find that the performance of the Tobit mod-

els reaches its peak when the datasets with moderate portions of zeros than a relatively

lower or higher number of corners. However, even the most restrictive Amemiya-Tobin

approach performing better than the other Tobit models has a relative weakness in recov-

ering income elasticities compared to price elasticities under our setup.

Key words: Monte Carlo Simulation, Censored Regression, Almost Ideal Demand Sys-

tem

JEL classification: C34, Q11
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1. Introduction

From the time of Tobin’s (1958) pioneering work on a regression equation where the de-

pendent variable is censored to be a single value from a certain threshold, a myriad of

papers have proposed frameworks for modeling consumers’ preferences in the presence

of corner solutions, arising from zero consumption(s) for one or more good(s). Based on

Tobin’s approach, Nelson and Olson (1978) and Amemiya (1979) developed and examined

a simultaneous-equation model with both completely observable and truncated equations,

which can be applied to a demand system with corner solutions. While the earlier frame-

works focused on truncated consumption in observed data, the literature started to develop

estimation structures more consistent with choice theory. Wales and Woodland (1983) not

only formalized the usage of first-order Kuhn-Tucker conditions for constructing the like-

lihood function from a utility maximization problem with non-negativity constraints on

consumption, but also proposed a specific mapping technique called the Amemiya-Tobin

approach for the Tobit model, so that the model can be consistent with the adding-up con-

dition. Shortly after, Lee and Pitt (1986) developed a virtual price approach, which is dual

to the Kuhn-Tucker approach but does not require beginning with the primary utility, al-

lowing for a more general class of demand systems possibly stemming from indirect utility

functions (such as the Translog indirect utility function).

A review of the literature suggests that practitioners have been facing a clear trade-off

between flexibility and theoretical plausibility. That is, the virtual price approach (or the

Kuhn-Tucker approach) is rigorously based on the theory of choice, but it cannot be applied

to complex and flexible demand systems because of the need for closed-form solutions to

virtual prices, whereas the Tobit-based approach can be applied to any class of demand

systems as long as they have share equations to estimate, but is deficient in the theoret-

ical foundations of the underlying preferences behind the observed optimal choices. For

example, the Quadratic Almost Ideal (QUAI) demand system (Banks, Blundell, and Lew-
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bel 1997) and the Exact Affine Stone Index (EASI) demand system (Lewbel and Pendakur

2009) provide a flexible form of demand system in terms of the Engel curve, but the virtual

price approach cannot be used with them because the share equations are highly nonlinear

in prices (or the logarithm of prices). In contrast, despite the choice theory deficiency of

the Tobit approach, the latter can be easily adopted for such demand systems by simply

adding normal error terms to the share equations (e.g., Zhen et al. (2013)).

Given the aforementioned state of affairs, our paper aims to assess the performance of

Tobit-based approaches proposed in the literature and explore the extent of possible biases

in elasticity estimates to provide reasonable criteria for model selection. We implement

a series of Monte Carlo simulations to evaluate three different Tobit-based frameworks

using the Linear Approximate Almost Ideal (LA-AI) demand system, namely, (a) sim-

ple equation-by-equation Tobit, (b) Tobit with a system of correlated equations, and (c)

Amemiya-Tobin with the adding-up condition. The LA-AI demand system is chosen de-

spite its well-documented problems, because not only it has been one of the most popular

demand systems for the past few decades, but also it is simple enough to generate optimal

consumption vectors with potential corner solutions utilizing the virtual price technique.

Specifically, we first generate 1,000 samples, each consisting of 500 heterogeneous indi-

viduals who have different preferences over three goods in terms of the (indirect) utility

parameters, where the heterogeneity parameters are drawn from the multivariate normal

distribution. Then, based on the virtual prices derived from the LA-AI demand system,

we generate optimal consumption vectors with non-negativity consumption constraints.

Next, we evaluate the performance of the three aforementioned Tobit-based approaches by

estimating them and computing the elasticities of interest from each model’s parameter es-

timates. Given the heavy computational requirements of the proposed analysis, we adopt

Geweke’s (1988) antithetic sampling method to accelerate the simulations.

This exercise provides the following contributions. First, because we generate the hypo-

thetical consumption data based on consumer choice theory, we can properly examine the
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performance of the Tobit-based approaches when they are applied to real-world datasets

with rational consumers. Note that we minimize the other possibilities of biases that might

arise from the misspecification of the functional form of the demand system, by matching

the functional specification in the data-generating process (DGP) to that in the estimation

step. Hence, either the Tobit-based approaches could be justified in empirical applications,

or they should be reconsidered depending on the simulation results; the linearly additive

error structure or the lack of theory foundation could negatively affect the latter’s perfor-

mance. Secondly, we can evaluate the impact of additional theoretical constraints within

the Tobit-based methods. Because the Tobit methods analyzed here are nested within each

other in terms of the theoretical constraints (with the simple equation-by-equation Tobit

approach being the least restrictive, and the Amemiya-Tobin approach the most restric-

tive), it is interesting to investigate how each of the frameworks performs in capturing the

true elasticity or the censoring thresholds for goods implied by the true DGP. In particular,

given the relative complexity of implementing the Amemiya-Tobin method even with the

simplification provided by Dong, Davis, and Stewart (2014), the results of our study should

also provide useful information regarding the selection of Tobit-based techniques.

2. AI Demand System

Let i ∈ {1, · · · ,M} be the index for M goods. For a given price vector p = (p1, · · · , pM)′

and income m, the optimal consumption share w∗i for i ∈ {1, · · · ,M} is equal to

w∗i = αi +∑
j

βi j ln p j + γi ln
(

m
g(p)

)
+ εi,(1)

where

lng(p) = ∑
j

w∗j ln p j,

and βi j = β ji, ∑i βi j = 0 for all j, ∑i αi = 1, ∑i γi = 0, and ∑i εi = 0. Since optimal share w∗i

appears on both sides of the equality in (1), an issue that arises regarding the data generating
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process (DGP) is the proper way to generate data using the linearized AI demand system. In

the next subsection, we first discuss the DGP for the typical case without corner solutions.

Then, in the following subsection, we focus on the DGP for the case of interest to us,

namely, the presence of corner solutions.

2.1. DGP Without Corners

The share equations (1) with i = 1, · · · ,M can be represented in matrix form:

w∗ = ααα +Bp+ γγγ[(lnm)−p′w∗]+ εεε,(2)

where w∗ = (w∗1, · · · ,w∗M), ααα = (α1, · · · ,αM), γγγ = (γ1, · · · ,γM), εεε = (ε1, · · · ,εM), p =

(ln p1, · · · , ln pM), and

B =



β11 β12 · · · β1M

β21 β22 · · · β2M

...
... . . . ...

βM1 βM2 · · · βMM


.

The right hand side (RHS) of (2) can be expressed as

w∗ = ααα +Bp+ γγγ[(lnm)−p′w∗]+ εεε,

= ααα +Bp+(lnm)γγγ− γγγp′w∗+ εεε.

Thus, we have

w∗ = [IM + γγγp′]−1[ααα +Bp+(lnm)γγγ + εεε],(3)

where IM is an M×M identity matrix. Vector w∗ is not recursively defined anymore in

(3), and henceforth we call it a complete closed-from solution for w∗. Using this complete

closed-from of w∗, we can generate optimal consumption data for a given (p,m) and the

parameter values.
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2.2. DGP With Corners

The virtual price approach is dual to the Kuhn Tucker method. Hence, we can find the

optimal consumption vector if there are non-negative constraints for w∗ for sufficiently

small m, without solving the corresponding utility maximization problem (UMP). Recall

that (3) does not restrict w∗ to be non-negative, and w∗i for some i can be negative for some

realization of εεε; hence, w∗ can be thought as comprising latent shares.

To consider the virtual price approach, without loss of generality, let {w∗1, · · · ,w∗K} be a

set of positive (latent) shares and {w∗K+1, · · · ,w∗M} be a set of non-positive shares. Then,

the virtual prices {πK+1, · · · ,πM} and the constrained (observed) shares {w1, · · · ,wK} can

be jointly defined by letting w∗i = 0 for i = K +1, · · · ,M in (1): 1

wi = αi +
K

∑
j=1

βi j ln p j +
M

∑
j=K+1

βi j lnπ j + γi

(
lnm−

K

∑
j=1

w j ln p j

)
+ εi,(4)

for i = 1, · · · ,K, and

0 = αi +
K

∑
j=1

βi j ln p j +
M

∑
j=K+1

βi j lnπ j + γi

(
lnm−

K

∑
j=1

w j ln p j

)
+ εi,(5)

for i = K +1, · · · ,M. Note that (4) and (5) can be represented in matrix notation as:

w0 = ααα000 +B00p0 +B01π111 +(lnm)γγγ000− γγγ000p0
′w0 + εεε000,

0 = ααα111 +B10p0 +B11π111 +(lnm)γγγ111− γγγ111p0
′w0 + εεε111,

where the subscripts 0 and 1 represent the corresponding partition of first K rows/columns

and the other (M−K) rows/columns, respectively, and π111 = (lnπK+1, · · · , lnπM). Manip-

ulating them as

(
IK + γγγ000p0

′)w0 = ααα000 +B00p0 +B01π111 +(lnm)γγγ000 + εεε000,

B11π111 = −
[
ααα111 +B10p0 +(lnm)γγγ111− γγγ111p0

′w0 + εεε111
]
,
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we can obtain

w0 =
(
IK + γγγ000p0

′)−1
[ααα000 +B00p0 +B01π111 +(lnm)γγγ000 + εεε000] ,(6)

π111 = −B11
−1 [

ααα111 +B10p0 +(lnm)γγγ111− γγγ111p0
′w0 + εεε111

]
.(7)

We can now substitute each of Equations (6) and (7) into the other to derive complete

closed-form solutions.

Firstly, substituting (7) into (6), we have

w0 =
(
IK + γγγ000p0

′)−1
{

ααα000 +B00p0−B01B11
−1[

ααα111 +B10p0

+(lnm)γγγ111− γγγ111p0
′w0 + εεε111

]
+(lnm)γγγ000 + εεε000

}
,

=
(
IK + γγγ000p0

′)−1
{

ααα000 +B00p0−B01B11
−1[

ααα111 +B10p0

+(lnm)γγγ111 + εεε111
]
+(lnm)γγγ000 + εεε000

}
+
(
IK + γγγ000p0

′)−1 B01B11
−1

γγγ111p0
′w0.

Hence, we have[
IK−

(
IK + γγγ000p0

′)−1 B01B11
−1

γγγ111p0
′
]
w0

=
(
IK + γγγ000p0

′)−1
{

ααα000 +B00p0−B01B11
−1[

ααα111 +B10p0

+(lnm)γγγ111 + εεε111
]
+(lnm)γγγ000 + εεε000

}
,

or

w0 =
[
IK−

(
IK + γγγ000p0

′)−1 B01B11
−1

γγγ111p0
′
]−1 (

IK + γγγ000p0
′)−1

{
ααα000(8)

+B00p0−B01B11
−1[

ααα111 +B10p0 +(lnm)γγγ111 + εεε111
]
+(lnm)γγγ000 + εεε000

}
,

=
(

IK + γγγ000p0
′−B01B11

−1
γγγ111p0

′
)−1{

ααα000 +B00p0

−B01B11
−1[

ααα111 +B10p0 +(lnm)γγγ111 + εεε111
]
+(lnm)γγγ000 + εεε000

}
.

Note that w0 is linear in the error terms εεε .
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On the other hand, substituting (6) into (7), we have

π111 = −B11
−1
{

ααα111 +B10p0 +(lnm)γγγ111− γγγ111p0
′ (IK + γγγ000p0

′)−1

[ααα000 +B00p0 +B01π111 +(lnm)γγγ000 + εεε000]+ εεε111

}
,

= −B11
−1
{

ααα111 +B10p0 +(lnm)γγγ111− γγγ111p0
′ (IK + γγγ000p0

′)−1

[ααα000 +B00p0 +(lnm)γγγ000 + εεε000]+ εεε111

}
+B11

−1
γγγ111p0

′ (IK + γγγ000p0
′)−1 B01π111.

Thus, we have[
IM−K−B11

−1
γγγ111p0

′ (IK + γγγ000p0
′)−1 B01

]
π111

=−B11
−1
{

ααα111 +B10p0 +(lnm)γγγ111− γγγ111p0
′ (IK + γγγ000p0

′)−1

[ααα000 +B00p0 +(lnm)γγγ000 + εεε000]+ εεε111

}
,

or

π111 = −
[
IM−K−B11

−1
γγγ111p0

′ (IK + γγγ000p0
′)−1 B01

]−1
(9)

B11
−1
{

ααα111 +B10p0 +(lnm)γγγ111− γγγ111p0
′ (IK + γγγ000p0

′)−1

[ααα000 +B00p0 +(lnm)γγγ000 + εεε000]+ εεε111

}
,

= −
[
B11− γγγ111p0

′ (IK + γγγ000p0
′)−1 B01

]−1

{
ααα111 +B10p0 +(lnm)γγγ111− γγγ111p0

′ (IK + γγγ000p0
′)−1

[ααα000 +B00p0 +(lnm)γγγ000 + εεε000]+ εεε111

}
.

Note that π111 is also linear in the error terms εεε . 2

Based on the preceding derivations, given a vector of prices and income for an individual

(ppp,m), we can generate the constrained optimal shares w̃ww for that individual as follows:

1. Draw εεε from the multivariate normal distribution with a mean 000M and a positive

semi-definite variance-covariance matrix Σ with ιιι ′MΣ = 000M.3
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2. Obtain the latent shares from (3).

3. Rearrange the index so that we have positive latent shares w∗i for i = 1, · · · ,K and

negative for i = K +1, · · · ,M.

4. Obtain the constrained consumption vector wi for i = 1, · · · ,K using (8).

5. Denote the final consumption vector by w̃ww obtained from (w1, · · · ,wK) together with

zeros by rearranging the index back.

Steps 2 - 5 may have to be repetated until the non-negativity constraint is satisfied for all

goods, depending on the curvature of the (indirect) utility function.

3. Parameter Values and Sample Distribution

3.1. Benchmark Setup

We consider M = 3 as the simplest possible case to minimize further difficulties in numeri-

cal optimization, so that we can focus on the differences in performance across econometric

models. Regarding the number of observations for each sample and the proportion of zero

consumption, we refer to eight empirical research papers that use either Tobit-based models

or the virtual price (or the Kuhn-Tucker) approach for the constrained demand system esti-

mation.4 In these papers, the number of observations divided by the number of parameters

varies from 9.2 to 168.1 with the mean of 59.7, and the proportion of zero consumption

observations varies from 13% to 65% with the mean of 41%. Considering the fact that

the number of parameters to estimate is 10 in our DGP with M = 3, we generate N = 500

individuals for each sample targeting around 40% of zero corner solutions for our bench-

mark setup. We label the benchmark setup as (N500, C40) henceforth in reference to the

N = 500 individuals per sample and about 40% of zero corner solutions.

The proportion of zero consumption in a sample depends on the curvature of the (indi-

rect) utility function and the distribution of the individual characteristics; income, prices of
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goods, and the error terms (m, ppp,εεε). Thus, the following parameter values are chosen with

the multivariate normality assumption on εεε:

(α1,α2) = (0.5,0.3)

(β11,β21,β22) = (−0.5,0.3,−0.2)

(γ1,γ2) = (−0.3,0.2)

(Σ11,Σ21,Σ22) =
(
0.352,−0.4 · (0.35 ·0.45),0.452),

Moreover, the log-normal distribution is assumed for (ppp,m), where ppp has means and vari-

ances of 1 and m has a unit mean and a variance of 0.52.5 Finally, we generate B = 1,000

samples that constitute a set of simulations. Figure 1 shows the generated sample distribu-

tions for each variable.

3.2. Other Setups for Sensitivity Analysis

We consider two additional dimensions to evaluate the performances of the econometric

models more thoroughly: the number of observations (N) and the proportions of zero cor-

ner solutions. First, we select N = 100 (N100, C40) and N = 2,000 (N2000, C40) based

on the literature cited in the previous subsection, and run the corresponding sets of simula-

tions by fixing the other parameter values and sample distribution as the benchmark setup.

Second, to analyze how performance is impacted by the proportion of zero observations,

we consider about 10% (N500, C10) and 70% (N500, C70) of zero corner solutions by

fixing the number of observations with N = 500.6

In order to obtain samples of 10% or 70% of zero corner solutions, we adjust the sample

distribution of the prices ppp and the error terms εεε . Particularly, to obtain samples with 10%

of zero observed consumption data points, we specify the variances of the prices and the

error terms to be (0.5,0.5,0.5) and (0.1,0.2),7 respectively. Likewise, to obtain samples

with 70% corners, we set the variances of the prices and the error terms to be (2,2,2) and
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(0.9,1), respectively. The following Figure 2 shows how the distribution of p1 or u1 differs

according to the setups C10, C40, and C70.

4. Estimation

We consider three different Tobit-based econometric models to estimate the postulated LA-

AI demand system.

1. T1: Simple equation-by-equation Tobit

2. T2: Tobit with a system of correlated equations

3. T3: Amemiya-Tobin with the adding-up condition

The Tobit methods are nested in terms of the theoretical constraints; T1 is the least restric-

tive and T3 is the most restrictive.

The estimation of the Tobit methods is implemented by the maximum likelihood method.

As our sample consists of independently and identically drawn individuals (n = 1, · · · ,N),

we can rewrite the log-likelihood function as a sum of each individual’s log-likelihood

function:

l(θθθ ;xxx1, · · · ,xxxN) ≡ lnL (θθθ ;xxx1, · · · ,xxxN),

=
N

∑
n=1

lnL(θθθ ;xxxn),

where θθθ is a vector of unknown parameters, xxxn ≡ (w̃ww, ppp,m) is a vector of observed data for

individual n.

For each individual, there are 2M− 1 possible combinations of corner solutions for the

optimal consumption shares.8 Without loss of generality, we derive the results for the

following general cases by re-arranging the index as w̃ww = (w̃1, · · · , w̃K,000M−K).
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4.1. T1: Simple equation-by-equation Tobit

The econometric model for T1 consists of

w̃i = max{wp
i + εi, 0}, i = 1, · · · ,M,(10)

where the predicted share wp
i with the observed-share Stone price index p′w̃ is defined as

wp(θθθ ,xxxn)≡ ααα +Bp+ γγγ[(lnm)−p′w̃],

and εi ∼ N(0,σ2
i ) for i = 1, · · · ,M. Note that the error terms do not sum up to 0, and they

are not correlated across the share equations. Therefore, the log-likelihood function for an

individual n can be obtained as

lnL(θθθ ;xxxn) =
M

∑
i=1

ln
[

φ(w̃i−wp
i ;0,σ2

i )

]111{w̃i>0}[∫ −wp
i

−∞

φ(ε;0,σ2
i )dε

]111{w̃i=0}

=
K

∑
i=1

ln
[

φ(w̃i−wp
i ;0,σ2

i )

]
+

M

∑
i=K+1

ln
[∫ −wp

i

−∞

φ(ε;0,σ2
i )dε

]
,

where 111{x} is the indicator function that takes 1 if the expression x is true and 0 otherwise.

4.2. T2: Tobit with a system of correlated equations

Similar to T1, we still maintain Equation (10), but now the error terms are assumed to

follow a multivariate normal distribution. Particularly, we have εεε ∼ NNN(000M,Σ) where Σ is a

positive semi-definite variance-covariance matrix with ιιι ′MΣ = 000M, which ensures that the

latent shares wp+εεε sum up to 1. Hence, for the re-indexed shares w̃ww= (w̃1, · · · , w̃K,000M−K),

the individual n’s log-likelihood function can be obtained as

lnL(θθθ ;xxxn) = ln
∫ −wp

K+1

−∞

· · ·
∫ −wp

M

−∞

φφφ
(
(w̃ww000−wwwp

000,εK+1, · · · ,εM);000M−1,Σ−1,−1
)
dεM, · · · ,dεK+1

Note that the formula does not require an integration if K = M:

lnL(θθθ ;xxxn) = lnφφφ(w̃ww−1−wwwp
−1;000M−1,Σ−1,−1)
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4.3. T3: Amemiya-Tobin with the adding-up condition

The adding-up restriction on T2 only ensures that the latent shares (wp + εεε) sum up to

1. However, the predicted shares after the estimation procedure need not sum up to 1 in

general.9 In contrast, the Amemiya-Tobin approach guarantees that the observed shares

sum up to 1, by augmenting the model with an additional mapping structure between the

latent shares and the observed shares (Wales and Woodland 1983):10

w̃i =


wp

i +εi

∑
K
j=1 wp

j+ε j
if wp

i + εi > 0 (i = 1, · · · ,K)

0 if wp
i + εi ≤ 0 (i = K +1, · · · ,M)

,

where εεε ∼ NNN(000M,Σ) in which Σ is a positive semi-definite variance-covariance matrix with

ιιι ′MΣ = 000M.

It has to be noted that historically T3 involved much higher computational burden than

T1 or T2, because such a mapping requires non-trivial integration over the multivariate

normal density function for the likelihood function evaluation. However, Dong, Gould, and

Kaiser (2004) proposed a novel approach that only requires a relatively simple integration

over a rectangular region, which enables us to use the GHK (Geweke-Hajivassiliou-Keane)

algorithm (Geweke 1991; Hajivassiliou and McFadden 1991; Keane 1994). We transplant

the Gauss code provided by Dong, Davis, and Stewart (2014), where the same technique

is applied, to R, but the detailed derivation of the likelihood function can be found in Dong,

Gould, and Kaiser (2004).

5. Results

5.1. Parameter Estimates

Figures 3 and 4 show the parameter estimates across B = 1,000 samples for each econo-

metric model. Each row represents T1, T2, and T3, respectively, and each column shows

a different parameter. For instance, the histogram at the first column and the first row of

Figure 3 shows the distribution of α1 estimates for T1. For each panel, red lines represent
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the true parameter value from the DGP, and blue dotted lines represent the mean of all the

estimates across samples. ‘Rej.’ on the left-upper corner of each panel reports the rejection

rate with respect to the true parameter value under a 5% significance level obtained from

the variance estimates of parameters for each sample. Note that T3 performs the best in

estimating (α1,α2), whereas T2 shows the best performance for the estimation of other

parameters (β11,β12,β22) and (γ1,γ2).

To assess the performances of the models more rigorously, we evaluate the normalized

root mean square error (RMSE) or the normalized RMSE (NRMSE):

RMSE ≡

√
∑

B
b=1(θ̂b−θ)2

B

NRMSE ≡ RMSE
θ

,

where the normalization is implemented by means of the true parameter value. We use

NRMSE for parameter estimates and RMSE for elasticity estimates. We evaluate NRMSE

for each parameter and each model (T1, T2, and T3), and we take the mean of NRMSE

across all parameters for each model to evaluate the performances.

Tables 1 and 2 summarize the mean NRMSE obtained from the parameter estimates

across different numbers of observations and corner proportions, respectively. The second

row of Table 1 or 2 summarizes Figures 3 and 4 in three numbers; T2 performs the best

in recovering the true parameter values in the benchmark setup, followed by T3. From

Table 1, it is clear that the number of observations helps to recover the true parameter val-

ues, as we observe a slight improvement in the mean RMSE values along with the larger

number of observations. However, the performance ranking remains the same regardless

of the number of observations. Contrastingly, when we have different proportions of cor-

ner solutions in the dataset (see Table 2), the hierarchy changes when we have a larger

proportion of corner solutions. Although it seems that T2 does a relatively good job in

recovering the parameters and T1 is always outperformed by T2 or T3, this does not nec-
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essarily mean that T2 would perform the best and T1 would perform the worst in empirical

works because each model assumes different error structures and different mechanisms

for predicting shares. Hence, we analyze how each model performs in terms of capturing

elasticities in the next subsection.

5.2. Elasticity Simulation

As pointed out in Dong, Gould, and Kaiser (2004), it is analytically demanding to derive

elasticity values for a class of demand systems with corner solutions. Hence, we adopt a

simulation-based method developed by Phaneuf, Kling, and Herriges (2000). In particular,

for a given small amount of change in the price of good j (≡ ∆p j),11 and a given set of

parameter estimates of a sample b, we can obtain Marshallian (uncompensated) price elas-

ticities of demand with respect to the good j at a specific individual characteristic (ppp0,m0)

from the following steps:

1. Generate N vectors of error terms: εεε1, · · · ,εεεN .

2. Obtain N vectors of optimal constrained shares w̃ww0
1,b, · · · , w̃ww

0
N,b using the given set

of parameter estimates and the error vectors εεε1, · · · ,εεεN , but fixing (ppp0,m0) across

n = 1, · · · ,N.

3. Obtain another set of N optimal constrained share vectors w̃ww1
1,b, · · · , w̃ww1

N,b in a similar

manner, but using (ppp1,m1) where p1
j ≡ p0

j +∆p j.

4. Evaluate the mean share vectors for k = 0,1:

w̃wwk
b ≡

1
N

N

∑
n=1

w̃wwk
n,b.

5. Obtain a set of demand elasticities using the mid-point formula:

ηi j,b =−111{i = j}+ (w̃ww1
b − w̃ww0

b )

∆pi
·
(p0

j + p1
j)

(w̃ww1
b + w̃ww0

b )
, i = 1, · · · ,M.
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Note that the steps can be repeated for each sample b = 1, · · · ,B, and for each model T1,

T2 and T3, but we maintain the same N×M array of uniform random variables to generate

the vectors of error terms εεε1, · · · ,εεεN across samples and models to produce as consistent

results as possible.12 Moreover, the antithetic sampling method (Geweke 1988) is applied

to generate the array of uniform random variables to accelerate the simulation.

For each model, we obtain three income elasticities, three own-price Marshallian elastic-

ities of demand, and six cross-price Marshallian elasticities of demand at the mean prices

and income across all the samples. As elasticity is unit-free, mean RMSE is calculated for

each model, and the true elasticity values are obtained from the true DGP using the same

simulation-based method. The following tables 3 and 4 summarize the results by models

and different setups.

Firstly, in the benchmark setup (the second row of Table 3 or 4), T3 performs the best

among all the three models, followed by T2 and T1. We also notice that the number of

observations increases the performance, but the ranking remains the same (see Table 3).

Even though T3 falls in second place when the samples have about 10% of corner solu-

tions, T3 keeps first place in the samples with a higher proportion of corner solutions (see

Table 4). Hence, we can conclude that the theoretical restrictions have to be imposed to

as precisely predict the overall behavior of the economy as possible in the presence of the

corner solutions in the demand system. However, it should be noted that the general per-

formance of Tobit-based models highly depends on the proportions of the corner solutions.

In particular, for the model T3, the mean RMSE of the setup C70 is about twice as high as

that of the setup C40, and the mean RMSE of the setup C10 is four times as high as that of

the setup C40.

To achieve more fundamental understanding of the performance, we decompose the

mean RMSE across different corner proportions (Table 4) by the types of elasticity in Table

5: income, own-price, and cross-price elasticities. First, the overall preferable performance

of T3 is mainly driven by its superiority in estimating cross-price elasticities, but T3 still
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does a reasonable job for the other two types of elasticities as well. Second, it is noticeable

that T1 performs the best in the C10 samples in every elasticity type, which shows that

the restrictions are unnecessary and could be obstructive when the dataset has a relatively

small number of corner solutions. Lastly, even though T3 is recommended, especially for

datasets with moderate proportions of corner solutions, it has to be noted that the income

elasticity estimates are relatively biased compared to the price elasticity estimates.

6. Conclusions

In this paper, we examined three Tobit-based econometric models that are universally

adopted for estimating demand systems in the presence of corner solutions: a simple

equation-by-equation Tobit, a system of correlated truncated equations, and the Amemiya-

Tobin with the adding-up condition. The three models are nested with each other in terms

of the degree of the theoretical restrictions, and we evaluated their performances in cap-

turing the true parameters and elasticities. For a series of Monte Carlo simulations, we

used the LA-AI demand system for the true DGP because of its popularity and flexibility,

and the virtual price technique was adapted to generate the constrained optimal consump-

tion from the indirect utility function of the LA-AI demand system. Using 1,000 different

samples of 500 individuals, we obtained 1,000 different parameter estimates for each Tobit-

based model and analyzed the performances of the models in terms of capturing the true

parameters and the true elasticity values.

From the examination of the samples and the simulation results, we have obtained the

following findings. First, adding theoretical restrictions to the Tobit model following the

theory of choice does not hurt the flexibility of the model but indeed improves the ability

to capture the true underlying elasticities. Second, having more observations helps the per-

formance of the Tobit-based models. Third, the proportion of the corner solutions in the

dataset significantly affects the performance of the Tobit models, and datasets with moder-

ate portions of corners yield the most reliable performance compared to the other datasets
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with a relatively lower or higher number of corner solutions. Fourth, even though the most

restrictive Amemiya-Tobin approach performs better than the other two Tobit models, it

still is relatively weak at recovering income elasticities compared to price elasticities.

Nevertheless, this study has limitations, and further investigations have to be conducted.

First, apart from what we have controlled for in our research, there could be other fac-

tors that might affect the performance of the Tobit-based models. For instance, in em-

pirical works concerning real-world datasets, the true underlying preferences could not

be approximated by the LA-AI demand system despite its second-order flexibility, or the

heterogeneity of individuals could not be represented by the way we assumed here with

normally distributed errors. Second, since we solely focused on the Tobit-based models,

other frameworks that have been developed in the literature to deal with the corner solution

problem are not analyzed here and need to be objectively compared with the Tobit-based

models. In particular, the multiple discrete-continuous extreme value model (MDCEV) by

Bhat (2005, 2008) or even the virtual price models (Lee and Pitt 1986; Phaneuf 1999) could

be examined by applying the same approach.
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Notes

1Equation (3) cannot be used to derive the virtual prices because it is highly non-linear

in p.

2Equation (9) is not required for the data generation, but it is so for the virtual price

estimation procedure.

3ιM ≡ (1, · · · ,1)′

4These papers are Dong, Davis, and Stewart (2014); Zhen et al. (2013); Dong, Gould,

and Kaiser (2004); Phaneuf, Kling, and Herriges (2000); Phaneuf (1999); Cornick, Cox,

and Gould (1994); Heien and Wesseils (1990); and Wales and Woodland (1983).

5Precisely, m ∼ lnN
(

µ = ln 12
√

12+0.52 ,σ
2 = ln 12+0.52

12

)
and pi ∼ lnN

(
µ =

ln 12
√

12+12 ,σ
2 = ln 12+12

12

)
for i = 1, · · · ,M are assumed to have distributions of (ppp,m) with

the desired means and variances.

6For ease of reference, we call (N100, C40) or (N2000, C40) as N100 or N2000, and

(N500, C10) or (N500, C70) as C10 or C70, respectively. Note that both N500 and C40

are reffering the same benchmark setup.

7i.e., (Σ11,Σ21,Σ22) =
(
0.12,−0.4 · (0.1 ·0.2),0.22).

8The zero vector (000M) cannot be optimal for consumers with locally nonsatiated prefer-

ences.

9In other words, the model cannot be used for predictions, data generations, or simula-

tions, but only the elasticity estimates are available.
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10The mapping is defined for the re-indexed shares w̃ww = (w̃1, · · · , w̃K,000M−K) without loss

of generality. See Equation (18) of Wales and Woodland (1983) for the standard mapping

definition.

11We use 10% for the small change, and the income elasticity of demand can be calcu-

lated in a similar manner.

12Note that T1 uses all the three columns of the array of uniform random variables,

whereas T2, T3 and, the true DGP use the first two columns.
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Figures

Figure 1. Histograms for (ppp,εεε,m) in B = 1,000 Samples
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Figure 2. Histograms for p1 and u1 from the Setups C10, C40, and C70
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Figure 3. Parameter Estimates in B = 1,000 Samples (1/2)
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Figure 4. Coefficient Estimates in B = 1,000 Samples (2/2)
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Tables

Table 1. Mean NRMSE by Models and Number of Observations: Parameters

T1 T2 T3

N100 0.212 0.143 0.178
N500 0.210 0.118 0.170

N2000 0.209 0.112 0.169
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Table 2. Mean NRMSE by Models and Corner Proportions: Parameters

T1 T2 T3

C10 0.088 0.020 0.048
C40 0.210 0.118 0.170
C70 0.358 0.289 0.239
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Table 3. Mean RMSE by Models and Number of Observations: Elasticity

T1 T2 T3

N100 0.628 0.549 0.477
N500 0.424 0.309 0.274

N2000 0.371 0.249 0.227
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Table 4. Mean RMSE by Models and Corner Proportions: Elasticity

T1 T2 T3

C10 0.747 1.128 1.062
C40 0.424 0.309 0.274
C70 0.814 0.688 0.633
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Table 5. Mean RMSE by Models and Corner Proportions: Elasticity by Types

Income Own-price Cross-price
T1 T2 T3 T1 T2 T3 T1 T2 T3

C10 0.883 1.448 1.345 0.157 0.252 0.213 0.973 1.406 1.345
C40 0.843 0.527 0.540 0.056 0.081 0.067 0.399 0.315 0.245
C70 1.044 0.755 0.997 0.206 0.180 0.171 1.004 0.908 0.683
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