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Abstract
A simple mapping of current annual commodity price to the subsequent price has been
presented as evidence that rejects the standard nonlinear storage model and implies that
current price is uninformative about expected price changes. We show how a weak trend
can transform a price series with strongly predictable price crashes, so that price changes
appear to be unpredictable. We rationalize such inference using a dynamic model including
speculative inventories and random production with a weak productivity trend. The model
has two regimes. In one, price changes follow a stochastic trend with a positive drift inde-
pendent of the productivity trend. In the other, the expected price change is a predictable
price-dependent jump to its conditional price expectation, a price target following a weak
deterministic trend induced by the weak productivity trend. We illustrate our results using
samples of commodity prices for which price autoregressions appear obviously linear and
price changes appear to be non-predictable, as in simple unit root processes. For our em-
pirical estimations we implement a novel asymptotically normal one-step estimator of the
trend, the interest rate, and the price threshold of the nonstationary storage model, that
solves a delicate problem of discontinuity of the regression in the limit. Our results show the
relevance of discriminating the proper trend for each data point in the sample.
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‡Departamento de Matemática, Universidad del B́ıo-B́ıo. jbobenri@ubiobio.cl
♣ Department of Agricultural and Resource Economics, University of

California, Berkeley. bwright@berkeley.edu
§ Departamento de Economı́a, Universidad Católica de la Sant́ısima Concepción.

eguerra@ucsc.cl

2



I. Introduction

The volatility of prices of primary commodities makes their medium-term prediction an

important issue. The return to public or private commodity projects often depends on their

price prospects over the next half-decade or so, beyond the horizon of liquid futures or

forward trading. For a commodity-dependent exporting country, the price prospects for a

single commodity can strongly affect its international borrowing capacity; for some countries,

the cost of energy imports is also highly relevant for their immediate future.

Predictions based on observed commodity price series receive great attention because,

unlike inventories, they are accurately measured on liquid centralized markets, and widely

available. Many commodity price series seem to exhibit occasional sharp price spikes fol-

lowed by highly predictable reversions. But a simple “acid test” proposed by Deaton and

Laroque (1996) and Deaton (2010) supports their claim that annual price changes are essen-

tially unpredictable based on current price, falsifying the principal model of medium term

price dynamics for markets for storable commodities, and discouraging pursuit of their own

pioneering work on estimation of this model.

In this paper we contest this conclusion, showing that neglected small trends can linearize

price autoregressions, inducing the illusion that forward price returns are non-predictable.

Surprisingly unacknowledged in the literature, recognition of a small trend can reveal a non-

linear relationship consistent with intertemporal arbitrage of inventories, implying episodes

of strong predictability of price changes.

In a naive preliminary data exploration, next section we verify the non-predictability of

annual price changes based on current price using illustrative samples of observed cotton

and maize prices. However, adjustment of base prices for a deterministic trend estimated

in a preliminary step can generate predictions of spreads qualitatively similar to those im-
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plied by the standard stationary storage model. This result motivates us to use a model of

nonstationary storage arbitrage for empirical analysis of these samples.

We present in Section III such a model. The model includes a latent productivity trend

that induces a partially latent trend in price. In this model, price has a partially latent

trend induced by a latent productivity trend, consumption demand is stationary, and the

real interest rate is constant. There are two price regimes. In one, inventories are positive,

and in the absence of storage costs other than the financial cost, intertemporal storage

arbitrage implies that the conditional expectation of price increases at the interest rate

regardless of the downward long-run secular trend. In this regime price is a renewal process

with a stochastic trend with positive drift equal to the interest rate, independent of the

production trend. Storage decreases as current price rises, terminating when price reaches

an endogenous trending threshold.

In the second regime, inventories are constrained at zero. In such regime the expected

price follows a deterministic attractor which has an unbroken trend induced by the determin-

istic secular trend in production. The one-period discounted value of this trending attractor

is the trending real price threshold that separates the regimes. This regime terminates when

price passes below this trending threshold.

We use the model to show how a weak unbroken productivity trend might have no effect

at all on the conditional expected price change for most sample observations. Yet that trend

can have implications regarding the predictability of the returns, including the size, direction

and predictability of price jumps, and trend breaks that are not modest at all.

We numerically calibrate the trending model with a parameterization for consumption

demand and interest rate originally chosen by Wright and Williams (1982) to represent

behavior typical of a stationary grain market, and used in subsequent papers including
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Deaton and Laroque (1992) and Cafiero et al. (2011). We introduce a modest downward

trend in the price attractor consistent with an exogenous upward trend in yield, as discussed

in Section III. Simulation of this model in Section IV reproduces the qualitative behavior

of returns discussed above, and replicates their highly nonlinear behavior observed after

detrending the base prices.

Our simulations imply a unimodal distribution for detrended price, as seen in the maize

price sample, detrended using our naive preliminary detrending. For cotton, detrended prices

using preliminary detrending does not show a clear unimodal distribution. Does the apparent

inconsistency of the detrended cotton price distribution imply rejection of this storage model,

or a problem with the conventional approach of relying on preliminary detrending of the data

prior to estimation of the model?

To answer this question we turn in Section V to a strategy for simultaneous estimation

of three key parameters, the deterministic exponential trend, the interest rate and the real

detrended price threshold, on nonstationary price data. Our estimation allows for interac-

tions between the trend and other key parameters, and yields asymptotic standard errors of

the estimates. But the fact that we are estimating other parameters along with the trend

parameter implies a delicate problem of discontinuity of the regression in the limit, which

prevents application of available proofs of consistency and asymptotic normality in this non-

stationary context. To solve this problem we appeal to the novel proofs of consistency and

asymptotic theory in Bobenrieth, Bobenrieth and Wright (2022).1

After a description of our illustrative samples of cotton and maize in Section VI, Section

VII presents one-step estimates of the three key parameters for our samples of cotton and

maize prices.Our results imply revisions of assumptions in the literature regarding conditional

1The proofs are in Bobenrieth, Bobenrieth and Wright (2022), available from the corresponding author.
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price persistence, and the relative predictability of price changes during booms and slumps.

For our nonstationary price samples, our approach not only allows calculation of standard

errors of our estimates, but furnishes predictions of price changes superior to those obtained

by a strategy employing the usual practice of detrending prior to estimation. Our estimate

of the trending price attractor (a function of the trend, the interest rate and the price

threshold), is key to prediction of price changes. It allows us to predict the dynamics of

prices and to distinguish the regime-dependence of price volatility.

Our empirical model must account for the effect of the trend on arbitrage activity. Os-

borne (2004), Roberts and Schlenker (2013), Guerra et al. (2015), Gouel and Legrand (2017,

2021), and Jansen, Smith, and Carter (2018) recognize the existence of trends in commodity

price data but they do not address their effects on storage arbitrage or on the consistency of

their estimation procedures.

Bobenrieth et al. (2021) focus on the effect of trends on measured price autocorrelation.

They detrend the price data in a preliminary step, and recognize the effects of trends on

inventory decisions in a second step of their two-step estimation procedure. But they are

not able to provide asymptotic standard errors for their estimates. We use the theoretical

model in Bobenrieth et al. (2021) and focus on the linearization effects of trends, and the

empirical relevance of one-step estimation. In contrast to their two-step empirical approach,

here in a single step we estimate three key parameters of the Euler equation, the trend, the

interest rate, and an endogenous threshold that separates two price regimes, using only the

observed nonstationary real price data, and provide estimated standard errors.

We demonstrate the empirical importance of simultaneous estimation of the trend and

other key variables by comparison of the histograms of price distributions detrended using

trends estimated ex ante with those detrended using our new econometric procedure, which
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estimates trends simultaneously with the other parameters. Using the concept of entropy

from information theory, the distribution of detrended cotton prices from our new trend

estimate is more informative than that constructed from prior detrending.2

There is a large literature on estimation of trending time series with exogenous trend

breaks, see for example Perron (1989), Perron and Zhu (2005), Kim and Perron (2009),

Harvey and Leybourne (2015). Harvey et al. (2010) and Gouel and Legrand (2017, 2021)

offer reviews related to commodity prices. Part of that literature discusses procedures for

estimating trends with breaks that are denoted endogenous because the timing of breaks is

determined by the data.

In contrast, we assume no breaks in the deterministic trend followed by the attractor.

Observing large price jumps in our illustrative samples, some might infer exogenous breaks

in trends, when in fact the jumps reflect the endogenous initiation or termination of the

stochastic trend with positive drift equal to the interest rate, which is a renewal process in

our model.

II. A naive preliminary

We begin by demonstrating the non-predictability of forward spreads based on observed

prices using illustrative samples of real prices of cotton and maize shown in Figure 1.

Figure 1 here

2The distributions of detrended maize prices using preliminary detrending and using our one-step de-
trending are not significantly different, according to the Kolmogorov-Smirnov (KS) test for the distance of
empirical distributions.
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For both samples, Figure 2 verifies the negative result of the “acid test,” showing that

a mapping of current real annual price to the subsequent price realization appears strictly

increasing and approximately linear, and with a slope close to the 45 degree line.3 The

conditional mean of price next year appears to be close to current price, whether or not

the latter is high or low, similar to the behavior of a unit root process, with a modest drift.

Figure 3 presents a different perspective that makes it clear that the current real price level is

strikingly uninformative regarding the mean and dispersion of the one-year change in price,

for both cotton and maize.

Figure 2 and Figure 3 here

These figures do not negate the possibility of a secular trend. But any such trend,

conceived as a constant contribution to price change each year is clearly modest relative to

annual price variability, and has routinely been neglected in analyses of year-to-year price

dynamics. As summarized by Cashin and McDermott (2002, p.175),

“Although there is a downward trend in real commodity prices, this is of little

practical policy relevance, since it is small and completely dominated by the

variability of prices.”

But is there actually a persistent stochastic or deterministic trend in these prices over the

sample interval? One difficulty is that there might be alternating trends over long periods of

time, resulting in apparent stationarity over the long run. As noted by Deaton and Laroque

(2003, p. 291) for many commodity prices:

3We address in Section VI the two highest maize prices that might seem to be “outliers” in the lower
panel of Figure 2.
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“it is possible to see upward or downward “trends” over prolonged periods. Over

the whole period, the price is at least roughly consistent with its being a station-

ary time-series.”

The challenge is well illustrated in our price samples for cotton and maize, presented in

Figure 1. For cotton, there is obviously a persistent upward movement starting at 1938,

dramatically reversed after 1950. Only around 1970 did price return to its 1938 level. The

maize series has a dramatic early jump followed by persistent upward and downward move-

ments that result in little net change between the 1938 price and the prices in the 1960s,

followed by a volatile but declining path at least through the 1990s.

Note that thus far our exploration has been entirely nonparametric. We now show that a

modest secular trend might have no effect at all on the conditional expected price change for

most sample observations. Yet that trend can have implications regarding the predictability

of the returns reported in Figure 3, including the size, direction and predictability of price

jumps, and indeed the number of trend breaks inferred from Figure 1, that are not modest

at all.

We now use an estimated simple deterministic exponential trend for each price sample

in Figure 1, and create a new “detrended” base price series. Reordering the same observed

returns shown in Figure 3 using these new base prices, detrended using trends estimated

ex ante, reveals evidence, shown in Figure 4, of nonlinear non-linear relationships. At low

detrended base prices, mean returns (calculated on the trending data) still appear to be

on average positive but highly variable. But at high “detrended” base prices, returns are

predominantly negative jumps. The correspondences in Figures 2 and 3 show little evidence

of predictability of price changes because, as discussed below, a neglected secular trend

scrambles signals conveyed by the base prices. Thus, the secular trend creates the illusion
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of unpredictability of price changes.

This reordering transforms the empirical histograms, plotted at the horizontal axes in

Figure 3 to those depicted in Figure 4.

Figure 4 here

Notice that the histogram for detrended maize prices now appears more consistent with

a unimodal distribution with thinner tails. For cotton, the transformation of the histogram

after detrending is less clear.

Up to this point we have made no assumptions about the determinants of the price data

that we have discussed, apart from prior estimation of an exponential secular trend. Note,

however, that the apparent tendency of the price changes in Figure 4 to be negative at high

detrended prices is suggestive of the behavior of changes from high price ”spikes” in the

model of arbitrage of inventories with occasionally binding non-negativity constraints in the

tradition of Gustafson (1958), Samuelson (1971), Wright and Williams (1982), Scheinkman

and Schechtman (1983), and Deaton and Laroque (1992, 1996). Can inclusion of a weak

secular trend in a commodity storage model induce an apparently linear price correspondence

that implies that price is unpredictable, in this class of models?

Motivated by this question, next section we present a nonstationary version of such a

model, modified to include a latent productivity trend that induces a partially latent trend

in price.

III. A nonstationary storage model

We generalize the standard commodity storage model to the case where stochastic pro-
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duction includes a deteministic trend.

There is an endogenous demand for storage generated by profit-maximizing speculators

with rational expectations. We further assume that the functional form of the latent con-

sumption demand and the nature of the production process are such that their interaction

jointly implies a price attractor following a log-linear trend. This attractor is active as the

conditional price expectation when arbitrage is not active.

We use here the model introduced in Bobenrieth et al. (2021). All agents are competitive

and have rational expectations. There is a stationary, strictly decreasing inverse consumption

demand function F, such that price at period t is given by Pt = F (Ct), where Ct denotes

consumption at time t.

For many important commodities, long run global price declines are commonly attributed

to the effects of persistently increasing productivity. Accordingly, we specify stochastic pro-

duction Ht to follow a trend which for simplicity we assume to be exogenous and deter-

ministic. Consider first the case in which storage is not feasible. In this case consump-

tion Ct equals production Ht, which is equal to total available supply Zt, and price at t is

Pt = F (Ct) = F (Ht). If production can be expressed as Ht = F−1(λtF (ht)), where λ > 0

and ht is an i.i.d. shock, then Pt = λtF (ht).

The introduction of the possibility of storage changes the model dramatically. Suppose

now that non-negative storage Zt − Ct is feasible, that competitive storers are risk neutral,

and that the (fixed) interest rate r > 0 is the only storage cost. If inventories are positive,

then competitive storage arbitrage implies that expected prices appreciate at the interest

rate r, independent of the supply trend. That is,

EtPt+1 = (1 + r)Pt,
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where Et denotes expectation conditional on information at time t. If the percentage change

of expected price is less than the interest rate, then there is no incentive for storage, current

consumption Ct equals current total available supply Zt, and price maps from current market

supply, that is, Pt = F (Ct) = F (Zt). Accordingly, price is characterized by the following

condition:

F (Ct) = max
[
F (Zt),

1

1 + r
EtF (Ct+1)

]
, (1)

s.t.

Zt+1 ≡ Zt − Ct +Ht+1, ∀ t ∈ N. (2)

F is assumed to be the derivative of a Hyperbolic Absolute Risk Aversion (HARA)

function. That is,

F ′′F

(F ′)2
= κ, (3)

where κ is a constant. This set of functions is quite general; it includes linear, log-linear,

and iso-elastic consumption demand functions.4

The model admits a latent time-invariant representation, with normalized available sup-

ply zt, normalized consumption ct, and normalized production ht, given by zt ≡ F−1[λ−tF (Zt)],

ct ≡ F−1[λ−tF (Ct)], and ht ≡ F−1[λ−tF (Ht)], respectively. Equations (1) and (2) have the

following latent representation:5

4For example F (C) = (A+BC)
1

1−κ if κ 6= 1, and F (C) = eA+BC if κ = 1, where A and B are constants.
5To rule out bubble models, we assume that EF (h) < ∞, where E denotes expectation with respect to

the random variable h.
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F (ct) = max
[
F (zt),

λ

1 + r
EtF (ct+1)

]
, (4)

s.t.

zt+1 ≡ λκ−1(zt − ct) + ht+1. (5)

Denote the “detrended price,” which is not independent of the trend, to be normalized

latent price pt ≡ F (ct). If λ < 1 + r, standard arguments imply that there exists a stationary

rational expectations equilibrium (SREE) price function p : [h,∞)→ R for detrended price:

pt = p(zt) = max
[
F (zt),

λ

1 + r
Et p(zt+1)

]
. (6)

Furthermore, p is non-negative, continuous, and strictly decreasing whenever is strictly

positive. The following complementary inequalities hold:

p(z) = F (z), for z ≤ F−1(p∗),

p(z) > F (z), for z > F−1(p∗),

where p∗ ≡ λ

1 + r
Ep(h) ∈ R.

The Euler equation (6) implies the following autoregression for detrended prices:

Etpt+1 =

(
1 + r

λ

)
min[p∗, pt]. (7)

In terms of observable prices, we have the equivalent autoregression:
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EtPt+1 = (1 + r) min[λtp∗, Pt]. (8)

Remark 1. The trend in the price attractor (1 + r)λtp∗ is induced by the interaction of the

latent production trend and the latent consumer demand of the HARA class. The definition

of ct implies that F (Ct) = λtF (ct), thus price Pt = F (Ct) and detrended price pt = F (ct) are

such that Pt = λtpt.

Remark 2. The trend equation Pt = λtpt is not a dynamic equation. Indeed, Pt = λtpt is

only a representation of observed price Pt in terms of time t, the trend parameter λ, and the

detrended price pt. Thus the dynamics of observed price Pt are a reflection of the dynamics of

detrended price pt, which is latent. For periods when arbitrage is active, expected detrended

price increases at a rate higher than r to compensate for the trend, as evident in equation

(7).

Although the secular trend in production is reflected in the evolution of consumption

and price in the long run, the trend is absent in the expected return to stock-holding. If

stocks are held, then
EtPt+1 − Pt

Pt
, the spread between the conditional expectation EtPt+1

and the current trending price Pt, equals the interest rate r independent of the trend. In the

alternate regime, if stocks are not held, then the spread is:

EtPt+1 − Pt
Pt

=
(1 + r)λtp∗ − Pt

Pt
.

The secular trend parameter λ affects expected price changes only when inventories are zero,

and only through its effect on the location of the trending attractor relative to current price.6

6The value of p∗ itself depends upon the values of the paramaters r and λ.
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Thus the intuitive inference that annual trend movements in production are roughly

proportional to annual trend movements in observed price, year by year,, we is wrong for

storable commodities. When discretionary stocks are held, the trend is not only dominated

by price variability, as observed by Cashin and McDermott (2002), but indeed absent from

the one-period forward price spread.

Price Pt is a mapping from calendar time t and normalized price, Pt = λtpt. In turn,

the dynamic behavior of the latent state, represented by the counterpart latent price pt, is

nonlinear, characterized by autoregression (7). The absence of a one-to-one correspondence

between the observed price Pt and the counterpart latent price pt implies that the price

autoregression hides the nonlinear dynamics of the state that are key to understanding

the economics of commodity prices. Indeed, given the negative trend in prices, any given

observed price level at which there is positive storage is a price level at which there stocks

are zero at a sufficiently later time period.

Under appropriate conditions, the following theorem establishes the ergodicity of the

latent model. A detailed description of such conditions and the proof of the theorem are in

Bobenrieth et al. (2021, Theorem 1 and Theorem 2).

Theorem 1. The Markov process of normalized available supply Φ ≡ {zt}t≥0 is uniformly

ergodic, that is, it has a unique invariant probability measure ν∞ which is a global attractor,

and there exists constants k > 1 and R <∞ such that for all initial z0 ∈ D, we have:

||νt − ν∞|| ≤ Rk−t,

where || · || denotes the total variation norm, and νt is the distribution on zt conditional

on z0.
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IV. Trends and predictability of price changes

To explore the effects of a negative price trend, we conduct Monte Carlo experiments

with a heuristic model with the specification introduced in Wright and Williams (1982),

and re-used in Williams and Wright (1991, pp. 58-62), Deaton and Laroque (1992, p. 11),

Cafiero et al. (2011, pp. 45-46), and Bobenrieth et al. (2021). Inverse consumption demand

is F (C) = 600−5C, harvest has a normal distribution with mean 100 and standard deviation

10, and the only cost of storage is the interest rate, r = 0.05.

We alter this heuristic model only by specifying a price trend of minus two percent

per year (of the order of magnitude of the trends we estimate for cotton and maize), and

implement a numerical simulation of the model described in the previous section, taking

account of the effect of the trend on arbitrage incentives. We truncate the normal distribution

at plus and minus 5 standard deviations from the mean, as in Deaton and Laroque (1992)

and Cafiero et al. (2011), and numerically generate a long sequence of realized prices. From

this sequence of prices we then take 75 samples of T = 72 prices (the same sample size of our

illustrative samples of cotton and maize), starting at t = 1, t = 72, etc., with each initial

value normalized to its detrended level.

Figure 5 shows forward proportional differences,
Pt+1 − Pt

Pt
, mapped from trending prices

(top panel) and detrended price (lower panel).7 The linearity and the lack of dependence on

current price suggested by the dark patch in the top panel of Figure 5 are strongly reminiscent

of the correspondences in Figures 2 and 3. They imply a linear upsloping autoregression

correspondence like Figure 2, and are consistent with empirical claims that commodity prices

7We discard the forward proportional difference from the maximum trending price in the sample since
it is negative by construction. Remember that Figure 5 reflects 75 samples each with the 72 realizations in
Figures 3 and 4. So trending prices above 125 and detrended prices above 175 would have low probability
of appearing in one random sample of 72
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are highly persistent even during price booms.

The vertical axis in the lower panel in Figure 5 shows the same one-period proportional

differences of trending prices shown in the vertical axis in the top panel, but now mapped from

detrended prices in the horizontal axis. The dark patch of observations indicates that most

of the mass in the invariant distribution is centered on approximately the midpoint of the

support of detrended prices at which arbitrage is active, to the left of the detrended threshold

p∗. We can use Figure 5, and what we know about the underlying dynamic stochastic model,

to refine inferences from observed prices and returns, as presented for example in Figures 3

and 4 above.

The downslope of the dark patch in the lower panel of Figure 5 might suggest that mean

conditional returns are in general decreasing in detrended base price, an inference that might

well be reinforced by inspection of both panels of Figure 4. However this inference is incorrect

for base prices below the threshold detrended price p∗. In the lower panel of Figure 5, at every

detrended price to the left of the threshold price p∗, stocks are positive, and the expected

return to storage with trending prices is constant at the interest rate, 0.05. At the lowest

detrended price in the sample, price changes in this heuristic model are roughly symmetric

around the positive expected change. At higher detrended prices, the distribution of these

changes in prices becomes increasingly skewed as detrended price rises toward the threshold

p∗ and the stocks available to cushion the effects of a bad harvest decline. To the left of

the threshold detrended price p∗, the concentrated mass in the lower panel of Figure 5 must

trend down to maintain the constant expected price change, given this skewness.

The light vertical flare above the horizontal line and to the left of the vertical dashed

line p∗ indicates the prevalence of price jumps from prices close to, but below the stockout

threshold. Given t, for price realizations higher than the stockout threshold (to the right of
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the vertical dashed line p∗), the expectation of the subsequent price is (1 + r)λtp∗, indepen-

dent of current price Pt. Conditional on this expectation, the expected price drop increases

one-for-one with current price Pt. That is why the correspondence exhibits a downward slope

to the right of the threshold in the lower panel of Figure 5.

Figure 5 here

The two panels of Figure 5 comprise a dramatic illustration of the empirical mischief that

can be made by a neglected modest trend in price, even in a relatively small sample. The

trend transforms the complex nonlinear relation between detrended price and the distribution

of immediately subsequent return realizations, illustrated by the correspondences in the lower

panel of Figure 5 into a picture that suggests an approximately constant distribution of return

realizations conditional on any trending price, shown in the top panel of Figure 5. In this

heuristic model, high detrended prices are likely to be fleeting. Comparison of the two right-

hand quadrants in the lower panel of Figure 5 confirms that, in the stockout region, prices

are relatively unlikely to rise. The difference between the top and lower panels in Figure 5

is reflected in the distinct histograms for trending price and detrended price in the panels of

Figure 5.

In the context of intertemporal accumulation, detrending reorders the base prices. The

correspondence between forward returns and the detrended base prices reveals the nonlinear

relation implied by constrained storage arbitrage. Neglect of a small trend - or more generally,

neglect of any similarly persistent influence on price - can hide the fact that when the trending

price is above the trending threshold λtp∗, the spread reflects an expected price jump equal to

the difference between current price and (1+r) times that threshold; below this threshold, the
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spread equals the expected return on storage, r. Since trending price Pt is a strictly increasing

function of detrended price pt, and a strictly decreasing function of time (Pt = λtpt), the

same value of trending price can map to quite different distributions of returns.

Our numerical results make a case for developing an econometric procedure that does not

impose the assumption that the trend is exactly zero. However, without this assumption the

question of consistency and accuracy of the estimators naturally arises. Following Bobenri-

eth, Bobenrieth and Wright (2022), in the next section we present asymptotic theory of a

remarkably simple one-step least squares estimator for the trend parameter λ, the detrended

threshold p∗, and the interest rate r.

V. Estimation of key parameters

Our empirical model is based on the threshold nonlinear price autoregression (8). The

presence of an exponential trend in the threshold affects the regression predictor; our em-

pirical model violates key assumptions of continuous threshold models (see Hansen 2017 for

a survey), including continuity of the regression in the limit. Bobenrieth, Bobenrieth and

Wright (2022) provide asymptotic foundations for hypothesis testing using one-step least

squares estimators of nonlinear nonstationary stochastic models. Given data on prices only,

in this section we present the results of strong consistency and asymptotic normality for

one-step nonlinear least squares estimation of three key parameters of the model: the trend

parameter λ, the detrended threshold p∗, and the interest rate r.8

Our estimation procedure is robust to the latent specification of the consumption demand

in the HARA set and to the distribution of net supply; they are drawn from an infinite

8The proofs of our asymptotic results are in Bobenrieth, Bobenrieth, and Wright (2022), available upon
request from the authors.
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combination of couples (F,Ht) that are consistent with the exponential trend in prices.

For the consistency result, it is assumed that the distribution of detrended output ht is

absolutely continuous with strictly positive derivative on the interior of its support, which is

assumed to be compact. We assume that the invariant distribution for the detrended price

process pt has support [p, p], with 0 < p < p∗ < p <∞.

Equation (8) implies:

Pt+1 = (1 + r) min
{
λtp∗, Pt

}
+ et+1, where Et(et+1) = 0 (9)

For clarity of exposition, in the remainder of the paper we write a subscript “0” to

denote the true parameter values. θ0 = (λ0, p
∗
0, γ0), where γ0 ≡ 1 + r0. We assume that

the parameter space Θ is compact.

Our objective is to estimate θ0 using least squares. To avoid an identification problem,

we divide the regression model (9) by Pt:

Pt+1

Pt
= γ0 min

{
λt0p

∗
0

Pt
, 1

}
+ εt+1 (10)

where Et(εt+1) = 0.

To simplify the notation we use ft(θ) to denote the predictor, that is,

ft(θ) ≡ γmin

{
λtp∗

Pt
, 1

}
= γmin

{(
λ

λ0

)t
p∗

pt
, 1

}
.

Therefore, the normalized regression model is:

Yt+1 = ft(θ0) + εt+1, where Yt+1 =
Pt+1

Pt
(11)

18



Given the presence of the term (λ/λ0)
t, the objective function in the least squares mini-

mization does not converge uniformly in the parameter space; it does not satisfy the uniform

convergence condition of Jennrich (1969). The regression model (11) does not satisfy the

Lipschitz condition for consistency in Wu (1981), nor the Lipschitz condition of Andrews

(1987), the continuity-type smoothness conditions of Pötscher and Prucha (1989, 1994), nor

the Lipschitz L1−conditions of Skouras (2000) or Lai (1994). The errors {εt+1}t∈N are not

independent, unlike the cases of Wu (1981), van de Geer (1990), and Pollard and Radchenko

(2006).

Given µ 6= θ0, and a ball B(µ) centered at µ which does not contain θ0, let AT ≡

inf
θ∈B(µ)

T∑
t=1

{ft(θ)− ft(θ0)}2. In order to be able to identify θ0, it is necessary that AT →∞,

as T →∞.9 For regression (11) it is possible to prove that there exists N ∈ N and a strictly

finite positive constant b such that AT ≥ b T, for T ≥ N, thus identifying θ0.

Define θ̂T to be the least squares estimator of θ0. Using the facts that {εt+1ft(θ)}t∈IN is

a uniformly bounded martingale difference sequence, and that the gradient of the predictor

∇ft(θ) has a polynomial order, Bobenrieth, Bobenrieth, and Wright (2022) establish the

convergence of sup
θ∈B(µ)

1

T

∣∣∣∣∣
T∑
t=1

εt+1 (ft(θ)− ft(θ0))

∣∣∣∣∣ to zero, as T →∞, almost surely. Based

on the classical approach of Wald (1949), this convergence implies that lim
T→∞

||θ̂T − θ0|| = 0,

almost surely.

Furthermore, Bobenrieth, Bobenrieth, and Wright (2022) prove that

{
T 3/2(λ̂T − λ0), T 1/2(p̂∗T − p∗0), T 1/2(γ̂T − γ0)

}
T∈N

9See Wu (1981, p. 502).
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converges in distribution to a normal random vector with mean zero and covariance matrix

Σ−1ΛΣ−1, where

Λ ≡ 2



2Ap∗0
2γ20

3λ20

Ap∗0γ
2
0

λ0

Ap∗0
2γ0

λ0

Ap∗0γ
2
0

λ0
2Aγ20 2Ap∗0γ0

Ap∗0
2γ0

λ0
2Ap∗0γ0 2(B + Ap∗0

2)


, Σ ≡



2Cp∗0
2γ20

3λ20

Cp∗0γ
2
0

λ0

Cp∗0
2γ0

λ0

Cp∗0γ
2
0

λ0
2Cγ20 2Cp∗0γ0

Cp∗0
2γ0

λ0
2Cp∗0γ0 2D


,

where A ≡ lim
t→∞

E

(
εt+1

pt
1{pt>p∗0}

)2

, B ≡ lim
t→∞

E
(
εt+11{pt≤p∗0}

)2
,

C ≡ limt→∞E
(

1
pt
1{pt>p∗0}

)2
, and D ≡ lim

t→∞
E

(
min

{
p∗0
pt
, 1

})2

.

VI. Data

Our two illustrative price series are samples of annual cotton and maize prices. We choose

cotton because it is one of the industrial commodities included in Cashin and McDermott

(2002), and is the commodity referenced by Deaton and Laroque (1996 pp. 913 and 914) as

exemplifying the high persistence of price at all price levels in the sample interval 1900-1987.

We include maize because it is a major traded agricultural commodity with clearly trending

price and yield, and plausibly little interaction with the global cotton market.

The sample interval (1936-2007) excludes the major effects of the persistent and unprece-

dented boost in maize demand related to United States mandates and subsidies for biofuels,
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with implementation starting around 2007, and of recently fast-rising Chinese imports of

maize and soybeans.

The nominal prices are from Pfaffenzeller, Newbold, and Rayner (2007) for 1936-2003,

extended to 2004-2007 using Pfaffenzeller (2013).10 We take their annual calendar averages,

and then normalize them by the 1977-79 average, following the description given in Pfaffen-

zeller, Newbold, and Rayner (2007). The deflator for the series is, in line with many time

series papers using commodity prices, the Manufactures Unit Value (MUV) Index. As a

trade-weighted index of traded commodities, the MUV is probably more relevant to agricul-

tural producers facing a world market for output and for the material inputs that constitute

a high share of production costs, and it avoids the need to explicitly account for exchange

rate movements.

VII. Empirical results

This is the first paper to implement the empirical estimator for which we present the

asymptotic theory described above in Section IV for one-step estimation. We use the annual

price data for cotton and maize discussed above. Implementing our one-step nonlinear least

squares procedure, we estimate (1 + r0), p
∗
0, and the trend parameter λ0, and present the

results in Table 1.

10Nominal prices correspond to Cotton (Outlook “CotlookA index”), middling 1-3/32 inch, traded in Far
East, C/F beginning 2006; previously Northern Europe, c.i.f.; Maize (US), no. 2, yellow, f.o.b. US Gulf
ports.
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Table 1 here

As is well known (see for example Deaton and Laroque, 1992), the interest rate is difficult

to estimate in dynamic stochastic models, and our estimates are no exception, as shown in

the high values for the standard errors of the estimates of (1+r0). However, note the negative

relationship between r0 and p∗0 implied by the theory of storage; an increase in the rate of

interest implies a higher storage cost, consistent with a lower level of the threshold parameter

p∗0. The negative covariances of our estimates of (1+r0) and p∗0 reflect this negative correlation,

which in turn explains the lower standard errors for our estimates of the attractor (1+r0)p
∗
0,

generated using the delta method, relative to the standard errors of the estimates for r0 and

p∗0 (see Table 1).

Bobenrieth et al. (2021) implement a two-step econometric procedure for the same

storage model we use here. They detrend observed prices in a preliminary step. In their

procedure each data point is fitted to the same trend, regardless of its regime. In contrast,

our new one-step estimator discriminates the trend regime for each data point in the single

estimation step. The estimated trending price thresholds using preliminary detrending (im-

plying annual price trends of −2.08% and −1.82% for cotton and maize respectively) and

using our one-step approach (implying annual price trends −2.63% and −1.64% for cotton

and maize respectively) are both shown in Figure 6. For the sample of cotton prices, the

detrending method changes the sample splitting for 18% of the prices.

Figure 6 here

By construction, our one-step procedure yields a lower sum of square errors for the fore-
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cast of within sample price changes, compared to the two-step estimation of the model which

involves preliminary detrending. But does it make a difference for the state, as represented

by the detrended price?

In our data exploration in Figure 4 we used preliminary detrending of prices, the same

procedure of Bobenrieth et al. (2021). Figure 7 shows the same vertical axis as Figure 4,

but now with the detrended price in the horizontal axis estimated using our new one-step

approach. Histograms of the corresponding detrended prices are shown in the horizontal axes.

Figure 7 here

We applied a two-sample KS test of the hypothesis that the price series used in Figure 7,

detrended by the one-step approach, are from the same distribution as the prices detrended

using a trend estimated in a preliminary step, used in Figure 4. For cotton, the KS D statistic

is 0.222, significant at the five percent level (p-value 0.048). For maize, the difference is

insignificant (D statistic 0.097, p-value 0.868). Accordingly, we now focus on the comparison

of the histograms of detrended prices for cotton in Figure 4 and Figure 7. Our results show

that our one-step procedure is able to recover the unimodality of the price distributions,

which is a standard feature of prices from the stationary storage model.

We use Shannon’s (1948) entropy index to compare the histograms of detrended cotton

prices with our one-step approach versus preliminary detrending,

I ≡ −
n∑
j=1

p(j)[ln(p(j))],

where p(j) denotes the frequency of data in bin j. This index I measures the degree to

which the histogram is concentrated or dispersed; it is zero if all of the probability mass is
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concentrated at a single bin. The more unpredictable the detrended price in the histogram,

the greater the entropy index.

The I index for one-step detrending and preliminary detrending are 2.5969 and 2.7624

respectively.11 The values for the I indices suggest that our one-step estimation provides

more informative detrended price histograms than preliminary detrending.

Our focus in this paper is on the estimation of expected relative price changes,
EtPt+1 − Pt

Pt
.

Equation (8) implies that the expected relative price change, the spread, is constant to the

left of the threshold detrended price p∗0 but it slopes down to the right of the estimate of p∗0

as suggested in the correspondence generated in the heuristic model, illustrated in Figure 5

above:

EtPt+1 − Pt
Pt

=


r0 if pt ≤ p∗0

(1+r0)p∗0
pt

− 1 if pt > p∗0.

Both panels in Figure 8 reproduce on the vertical axis the first differences of trending

price of cotton and maize seen in Figures 3, 4 and 6, and price on the horizontal axis is

detrended using our one-step estimates, as in Figure 6. But in Figure 8 we also plot our

estimate of the function υ(pt) ≡
(1 + r0)p

∗
0

pt
− 1, evaluated using our estimates for r0 and

p∗0. For any level of detrended price pt, above or below p∗0, this function υ(pt) is an upper

bound for the spread
EtPt+1 − Pt

Pt
. The dashed lines show confidence regions of plus and

minus two standard deviations for such function.

Figure 8 illustrates the nonlinearity of our predictions for price changes for cotton and

maize. Indeed, each of the detrended base prices to the right of the vertical blue line, which

is our estimate for the attractor in the latent stationary model, (1 + r0)p
∗
0, is in the second

regime which has no stocks, and our estimate of the expected detrended price equals the

11To select the number of bins in the histogram we use the standard square-root choice.
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location of the blue attractor on the horizontal axis. Every base price Pt changes in expec-

tation by the lesser of rPt, or the distance to the attractor, depending on the regime.

Figure 8 here

Figure 9 shows the time series for cotton and maize prices along with the corresponding

conditional expected prices. The time series of prices plotted in Figure 9 are good examples

of the justification of Deaton and Laroque (2003) for neglecting long run trends. Indeed the

annual average price movement due to the trend for each illustrative sample appears gen-

erally negligible relative to annual price changes, and the series show intervals of sustained

price rises often ending in price spikes, interspersed with brief intervals including large and

heterogeneous price drops.

Figure 9 here

Paradoxically, our predicted prices - in green for the upward stochastic trend and red

for the downward jumps in Figure 9 - show that a small negative trend is of no relevance

for expected price changes in periods when prices are locally low. Such a trend is revealed

in realized returns only indirectly and infrequently, accumulated in infrequent jumps down

from boom prices. A notable feature of our predicted prices in both panels of Figure 9 is

that precisely those large heterogeneous downward jumps are the price variations which are

quite accurately predicted (as measured by the conditional coefficient of variation).

Our estimates, illustrated in Figure 6, Figure 7, Figure 8, and Figure 9, show that

25



price persistence is very different depending on whether or not stocks are positive.12 For

current price above the threshold price λt0p
∗
0, the conditional expectation of price is, as noted

above, independent of current price. The spread between expected price for next period

and the current price decreases as the current price increases, dollar for dollar. Given any

current price below the threshold λt0p
∗
0, storage arbitrage is active and the spread between

the conditional expectation of price next period and current price is constant and equal to

the interest rate r, independent of the trend.

The two highest maize prices in the lower panel of Figure 9 are from early years in the

sample when such high prices are far above the conditional expectation of the following price,

and are in fact followed by large downward jumps, consistent with the model presented here.

Those are the two “outliers” in the lower panel of Figure 2 referenced in footnote 1. They

are represented in the lower panels of Figure 7 and Figure 8 as the two lowest observations.

In this context, they do not stand out as so anomalous.

However, Figure 9 shows how price autoregressions can scramble the regimes. Consider

prices in the stockout regime (i.e. with red predicted prices in Figure 9). For many of

those prices it is possible to find a very similar price that belongs to the alternate regime,

with green predicted prices. Putting them together in a price autoregression like Figure 2

mixes both regimes, thus reducing the predictive power of observed price alone, ignoring the

influence of calendar time via a small deterministic trend that scrambles the ordering of base

prices relative to their ordering if detrended,

12The apparent positive trend in cotton and maize prices for most of the 1940s is consistent with the
large levels of both private and public carryovers reported for cotton and maize in the same period. See for
example Federal Reserve Bank Richmond, Va (1944, pp. 2-3) and Shepherd and Richards (1957, Figure 6,
p. 975).
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VIII. Concluding remarks

A large empirical literature on the existence, sign, size and direction of secular trends in

the tradition of Prebisch (1950) and Singer (1950) is now beset by conflicting conclusions

regarding the number and locations of breaks in the time series. The more numerous the

economically exogenous breaks, the less useful are the trend estimates for those interested

in price prediction. It is understandable that researchers focused on intermediate range

forecasting based on current price have tended to neglect the possible influence of a small

annual trend movement. Difficult to estimate and of uncertain persistence, any secular trend

appears to add at most a minor constant to highly variable and otherwise unpredictable

A small latent secular trend can transform inferences about behavior of commodity prices.

It linearizes highly nonlinear price autoregressions and generates sample returns that appear

to be independent of current price. It renders observed price an unreliable indicator of

forward returns. Indeed, the fact that price is observed to be equally persistent at all price

levels, high and low, does not imply that forward returns are independent of the current state.

The latter inference is an illusion generated by the very trends that seem so negligible.

How can small trends have such dramatic effects? The trend might have a negligible effect

on short-run returns, but it renders current price a hazardous indicator of those returns. A

latent trend in price series implies that an observed price might map to one of many different

price expectations.

Consider a price observed early in a given sample (for example, maize price in 1940 in

Figure 9), which lies below the corresponding value of the trending threshold. The distri-

bution of the immediately subsequent proportional price change has a mean of r0 times the

1940 price observation, consistent with active storage arbitrage. Consider, alternately, the

case of a lower price observation that occurs at later time when it is above the down-trending
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threshold (for example, maize price in 1996 in Figure 9). In this case, with no stocks, the

distribution of the subsequent price change has a mean that is a downward jump to the

attractor indicated by the solid red square at 1997 in Figure 9.

Hence, price changes from similar prices observed sufficiently early and sufficiently late in

the sample can have very distinct conditional distributions. For any given negative downward

trend,no matter how small, if the sample size is large enough, trend-induced shuffling of

observed prices with very different distributions of forward realizations can render the return

realization correspondence approximately independent of current price, even though each

price realization is a function of the current price, the harvest realization, and time.

In studies that recognize trends, it is a common practice to detrend the sample obser-

vations in a preliminary step, and then estimate the model relying on standard consistency

proofs for models without trends as if they applied to the detrended model. We imple-

ment a new one step consistent econometric procedure in an empirical model that explicitly

recognizes the influence of the trend on arbitrage.

In our samples, a Kolmogorov-Smirnov test indicates that the sample distribution of

cotton prices detrended using our simultaneously estimated trend parameter is significantly

different from the distribution implied by the usual approach using a preliminary estimate

of the trend, while the difference is not significant for maize. Only after implementing

our simultaneous approach can we know whether prior detrending is sufficient. Hence this

approach is important even if a trend has been recognized in existing studies and estimated

in a preliminary step. The restriction on interactions with other parameters implied by

prior detrending might well affect inferences about the trend and the behavior of detrended

endogenous variables, and the predictability of price changes, as observed in our sample of

cotton prices.
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We do not claim that our empirical estimates capture all the features of our illustrative

samples. A more accurate identification of secular trends, breaks in trends, stochastic trends,

or persistent ergodic shifters should only increase the force of our findings regarding the

effects of ignoring such phenomena in empirical analysis.

Our empirical approach could be useful to meet challenges in estimation of models with

trends that are incorporated into the structure of the model, without log-linearization of

the Euler equations.13 Such challenges are encountered in DSGE models with trends in

endogenous variables, as discussed in the survey by Fernández-Villaverde, Rubio-Ramı́rez

and Schorfheide (2016, p. 650).Our work shows that simultaneous estimation of trends with

other parameters, as opposed to the standard practice of preliminary detrending using an

estimated trend, can be crucial for correct inferences about the predictability of price changes

and the nature of their distributions.
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Figure 1: Annual prices for cotton and maize. 1936-2007
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Figure 2: Annual price realizations at t and t+1. 1936-2007

35



0 0.5 1 1.5 2 2.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2 2.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 3: Annual proportional price changes between t and t+1 mapped from price at t.
1936-2007 36
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Figure 4: Preliminary Detrending. Annual proportional price changes between t and t+1
mapped from detrended price. 1936-2007 37
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Figure 5: MonteCarlo: proportional price changes
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Figure 6: Annual prices and comparison of one-step and two-step estimation of the trending
price threshold. 1936-2007 39
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Figure 7: One step Estimates. Annual proportional price changes between t and t+1 mapped
from detrended price. 1936-2007 40
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Figure 8: Annual proportional price changes and model predictions

41



1940 1950 1960 1970 1980 1990 2000 2010

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1940 1950 1960 1970 1980 1990 2000 2010

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Figure 9: Annual prices and predicted prices. 1936-2007
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Table 1
Estimates of (1 + r0), p

∗
0, λ0, (1 + r0)p

∗
0, and percentage of stockouts.†

1 + r p∗ λ (1 + r)p∗ % stockouts

Cotton
1.0284 1.5307 0.9737 1.5741

38%
(0.2041) (0.3063) (0.0006) (0.0402)

Maize
1.0647 1.4060 0.9836 1.4969

39%
(0.1217) (0.1711) (0.0010) (0.0626)

† Estimated standard errors in parenthesis.
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