

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Residential Demand for Sediment Remediation to Restore Water Quality: Evidence from Milwaukee

Richard T. Melstrom*

School of Environmental Sustainability
Loyola University Chicago

Selected paper prepared for presentation at the 2022 Agricultural & Applied Economics Association Annual Meeting, Anaheim, CA, July 31 – August 2.

Copyright 2022 by Melstrom. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies.

*Address: 424 BVM Hall, School of Environmental Sustainability, 1032 W. Sheridan Road, Chicago, IL 60660. Email: rmelstrom@luc.com; Phone: 773-508-2948

Residential Demand for Sediment Remediation to Restore Water Quality: Evidence from Milwaukee

Abstract

This paper examines the effect of removing pollutants, including polychlorinated biphenyls (PCBs), on property values in Great Lakes Areas of Concern (AOCs). AOCs are heavily polluted locations identified as priorities for restoration under the Great Lakes Water Quality Agreement (GLWQA) between the United States and Canada. Since the signing of the GLWQA, AOCs have undergone cleanup actions that could encourage local redevelopment and raise nearby property values. This paper focuses on the Milwaukee Estuary AOC and estimates property owner willingness to pay using a sorting model and home sales data before and after a major sediment remediation project. Results indicate that owner willingness to pay for cleanup is significant. This paper also examines potential differences in willingness to pay across income and race groups. Results fail to indicate any significant group-level differences in willingness to pay, although they do indicate systematic inequalities as a result of pre-existing sorting patterns.

Keywords: Property values; pollution; polychlorinated biphenyls; PCBs; environmental policy

JEL codes: Q51, Q53, R21, R23

¹ 1 Introduction

² Water pollution is one of the world’s greatest environmental concerns. When asked
³ about environmental problems, ninety-three percent of people globally report being ei-
⁴ ther very or somewhat concerned about water pollution, more than the percentages for
⁵ air pollution and climate change (GlobeScan, 2009). In the United States, residents are
⁶ more concerned about water pollution than nearly any other topic, including medical
⁷ bills and terrorism, and in Canada two-thirds of residents report being very concerned
⁸ about water quality (Chapman University, 2018; Gallup, 2019). Surveys like these re-
⁹ veal that public concerns about water quality remain elevated despite decades of strict
¹⁰ pollutant discharge regulations and cleanup efforts. Lawmakers, public officials and en-
¹¹ vironmental organizations therefore face continuous pressure to address water pollution
¹² problems.

¹³ Economists have responded to these concerns and the growth in pollution control
¹⁴ policies by generating information about the economic benefits and costs of cleaning
¹⁵ up water. Since the 1970s, the United States has devoted 0.8 percent of GDP to con-
¹⁶ trol water pollution (Keiser and Shapiro, 2019). A large literature examines the eco-
¹⁷ nomic benefits of these efforts, in terms of residential activities (e.g. Poor et al. (2001,
¹⁸ 2007); Tuttle and Heintzelman (2015)), health (e.g. Dwight et al. (2005); McConnell
¹⁹ and Rosado (2000)), and recreation (e.g. Bockstael et al. (1987); Carson and Mitchell
²⁰ (1993)). Nevertheless, there remains a pressing need for research on the value of clean wa-
²¹ ter, particularly research examining cleanup actions, as recent evaluations have thrown
²² the welfare consequences of cleanup into question (Keiser et al., 2019).

²³ In this paper, I examine whether recent actions to restore water quality through
²⁴ the Great Lakes Water Quality Agreement (GLWQA) have yielded benefits in one part
²⁵ of the Great Lakes. The GLWQA is a commitment between the United States and
²⁶ Canada to rid pollution from the Great Lakes—a water-rich area that, for many people,

27 epitomizes the potential of pollution control and remediation programs to rehabilitate
28 water resources. To achieve this, the GLWQA has focused water pollution control and
29 remediation actions on heavily polluted locations known as Areas of Concern (AOCs).
30 Canada and the United States have collectively spent \$23 billion cleaning up these areas
31 (Hartig et al., 2020). I estimate the benefit of cleaning up part of the Milwaukee Estuary
32 AOC using home sales data before and after a major cleanup event. My identification
33 strategy exploits variation in where remediation occurred to attribute household location
34 decisions and willingness to pay to improvements in the AOC.

35 This paper makes two novel contributions to research on the economics of water
36 quality. First, it estimates the benefit of an AOC remediation action *ex post*. For
37 two decades, the standard approach has relied on property value hedonics and sales
38 data collected in the *ex ante* period. To estimate the benefits of remediation before
39 actual cleanup, economists have relied on proximity to the AOC as a disamenity in the
40 hedonic price function (Braden et al., 2004, 2008; McMillen, 2017; Patunru et al., 2007;
41 Stoll et al., 2002).¹ A weakness of this approach is that unobserved attributes could be
42 correlated with proximity to the AOC. To get around this endogeneity problem, several
43 papers have used choice experiments or combined actual and hypothetical property
44 sales data (Chattopadhyay et al., 2005; Phaneuf et al., 2013). However, the accuracy of
45 these estimates—whether based on distance and actual home sales, or on hypothetical
46 cleanup—remains unclear. This paper helps fill this information gap by measuring the
47 effect of cleanup using pre and post home sales and spatial variation in remediation.
48 This pre-post, control-treated comparison reduces the channels of bias that could have
49 affected prior hedonic estimates. My approach is also unique in that it estimates the
50 benefits of cleanup using a residential sorting model. Sorting models are well-suited
51 to measuring the effects of water quality on residential locations and willingness to pay

¹Isely et al. (2018) uses a hedonic property value model and data in the *ex post* period to value AOC shoreline improvements, but does not use a quasi-experimental design to measure the effect of shoreline quality on prices.

52 because they combine information about housing characteristics with the structure of the
53 choice process, allowing them to account for heterogeneous preferences while predicting
54 the outcomes of large shocks (Kuminoff et al., 2013). Yet little prior work has used
55 sorting models to value water quality improvements.

56 Second, this paper attempts to shine new light on underlying inequities by examining
57 group-level heterogeneity in residential sorting patterns. There is growing concern
58 among community advocates and government officials that cleaning up pollution tends
59 to benefit some groups more than others due to differences in income, political power,
60 and discrimination. Cleanup actions that ignore these structural factors can fail to correct
61 inequitable exposure and contribute to environmental gentrification (Banzhaf et al.,
62 2019; Melstrom and Mohammdi, 2021). Environmental gentrification occurs when envi-
63 ronmentally motivated migration patterns alter the demographic mix in a neighborhood,
64 for example when rich replace poor households due to differences in budget constraints,
65 affordability, and willingness to pay (Banzhaf and Walsh, 2008). This kind of sorting
66 means that disparities in pollution exposure (e.g. between rich and poor households)
67 will persist even if cleanup occurs in disadvantaged neighborhoods, which can fuel en-
68 vironmental justice concerns. By looking for evidence of income and race group-based
69 sorting on cleanup, this paper contributes to an expanding pool of research on the dis-
70 tributional consequences of environmental policies (Bakkensen and Ma, 2020; Banzhaf,
71 2012; Banzhaf et al., 2019; Depro et al., 2015).

72 The remainder of the paper is organized as follows. Section 2 briefly describes the
73 history of the GLWQA and AOCs and the geography of the study area. Section 3 de-
74 scribes the residential sorting model. Section 4 summarizes the data. Section 5 presents
75 and discusses the results of the sorting model and willingness to pay estimates. Section
76 6 concludes.

77 2 Background on the study area

78 In 1972, Canada and the United States signed the Great Lakes Water Quality Agreement
79 (GLWQA) to address widespread, deteriorating water quality conditions in the Great
80 Lakes. The GLWQA committed the countries to the adoption of common water quality
81 standards and legislation controlling municipal, industrial and agricultural pollution
82 flowing into the lakes. Water pollution is a prevalent and harmful outcome of economic
83 activity in the Great Lakes because the lakes border many of the largest metropolitan
84 areas in the United States and Canada, including Chicago, Detroit and Toronto, while
85 serving as a source of drinking water and recreation for over 30 million people. The
86 GLWQA was revised significantly in 1987 to focus restoration efforts on 43 Areas of
87 Concern (AOCs) suffering from persistent industrial contamination. As defined in the
88 GLWQA, AOCs are areas that as a result of toxic substances fail to support one or
89 more 14 beneficial uses, which range from animal deformities to beach closings. Often
90 associated with the locations of Superfund sites in the United States, AOCs require
91 extensive remediation before they can be considered free of pollution-related health
92 risks.

93 Cleaning up AOCs has proven challenging and expensive (International Joint Com-
94 mission, 2021). Between 1985 and 2019, the United States and Canada spent \$22.78
95 billion on cleanup actions, or nearly half a billion dollars per AOC (Hartig et al.,
96 2020). Wastewater treatment plant upgrades account for the largest share of expen-
97 ditures (72%), followed by sediment remediation and brownfield cleanup (23%) (Hartig
98 et al., 2020). Seven AOCs have been “delisted” and two more are currently “in re-
99 covery” while officials verify the restoration of beneficial uses (Collaboration for Great
100 Lakes Water Quality, 2021). Restoration and rehabilitation actions have occurred at all
101 of the remaining 34 AOCs, which suggests the potential for at least partial recovery at
102 each site.

103 The Milwaukee Estuary AOC was designated in 1987. The AOC includes nearly all
104 of Milwaukee's Lake Michigan shoreline, as well as its harbor area and connecting trib-
105 utaries, including the Milwaukee River. Polychlorinated biphenyls (PCBs) have been
106 the focus of cleanup actions since \$3 billion in improvements to the regional wastewater
107 treatment system in the 1990s and 2000s. PCBs are linked to cancer and compromised
108 immune, reproductive and endocrine systems. In Milwaukee, PCBs are concentrated
109 in sediments near impoundments and river bends, and are responsible for most of the
110 beneficial use impairments (BUIs) in the AOC. Between 2011 and 2015, the U.S. Envi-
111 ronmental Protection Agency led action on one of the most significant PCB deposits in
112 the upper estuary, in the Milwaukee River near Lincoln Park (Dow, 2020). The source
113 of these PCBs is unknown but likely from one or more defunct industrial operations in
114 northwest Milwaukee. This area of the AOC was responsible for increasing PCB trans-
115 port from about 5 kg/year upstream to about 15 kg/year downstream (Wisconsin DNR,
116 2005). Cleanup removed contaminated sediments at a cost of \$43 million, the largest ex-
117 penditure on sediment removal in the AOC to date.² The next largest suspected source
118 of PCBs is located in the lower estuary adjacent to the city center, approximately five
119 miles downstream from Lincoln Park (Dow, 2020).

120 Cleanup of the upper Milwaukee River occurred in two phases. Phase 1 removed
121 5,000 pounds of PCBs as well as 4,000 pounds of polynuclear aromatic hydrocarbons
122 (PAHs) in 2011-2012. Phase 2 removed 2,300 pounds of PCBs and 12,700 pounds of
123 PAHs in 2014-2015. In addition to PCB and PAH contaminated sediment removal, the
124 remediation project restored wetland habitat. Both phases were advertised by local
125 environmental groups and media as a success story in cleaning up the river.³ The public

²This remediation project targeted the following BUIs in the Milwaukee River: restrictions on fish and wildlife consumption, degradation of fish and wildlife habitat, fish tumors or other deformities, degradation of benthos, restrictions on dredging activities, and loss of fish and wildlife habitat.

³For example, see the reports by Fox 6 Milwaukee (2012), Healing Our Waters Great Lakes Coalition (2012), and Urban Milwaukee (2015). In 2014, the *Milwaukee Journal Sentinel* ran a series of "River Reborn" stories that ascribed growing housing demand near the Milwaukee River to local water quality improvements (Milwaukee Journal Sentinel, 2014).

¹²⁶ could have known about PCBs in this section of the river since 1981, when the Wisconsin
¹²⁷ Department of Natural Resources issued the first fish advisory (Urban Milwaukee, 2015).
¹²⁸ However, awareness of contamination likely increased after 2008, when officials updated
¹²⁹ the AOC boundary to include portions of the upper Milwaukee River and connecting
¹³⁰ tributaries. Thus, public perceptions of contamination in the Milwaukee River could
¹³¹ have begun to shift in 2011, once it became known that water quality in the river was
¹³² improving.

¹³³ 3 Empirical strategy

¹³⁴ 3.1 Sorting model

¹³⁵ I measure the effect of cleanup on Milwaukee residents using a sorting model. The
¹³⁶ sorting model describes a household's residential location as a function of housing cost,
¹³⁷ neighborhood attributes, and household characteristics. The choice set consists of census
¹³⁸ tracts, which I will refer to as residential locations. Each household i chooses to live
¹³⁹ in residential location $j \in A_t$ at time t with utility U_{ijt} . The choice set A_t is time-
¹⁴⁰ specific because access to residential locations can shift from year to year depending on
¹⁴¹ sale locations. Utility depends on δ_{jt} common to all homebuyers as well an individual-
¹⁴² specific component λ_{jt}^i , both of which are a function of observable location attributes.
¹⁴³ Utility also depends on unobservable location attributes ξ_{jt} and idiosyncratic tastes ϵ_{jt}^i :
¹⁴⁴

$$V_{jt}^i = \delta_{jt} + \xi_{jt} + \lambda_{jt}^i + \epsilon_{jt}^i. \quad (1)$$

¹⁴⁵ The utility function in equation (1) is based on the models developed by Bayer et al.
¹⁴⁶ (2007) and Bakkensen and Ma (2020). Let P_{jt} denote the price of living in j and X_{1jt}
¹⁴⁷ other location attributes that households have homogeneous preferences over. Then δ_{jt}
¹⁴⁸ can be written as

$$\delta_{jt} = \alpha_{X_1} X_{1jt} - \alpha_P P_{jt} \quad (2)$$

149 where α_{X1} and α_P are preference parameters.

150 I model the effect of cleanup in the individual-specific component λ_{jt}^i . Research on
151 AOCs suggests that the damages of pollution fall rapidly with distance, with the largest
152 effects within a few blocks of polluted shoreline (Braden et al., 2008; McMillen, 2017).
153 The effect of cleanup on utility is thus likely to be concentrated on households that live
154 closest to the water quality improvement. Let d_j measure the distance from location j to
155 the nearest point on the AOC. Furthermore, let $TREAT_j$ indicate the locations whose
156 nearest point experienced a water quality improvement, and $POST_t$ indicate the time
157 after the improvement. Then I model the effect of cleanup in Milwaukee as

$$\lambda_{jt}^i = \alpha_{AOC}^i \frac{1}{d_{jt}} + \alpha_T^i \frac{TREAT_j}{d_{jt}} + \alpha_{TP}^i \frac{TREAT_j}{d_{jt}} \times POST_t + \alpha_{X2}^i X_{2jt} \quad (3)$$

158 where X_{2jt} includes any other location attributes that households may have individual-
159 specific tastes for. The term $1/d_{jt}$ is a gravity index that measures the proximity of
160 a location to the AOC. Distance-based measures of pollution exposure that place more
161 weight on near than far locations are widely used in hedonic property value research (e.g.
162 Banzhaf et al. (2019); Cameron (2006); Isely et al. (2018); Kiel and Williams (2007)).
163 The gravity index used here assumes that the proximity effect increases at an increasing
164 rate as one moves toward the AOC. The coefficient α_{AOC}^i measures the desirability of
165 living near the AOC. Whether the coefficient is positive or negative will depend on
166 the precise mix of impaired and unimpaired beneficial uses in the AOC, although prior
167 research implies that the sign is negative—i.e. moving away from the AOC increases
168 utility. The coefficient α_T^i measures any difference in desirability between living near
169 the treated area and the rest of the AOC, before cleanup. The coefficient of interest,
170 α_{TP}^i , measures the effect of cleanup on the desirability of living in the treated area. If
171 households prefer locations near better water quality, then $\alpha_{TP}^i > 0$.

172 I define $TREAT_j$ as the upper estuary of the Milwaukee River running downstream

173 from the remediated sediment area. The upper estuary includes reaches 1-3 in the AOC's
174 Remedial Action Plan, between Lincoln Park and the Humboldt Avenue Bridge, which
175 covers a distance of five miles (Dow, 2020). I focus on the effect in the upper estuary,
176 although restoration actions could have improved water quality in the lower estuary, for
177 two reasons: first, there are sharp differences in aesthetics and water-related activities
178 between the sections and, second, water quality improvements may have attenuated
179 downstream. Between Lincoln Park and the Humboldt Avenue Bridge, the river is
180 publicly accessible via a linear park and greenway, and there are no waterfront properties.
181 Below the bridge, the riverfront is highly developed with private ownership, but the water
182 is more likely to be impacted by urban runoff and sewer overflow. Hedonic research on
183 AOCs has found the effect of pollution can vary between parts of an AOC (Braden
184 et al., 2008). I explore alternative definitions of the treated area, including portions of
185 the lower estuary, in an appendix.

186 I define $POST_t$ as 2017, a full year after completion of the last cleanup action in the
187 upper Milwaukee River. To provide a clean pre-post comparison in estimation, I restrict
188 t to the two years that bookend the cleanup, rather than including every year between
189 2011 and 2017. The extent that household behaviors began to shift in 2011 or earlier, in
190 anticipation of cleanup, is difficult to evaluate because of limited sales data before this
191 time, though Braden et al. (2008) finds that households continued to discount proximity
192 to the Sheboygan River AOC even after remediation plans were announced. An increase
193 in demand for homes in anticipation of cleanup would attenuate the coefficient of interest,
194 providing an interpretation that potentially understates the importance of water quality
195 in location decisions. Nevertheless, if the housing market takes several years to adjust
196 to a new equilibrium following "disturbance" by the water quality improvement, then
197 the empirical strategy used here should provide at least a partial estimate of the total
198 effect.

199 Initially, I assume that household preferences are homogenous by fixing $\alpha_\ell^i = \alpha_\ell$

200 for $\ell = AOC, T, TP, X_2$. This simplification is important for two reasons. First, as
201 described below, I can estimate equations (2) and (3) assuming $\alpha_\ell^i = \alpha_\ell$ using arms-
202 length sales records alone, without relying on a match to buyer characteristics; this
203 match is imperfect and thus a potential source of measurement error. Second, it makes
204 for a cleaner comparison between the results in this paper and research that uses the
205 hedonic property value model and assumes preference homogeneity.

206 In addition to the baseline specification above, I estimate versions of the model
207 that include constants for Public Use Microdata Areas (PUMAs), which are Census
208 geographies that nest tracts, as well as PUMA-year effects (i.e. PUMA-by-POST effects)
209 to control for unobservable location attributes. I also perform a placebo test of the
210 identification strategy by replacing $TREAT_j$ with a placebo indicator for locations whose
211 closest point to the AOC is in the upper Menominee River. The Menominee River passes
212 through Milwaukee and is part of the AOC but did not experience any cleanup actions
213 between 2011 and 2017. There is no reason for household preferences for this area to
214 change during the study period, so a placebo effect different from zero would suggest
215 bias in the research design.⁴ I also estimate the specifications described above using
216 census block groups rather than tracts as residential locations. Finding the same or
217 similar coefficients when location demand is modeled at a finer level of spatial precision
218 should ease concerns that the estimates are biased due to the ecological fallacy (Banzhaf
219 et al., 2019).

220 Next, I estimate the model with location choices based on Home Mortgage Disclosure
221 Act (HMDA) records rather than arms-length sales. HMDA records provide a source of
222 buyer characteristics that I can use to account for heterogeneous preferences. Like arms-
223 length sales, mortgage-backed purchases make up a large share of real estate transactions,
224 so one would expect the results to be similar if I based residential locations on either

⁴To be clear, in a residential sorting context, a placebo effect like this could be real for a sufficiently large shift in the actual effect, although in the opposite direction. That is, if households re-sorted toward the Milwaukee River because they valued cleanup, then demand for homes would be lower in other locations like near the Menominee River, and the placebo effect would appear to be negative.

225 arms-length sales or mortgage-backed purchases.

226 3.2 Preference heterogeneity

227 Finally, I estimate the model allowing households to have heterogeneous preferences
228 based on their race and income. HMDA records include buyer demographics, so I can
229 use the mortgage-backed purchase data to estimate equation (3) with the coefficients a
230 function of race and income characteristics z_k^i :

$$\alpha_\ell^i = \alpha_{0,\ell} + \sum \alpha_{k,\ell} z_k^i. \quad (4)$$

231 where $\ell = AOC, T, TP, X_2$. The parameter $\alpha_{0,\ell}$ measures the effect of a location at-
232 tribute on utility in the base group and $\alpha_{k,\ell} z_k^i$ measures the additional effect on utility
233 associated with household characteristic z_k^i . The base group includes white, Asian and
234 Native American persons of average income. Characteristics z_k^i include indicators for
235 whether the buyer identifies as Black or Hispanic and a variable measuring demeaned
236 household income. If households benefit from cleanup regardless of their characteristics,
237 then $\alpha_{0,TP}^i + \alpha_{k,TP}^i z_k^i > 0$ for any k . Willingness to pay, however, may not be positive
238 for households who face structural constraints that make buying a home near the wa-
239 ter challenging or impossible. This could occur because of, for example, constraints on
240 ability to pay or discriminatory practices that steer away certain demographic groups
241 (Christensen et al., 2020).

242 3.3 Estimation

243 I estimate the model using conditional logit regression assuming households live in loca-
244 tion j where $V_{jt}^i > V_{ht}^i$ for all $j \neq h$ and that ϵ_{jt}^i is distributed extreme value. I measure
245 d_{jt} as the distance in kilometers from the centroid of geocoded home sales in a location
246 to the nearest point on the AOC, and P_{jt} as a quality-adjusted price index based on

²⁴⁷ sales prices.⁵ The set of attributes X_{1jt} includes tract-level median income, population
²⁴⁸ density, percent high school degree, crime density and three land use variables measuring
²⁴⁹ the share of developed land, owner-occupied housing and tree cover within a 1 kilome-
²⁵⁰ ter radius. The attributes X_{2jt} include the percent of Black and percent of Hispanic
²⁵¹ residents.

²⁵² I estimate the model using maximum likelihood. In contrast to other sorting models
²⁵³ in the literature, I do not use contraction mapping or a two stage procedure to estimate
²⁵⁴ and then decompose the mean utilities (i.e. δ_{jt}) to estimate the utility function coeffi-
²⁵⁵ cients. Rather, I estimate the coefficients in one step. As with other sorting models in
²⁵⁶ the literature, though, I need to employ an instrumental variables strategy to control
²⁵⁷ for unobserved attributes and price endogeneity.

²⁵⁸ I correct for price endogeneity using a control function, which is an extra term in
²⁵⁹ the utility function that conditions out the unobserved variables causing endogeneity
²⁶⁰ (Petrin and Train, 2010). The method works as follows: First, I construct a set of
²⁶¹ instruments correlated with price that do not enter utility directly following the logic
²⁶² of Bayer and Timmins (2007) and Bakkensen and Ma (2020). The logic is that price
²⁶³ depends on observable and unobservable attributes in j but also the attributes of other
²⁶⁴ residential locations $-j$, because demand must be affected by the availability and quality
²⁶⁵ of substitutes. The attributes of distant substitute locations are a source of instruments
²⁶⁶ because they will correlate with price without directly affecting the utility of living in
²⁶⁷ j . I construct instruments by calculating the shares of developed land, owner-occupied
²⁶⁸ housing and tree cover in Milwaukee within 1, 3, and 3+ kilometer radii around the
²⁶⁹ centroid of each residential location. I allow the attributes of the nearest locations (i.e.
²⁷⁰ 1 kilometer) to directly enter the utility function and use the attributes of the most
²⁷¹ distant locations (i.e. 3+ kilometers) as instruments. Second, I calculate the residuals

⁵I construct the index by regressing individual transactions on housing characteristics, including indicators for duplexes and condominiums and polynomials for age and square footage, as well tract fixed effects. I then use the tract fixed effects estimates as tract-level price indices.

272 μ_{jt} from the regression of price on the location attributes that directly enter the utility
273 function and the instruments. Third, I insert the residuals into the utility function
274 with the following flexible form $\lambda_1\mu_{jt} + \lambda_2\mu_{jt}/d_{jt}$, where λ_1 and λ_2 are parameters to
275 be estimated. With valid instruments, the control function becomes a proxy for local
276 unobservables, rendering the remaining variation in P_{jt} exogenous. Control functions
277 are well suited to correcting endogeneity in discrete choice models, although standard
278 errors need to be corrected for two-stage estimation, which I do by bootstrapping (Liu
279 et al., 2010; Malone and Lusk, 2017; Wrenn et al., 2017).

280 4 Data

281 The primary data set comes from the Milwaukee city assessor's office and includes the
282 address, price, property type, year built, square footage, number of stories, number of
283 rooms, and building style for 34,523 arms-length transactions between 2002 and 2018.⁶
284 I narrow sales to detached single family homes, duplexes and condominiums sold in 2011
285 and 2017 with a price per square between \$25 and \$500. To link sales to tracts, I use
286 the U.S. Census Bureau's batch geocode tool, and I assign any sale unmatched by the
287 tool to the nearest tract based on the coordinates of the home and the centroid of each
288 tract. These refinements leave 5,807 sales to estimate the model.

289 I then calculate the distance to the AOC using the coordinates of each home and the
290 coordinates of the Milwaukee, Menominee and Kinnickinnick Rivers as well as the Lake
291 Michigan shoreline. The average distance is 3.47 kilometers, with a range of 0.07 to
292 12.98 kilometers. One kilometer is about six residential blocks in Milwaukee. There are
293 623 sales within 1 kilometer of the upper Milwaukee River. More properties were sold
294 in this area after cleanup, from 11.5% of all sales in 2011 to 12.5% of all sales in 2017.
295 After calculating the gravity index and the treatment variables, I match each sale to

6This data can be accessed at <https://data.milwaukee.gov/dataset/property-sales-data>. For less than 1% of sales I imputed missing age and square footage using the average of the observed values.

²⁹⁶ location attribute data based on tracts, and then construct the choice set by collapsing
²⁹⁷ the sales data into a database of tract and year averages.

²⁹⁸ The tract attributes include median income, population density, percent Black res-
²⁹⁹ idents, percent Hispanic residents, percent high school graduates and percent owner
³⁰⁰ occupied housing from the American Community Survey (ACS). I use the ACS five-year
³⁰¹ samples in the years preceding the transactions made in 2011 and 2017, respectively. The
³⁰² attributes also include crime data from the Wisconsin Incident Based Reporting System
³⁰³ (WIBRS), which is Wisconsin's version of the FBI's National Incident-Based Reporting
³⁰⁴ System. Crime incidents in Milwaukee's WIBRS include arson, assault, burglary, crim-
³⁰⁵ inal damage, homicide, robbery, sexual offense and theft. To measure crime, I calculate
³⁰⁶ the average number of annual incidents in each tract in 2006-2010 and 2012-2016, divided
³⁰⁷ by tract area, which I assign to transactions made in 2011 and 2017, respectively. The
³⁰⁸ assumption here is that sales are based on the demographics and crimes that households'
³⁰⁹ could have known about in the years leading up to the move. I measure the amount
³¹⁰ of developed land and tree cover in each tract using data from the EPA's EnviroAtlas
³¹¹ Land Cover Summary (LCSum) file.

³¹² Table 1 presents statistics from the sale microdata matched to the tract attributes,
³¹³ with Panel A showing homes within 1 kilometer of the AOC whose closest point lies on
³¹⁴ the upper Milwaukee River (i.e. where water quality improved), and Panel B showing
³¹⁵ all other homes. Variables denominated in dollars area adjusted to 2017 dollars using
³¹⁶ the Consumer Price Index for urban consumers in the Milwaukee-Racine metropolitan
³¹⁷ area. Panel A shows that the average price was \$205,000 in 2011 and \$209,000 in 2017
³¹⁸ for homes nearest the upper Milwaukee River, after adjusting for inflation. Panel B
³¹⁹ shows that the average price was \$155,000 in both 2011 and 2017 for homes in the rest
³²⁰ of Milwaukee. So between 2011 and 2017, average homes prices near where water quality
³²¹ improved increased modestly while prices in the rest of the city changed very little.

322 The third data set comes from Home Mortgage Disclosure Act (HMDA) records
323 published by the Consumer Financial Protection Bureau. This mortgage-backed buyer
324 data includes buyers' income, race, loan amount and county, and the census tract of their
325 home. In the heterogeneous sorting model, I use buyer data from mortgages for first lien,
326 owner-occupied, 1-4 family homes purchased in 2012 and 2017. The first year is 2012
327 rather than 2011 because prior to 2012 mortgage companies reported home locations
328 using Census 2000 tracts rather than Census 2010 tracts. I therefore use sales from
329 2012 to describe the tracts buyers in 2012 could have bought their home in. This could
330 create a downward bias in the cleanup effect because buyers could have begun pricing
331 in benefits by 2012, coinciding with the end of Phase 1 cleanup. However, using the
332 arms-length sales data I show in an appendix that willingness to pay estimates are not
333 systematically lower when the base year is changed from 2011 to 2012.

334 The mortgage-backed sales provide a sample of 6,172 buyers. Average income is
335 \$69,790, with a demographic breakdown of 16% Black buyers (considerably less than
336 the percent of black residents in Milwaukee as whole) and 14% Hispanic buyers (just
337 below the percent of Hispanic residents in Milwaukee). Because white buyers make up
338 most of the remaining racial and ethnic breakdown, with a small percentage of Asian
339 and Native American buyers, I refer to the group of non-Black and non-Hispanic buyers
340 as "predominantly white."⁷ Home locations in the mortgage-backed sales data do not
341 perfectly match the locations in the arms-length sales data because the former includes
342 sales between related parties, while the latter includes cash sales. Nevertheless, tract-
343 level sales counts in the two databases show a high level of correspondence, with a
344 correlation coefficient of 0.91.

⁷Approximately 6% of buyers are Asian and less than 1% are Native American.

³⁴⁵ **5 Results and discussion**

³⁴⁶ **5.1 Baseline model and sensitivity analyses**

³⁴⁷ Table 2 presents the key coefficients in the baseline model, estimated using location
³⁴⁸ choices based on arms-length sales in 2011 and 2017. The positive and significant coef-
³⁴⁹ ficients in the control function confirm the role of omitted location attributes correlated
³⁵⁰ with price.⁸ Next, note the positive and significant coefficient on the gravity index (90%
³⁵¹ CI 0.079 to 0.155). This indicates that households actually prefer locations near the
³⁵² AOC. In contrast to prior research on AOCs, in Milwaukee the amenities associated
³⁵³ with living near the water appear valuable enough that households place a premium
³⁵⁴ on rather than discounting proximity to the water, despite the large number of BUIs.
³⁵⁵ Furthermore, the positive and significant coefficient on treated area ($TREAT \times 1/d$;
³⁵⁶ 90% CI 0.026-0.155) shows that households place a large premium on living near the
³⁵⁷ upper estuary portion of the Milwaukee River. The water quality improvement that
³⁵⁸ is the focus here therefore appears to have occurred near locations that were already
³⁵⁹ relatively desirable. Turning to the cleanup effect, the coefficient is positive with a con-
³⁶⁰ fidence interval that just overlaps zero (90% CI -0.006 to 0.124). We can convert this
³⁶¹ coefficient into a measure of average willingness to pay for cleanup by multiplying it by
³⁶² the average gravity index in the treated area, which is 0.67, and then dividing by the
³⁶³ price coefficient; this indicates an average willingness to pay of \$4,863 for cleanup.

³⁶⁴ Now consider the regressions in columns (2) and (3), which employ different varieties
³⁶⁵ of fixed effects to control for unobservable measures of quality in different parts of the
³⁶⁶ city. Column (2) adds five constants for Milwaukee's PUMAs, which closely align with
³⁶⁷ the city's center, north, south, east and west sides, and column (3) adds ten PUMA-

⁸The instruments provide significant explanatory power in the first stage regression, with a joint test F-statistic of 9.40. Without the control function, the price coefficient is essentially zero (0.0009), so the control function adjusts the price coefficient in the expected direction. Results without the control function available upon request.

368 year effects. Overall, the coefficients in columns (1) and (2) are similar, suggesting little
369 influence of correlated unobservables at the PUMA level. The coefficient of interest is
370 just significantly different from zero (90% CI 0.0003 to 0.133) in column (2), with an
371 implied willingness to pay for cleanup of \$6,549. However, the coefficient increases in
372 magnitude and significance (90% CI 0.123-0.282) when the regression includes PUMA-
373 year effects, with an implied willingness to pay of \$19,031. We can clearly reject the null
374 of no time-varying unobservables at the PUMA level, so this regression should increase
375 confidence that the water quality improvement has a real effect on household surplus.⁹

376 The regression in column (4) replaces the treated area indicator with a placebo
377 indicator for locations nearest to the upper Menominee River. The coefficient on the
378 placebo area gravity index is significantly negative (90% CI -0.250 to -0.045), which
379 shows that living near this section of the AOC is less desirable than other sections.
380 However, the coefficient measuring the placebo cleanup effect itself is close to zero (90%
381 CI -0.121 to 0.121), which suggests very little change in the desirability of this part of
382 the city during the study period. For an alternative placebo test area, see the appendix.

383 Overall, the three specifications in Table 2 provide evidence that households value
384 the water quality improvement in the Milwaukee River. The coefficient of interest is
385 not significantly different from zero in the most basic regression but increases in size
386 and passes conventional significance levels when the analysis controls for richer sources
387 of unobservables. Average willingness to pay for the water quality improvement ranges
388 from \$4,863 to \$19,031, depending on the regression, or approximately 4% to 15% of
389 the average sale price. These estimates lie firmly in the range reported in prior research,
390 which run from Phaneuf et al. (2013), who estimate that households living within one
391 kilometer have willingness to pay of \$4,339-\$10,831 or 4-11% of mean sale price to clean
392 up the Buffalo River AOC, to Patunru et al. (2007), who estimate willingness to pay of
393 \$54,807 or 24% of average home value to clean up the Waukegan Harbor AOC. These

⁹The χ^2 statistic in a likelihood ratio test is 263, compared with critical value of about 18 at the 0.05 significance level when there are 10 degrees of freedom.

394 estimates therefore affirm the benefit estimates in prior research on AOCs. An important
395 caveat, however, is that the cleanup action I focus on produced a partial water quality
396 improvement and that further remediation needs to be done in the Milwaukee Estuary
397 AOC.

398 Now consider the results in Table 3, which presents the coefficients when the model
399 uses block groups as residential locations. In the first specification, the coefficient of
400 interest is positive and significant (90% CI 0.091-0.191).¹⁰ The coefficient is also sig-
401 nificantly positive in the other two specifications, and insignificant in the placebo test,
402 which provides strong evidence that households value the water quality improvement in
403 the Milwaukee River. Converting the coefficients into estimates of willingness to pay,
404 the first three specifications in Table 3 indicate that cleanup is worth \$9,290, \$11,902
405 and \$19,577, respectively, to households in the treated area.

406 Table 4 presents the coefficients when I base location choices on mortgage-backed
407 purchases in 2012 and 2017 (for results based on arms-length sales in 2012 and 2017,
408 see the appendix). In columns (1) and (2), the coefficient of interest is not significantly
409 different from zero but yields an average willingness to pay of \$4,467 and \$9,187, re-
410 spectively, which are in-line with the estimates in Table 2. In column (3), the coefficient
411 is significantly positive (90% CI 0.078 to 0.273), with an implied willingness to pay of
412 \$30,882. Overall, results are similar if location choices are based on arms-length sales or
413 mortgage-backed purchases.

414 Between two different definitions of the location alternatives and two sources of
415 choice data, I find evidence Milwaukee households value water quality improvements. I
416 subjected the identification strategy to a placebo test, which different versions of the
417 model passed. Estimates indicate that the property market does not fully discount
418 proximity to the AOC; in fact, evidence indicates that households prefer living near
419 the water. Nevertheless, demand for homes increased further in the areas where water

¹⁰Switching from tracts to block groups, the instruments are stronger in the price regression used to generate the control function, with a joint test F-statistic of 18.74.

⁴²⁰ quality improved.

⁴²¹ 5.2 Preference heterogeneity

⁴²² I now turn to the question of who benefits from cleanup. Table 5 presents the key co-
⁴²³ efficients in the heterogeneous sorting model, with location choices based on mortgage-
⁴²⁴ backed purchases. This model interacts the gravity index and treated area terms with
⁴²⁵ three buyer characteristics: income and Black and Hispanic identity. Although not
⁴²⁶ shown in the table, the model also includes interactions between the shares of Black
⁴²⁷ and Hispanic residents in a location and the buyer characteristics, to control for any
⁴²⁸ group-specific preferences for amenities that could be correlated with local demograph-
⁴²⁹ ics. The main coefficient of interest (i.e. $\alpha_{0,TP}$ in equation 4) measures the effect of
⁴³⁰ cleanup on average income, white household utility, while the coefficients on the inter-
⁴³¹ actions measure the additional effects of cleanup on the utility of Black, Hispanic and
⁴³² higher-income households. In all three specifications, the coefficients on the interactions
⁴³³ are statistically insignificant. Put simply, the results provide no evidence of system-
⁴³⁴ atic differences in the cleanup effect between race and income groups. However, the
⁴³⁵ interaction effects associated with the treated area itself imply that the water quality
⁴³⁶ improvement occurred in an area preferred mainly by high income, predominantly white
⁴³⁷ households. The coefficient on the treated area gravity index (i.e. $\alpha_{0,T}$) is significantly
⁴³⁸ negative, implying that predominantly white households tend to locate near other parts
⁴³⁹ of the AOC rather than the upper Milwaukee River, other things being equal. However,
⁴⁴⁰ the coefficients on the Black, Hispanic and income interactions are significantly negative,
⁴⁴¹ negative and positive, respectively, which implies that Black, Hispanic and low-income
⁴⁴² households are even less likely to locate near the upper Milwaukee River. This means the
⁴⁴³ benefits of cleanup, which occurred in the upper Milwaukee River, disproportionately
⁴⁴⁴ flowed toward predominantly white, high-income households.

⁴⁴⁵ The potential role of heterogeneous sorting in concentrating pollution among poor

446 and minority households can make cleanup efforts controversial. Inequalities in afford-
447 ability and discrimination can lead to income and race-based differences in who moves in
448 and who moves out as competition for housing near the cleanup area heats up. Cleanup
449 can become controversial because of perceptions that high income, white households are
450 the main beneficiaries. The results in this paper, however, do not provide significant
451 evidence of income and race-based sorting after cleanup. If there was, then we would see
452 income and racial differences in household preferences for the treated area after water
453 quality improved. Preference parameters associated with the improvement are too im-
454 precisely measured to conclude that cleanup contributed to re-sorting along income and
455 race. This could be interpreted as good news for community and environmental justice
456 advocates concerned about the effect of cleanup on displacement.

457 The lack of significant evidence of heterogeneous sorting on cleanup in this paper
458 comes with several caveats, however. First, there is substantial uncertainty associated
459 with the coefficients measuring heterogeneity in the model, so it is not necessarily the
460 case that cleanup affects income and race groups similarly. For example, the hypothesis
461 that predominantly white willingness to pay exceeds Black willingness to pay for cleanup
462 by \$10,000 cannot be rejected at conventional levels based on the specification with
463 PUMA-year effects. Second, the results show that high income and predominantly
464 white households were more likely to locate in the treated area before water quality
465 improved than low income, Black and Hispanic households. Remediation may have
466 had little effect on sorting patterns because the groups most likely to move toward the
467 water were already living there. Third, the lack of significant evidence contrasts with
468 prior research that finds heterogeneous sorting contributes to disproportionate pollution
469 exposure among poor and minority households (Christensen et al., 2020; Depro et al.,
470 2015; Melstrom and Mohammdi, 2021).

⁴⁷¹ **5.3 Additional discussion**

⁴⁷² The results provide evidence that households value water quality improvements through
⁴⁷³ sediment remediation. The baseline model shows that residential demand increased
⁴⁷⁴ where water quality improved. Measuring proximity using a gravity index shows that
⁴⁷⁵ the housing market puts a premium on living near the AOC, likely due to the amenity
⁴⁷⁶ benefits of water, and that this premium increased the most in locations closest to the
⁴⁷⁷ improvement. Spatial attenuation in benefits is consistent with prior research on the
⁴⁷⁸ extent of water quality impacts in the housing market around AOCs. McMillen (2017)
⁴⁷⁹ estimates that cleanup of a portion of the Grand Calumet River AOC increased the sale
⁴⁸⁰ price of properties adjacent to the river by 27%, and for properties within three blocks by
⁴⁸¹ 18%. Phaneuf et al. (2013) estimates damages in the 6-15% range for homes within 0.5
⁴⁸² kilometers and 3-8% for homes within 1.5 kilometers of the Buffalo River AOC. Braden
⁴⁸³ et al. (2008) estimates losses of 12-20% for adjacent properties and losses of 3-5% for
⁴⁸⁴ properties three kilometers away from the Sheboygan River AOC. Using the baseline
⁴⁸⁵ model with PUMA-year effects, I find that owner willingness to pay is about 29% of
⁴⁸⁶ home values at 0.5 km and 12% of home values at 1.5 km from the Milwaukee River.

⁴⁸⁷ Back of the envelop calculations suggest that cleanup passes the benefit-cost test.
⁴⁸⁸ Remediation of the Milwaukee River stretch studied here cost \$43 million, not includ-
⁴⁸⁹ ing earlier improvements in wastewater treatment and sewer overflow. About 46,000
⁴⁹⁰ households live nearest the part of the AOC where water quality improved. If average
⁴⁹¹ household willingness to pay for cleanup is \$19,031, then the aggregate benefit would
⁴⁹² be \$875 million. This is in line with other estimates, in particular, Braden et al. (2010)
⁴⁹³ used benefit transfer to estimate the benefits of fully remediating the Milwaukee AOC
⁴⁹⁴ to be worth \$1.6 billion, adjusted for inflation.

⁴⁹⁵ However, it should be noted that the results are somewhat sensitive to model spec-
⁴⁹⁶ ification. Estimates of willingness to pay were lower in model specifications that did

497 not include the richest variety of fixed effects. These fixed effects narrow the potential
498 channels of omitted variables bias, but they could also amplify attenuation bias in the
499 price coefficient, potentially inflating willingness to pay estimates. Nevertheless, even if
500 willingness to pay for the water quality improvement was as low as, say, \$4,863, based
501 on the baseline model without fixed effects, the aggregate benefit would still exceed the
502 cost (\$224 million vs \$43 million). Another important caveat is that the benefit esti-
503 mates are based on single-family home sales, though nearly 60% of homes in Milwaukee
504 are renter-occupied. Actual benefits could be lower than the estimates reported here,
505 due to lower willingness to pay among renters as a result of the short-term nature of
506 rental contracts, differences in income between owners and renters, and discriminatory
507 practices in the rental market.

508 6 Conclusions

509 With water quality a major public concern and growing doubts about the welfare gains
510 from national cleanup policies, there is a pressing need for information about the value
511 of further cleanup efforts (Keiser et al., 2019). In this paper, I measured willingness to
512 pay in the housing market for water quality improvements in the Milwaukee Estuary
513 Area of Concern. Based on variation in the timing and location of remediation actions,
514 I found that willingness to pay increased substantially to live in neighborhoods near
515 where water quality improved.

516 The results were partially inconclusive on the question of who benefits from cleaning
517 up water. Environmental justice advocates have raised concerns that cleanup actions
518 often fail to benefit low income and minority households as a result of environmental
519 gentrification, move-in and displacement by high income and white households. With
520 no significant differences in preferences for cleanup across income and race groups in
521 the model, though, I cannot say that neighborhoods became increasingly high income or

522 white as a result of cleanup. However, the results do suggest that high income and white
523 households benefited disproportionately because water quality improved near already af-
524 fluent neighborhoods. This begs the question, would environmental gentrification have
525 occurred if fewer high income and white households lived near the water prior to reme-
526 diation? Future research could answer this question by studying water cleanup actions
527 closer to low income and minority neighborhoods.

528 Equity implications notwithstanding, the results can be used to inform discussions
529 about cleaning up water pollution at highly contaminated urban sites. The benefit
530 amounts reported in this paper are similar to previously published estimates on the
531 value of AOC remediation, which is good news because most prior research did not
532 use natural experiments to identify the effects of pollution and cleanup. Water quality
533 improvements in the Milwaukee Estuary AOC appear to have delivered hundreds of
534 millions in benefits to the housing market. As benefit-cost analysis often informs the
535 decisions that policy makers and environmental agencies make, this outcome provides
536 important economic justification for restoring water quality in urban settings.

537 **References**

538 Bakkensen, L. A. and L. Ma (2020). Sorting over flood risk and implications for policy
539 reform. *Journal of Environmental Economics and Management* 104, 102362.

540 Banzhaf, H. S. and R. P. Walsh (2008). Do people vote with their feet? an empirical
541 test of tiebout. *American Economic Review* 98(3), 843–63.

542 Banzhaf, S. (2012). *The Political Economy of Environmental Justice*. Stanford University
543 Press.

544 Banzhaf, S., L. Ma, and C. Timmins (2019). Environmental justice: The economics of
545 race, place, and pollution. *Journal of Economic Perspectives* 33(1), 185–208.

546 Bayer, P., F. Ferreira, and R. McMillan (2007). A unified framework for measuring
547 preferences for schools and neighborhoods. *Journal of Political Economy* 115(4),
548 588–638.

549 Bayer, P. and C. Timmins (2007). Estimating equilibrium models of sorting across
550 locations. *The Economic Journal* 117(518), 353–374.

551 Bockstael, N. E., W. M. Hanemann, and C. L. Kling (1987). Estimating the value of
552 water quality improvements in a recreational demand framework. *Water Resources
553 Research* 23(5), 951–960.

554 Braden, J. B., X. Feng, L. Freitas, and D. Won (2010). Meta-functional transfer of
555 hedonic property values: Application to great lakes areas of concern. *Agricultural and
556 Resource Economics Review* 39(1), 101–113.

557 Braden, J. B., A. A. Patunru, S. Chattopadhyay, and N. Mays (2004). Contaminant
558 cleanup in the Waukegan Harbor Area of Concern: Homeowner attitudes and eco-
559 nomic benefits. *Journal of Great Lakes Research* 30(4), 474–491.

560 Braden, J. B., D. Won, L. O. Taylor, N. Mays, A. Cangelosi, and A. A. Patunru (2008).
561 Economic benefits of remediating the Sheboygan River, Wisconsin Area of Concern.
562 *Journal of Great Lakes Research* 34(4), 649–660.

563 Cameron, T. A. (2006). Directional heterogeneity in distance profiles in hedonic property
564 value models. *Journal of Environmental Economics and Management* 51(1), 26–45.

565 Carson, R. T. and R. C. Mitchell (1993). The value of clean water: the public's will-
566 ingness to pay for boatable, fishable, and swimmable quality water. *Water Resources*
567 *Research* 29(7), 2445–2454.

568 Chapman University (2018). America's Top Fears 2018 Chapman University Survey of
569 American Fears. Web. Accessed 3-11-2021.

570 Chattopadhyay, S., J. B. Braden, and A. Patunru (2005). Benefits of hazardous waste
571 cleanup: New evidence from survey-and market-based property value approaches.
572 *Contemporary Economic Policy* 23(3), 357–375.

573 Christensen, P., I. Sarmiento-Barbieri, and C. Timmins (2020). Housing discrimination
574 and the toxics exposure gap in the United States: Evidence from the rental market.
575 *Review of Economics and Statistics*, 1–37.

576 Collaboration for Great Lakes Water Quality (2021). About the Great Lakes Water
577 Quality Agreement. Web. Accessed 3-10-2021.

578 Depro, B., C. Timmins, and M. O'Neil (2015). White flight and coming to the nuisance:
579 can residential mobility explain environmental injustice? *Journal of the Association*
580 *of Environmental and Resource Economists* 2(3), 439–468.

581 Dow, B. (2020). Remedial Action Plan Update for the Milwaukee Estuary Area of
582 Concern. Wisconsin Department of Natural Resources.

583 Dwight, R. H., L. M. Fernandez, D. B. Baker, J. C. Semenza, and B. H. Olson (2005).
584 Estimating the economic burden from illnesses associated with recreational coastal
585 water pollution—a case study in Orange County, California. *Journal of Environmental*
586 *Management* 76(2), 95–103.

587 Fox 6 Milwaukee (2012). Cleanup of Milwaukee River, Lincoln Creek nearly complete.
588 Web. Accessed 3-10-2021.

589 Gallup (2019). Environment. Web. Accessed 3-11-2021.

590 GlobeScan (2009). Water Issues Research. Report for Circle of Blue. Web. Accessed
591 3-11-2021.

592 Hartig, J. H., G. Krantzberg, and P. Alsip (2020). Thirty-five years of restoring Great
593 Lakes Areas of Concern: Gradual progress, hopeful future. *Journal of Great Lakes*
594 *Research*.

595 Healing Our Waters Great Lakes Coalition (2012). Huge source of PCBs removed from
596 Milwaukee River. Web. Accessed 3-10-2021.

597 International Joint Commission (2021). Great Lakes Areas of Concern. Web. Accessed
598 3-10-2021.

599 Isely, P., E. S. Isely, C. Hause, and A. D. Steinman (2018). A socioeconomic analysis of
600 habitat restoration in the Muskegon Lake Area of Concern. *Journal of Great Lakes
601 Research* 44(2), 330–339.

602 Keiser, D. A., C. L. Kling, and J. S. Shapiro (2019). The low but uncertain mea-
603 sured benefits of us water quality policy. *Proceedings of the National Academy of
604 Sciences* 116(12), 5262–5269.

605 Keiser, D. A. and J. S. Shapiro (2019). US water pollution regulation over the past half
606 century: Burning waters to crystal springs? *Journal of Economic Perspectives* 33(4),
607 51–75.

608 Kiel, K. A. and M. Williams (2007). The impact of superfund sites on local property
609 values: Are all sites the same? *Journal of Urban Economics* 61(1), 170–192.

610 Kuminoff, N. V., V. K. Smith, and C. Timmins (2013). The new economics of equi-
611 librium sorting and policy evaluation using housing markets. *Journal of Economic
612 Literature* 51(4), 1007–62.

613 Liu, X., M. E. Lovely, and J. Ondrich (2010). The location decisions of foreign investors
614 in China: Untangling the effect of wages using a control function approach. *Review
615 of Economics and Statistics* 92(1), 160–166.

616 Malone, T. and J. L. Lusk (2017). Taste trumps health and safety: Incorporating con-
617 sumer perceptions into a discrete choice experiment for meat. *Journal of Agricultural
618 and Applied Economics* 49(1), 139–157.

619 McConnell, K. E. and M. A. Rosado (2000). Valuing discrete improvements in drinking
620 water quality through revealed preferences. *Water Resources Research* 36(6), 1575–
621 1582.

622 McMillen, D. P. (2017). The benefits of environmental improvements in a low-income
623 area: The Grand Calumet River dredging plan in Gary, Indiana. *Environmental
624 Valuation: Interregional and Intraregional Perspectives*, 147.

625 Melstrom, R. T. and R. Mohammdi (2021). Residential mobility, brownfield remediation
626 and environmental gentrification in Chicago. *Land Economics* 97(3).

627 Milwaukee Journal Sentinel (2014). Rivers Reborn — Special Report. Web. Accessed
628 3-29-2022.

629 Patunru, A. A., J. B. Braden, and S. Chattopadhyay (2007). Who cares about en-
630 vironmental stigmas and does it matter? a latent segmentation analysis of stated
631 preferences for real estate. *American Journal of Agricultural Economics* 89(3), 712–
632 726.

633 Petrin, A. and K. Train (2010). A control function approach to endogeneity in consumer
634 choice models. *Journal of Marketing Research* 47(1), 3–13.

635 Phaneuf, D. J., L. O. Taylor, and J. B. Braden (2013). Combining revealed and stated
636 preference data to estimate preferences for residential amenities: A GMM approach.
637 *Land Economics* 89(1), 30–52.

638 Poor, P. J., K. J. Boyle, L. O. Taylor, and R. Bouchard (2001). Objective versus
639 subjective measures of water clarity in hedonic property value models. *Land Eco-
640 nomics* 77(4), 482–493.

641 Poor, P. J., K. L. Pessagno, and R. W. Paul (2007). Exploring the hedonic value of
642 ambient water quality: a local watershed-based study. *Ecological Economics* 60(4),
643 797–806.

644 Stoll, J. R., R. C. Bishop, and J. P. Keillor (2002). Estimating economic benefits of
645 cleaning up contaminated sediments in Great Lakes Areas of Concern.

646 Tuttle, C. M. and M. D. Heintzelman (2015). A loon on every lake: A hedonic analysis
647 of lake water quality in the Adirondacks. *Resource and Energy Economics* 39, 1–15.

648 Urban Milwaukee (2015). Estabrook Dams Golden Age for Swimming. Web. Accessed
649 3-10-2021.

650 Wisconsin DNR (2005). Estabrook Impoundment Sediment Remediation Pre-Design
651 StudyProject Completion Report to USEPA. Wisconsin Department of Natural Re-
652 sources PUBL-WT 826.

653 Wrenn, D. H., H. A. Klaiber, and D. A. Newburn (2017). Confronting price endogeneity
654 in a duration model of residential subdivision development. *Journal of Applied*
655 *Econometrics* 32(3), 661–682.

Table 1: Summary statistics of the location attributes before and after cleanup.

<i>A. Treated locations 1km from AOC</i>		Attributes in 2010		Attributes in 2016	
<i>Variable</i>	Mean	St. Dev.	Mean	St. Dev.	
<i>Price (in 1,000s of \$)</i>	204.812	45.966	208.538	44.873	
<i>Gravity index</i>	2.389	2.066	2.618	1.962	
<i>Median income (in 1,000s of \$)</i>	41.035	12.350	46.438	11.967	
<i>Population density (1,000/sqmi)</i>	15.035	6.302	14.824	5.527	
<i>Percent Black</i>	13.863	16.227	15.145	15.781	
<i>Percent Hispanic</i>	6.824	4.554	8.330	5.449	
<i>Percent high school degree</i>	90.447	6.119	92.798	4.982	
<i>Crime density (1,000/sqmi)</i>	7.087	2.815	4.726	1.843	
<i>Sales</i>	156	477			

<i>B. All other locations</i>		Attributes in 2010		Attributes in 2016	
<i>Variable</i>	Mean	St. Dev.	Mean	St. Dev.	
<i>Price (in 1,000s of \$)</i>	155.372	68.519	155.358	64.585	
<i>Gravity index</i>	0.966	1.826	0.743	1.342	
<i>Median income (in 1,000s of \$)</i>	53.099	14.991	50.871	15.731	
<i>Population density (1,000/sqmi)</i>	7.920	5.138	7.895	4.912	
<i>Percent Black</i>	21.785	27.241	23.729	28.546	
<i>Percent Hispanic</i>	12.745	16.865	15.014	17.604	
<i>Percent high school degree</i>	87.166	10.008	87.778	9.094	
<i>Crime density (1,000/sqmi)</i>	2.886	2.530	2.153	1.975	
<i>Sales</i>	1,358	3,816			

Table 2: Utility function coefficients from the sorting model

Variable	(1)	(2)	(3)	(4)
<i>Price (in 1,000s of \$)</i>	-0.0079** (0.0011)	-0.0066** (0.0013)	-0.0070** (0.0013)	-0.0089** (0.0013)
$1/d$	0.1190** (0.0230)	0.1392** (0.0234)	0.1387** (0.0214)	0.2253** (0.0214)
<i>TREAT</i> $\times 1/d$	0.0936** (0.0394)	0.1158** (0.0409)	0.0149 (0.0652)	-0.1274** (0.0652)
<i>TREAT</i> $\times 1/d \times POST$	0.0576 (0.0393)	0.0647* (0.0399)	0.2002** (0.0763)	-0.0154 (0.0763)
Residual for <i>Price</i>	0.0062** (0.0012)	0.0047** (0.0013)	0.0046** (0.0014)	0.0068** (0.0014)
Residual for <i>Price</i> $\times 1/d$	0.0023** (0.0003)	0.0021** (0.0003)	0.0023** (0.0003)	0.0014** (0.0003)
Tract attributes	✓	✓	✓	✓
PUMA fixed effects	✓	✓	✓	✓
PUMA-year effects				
<i>Log-likelihood</i>	-28896.049	-28784.217	-28764.497	-28792.818

Tract attributes not reported include median household income, population density, share Black, share Hispanic, percent high school degree, crime rate, percent owner-occupied housing, percent developed. Standard errors calculated using 1000 bootstraps in parentheses below coefficients. ** and * indicate significance at the 0.05 and 0.10 levels, respectively, based on the share of bootstrapped estimates that cross zero.

Table 3: Utility function coefficients when the model uses block groups as locations

Variable	(1)	(2)	(3)	(4)
<i>Price (in 1,000s of \$)</i>	-0.0096** (0.0012)	-0.0069** (0.0016)	-0.0071** (0.0016)	-0.0080** (0.0016)
$1/d$	0.2665** (0.0222)	0.2653** (0.0224)	0.2631** (0.0226)	0.2631** (0.0194)
$TREAT \times 1/d$	-0.0752** (0.0271)	-0.0863** (0.0253)	-0.1383** (0.0309)	-0.1192** (0.0879)
$TREAT \times 1/d \times POST$	0.1369** (0.0299)	0.1270** (0.0299)	0.2124** (0.0393)	0.0269 (0.0890)
Residual for <i>Price</i>	0.0085** (0.0013)	0.0056** (0.0017)	0.0054** (0.0017)	0.0067** (0.0018)
Residual for <i>Price</i> $\times 1/d$	0.0021** (0.0003)	0.0020** (0.0003)	0.0022** (0.0003)	0.0018** (0.0003)
Tract attributes		✓	✓	✓
PUMA fixed effects		✓	✓	✓
PUMA-year effects			✓	✓
<i>Log-likelihood</i>	-28908.491	-34103.879	-34088.926	-34104.450

Tract attributes not reported include median household income, population density, share Black, share Hispanic, percent high school degree, crime rate, percent owner-occupied housing, percent developed. Standard errors calculated using 1000 bootstraps in parentheses below coefficients. ** and * indicate significance at the 0.05 and 0.10 levels, respectively, based on the share of bootstrapped estimates that cross zero.

Table 4: Utility function coefficients when the model uses location choices based on mortgage-backed purchases

Variable	(1)	(2)	(3)	(4)
<i>Price (in 1,000s of \$)</i>	-0.0042** (0.0011)	-0.0033** (0.0012)	-0.0038** (0.0012)	-0.0041** (0.0013)
$1/d$	0.0702** (0.0221)	0.0892** (0.0230)	0.0929** (0.0227)	0.0863** (0.0250)
$TREAT \times 1/d$	-0.0783* (0.0437)	-0.0804* (0.0452)	-0.1674** (0.0488)	0.0094 (0.0600)
$TREAT \times 1/d \times POST$	0.0280 (0.0526)	0.0449 (0.0535)	0.1739** (0.0606)	-0.0024 (0.0668)
Residual for <i>Price</i>	0.0015 (0.0012)	0.0000 (0.0013)	0.0001 (0.0013)	0.0006 (0.0013)
Residual for <i>Price</i> $\times 1/d$	0.0024** (0.0004)	0.0022** (0.0003)	0.0022** (0.0003)	0.0023** (0.0004)
Tract attributes	✓	✓	✓	✓
PUMA fixed effects	✓	✓	✓	✓
PUMA-year effects				
<i>Log-likelihood</i>	-30491.326	-30364.414	-30350.379	-30356.227

Tract attributes not reported include median household income, population density, share Black, share Hispanic, percent high school degree, crime rate, percent owner-occupied housing, percent developed. Standard errors calculated using 1000 bootstraps in parentheses below coefficients. ** and * indicate significance at the 0.05 and 0.10 levels, respectively, based on the share of bootstrapped estimates that cross zero.

Table 5: Heterogeneous sorting model with location choices based on mortgage-backed purchases

Variable	(1)	(2)	(3)	(4)
$Price$ (in 1,000s of \$)	-0.0045** (0.0012)	-0.0025** (0.0013)	-0.0030** (0.0013)	-0.0026** (0.0013)
$1/d$	0.0618** (0.0235)	0.0720** (0.0244)	0.0769** (0.0240)	0.0257 (0.0276)
$TREAT \times 1/d$	-0.0438 (0.0481)	-0.0733 (0.0499)	-0.1648** (0.0525)	-0.0268 (0.1094)
$\times Black$	-0.6283** (0.3167)	-0.5696** (0.3261)	-0.5433** (0.3074)	-0.0974 (0.1293)
$\times Hispanic$	-0.9460** (0.9120)	-0.9446** (0.9711)	-0.9415** (0.8851)	-0.0831 (0.1319)
$\times Income$ (in 1,000s of \$)	0.0015** (0.0004)	0.0013** (0.0004)	0.0015** (0.0004)	-0.0077** (0.0025)
$TREAT \times 1/d \times POST$	0.0535 (0.0562)	0.0685 (0.0567)	0.2044** (0.0632)	0.1291 (0.1178)
$\times Black$	-0.0882 (0.3753)	-0.0730 (0.3853)	-0.1244 (0.3778)	-0.0428 (0.1612)
$\times Hispanic$	0.4477 (0.9298)	0.4599 (0.9877)	0.4550 (0.9045)	0.1565 (0.1553)
$\times Income$ (in 1,000s of \$)	-0.0004 (0.0006)	-0.0004 (0.0006)	-0.0006 (0.0006)	0.0042 (0.0027)
Residual for $Price$	0.0018 (0.0013)	-0.0009 (0.0014)	-0.0007 (0.0014)	-0.0014 (0.0014)
Residual for $Price \times 1/d$	0.0023** (0.0004)	0.0022** (0.0004)	0.0023** (0.0003)	0.0029** (0.0004)
Tract attributes	✓	✓	✓	✓
PUMA fixed effects	✓	✓	✓	✓
PUMA-year effects				
<i>Log-likelihood</i>	-28995.093	-28805.633	-28787.754	-28808.472

Tract attributes not reported include median household income, population density, share Black, share Hispanic, percent high school degree, crime rate, percent owner-occupied housing, percent tree cover and percent developed. Standard errors calculated using 1000 bootstraps in parentheses below coefficients. ** and * indicate significance at the 0.05 and 0.10 levels, respectively, based on the share of bootstrapped estimates that cross zero.

656 **Appendix**

657 **A1. Complete set of coefficient estimates**

658 Table A1 presents all of the coefficients in the baseline specification and the specification
 659 with PUMA-year effects. Most of the signs are consistent with expectations. Complete
 660 estimates of the other models are available upon request.

Table A1: Coefficients in the sorting model

Variable	Baseline specification		Including PUMA-year effects	
	Coefficient	St. Error	Coefficient	St. Error
<i>Price (in 1,000s of \$)</i>	−0.0079**	0.0011	−0.0070**	0.0013
<i>1/d</i>	0.1190**	0.0230	0.1387**	0.0214
<i>TREAT</i> \times <i>1/d</i>	0.0936**	0.0394	0.0149	0.0652
<i>TREAT</i> \times <i>1/d</i> \times <i>POST</i>	0.0576	0.0393	0.2002**	0.0763
<i>Median household income</i>	0.0055**	0.0017	0.0037**	0.0017
<i>Population density</i>	0.0464**	0.0064	0.0385**	0.0069
<i>Percent Black</i>	−0.0152**	0.0012	−0.0184**	0.0013
<i>Percent Hispanic</i>	−0.0094**	0.0019	−0.0049**	0.0022
<i>Percent high school degree</i>	0.0369**	0.0037	0.0312**	0.0038
<i>Crime density</i>	−0.0976**	0.0161	−0.1037**	0.0180
<i>Percent owner-occupied housing</i>	0.0170**	0.0018	0.0116**	0.0017
<i>Percent tree cover</i>	0.0397**	0.0093	0.0166	0.0103
<i>Percent developed</i>	0.0297**	0.0033	0.0290**	0.0033
Residual for <i>Price</i>	0.0062**	0.0012	0.0046**	0.0014
Residual for <i>Price</i> \times <i>1/d</i>	0.0023**	0.0003	0.0023**	0.0003
PUMA-year effects				✓

Standard errors calculated using 1000 bootstraps. ** and * indicate significance at the 0.05 and 0.10 levels, respectively, based on the share of bootstrapped estimates that cross zero.

661 **A2. Alternative placebo test**

662 This section presents a version of the placebo test in which I calculate a separate gravity
 663 index based on distance from downtown Milwaukee. This test is intended to address con-
 664 cerns that, because the Milwaukee River runs through downtown Milwaukee, the treated
 665 effect is driven by downtown development rather than water quality improvements per se.
 666 Recall that the placebo test in the main text redefines the treated area to be the portion
 667 of the Menominee River above downtown. Like the Milwaukee River, the Menominee
 668 River is surrounded by a greenway, which makes it a good placebo. However, additional
 669 placebo tests can increase confidence in the results. The table below presents a placebo
 670 test in which the placebo is a gravity index based on distance from downtown (43.0375,
 671 -87.9190). The columns show the estimates using different varieties of fixed effects. The
 672 placebo effect is negative and significant in the first specification, indicating that living
 673 near downtown became less desirable between 2011 and 2017; however, the effect moves
 674 toward zero and loses significance in the specification with PUMA-YEAR effects.

Table A2: Model estimates with alternative placebo test

Variable	(1)	(2)	(3)
<i>Price (in 1,000s of \$)</i>	-0.0081** (0.0011)	-0.0070** (0.0013)	-0.0077** (0.0013)
$1/d_{aoc}$	0.1806** (0.0203)	0.1928** (0.0208)	0.1986** (0.0207)
$TREAT \times 1/d_{placebo}$	-0.0101 (0.0831)	0.1755* (0.0899)	0.0257 (0.1114)
$TREAT \times 1/d_{placebo} \times POST$	-0.1894* (0.1001)	-0.2144** (0.0991)	0.0268 (0.1170)
Residual for <i>Price</i>	0.0068** (0.0012)	0.0052** (0.0013)	0.0056** (0.0013)
Residual for <i>Price</i> $\times 1/d_{aoc}$	0.0019** (0.0003)	0.0015** (0.0002)	0.0016** (0.0002)
Tract attributes	✓	✓	✓
PUMA fixed effects		✓	
PUMA-year effects			✓
<i>Log-likelihood</i>	-28912.509	-28807.787	-28798.756

Tract attributes not reported include median household income, population density, share Black, share Hispanic, percent high school degree, crime rate, percent owner-occupied housing, percent tree cover and percent developed. Standard errors calculated using 100 bootstraps in parentheses below coefficients. ** and * indicate significance at the 0.05 and 0.10 levels, respectively, based on the share of bootstrapped estimates that cross zero.

675 **A3. The effect of changing the base year from 2011 to 2012**

676 Cleanup took place between 2011 and 2015, with phased completions in 2012 and 2015.
677 Ideally we could observe home buying activity before and after these dates, but the city's
678 arms-length sales data appears to be incomplete prior to 2011 and HMDA's mortgage-
679 backed sales data link to Census 2010 tracts only for mortgages filed in 2012 and after.
680 One concern is that using 2012 rather than 2011 (or 2011 rather than 2010, for that
681 matter) as the first year could downward bias willingness to pay for cleanup, if buyers
682 began pricing in benefits prior to 2012. To gauge the amount of this bias, I estimate
683 the sorting model using arms-length sales in different years: Table 2 presents the results
684 using 2011 and 2017, while Table A3 below presents the results using 2012 and 2017.
685 Note that column (4) in Table A3 presents the results of the placebo test. Willingness to
686 pay estimates are not lower using the 2012 and 2017 data. Across columns (1) through
687 (3) in Table 2, the coefficients indicate willingness to pay is \$4,863, \$6,549, \$19,031, re-
688 spectively, given a mean gravity index in the treated area of 0.67. In contrast, the same
689 columns in Table A3 imply willingness to pay is \$7,761, \$12,992, and \$35,140, respec-
690 tively, given a mean gravity index in the treated area of 0.55. Based on bootstrapped
691 samples, the first two estimates are not significantly different from each other, while the
692 third is different at the 10% significance level. Thus, there is weak evidence that home
693 buying may have in fact shifted away from the treated area between 2011 and 2012,
694 which does not support the hypothesis that buyers began price in benefits prior to 2012.
695 Estimates of willingness to pay for cleanup are higher—not lower—using 2012 rather
696 than 2011 as the base year, although the difference is not highly significant.

697 This comparison indicates that differences between the arms-length sales and mortgage-
698 backed purchase data are likely driven by the change in base year rather than underlying
699 systematic differences in populations the samples are drawn from, i.e. lower average
700 wealth among bank-financed versus cash buyers, who will appear in the arms-length
701 sales data but not in mortgage records.

Table A3: Model estimates with location choices based on arms-length sales in 2012 and 2017

Variable	(1)	(2)	(3)	(4)
<i>Price (in 1,000s of \$)</i>	-0.0035** (0.0012)	-0.0029** (0.0013)	-0.0034** (0.0013)	-0.0050** (0.0013)
$1/d$	0.1527** (0.0196)	0.1699** (0.0203)	0.1727** (0.0203)	0.1925** (0.0228)
$TREAT \times 1/d$	-0.0820** (0.0420)	-0.0660 (0.0428)	-0.1751** (0.0489)	-0.0487 (0.0577)
$TREAT \times 1/d \times POST$	0.0500	0.0677** (0.0467)	0.2199** (0.0477)	-0.0757 (0.0558)
Residual for <i>Price</i>	0.0014 (0.0013)	0.0004 (0.0013)	0.0005 (0.0013)	0.0020 (0.0014)
Residual for <i>Price</i> $\times 1/d$	0.0019** (0.0003)	0.0017** (0.0003)	0.0018** (0.0002)	0.0017** (0.0003)
Tract attributes		✓	✓	✓
PUMA fixed effects		✓		
PUMA-year effects			✓	✓
<i>Log-likelihood</i>	-29975.385	-29864.015	-29846.985	-29851.684

Tract attributes not reported include median household income, population density, share Black, share Hispanic, percent high school degree, crime rate, percent owner-occupied housing, percent tree cover and percent developed. Standard errors calculated using 100 bootstraps in parentheses below coefficients. ** and * indicate significance at the 0.05 and 0.10 levels, respectively, based on the share of bootstrapped estimates that cross zero.

702 **A4. Sensitivity analysis of the water quality improvement area**

703 This section examines the sensitivity of the results in the main text to alternative defi-
704 nitions of the treated area, i.e. the area with water quality improvements. To generate
705 these results I defined the treated area as the Milwaukee River running from the re-
706 mediation site to point that the upper and lower estuary meet, which is a distance of
707 five miles. The table below presents estimates when I extend or shorten this distance
708 based by one or two miles, using the specification with PUMA-year effects. Extending
709 the distance brings more locations into the treated area, and shortening the distance re-
710 duces the treated area. The top of each column reports the distance. 7 miles essentially
711 includes the upper and lower estuary of the Milwaukee River, which adds a large number
712 of homes with direct water access. In contrast, 3 miles contains very little housing near
713 the river. Consequently, the mean gravity index in the treated area falls from 0.85 to
714 0.33 moving from 7 miles to 3 miles. The coefficients in Table A4 indicate that will-
715 ingness to pay is \$12,478 when the treated area runs a distance of seven miles, \$16,971
716 at six miles, \$5,073 at four miles, and \$2,410 at 3 miles. The estimates at distances
717 that include the lower estuary are lower but comparable to the benchmark. Shortening
718 the distance results in significantly lower and highly imprecise estimates likely due to
719 a combination of limited area, fewer homes located near the river (there are only three
720 tracts within one kilometer of the treated area at 3 miles, so much of the identification
721 using a smaller treated area will come from homes much farther away), and confounding
722 of treated and comparison groups.

Table A4: Model estimates with alternative definitions of the treated area

Variable	(1)	(2)	(3)	(4)
	7 miles	6 miles	4 miles	3 miles
<i>Price (in 1,000s of \$)</i>	-0.0029** (0.0014)	-0.0067** (0.0013)	-0.0063** (0.0013)	-0.0066** (0.0013)
$1/d$	-0.1821** (0.0397)	0.1226** (0.0229)	0.1916** (0.0189)	0.1897** (0.0190)
$TREAT \times 1/d$	0.5184** (0.0503)	0.1335** (0.0359)	-0.1314** (0.0636)	-0.1052 (0.1296)
$TREAT \times 1/d \times POST$	0.0429 (0.0361)	0.1479** (0.0392)	0.0658** (0.0714)	0.0492 (0.1361)
Residual for $Price$	0.0041** (0.0014)	0.0039** (0.0013)	0.0045** (0.0013)	0.0046** (0.0013)
Residual for $Price \times 1/d$	0.0005** (0.0003)	0.0027** (0.0003)	0.0015** (0.0002)	0.0015** (0.0002)
Tract attributes	✓	✓	✓	✓
PUMA-year effects	✓	✓	✓	✓
<i>Log-likelihood</i>	-28692.008	-28761.571	-28804.976	-28804.977

Tract attributes not reported include median household income, population density, share Black, share Hispanic, percent high school degree, crime rate, percent owner-occupied housing, percent tree cover and percent developed. Standard errors calculated using 100 bootstraps in parentheses below coefficients. ** and * indicate significance at the 0.05 and 0.10 levels, respectively, based on the share of bootstrapped estimates that cross zero.