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Agriculture remains a leading source of water pollution in the United States, even after decades of
efforts to address the problem. Climate change may further challenge the relationship between agriculture
and water quality. Field and micro-watershed level data have shown that increased frequency of heavy
rainfall and flooding will impact runoff from farms, but research has yet to quantify nutrient runoff
triggered by rainfall at a multi-watershed scale. We quantify the effects of high rainfall events on manure
runoff and water pollution in dairy- and crop-producing watersheds in Wisconsin. We begin by analyzing
the specific temporal effects of rainfall, including the magnitude of the effect by rainfall severity, the
lagged effects up to four days after a rainfall event, and the effects by season. Our results align with the
conclusions of simulations and small-scale studies, supporting the accuracy of our methods in identifying
the effects of rainfall on water quality. We then study how land use and agricultural practices affect a
watershed’s susceptibility to extreme rainfall events. Our work highlights which agricultural practices
lessen these impacts, shedding light on methods that can be adopted to protect water quality in a scenario

with more frequent extreme-rain events.
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1 Introduction

Agriculture remains a leading source of water pollution in the United States, even after decades of
efforts to address the problem (Rabotyagov et al., 2014; Ribaudo and Shortle, 2019). Most agricultural
pollution is deemed non-point source pollution and falls outside of the enforcement arm of the Clean
Water Act, which has meant its pollution problems have not responded to the policy tools that have
effectively addressed point-source pollution (Kling, 2011; Shortle et al., 2012)." Modelling, measuring,
and regulating non-point pollution across space presents numerous challenges to researchers and policy
makers alike, leaving the problem under-researched and lightly regulated (McDowell et al., 2016).

Climate change may further challenge the relationship between agriculture and water quality due
to increased extreme weather events. Field- and micro-watershed-level data have shown that increased
frequency of heavy rainfall and flooding will impact agricultural runoff (Ockenden et al., 2016; Lisboa
et al., 2020; Liu et al., 2019), but research has yet to quantify nutrient runoff triggered by rainfall at
a multi-watershed scale. Better understanding the role of extreme rainfall in driving water pollution
from agriculture can help shape best-practices and policies to prevent climate driven non-point source
pollution. Mitigation and adaptation to climate change requires such timely and accurate information.

We contribute to the literature by quantifying the effects of high rainfall events on nutrient runoff
and water pollution in dairy- and crop-producing watersheds in the state of Wisconsin.? We begin by
analyzing the specific temporal effects of rainfall, including the magnitude of the effect by rainfall severity,
the lagged effects up to four days after a rainfall event, and the effects by season. We then study how
land use and agricultural practices affect a watershed’s susceptibility to extreme rainfall events. Our
work highlights which agricultural practices lessen these impacts, shedding light on methods that can be
adopted to protect water quality in a scenario with more frequent extreme-rain events.

The efforts to curb non-point source water pollution are a patchwork of state and local policies and
voluntary programs to increase use of best management practices (CITE WI LAW REVIEW). There
is only limited causal evidence that some of these non-point policies can be effective (Skidmore et al.,
2022; ?). This is a stark contrast to the point-source pollution literature, where numerous authors have
found that policies of the Clean Water Act improved water quality (?Cohen and Keiser, 2017; Grant
and Grooms, 2017; Keiser and Shapiro, 2019; Shapiro and Walker, 2015). Similarly, there are few causal

studies on the effects of best management practices on water quality, and few studies (causal or otherwise)

IFunding for non-point source pollution is provided to states under the Clean Water Act Section 319. As such, the
non-point program of the CWA is largely supportive, in terms of funds and training, rather than punitive.

2Manure runoff from animal agriculture is a major contributor to non-point source pollution, especially in settings like
the dairy industry where small unregulated family farms dominate and decentralized local decision-making and regulation
predominate (Agouridis et al., 2005; Hooda et al., 2000; Mulla et al., 1999). Crop agriculture serves as the other source of
non-point pollution from agriculture; the recent work by Paudel and Crago (2020) provides the first nation-wide estimate of
the negative impact of agricultural fertilizer on water quality. Wisconsin presents a good laboratory to study these effects
because of its mix of animal and crop agriculture.



at a multi-watershed scale.

There is, however, a strong body of very micro-level work using edge-of-field or watershed-level water
quality readings (see, among others Meals et al. (2010); King et al. (2018); Zopp et al. (2019); Kim et al.
(2019)). This work, carried out by academic and on-the-ground researchers, consistently supports the
importance of the "4 Rs" for nutrient management in conjunction with land management practices (King
et al., 2018; Skidmore et al., 2022; Ockenden et al., 2016). King et al. (2018) describe the 4Rs as "apply
the right source of fertilizer (i.e., matching source and type with crop requirements) at the right rate (i.e.,
applying the right amount to meets crop requirements), at the right time (i.e., ensuring timely nutrient
availability), and at the right place (i.e., locating nutrients for efficient use)." Following this practice,
often using a field-specific nutrient management plan, reduces the availability of excess nutrients on the
soil that are at risk of running off to water sources. In contrast, land management practices such as cover
cropping, buffers, and diversion waterways improve water quality by slowing nutrient’s transport along
the surface and/or reducing erosion (7).

Heavy rainfall events pose a particular challenge for water quality, as rainfall, irrigation, and snow
melt transport excess nutrients from the soil’s surface to water sources (Xia et al., 2020; Zopp et al., 2019).
Moreover, they may result in erosion, whereby soil itself is transported to surface water. During erosion,
the soil brings with it sedimentized nutrients, especially phosphorous, that are bound to it (Duncan
et al., 2019). These sedimentized nutrients are referred to as “legacy” nutrients, as they are the legacy of
nutrient use and management practices from years prior (Sharpley et al., 2013). Efforts to reduce non-
point source pollution must contend with continued impacts of legacy nutrients; they challenges not only
improvements in water quality but also the detection of the impacts of current interventions (Skidmore
et al., 2022; King et al., 2017).

Climate change may exacerbate the impact of agriculture on water quality by increasing the fre-
quency of heavy rainfall events that trigger runoff and erosion (Ockenden et al., 2017). Edge-of-field-
and watershed-level studies have confirmed this vulnerability (Ockenden et al., 2017; Lisboa et al., 2020;
Zhang et al., 2012). The above mentioned literature, however, has not integrated these two strands of
knowledge to measure how extreme rainfall can affect water quality at a large scale.

We contribute to this literature by producing the largest-to-date retrospective analysis of water quality
after heavy rainfall events. We study water quality over fifteen years in nearly 50 HUCS in the state of
Wisconsin. Our sample includes nearly 4,000 cases of over a half inch of rain in a single day and 2,000
of over one inch of rain. The scale of our data allows for novel detail into the effects of rainfall on water
quality. At the same time our focus on the watersheds in a single state allows us to accurately measure

farm practices, locations, and county level policies that may influence outcomes in a way that would be



difficult in a national study.

Our results align with the conclusions of simulations and small-scale studies, supporting the accuracy
of our methods in identifying the effects of rainfall on water quality. We thus extend our analysis to
study the interaction of land-use and management practices and rainfall events. Our study is the most
comprehensive of its kind, as we consider the effects of small-scale and CAFO crop agriculture and crop
agriculture.

We study Wisconsin as a snapshot of many of the models of agriculture across the United Station.
Agriculture provides $104.8 billion to the state’s economy annually and accounts for 11.8% of employment.
Both crop and livestock agriculture are present, with dairy, soybeans, and corn leading the industry. The
landscape of agriculture is changing; small family-owned dairy farms have consolidated and the number
of farms in the state has fallen by half in fifteen years. Concentrated animal feeding units (CAFOs)
have increased in frequency (Raff and Meyer, 2019), even while small farms that are exempt from the
Clean Water Act still predominate (McCarthy, 2020). Recent EPA estimates show that non-point source
pollution from small-scale livestock farms and crop production is responsible for 82% of impairment to
Wisconsin’s rivers and streams and 57% of impairment to lakes, ponds, and reservoirs (Environmental
Protection Agency, 2016).

Wisconsin is also a relevant laboratory to study the impacts of climate change. Climate models predict
that Wisconsin will experience climate similar to those previously seen 200 - 500 kilometers south (Veloz
et al., 2012). Key components of those predictions include more variability in rainfall, with a higher
frequency of heavy rainfall and flooding, as well more extreme temperatures (Schuster et al., 2012).
Such a combination of economically strong non-point polluting sources in dairy and crop agriculture,
an important economic demand for clean water, a novel regulatory environment at the county level (?),
and increasing vulnerability to extreme rain events makes Wisconsin an important laboratory to assess
climate effects on non-point pollution.

The paper proceeds as follows: section 2 introduces our data and empirical strategy, section 3 presents

the results, and section 4 concludes.

2 Methods

2.1 Data

The data used in our estimations comes from a number of public sources compiled by the authors. For
our outcome variables, we obtain filtered ammonia and total phosphorus concentration data from the

Water Quality Portal (WQP) from 2008 to 2020. The WQP combines data from the United States



Geological Service (USGS) National Water Information System (NWIS), the Environmental Protection
Agency (EPA) STOrage and RETrieval (STORET) Data Warehouse, and the United States Department
of Agriculture (USDA) Agricultural Research Service (ARS) Sustaining The Earth’s Watersheds - Agri-
cultural Research Database System (STEWARDS). The data are collected by state, federal, tribal, and
local agencies as well as watershed groups, volunteer groups, universities, and public and private utilities.
We include readings from rivers, streams, lakes, reservoirs, impoundments, and estuaries and restrict the
sample to routine surface water readings that were collected during routine hydrologic events. Following

9" percentile.

Keiser and Shapiro (2019), we winsorize water quality measurements at the 9

Weather data comes from the PRISM Climate Group, which processes data from a variety of weather
monitoring networks to provide 4 km resolution raster data sets for various weather variables. To obtain
HUCS level measures of precipitation and temperature, we take the mean of the raster cells within the
HUCS for each weather variable. Figure 1 presents maps of the number of days with greater than one
inch of precipitation by year. HUCSs in the southwest tend to experience more days with extreme rainfall
events while HUCSs in the northwest have fewer days with extreme rainfall events.

We also include control data on other factors that might affect water quality: counts of livestock
farms, cropped acres, and point-source pollution permits. We obtain farm addresses and operating dates
from the WI-DATCP; which allows us to geolocate all dairy farms in the state. These overall dairy
farm numbers are supplemented with data on current CAFO permits from WI-DNR and Raff and Meyer
(2019) to help us identify which dairy farms are non-point-source emitters (non-CAFO dairy farms).?
Using these addresses and locations, we obtain the geographic coordinates of the farm and use those
coordinates to locate farms within a county and within a HUC8.* Figure 2 presents a map of both CAFO
and non-CAFO farms.

We obtain raster data on annual crop acreages for major crops (i.e., corn, soy and wheat) from the
United States Department of Agriculture (USDA) Cropland Data Layer (CDL). The CDL is a raster
data layer with with crop-specific information for the conterminous US. We calculate the area planted

with each crop type in a HUCS8 by taking the sum of the arcas of the raster cells for each crop type

within a HUCS. Lastly, we obtain data on the number of non-CAFO point-source pollution permits

3The DNR provides a list of current CAFO permits with the issue date and expiration date of that permit. We pair this
with Raff and Meyer’s data to create a consistent panel using the following steps: (1) we assumed that any permits that
were operating until December 2017 (i.e. the end of Raff and Meyer’s time series) and that have an issue date after January
2018 were active during the interim period (2) DNR provided the permit expiration dates of all permits that appeared in
Raff and Meyer’s data up to December 2017 but do not have an active permit (3) we confirmed that all CAFOs with permit
expiration dates in 2018 - 2020 remained active through and appeared expired in the data due to a pending permit renewal.

4We use OpenCage Geocoder to obtain the geographic coordinates from farm addresses Measurement error may occur in
determining the geographic coordinates. However, this error is of concern only if the measurement error leads to incorrect
assignment of farms to a county or HUC8. OpenCage Geocoder provides information the precision and accuracy of the
match. We flag farms whose distance to the nearest boundary is smaller than the precision of the match. We are confident
that between 87.6% and 92.77% of farms are correctly placed within a county and between 85.3% and 92.18% within a
HUCS.
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Table 1: Summary statistics of daily rainfall and annual HUCS-level activities

Mean SD Min Max
Rainfall (cm) 4.179102  9.33735 0 121.5622
Rain > half inch (0/1) .0762389 .2653807 0 1
Rain > 1 inch (0/1) .0411384  .1986109 0 1
Rain > 2 inch (0/1) .00628 .0789972 0 1
Observations 169428
Cafo count 4.828777 6.074988 0 40.91667
Number farms 71.82302 74.01995 0 382
Percent crops 1673415 .1260705 .0002122  .653508
Point source 4.639928  5.470606 0 33
Point source 6.956835 8.047764 0 41

Observations 695

from the Integrated Compliance Information System (ICIS) for National Pollution Discharge Elimination
System (NPDES). The Discharge Monitoring Reports (DMRs) from NPDES contain information on the
pollutants discharged by each facility which we use to identify facilities that are likely contributors to
ammonia and phosphorus pollution. Then, we use the coordinates of those facilities to locate them
inside HUCS8s and calculate the number of ammonia and phosphorus non-CAFO point sources at the

HUCS8-level.

2.2 Empirical strategy

We estimate how rainfall affects the nutrient concentration in a HUC8 using the following equation:

Qst = a+ BPus + Ay + i +wp + € (1)

Our outcome, Qg refers to the concentration (milligrams per liter) of phosphorus or ammonia at mon-
itoring station s, located in HUCS8 h, at time ¢. We estimate models using untransformed values (i.e.,
levels) and using the logarithmic transformation.

The treatment variable of interest, Pp;, is the precipitation in the HUC-8 at that time, for which
we construct a number of different measures of rainfall events. As a baseline, we use a set of mutually
exclusive categories indicating the amount of daily rainfall: whether there was less than one-half in of
rain (the base category), one-half inch to one inch, one inch to two inches, or more than two inches in that
day. To better specify extreme events, we employ binary variables indicating whether rainfall exceeded
a cutoff (one-half inch or one inch) in a single day, and finally we use a continuous measure of the total

rainfall (in inches) in a single day.



We control for other variations in water quality using year-fixed effects (\,) for annual variations,
month-fixed effects () for seasonal variation, and HUCS-fixed effects (wp,) for variations in characteris-
tics inherent to the HUC-8. After controlling for time and location fixed effects, extreme weather events
can be considered “as good as random” (Tambet and Stopnitzky, 2021). Thus, our empirical strategy
causally identifies the effects of weather shocks on our outcomes of interest.

We cluster standard errors at the level of the HUCS8-year, as we believe that this captures the level
of treatment since water quality is influenced by all activity within a HUCS, and is influenced by the
weather and activities taking place within a given year. For robustness, we test the model clustering
standard errors at the HUC8 (44 clusters) and using wild-bootstrapped standard errors while clustering
in the HUCS.

In order to capture the temporal nature of runoff, we further explore the effects of rainfall past the

day of the rainfall event by including lagged values of rainfall in the following equation:

Qe =a+3t, (BlPh(t_l)) + Ay + pm +wp + € (2)

Here, [ is an integer running from 0 to 4 and all other variables are described as above.
We then explore how HUCS8-level agricultural and other potentially water polluting activity interacts

with rainfall events using the following equation:

Qnt = a+ BPus +vXpt + 0Prt * Xpt + Ay + pim +wp, + € (3)

We capture the point- and non-point source pollution activity in the HUC-8 in Hp,;, including the number
of CAFO dairy farms and NPDES permits (point activity) and non-CAFO dairy farms and the number
of crop acres (non-point activity). Our coefficient of interest, ¢ captures the interaction between extreme

rainfall and each of these activities.

3 Results

3.1 Ammonia and phosphorus levels spike after rainfall

Both ammonia and phosphorus concentrations increase immediately after a rainfall event, and the effect
increases with the amount of rainfall. Table 2 shows estimates of the effect of day-of rainfall from 0.5 -
1 inch, 1 - 2 inches, or more than 2 inches on ammonia and phosphorus concentration. For ammonia,
we find a 45% increase with 0.5 - 1 inch, a 63% increase with 1 - 2 inches, and a 75% increase with 2 or

more inches. The increase falls by around half by the next day; there is a 25% increase following 0.5 - 1



inches, a 33% increase following 1 - 2 inches, and a 34 % following 2 or more inches. The effect is starker
for phosphorus; we find a 50% increase with 0.5 - 1 inch, a 79% increase with 1 - 2 inches, and a 130%
increase with 2 or more inches. The following day, there is a 21% increase following 0.5 - 1 inches, a 40%
increase following 1 - 2 inches, and a 66 % following 2 or more inches.

We also find large increases in both ammonia and phosphorus concentrations in the model with
untransformed nutrient concentrations. For ammonia, we find a 0.04 mg/L increase with 0.5 - 1 inch, a
0.09 mg/L increase with 1 - 2 inches, and a 0.04 (not statistically significant) increase with 2 or more
inches. These compare to a mean ammonia concentration of 0.19 mg/L in our sample. For phosphorus,
we find a 0.12 mg/L increase with 0.5 - 1 inch, a 0.22 mg/L increase with 1 - 2 inches, and a 0.43 mg/L
increase with 2 or more inches. Phosphorus has a mean concentration of 0.14 mg/L in our sample. Thus,
the results of this level model suggest much larger effects a percent increase compared to the log model.
This is likely due to the right-skew in the data, despite the fact that we winsorize the data. The top 1%
of phosphorus readings have a concentration of over 1.4 mg/L; and 23% of these occurred on a day with
at least a half inch of rain. The top 1% of ammonia readings have a concentration of over 2.6 mg/L,
although only 8% of these occurred on a day with over a half inch of rain.

Next, we consider the effect on the day of the rain and the following four days using a single cutoff for
extreme rain (table 3). We test this separately using cutoffs at a half inch and one inch. For ammonia
we find that concentration increases by 55% on the day of the event using the half inch cutoff and by
62% the day of the event using the one inch cutoff. The following day this falls to a 29% using the half
inch cutoff and 32% using the one inch cutoff; the third day, this falls to a 10% inch increase using both
cutoffs. There is no statistically significant effect on the fourth or fifth day after an extreme rainfall event.

For phosphorus, however, table 3 shows continued significant effects up to four days after the rainfall
event. We again observe that the effect falls by half after the first day and then falls further on the third
through fifth days. Using a half inch cutoff, a 68% increase in concentration on the rainfall event day
falls to a 31% increase the following day; with the one-inch cutoff, a 84% increase the day of falls to a
42% increase the following day with the one-inch cutoff. The elevated levels of phosphorus continue two
through four days after the rainfall event, with a 10 - 20 % increase two to four days later using the
half-inch cutoff and 19 - 17% increase using the one-inch cutoff.

We consider seasonality of the effect of rainfall by interacting the rainfall dummy (one inch cutoff)
with a dummy for month of year. Figure 3 shows the total effect of rainfall in a given month (i.e., the

5

sum of the main effect and the interaction of the rainfall dummy and month dummy).> As expected,

we see that rainfall has particularly strong effects for both nutrients in spring (i.e., March - April). The

5We drop all observations for January and February from the model, as there are only three and five observations,
respectively, with more than one inch of rain.

10



potency of spring runoff events is attributable to the build up of nutrients applied in late fall or through
the winter, sometimes on frozen soil, and often without a crop to take up the nutrients (Zopp et al.,
2019). We still see significant effects of rainfall on both runoffs in the summer months (i.e., June to
August) when farmers are applying manure and fertilizer to their main-season crops. We do not see a
significant effect for ammonia outside of spring and summer. For phosphorus, however, we observe an
even larger effect in the fall and early winter (ie., October - December). This likely reflects late fall
manure applications that are not readily taken up by crops as well as runoff effects of legacy phosphorus.

These results reflect known differences in the environmental behavior of ammonia and phosphorus.
Phosphorus binds readily to soil, resulting in stronger legacy effects (Sharpley et al., 2013). This may
explain two differences in our results between the ammonia and phosphorus results. First, we do not
observe increases in ammonia outside of the seasons in which we would expect the most excess nutrients
on the soil’s surface (i.e., spring and summer), suggesting that the mechanism for ammonia is through
the runoff of soluble nutrients on the soil’s surface. In contrast, we observe a nearly year-round spike
in phosphorus due to extreme rainfall, suggesting that available legacy nutrients are also contributing to
the effect of rainfall on phosphorus concentrations. Second, the longer effect that we observe of extreme
rainfall on phosphorus is also what we would expect in the context of a sedimentized nutrient. These

nutrients will take longer to move through the system than soluble nutrients.

3.2 Heterogeneous effects of extreme rain by agricultural practices

Next, we explore how the activity in a HUCS interacts with extreme rain. We explore practices both
in terms of the type of agriculture (i.e., animal or crop) and the production methods (i.e., tillage and
cover-crop rates).

Table 4 shows the main and interaction effect of large-scale (i.e., CAFO) dairy farns, non-CAFO dairy
farms, area in crops, and point-source pollutions permits. We use both a half inch and one inch cutoff
for extreme rain. We again find that concentrations of both ammonia and phosphorus spike the day of
an extreme rainfall event. Phosphorus concentrations rose 39% with a half inch of rain and 56% with an
inch of rain, while ammonia rose by 46% with a half inch of rain and 55% with an inch of rain.

We find heterogeneous results for ammonia and phosphorus. We find that phosphorus concentration
spikes following rainfall are higher in regions with (1) more CAFO farms and (2) more cropped area. We
also observe that baseline phosphorus levels are higher with more point-source pollution permits. We find
that ammonia concentration spikes following rainfall are higher in regions with more non-CAFO dairy
farms. We find, however, that the interactions effect was negative for cropped area and point source

pollution permits. When we test this using a continuous measure of rainfall in table 5 and find the same
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Table 2: Effect of rainfall in current or previous using mutually exclusive severity categories

Ammonia Phosphorus
Level Log Level Log
0.5in - 1lin 0.043%  0.449%**  0.120%%*  (0.496%**

(0.022)  (0.051)  (0.012)  (0.032)

lin - 2in 0.086%*  0.627+%* (0.222%F% () 78T***
(0.025)  (0.056)  (0.017)  (0.039)

24 in 0.044  0.752%%F  (.433%%% 1294
(0.028)  (0.112)  (0.056)  (0.089)

05in-1lint-1  0.007  0.245%%% 0.034%%% (. 207+
(0.016)  (0.053)  (0.008)  (0.028)

lin - 2int - 1 0.004  0.331%FF  0.076%%F 0.392%%*
(0.020)  (0.049)  (0.010)  (0.031)

2+ in t-1 -0.003  0.341%%*%  0.085%%*  0.659%**
(0.027)  (0.091)  (0.019)  (0.067)

Observations 14695 14695 42995 42995

Note: Observations are at the monitoring-station-day level. Standard errors are clustered at the HUC8-year.

12



Figure 3: Effect of extreme rain (> 1lin) by month. Note: Observations are at the monitoring-station-day
level. Standard errors are clustered at the HUCS-year.

13



Table 3: Effect of rainfall in current or previous days using binary definition of extreme rain and half
inch or 1 inch cutoffs

Ammonia Phosphorus

Half inch 1 inch Half inch 1 inch

Level Log Level Log Level Log Level Log

Extreme rain 0.062*%**  0.551***  (0.079*%**  (0.622%**  (0.184%** (0.676*** (.245%** (.837*F**
(0.017)  (0.041)  (0.022)  (0.052)  (0.014)  (0.031)  (0.019)  (0.038)

Extreme rain t-1  0.004  0.286**%  0.004  0.323%% 0.055%5 0.308%%*% 0.078%%% (.418%*
(0.011)  (0.036)  (0.018)  (0.044)  (0.006)  (0.022)  (0.009)  (0.029)

Extreme rain t-2  -0.008  0.105%%% -0.020%%% 0,008  0.022%% 0.157FFF  0.026%F%  0.172%%*
(0.013)  (0.037)  (0.011)  (0.049)  (0.005)  (0.020)  (0.007)  (0.028)

Extreme rain t-3  -0.010 0030  -0.038***  0.011  0.009%  0.086***  0.010  0.097***
(0.015)  (0.040)  (0.010)  (0.052)  (0.005)  (0.020)  (0.008)  (0.028)

Extreme rain t-4  -0.015  0.058%  -0.019 0.055  0.019%FF (133  ,024%%%  0.150%**
(0.010)  (0.034)  (0.013)  (0.048)  (0.005)  (0.020)  (0.008)  (0.027)

Observations 14692 14692 14692 14692 42991 42991 42991 42991

Note: Observations are at the monitoring-station-day level. Standard errors are clustered at the HUCS8-year.

conclusions.

One major contributor to nutrient pollution is chemical fertilizers (Paudel and Crago, 2020). We
partially account for this by controlling for both cropped area and dairy production; fertilizer use should
increase in cropped area, and a smaller ratio of dairy production to cropped area should imply more
chemical fertilizer use. This, however, implicitly assumes uniform fertilizer application rates across space.
Unfortunately, there is no spatially or temporally explicit data on fertilizer use (Mitchell, 2021). We thus
add a third proxy for fertilizer use: corn yield. One challenge is that current corn yield is a classic “bad
control,” as extreme rainfall during the growing season will directly impact corn yield. To account for
this, we interact current rainfall with the mean corn yield in the HUCS. We similarly estimate the mean
value of all the agricultural practices we previously explored. This method precludes the inclusion of
main effects, as they are absorbed by the HUCS fixed effect term.

Table 6 shows that a HUCS8 with higher corn yield does experience a larger spike in phosphorus after
rainfall. We also observe a larger spike in HUC8s with more non-CAFO dairy farms. For ammonia, we
find a modest interaction between rainfall and the mean number of non-CAFO dairy farms. Notably, the
main effect on extreme rain now is negative, but this does not reflect a negative total effect of rainfall

for the average HUC8. A HUCS8 with the mean value of all the activities experiences a 60% increase in
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Table 4: Effect of rainfall in current day using binary definition of extreme rain and half inch or 1 inch
cutoff and interacted with activities in the HUCS

Ammonia Phosphorus
Half inch 1 inch Half inch 1 inch
Level Log Level Log Level Log Level Log
Extreme rain 0.099%**  0.459***  0.131**  0.550***  0.074*%F*  0.390*** 0.119***  (0.561%**
(0.032) (0.084) (0.051) (0.107) (0.016) (0.054) (0.022) (0.074)
Cafo count 0.004 0.008 0.004 0.008 0.002 0.009 0.002 0.009
(0.003)  (0.008)  (0.003)  (0.008)  (0.002)  (0.008)  (0.002)  (0.008)
Cafo count * ppt 0.002 0.005 0.003 0.007 0.004 0.011** 0.004 0.011*
(0.002) (0.007) (0.002) (0.009) (0.002) (0.005) (0.003) (0.006)
Number farms 0.000 -0.002%* 0.000 -0.002* -0.000 0.000 -0.000 0.000
(0.000) (0.001) (0.000) (0.001) (0.000) (0.001) (0.000) (0.001)
Number farms * ppt 0.000 0.002** 0.000 0.002*** 0.000 0.001 0.001** 0.001
(0.000)  (0.001)  (0.000)  (0.001)  (0.000)  (0.001)  (0.000)  (0.001)
Percent crops -0.272 -1.441%** -0.287 -1.521°%** -0.117 -0.540 -0.106 -0.510
(0.182) (0.476) (0.180) (0.480) (0.163) (0.425) (0.158) (0.414)
Percent crops * ppt  -0.273%* 0.024 -0.304* 0.008 0.248%*  1.061*%%*  0.223*  1.092***
(0.135) (0.427) (0.176) (0.482) (0.098) (0.258) (0.130) (0.313)
Point source -0.002 -0.006 -0.002 -0.007 0.002** 0.004 0.002%* 0.004
(0.002)  (0.006)  (0.002)  (0.006)  (0.001)  (0.004)  (0.001)  (0.004)
Point source * ppt -0.004*  -0.020%*  -0.006*%* -0.033*%**  _0.001 -0.005 -0.003 -0.011*
(0.002) (0.009) (0.003) (0.012) (0.002) (0.005) (0.002) (0.006)
Observations 10945 10945 10945 10945 32975 32975 32975 32975

Note: Observations are at the monitoring-station-day level. Standard errors are clustered at the HUC8-year.

ammonia and an 84% in phosphorus on a day with one inch of rainfall.

4 Conclusion

This work highlights the importance of mitigating non-point source water pollution during extreme
rainfall events. As climate change driven rainfall events in places like Wisconsin with both animal and
crop agriculture get more extreme, our results suggest that this will significantly increase pollution of
both phosphorus and ammonia from agricultural production. This work demonstrates an unexplored

way that future climate change may cause adverse economic and environmental outcomes in the US. In



Table 5: Linear effect of rainfall in current period and activities in HUCS8

Ammonia Phosphorus
Level Log Level Log
Extreme rain 0.004***  0.018***  0.003***  0.016***

(0.001)  (0.003)  (0.001)  (0.002)

Cafo count 0.004 0.007 0.002 0.009
(0.003)  (0.008)  (0.002)  (0.008)

Cafo count * ppt 0.000 0.000 0.000%*  0.001***
(0.000)  (0.000)  (0.000)  (0.000)

Number farms 0.000 -0.002* -0.000 0.000
(0.000) (0.001) (0.000) (0.001)

Number farms * ppt 0.000 0.000*** 0.000%* 0.000
(0.000)  (0.000)  (0.000)  (0.000)

Percent, crops 20239 -1.368%%*  -0.107  -0.529
(0.181)  (0.461)  (0.159)  (0.414)

Percent crops * ppt  -0.011%** -0.008 0.003 0.023**
(0.004)  (0.013)  (0.003)  (0.009)

Point source -0.002 -0.005 0.002** 0.004
(0.002)  (0.006)  (0.001)  (0.003)

Point source * ppt 20.000  -0.001%*  -0.000  -0.000
(0.000)  (0.000)  (0.000)  (0.000)

Observations 10945 10945 32975 32975

Note: Observations are at the monitoring-station-day level. Standard errors are clustered at the HUCS8-year.
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Table 6: Effect of rainfall in current day using binary definition of extreme rain and half inch or 1 inch

cutoff and interacted with mean levels of activities in the HUCS

Ammonia Phosphorus
Half inch 1 inch Half inch 1 inch

Level Log Level Log Level Log Level Log
Extreme rain 0.254 -0.572 0.679* 0.341  -0.730***  -1.127*% -1.031%%* -1.275%

(0.263)  (0.642)  (0.379) (0.848) (0.269) (0.602) (0.324) (0.699)
Cafo count * ppt -0.001 0.004 -0.001 0.003 0.002 -0.000 0.001 -0.001

(0.004)  (0.009)  (0.005) (0.013)  (0.003)  (0.008)  (0.003)  (0.009)
Number farms * ppt  -0.000  0.002**  0.000  0.002** 0.001* 0.001 0.001** 0.001

(0.000)  (0.001)  (0.000) (0.001) (0.000) (0.001) (0.000) (0.001)
Percent crops * ppt 0.341 0.208 0.654 0.834 -0.349 0.004 -0.685* -0.261

(0.298)  (0.808)  (0.399) (0.966) (0.325) (0.692) (0.381) (0.753)
Corn yield * ppt -0.001 0.008 -0.004*  0.001 0.006***  0.011**  0.009***  0.013**

(0.002)  (0.005)  (0.003) (0.006) (0.002) (0.005) (0.003) (0.005)
Point source * ppt -0.010  -0.041**  -0.005 -0.040%* -0.000 0.012 0.001 0.009

(0.009)  (0.016)  (0.011) (0.024) (0.003) (0.009) (0.004) (0.011)
Observations 14697 14697 14697 14697 42998 42998 42998 42998

Note: Observations are at the monitoring-station-day level. Standard errors are clustered at the HUCS8-year.
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addition, this work highlights how different farm sizes and production practices on the land affect how
extreme rainfall affects nutrient pollution. The results run somewhat counter to the popular perception
that CAFOs are the worst polluters and suggests that all animal agriculture is vulnerable to extreme
rain.

Our work highlights the need for further research to determine the policy mechanisms that effectively
reduce non-point source pollution, as climate change will increase extreme rainfall events and may further
exacerbate nutrient runoff. This work suggests that policy makers may want to focus on all animal
agriculture as well as specific practices on crop farms if they want to mitigate the climate impacts
on water bodies around the US. Future research that quantified the proportion of nutrient pollution
due to extreme rainfall events compared to everyday runoff would also be important for understanding

appropriate policies to implement on the landscape.
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