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Abstract

Unobserved quality challenges the empirical content of signaling theory, and often precludes
the valuation of quality signals such as wine names. This paper uses the location of vineyard
plots to control for unobserved wine quality when estimating the causal value of wine names on
vineyard prices. The identification tackles unobserved spatial heterogeneity by newly combining
a multi-cutoff spatial regression discontinuity design with plausibly exogenous name variations.
We deal with standard requirements of causal inference – unconfoundedness and overlap – with
instrumental variables and high-dimensional propensity models in a double robust framework.
For the Burgundy region of France, we then recover the full causal signaling scheme of nested
wine names with both a horizontal and a vertical dimension. This typical structure of names is
monotone and complementary, as the names are consistently ordered within each dimension
(rank preservation) and they present spillovers between them (umbrella effect). We find a high
importance for unobserved wine quality, which produces heterogeneous signaling values.
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spatial regression discontinuity ; double robustness ; overlap for causal inference.

J.E.L. Codes: C25,C26, C51, R33.

* Correspondance: jean-sauveur.ay@inrae.fr and julie.le-gallo@agrosupdijon.fr. The authors are
grateful to the data providers: SCAFR – Terre d’Europe for vineyard sales, Institut National de l’Origine et de la
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1 Introduction

When quality is not observable, two identical goods with different names can have systematically

different prices. From the elementary signaling model (Spence, 2002),1 the price difference is the

signaling value of a name relatively to the other. This valuation is empirically challenging because

it requires to control for unobserved quality, which is the typical reason for existing quality signals

(Dranove and Jin, 2010). Ideal valuation design would consist in changing names of identical goods

(Tyler et al., 2000; Clark and Martorell, 2014) in line with the counterfactual Rubin framework

(Imbens and Rubin, 2015). The lack of such designs in the real world precludes the causal valuation

of the various components of nested naming schemes, such as those used to designate wines.

We use the location of vineyard plots to estimate the causal signaling values of wine names on

vineyard prices. The main identifying assumption is that wine quality impacts vineyard prices only

from the natural attributes of vineyard plots. In line with terroir narratives,2 these attributes vary

smoothly between neighboring plots as nature does not make jumps (natura non facit saltus). This

article provides new results both for causal inference with unobserved spatial heterogeneity and

for the empirics of signaling theory. We show that exogenous name variations allow extrapolating

spatial regression discontinuity design away from borders and that nested wine names are monotone

and complement. As we will see, this indicates a consistent and relevant quality signaling.

The vineyard market is particularly suitable to the estimation of the signaling value of nested

names. The strong dependence of vine cultivation on natural characteristics causes sharp variations

in average wine quality over vintages, while this information cannot be assessed by consumers in

most wine-purchasing situations. Whereas these natural sources of quality variations are exogenous

by definition, they require precise biophysical data to be controlled adequately. The confounding

influences of other inputs (such as labor and wine-making techniques) are implicit functions of

terroir, as their prices are constant across vineyards (Cross et al., 2011). Consequently, the given

supply of terroir impacts wine names and vineyard prices without endogenous quality feedback,

from which we estimate the willingness to pay to use a wine name when buying a vineyard.

1Where quality does not depend on the level of investment in the signal, as it could be argued for our case study.
2We denote terroir the non-mobile, non-modifiable, and non-reproducible natural land attributes that are known to

impact wine quality (Bokulich et al., 2014; Roullier-Gall et al., 2014; van Leeuwen et al., 2018).
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The region under study also displays favorable characteristics for identification. Centuries of

land divisions have produced a mosaic of vineyard plots of tiny size that are perfectly digitalized.3

Intensive activity on the vineyard market during the last two decades generates fine-scale price

variations for contiguous plots that are of similar terroir quality. Comparing vineyard prices on

either side of a name border controls for unobserved wine quality and circumvents the traditional

“ability bias” that restricts the empirical content of signaling theory.4 Moreover, lobbying actions

for the designation of wines during the 19th century provide plausibly exogenous name variations

between administrative subdivisions. Used as instruments, they make distant plots with different

names more overlapped in order to extrapolate heterogeneous signaling values away from borders.

The constancy of name delineations through the 20th century solves potential simultaneity issues in

relation to current reputations, preferences, and bargaining power (Malter, 2014). Coupled with

the unidirectional terroir impacts previously described, this secures the identification of causal

signaling values from vineyard price variations between similar plots with different names.

The names under study have a nested structure with both a horizontal and a vertical dimensions.

They are related exclusively to the geographical origin of the grapes used to make the wines,

according to two spatial delineations. The horizontal delineation is administrative, following the

decree of 1789 after the French Revolution. This separation of communes (i.e., municipalities)

based on the spatial distribution of churches built between the ninth and twelfth centuries, was

not intended to signal wine quality (while it could be incidentally correlated with). The vertical

delineation follows the classification of Professor Lavalle (1855) that ranked vineyards according to

the quality of wines produced in the early 19th century. While the author used the same four-level

classification for each commune in the region, he refused to produce a classification between them.5

Despite this, the classification paved the way for lobbying efforts to modify the hierarchy. Jacquet

(2009) and Ay (2021) show that this ended in systematic biases in favor of certain communes that

have larger areas of high vertical names than warranted by their terroir endowment. This process

was frozen in 1934 with the creation of the Appellations d’Origine Contrôlée nationally.

3We study about 60 000 plots with a wine name, for a total acreage of 115 km2 (0.2 ha of average plot size).
4This term comes from seminal studies about estimating the returns to education (Griliches, 1977; Card, 2001). The

exogeneity of the natural attributes behind terroir makes the identification easier, although the method we propose
cannot be used to discriminate between endogenous quality and signaling theories (Huntington-Klein, 2020).

5Lavalle (1855) wrote: “I have studied the wines of each commune as if the others had not existed and the
classification that I give is true only for each commune taken in isolation” (p.162, our translation).
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Nowadays, wine producers have a legal obligation to reference their wines both by one of the

34 horizontal names from commune delineations and one of the five vertical names from the official

hierarchical classification.6 This typical nested structure allows us to investigate the value added by

bi-dimensional multi-valued signals in a general causal framework. We are able to estimate and

decompose the signaling value of each combination of names and to test two shape restrictions

of general interest. We define monotonicity within each name dimension (i.e., does the hierarchy

of names is preserved among the dimensions?) and show that it is equivalent to a rank condition

(Chetverikov et al., 2018). As such, monotone names provide consistent quality signals whatever

the combinations they lie in the nested scheme. We also define complementarity between name

dimensions (i.e., does the value of one dimension spill over the value of the other dimension?) as a

causal generalization of umbrella branding (Wernerfelt, 1988). Accordingly, complementary nested

names are relevant to learn about quality, as they provide more information than each dimension of

names taken in isolation. The price decomposition we propose allocates the total signaling values to

the horizontal and vertical dimensions from counterfactual price comparisons.

Our first set of results is derived from a hedonic model under the assumption that fine-scale

biophysical variables present in our data account fully for terroir quality. Within this framework, we

find that the values of the biophysical variables decreases sharply when vertical names are included

in the regressions. This suggests a strong dependence between these two groups of variables, while

the vertical names ultimately present the highest price premiums. Conversely, the inclusion of

horizontal names does not impact the value of biophysical variables. By including interactions

between names, we find that the hierarchy of horizontal names is preserved between vertical names.

This indicates a consistent quality disclosure in line with the monotonicity condition. We also find

that horizontal name premiums are higher for communes with higher vertical names. This denotes

the presence of umbrella effects, according to which names are complementary. Maintaining the

hedonic assumption, we obtain a total signaling value of (horizontal and vertical) names for the

Burgundy region of about €1.8 billions (in 2017), representing about €162 000 by hectare on

average. These high values correspond to about six years of gross margin for the regional wine

production and about 65% of the average per-ha vineyard price, respectively.

6The wine labels reported in Figure A.1 of the Online Appendix (OA) provide some examples about the use of these
names by one Burgundian producer, more details about their structure are given in the data section.
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A second part of evidence follows the presentation of a bi-dimensional multi-valued causal

framework considering terroir variables as only partially observed in the data. The full signaling

scheme is defined through more than 90 average treatment effects on the treated, from which we

derive the two shape restrictions and the price decomposition. Under the assumption that terroir

produces smooth geographical variations in wine quality (formally stated as spatial continuity),

nested wine names offer a multi-cutoff spatial regression discontinuity (SRD) design (Keele and

Titiunik, 2015; Cattaneo et al., 2016) on vineyard prices. This allows us to exploit the proximity

between vineyard plots to control for terroir quality. We find that the first hedonic results, by

misleadingly attributing the value of unobserved terroir to vertical names, overestimate their

signaling values by a factor of two compared to what is found on each side of the borders between

names. This result shows the high economic importance of wine quality that is unobserved from data

by the econometrician. SRD estimations do not recover the monotonicity and complementarity of

wine names, suggesting that they were due to unobserved terroir quality bias in the hedonic evidence.

However, SRD estimates are local statistics that require strong restrictions to be extrapolated away

from the borders (Angrist and Rokkanen, 2015; Bertanha and Imbens, 2019).

Our preferred third set of doubly robust (DR) results (Robins et al., 1994; Słoczyński and

Wooldridge, 2018) take the best of the two previous approaches. We use the ordered model of

name designations with lobbying effects presented by Ay (2021) for the same area. We estimate

generalized propensity scores (Imbens, 2000) with a high-dimensional specification of geographical

coordinates (Belloni et al., 2014; Wood et al., 2016). Still under the spatial continuity assumption,

the high spatial density of the population of vineyard plots allows us to precisely account for terroir

with penalized regressions in the propensity model. We derive formally the DR weights that exploit

the historical name variations from lobbying as instrumental variables for the identification of

the full signaling scheme. Estimated DR causal signaling values are similar to those from SRD

at the borders of names, while they are significantly higher away from them. By combining the

internal validity of the SRD approach (unconfoundedness) and the external validity of the hedonic

approach (overlap), the DR approach produces signaling values that are between the two. We

recover monotonicity and complementarity of wine names on the area, but with less significance

than in the hedonic results. The total signaling value is revised downward but stayed high, at about

€1.3 billions regionally, corresponding to €115 000 by ha (45% of average vineyard price).
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The outline of the rest of the article is as follows. We highlight our contribution to the literature

in the following Section 2. We present the context, data, and hedonic evidence in Section 3. Section

4 contains the causal framework used to define the signaling values. Section 5 presents the multi-

cutoff spatial regression discontinuity evidence, and Section 6 reports our preferred doubly robust

evidence from the historical variations. Section 7 concludes.

2 Contributions

This paper presents an observational case study that is conducive to estimate the signaling values

of names, an issue that has given rise to a vast theoretical literature (Shapiro, 1983; Erdem and

Swait, 1998; Tadelis, 1999; Neeman et al., 2019). This kind of empirical result is scarce because

of the difficulty in controlling for unobserved quality (McDevitt, 2014; Bronnenberg et al., 2015

are two exceptions, see Bronnenberg et al., 2019 for a review). We estimate the signaling values of

wine names as average treatment effects on the treated in the counter-factual framework. They are

the difference between the value that plots of a given name have and the value they would have if

they were named differently (see Graetz, 2017; Aryal et al., 2021 for alternative definitions in other

contexts). The bi-dimensional multi-valued structure of our causal framework defines monotone

quality signals that can be consistently ordered by their signaling values. This shape restriction is

well know from signaling theory as a fundamental assumption (Milgrom, 1981; Athey and Levin,

2018). We verify the monotonicity from Spearman correlation coefficients for both the vertical

and horizontal dimensions of names, showing their consistency as quality signals. This result is

particularly relevant as some recent papers have shown that complex signals could be non monotone

in some situations (Olszewski and Wolinsky, 2016; Currarini et al., 2020).

Burgundy’s vineyards allow us to recover and decompose the full signaling schemes of nested

names. This structure is common for consumption goods that nest a brand name and a series

number (Dyson V8, Samsung Galaxy S20, and Windows 10 for instance), while it also concerns

many other signals (a high-school diploma nests both an establishment and a grade, the former

is horizontal and the latter is vertical). A vast literature on information theory has questioned the

complementarity of nested signals (Börgers et al., 2013; Zhu and Dukes, 2017; Fong et al., 2019)
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although comprehensive empirical evidence is still lacking. We assess the complementarity of

wine names by Kendall correlation coefficients and provide a decomposition of the total signaling

value between both dimensions. We find the two dimensions of wine names are complementary,

highlighting the relevance of this structure for information transmission (Krishna and Morgan, 2001;

Liang and Mu, 2020). This result of complement names confirms the presence of umbrella effects

between names from the causal framework (Wernerfelt, 1988; Hakenes and Peitz, 2009).7

We also contribute to the hedonic literature that aims to estimate collective values from private

transactions on the land market (Starrett, 1981; Kanemoto, 1988; Bishop et al., 2020). The signaling

values defined as average treatment effects on the treated are also capitalization measures (Kuminoff

and Pope, 2014). We estimate them from cross-sectional price variations, thanks to the exogeneity

of terroir quality and the spatial continuity assumption. Accounting for endogenous supply and

unobserved heterogeneity are the two main challenges in turning hedonic theory to the data (see

Brown and Rosen, 1982; Nerlove, 1995; Abbott and Klaiber, 2011; Kuminoff et al., 2013). We

provide a detailed comparison between ordinary least squares, regression discontinuity design, and

instrumented doubly robust methods. We are able to make sense of the different results thanks to

a common framework. We show that classical hedonic estimations and regression discontinuity

designs do not recover causal signaling values with unobserved heterogeneity. Our preferred

approach is based on a DR method that exploits the spatial continuity more generally than in

SRD. We show how to use exogenous variations of the treatments to predict more overlapped

propensity scores under unconfoundedness. This strategy is generally relevant to exploit the spatial

continuity assumption to deal with spatial heterogeneity for causal inference (Keele and Titiunik,

2016; Michalopoulos and Papaioannou, 2018).

This paper provides a new identification result, according to which an exclusion restriction

increases overlap for DR estimates of heterogeneous treatment effects under unconfoundedness.

While the credibility of unconfoundedness increases with the dimension of pre-treatment variables,

this comes at a cost in terms of overlap between different treatment statuses (Khan and Tamer,

2010; D’Amour et al., 2021), especially for a large number of treatments (Flores and Mitnik,

7The principle of an umbrella effect is particularly relevant for Burgundy wines as, in the middle of twentieth
century, 13 communes decided to join their most famous vertical wine name to their horizontal name. For instance, the
commune of Gevrey changed its name to Gevrey-Chambertin in 1946. More anecdotally, Mullainathan et al. (2008)
used Burgundy wines as an exemple of the link betwen coarse thinking and umbrella branding (p.601–604).
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2013). Precisely controlling for unobserved spatial heterogeneity through penalized regressions

with high-dimensional spline transformations of geographical coordinates (Wood et al., 2016), we

show that commune membership provides exogenous variations in vertical names. This makes plots

with different vertical names to have closer predicted propensity scores. In other words, horizontal

communes are used as instrumental variables and are assigned counter-factually to conduct causal

inference (Holland, 1986; Ichimura and Taber, 2001). This result is of particular interest where

high-dimensional methods with a high number of variables or transformations of variables are used

for the propensity score. They often almost perfectly predict the treatment status without securing

enough overlap (Belloni et al., 2014; Athey and Imbens, 2019). In particular, it contrasts with the

usual recommendation of not including instrumental variables as pre-treatment variables without

unconfoundedness (Bhattacharya and Vogt, 2007; Wooldridge, 2016).

Finally, this paper contributes to the wine economics literature by studying the long-standing

question of the dependence of wine quality on natural conditions (Combris et al., 1997; Gergaud and

Ginsburgh, 2008; White et al., 2009; Ashenfelter and Storchmann, 2010; Cross et al., 2011).8 Sepa-

rating natural from man-made determinants of wine quality is a recurrent concern in determining the

effective supply constraints involved in wine production. This is central to disentangle the virtuous

goal of signaling quality from the production of undeserved rents captured by landowners because

of an artificially-reduced supply. This indeterminacy leads to intense debates in multilateral trade

negotiations over the recognition of geographical indications (Josling, 2006; Meloni and Swinnen,

2018). Our results illustrate the high economic importance of terroir quality that is observed neither

by the econometrician from the usual data nor by the consumer who does not taste a wine before

buying it. We document the relevance of long-standing nested geographical indications from an

economic point of view, as a reliable quality signal for wine markets (Costanigro et al., 2010;

Yu et al., 2017; Mérel et al., 2020). Moreover, we find that wine quality revealed from vineyard

prices for a given combination of names is positively related to the terroir quality that underlies the

designation of the vertical names. As such, the accumulated historical knowledge about wine quality

from names’ designations is still relevant nowadays, despite evolving preferences, production

technologies, and the globalization that characterized wine markets in the last decades.

8Adam Smith adressed this question in “An Inquiry into the Nature and Causes of the Wealth of Nations” 1776,
Edwin Cannan (ed.), 5th ed. London 1904, Book 1, Chap XI, p. 219. Most of this literature, in social and natural
sciences, assumes that terroir quality effect is observable from biophysical, chemical, or sensory wine characteritics.
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3 Hedonic evidence

The area under study is a strip of about 5 km from West to East and 60 km from North to South,

located between the cities of Paris and Lyon in the Côte d’Or region of France (Figure A.2 in the

OA). Nested wine names indicate the vineyard plots from which the grapes come9 by combining

one horizontal commune name among 34 and one vertical name among five levels: Coteaux, Région,

Village, Premier cru, and Grand cru (in increasing order of quality).

3.1 Data

We use both exhaustive population data about the 60 000 vineyard plots with an official wine name

in the studied area and a quasi-exhaustive sample of 9 000 plots sold over the period 1992–2017.10

We merge each vineyard plot in the population with the best disaggregated available data about

land topography (5-meter resolution) and computed average elevation, slope, solar radiation, and

exposition for each plot. Other data about climate, subsoil, and soil characteristics are available for

the area, but are not used due to their coarse spatial resolution.11

Table A.1 in the OA reports summary statistics for both the population of plots and the sample

of sales. Vineyards are sold at an average price of 350 000 euros/ha, which is about 50 times

more than the average price of nearby farmland (Ay et al., 2012). Importantly, the distributions of

biophysical variables are very similar in the two data sets. Unreported analysis find that the sample

of sales is representative of the population for conditional vineyard prices.12 Each combination

9To use an official wine name, a wine producer must also comply with a set of constraints on yields, alcohool
content, and plant varieties (for the most significant ones). These contraints vary only slightly over the studied area. For
instance, there is only one red grape variety Pinot Noir and one white grape variety Chardonnay allowed (except for
the lowest level, the Coteaux where Gamay and some other negligible varieties are allowed). Maximum yields for a
Régional red wine are 60 hl/ha with a minimum alcohol content 10.5%, but 50 hl/ha and 11% for a red wine Village
of Gevrey-Chambertin. Aggregate statistics show these constraints have not been binding in the last decades and we
therefore conjectured that they do not cause much vineyard price variations and focused on names only.

10In France, there is a legal obligation to declare each land sale to the Safer office from which we obtained the data.
Due to a preliminary period at the beginning of the 90’s, the vineyard sales data becomes exhaustive only around 1997.

11The best disaggregated historical climate data from Météo-France are available at an 8-km resolution, which is not
relevant given the tiny size of vineyard plots and the shape of the studied area. Soil and subsoil variables are available
from coarse punctual observations interpolated with topography variables already controlled in econometric models.

12Like Cross et al. (2017), we estimate various sample selection models without obtaining significant Mill’s ratios.
Therefore, we consider in the rest of the article that sale data are a random sample drawn from the plot population.
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of horizontal and vertical names that exists in the population is present in the sample, with an

average sampling intensity of 15%. Some combinations of names do not exist in the population

nor, consequently, in the sample: two communes do not have a Premier Cru level (Marsannay and

Côte-de-Nuits-Village) and only seven communes have a Grand Cru level (Gevrey-Chambertin,

Morey-Saint-Denis, Chambolle-Musigny, Vosne-Romanée-Vougeot, Aloxe-Corton-Ladoix, Puligny-

Montrachet, Chassagne-Montrachet, from North to South).13 It is worth mentioning that only the

wines from the three highest vertical levels are allowed to put the corresponding horizontal name

on wine labels. Although all the plots in the two lowest levels also belong to an administrative

commune, it is forbidden to put its name on wine labels (see Figure A.1 in OA).

3.2 Hedonic regressions

We first run a series of OLS regressions by exploiting the availability of biophysical variables at a

fine spatial resolution. We noted yi the natural logarithm of per-square-meter vineyard prices for the

whole sample of plots sold i = 1, 2, . . . ,N.14 For a given observation i, we bind in the vector zi an

intercept and the reported sale characteristics (year of sale, acreage, tenure status, occupation, type

of seller, and type of buyer). Another vector xi bind third-order polynomials of each biophysical

variable (elevation, slope, solar radiation, and exposition). The vectors di and ci code for the vertical

and horizontal names through respectively 4 and 18 dummy variables. A last vector ai ≡ di ⊗ ci

of dimension 4 × 18 = 72 is the Kronecker product of the two name dimensions to include the

interaction between names in the following linear model:

yi = z>i θ + x>i β + d>i δ + c>i γ + a>i λ + εi. (1)

The matrix formed by stacking the row vectors a>i is not full rank. Indeed, 14 interaction variables

take a constant zero value because the corresponding combination of names do not exist in the data

13As detailed in the notes below Table A.1 in the OA, we grouped some contiguous communes together to simplify
the borders used in the identification strategy, without loss of generality. We obtained 19 horizontal wine names from
the 31 initial administrative communes by merging contiguous communes with similar horizontal name premiums.

14To deal with multi-plot sales, each price observation was inversely weighted by the number of plot in the sale
and, in all the regression results presented in this article, standard errors were clustered at the sale level. This leads to
very similar coefficients and standard errors to those obtained by limiting the sample to the 2 329 sales with only one
vineyard plot (this latter sub-sample accounts for 57% of the 4 054 total vineyard sales).
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(see bottom panel of Table A.1 in OA). These terms are dropped from the explanatory variables

to reach identification. We also estimate some restricted versions of this model, by setting some

other coefficients to zero. We consider models without xi, di, ci, and ai respectively to evaluate the

marginal contribution of each group of variables to explaining vineyard prices. Finally, we estimate

a model with more parsimonious interactions, by limiting ai to be equal to
[
d2i, d3i

]
⊗ ci. This choice

is justified by the legal prohibition on Coteaux and Région wines ( j = 0, 1) putting the horizontal

names on labels, and by the small number of observations for Grand Cru ( j = 4).

3.3 Hedonic results

Table 1 displays partial R2 statistics on the relative importance of each group of variables in the

various versions of Equation 1. The full R2 at the bottom of columns (0), (1), and (2) show

that, individually, vertical names are the most significant, followed by biophysical characteristics,

and horizontal names. However, this hierarchy is considerably modified when the variables are

introduced jointly. Model (3) shows that including vertical names and biophysical variables jointly

decreases both marginal contributions, where the latter are more impacted (however, they stay

significant at 5% from a joint F test). This indicates a high correlation between these two groups

of variables, while the four dummies for vertical names remain the largest part of the explanatory

power. Model (4) shows a different pattern for horizontal names, as both partial R2 increase with

the inclusion of biophysical variables. The partial R2 for horizontal names is also stable with the

inclusion of vertical names in model (5), whereas the marginal explanatory power of biophysical

variables decreases again (again, they stay significant at 5% from a F test). The last column (6)

shows that interactions between names have a partial R2 of 0.12, for a full R2 of more than 0.80.

The estimated coefficients for control variables, biophysical variables, and name values are

reported in the OA. Table A.2 shows that vineyard price negatively depends on plot acreages (with

an elasticity of about −0.1), occupied plots at the moment of sale are 25% more expensive, tenured

plots are less expensive, and buyers’ characteristics are generally more significant than those of

the sellers.15 Figure A.3 shows a sharp increase in average wine prices over the last decade, a

15We have tested other sets of buyers’ and sellers’ characteristics (age, numbers of persons, municipality of origin)
without obtaining significant coefficients or significant interactions with names premiums.
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Table 1: Partial R2 from Hedonic Models of Vineyard Prices (N = 8 987).

Outcome variable: natural logarithm of per-hectare vineyard price

Groups of variables (0) (1) (2) (3) (4) (5) (6)

Controls 0.23 0.19 0.24 0.19 0.22 0.18 0.15
Biophysical variables 0.21 0.06 0.22 0.03 0.03
Vertical names 0.48 0.25 0.21 0.00
Horizontal names 0.11 0.16 0.17 0.00
Interaction btw names 0.12

Full R2 0.46 0.71 0.37 0.73 0.56 0.78 0.81

Notes: The partial R2 statistics represent the marginal increase in explanatory power following the introduction of
each group of variables in succession, with other reported groups already included. The statistic of 0.21 in the second
row is the R2 obtained by regressing the residuals from a model with only control variables on biophysical variables.
These partial statistics do not sum to the full R2 in columns because of partial correlations between groups of variables.
The main effects for horizontal and vertical names are redundant with their interactions, so their partial R2 are zero by
definition in column (6). The details of the estimated coefficients are reported in Table A.3 of the OA.

coarse linear pattern for the vertical values (on average, the per-ha vineyard price is multiplied

by two from a vertical level to the following), and a less predictable pattern for the nevertheless

significant horizontal values. Figure A.4 shows a U-inverted marginal effect for elevation, while the

effects of slope and solar radiation are more monotonically increasing. This non-linear structure of

observed terroir effects is consistent with those obtained for other wine regions in other countries

(Ashenfelter and Storchmann, 2010; Cross et al., 2011).

The full set of estimated name values is reported in the Table A.3 of the OA. The vertical and

horizontal values are stable between specifications. Figure A.5 in the OA displays the value of

wine names from the hedonic model with parsimonious interactions (i.e., with ai =
[
d2i, d3i

]
⊗ ci

in Equation 1). An average plot from the lowest vertical Coteaux level has a predicted per-ha

price of €20 000, which is less than half the predicted price for the second-lowest Région level.

More strikingly, an average plot from the highest Grand Cru level has a predicted per-ha price 80

times higher than the lowest Coteaux level. Within the intermediate Village level, horizontal names

provide price variations up to a factor of 10 (between a Marsannay Village predicted at €75 000 and

Puligny-Montrachet Village predicted at €750 000). Horizontal values appear closely correlated

between Village and Premier cru levels, which suggests similar horizontal values that are included

within the signaling values of vertical names. Figure A.6a and Figure A.6b in the OA provide

similar evidence for the hedonic model with full interactions.
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4 Causal framework

Previous hedonic evidences has been based on the assumption that the observed biophysical variables

fully control for terroir effects, a critical assumption regarding the complex processes underlying

this concept.16 However, two important points stem from this prior analysis: (i) strong correlations

exist between biophysical variables and vertical names, and (ii) strong interactions exist between

horizontal and vertical signaling values. These are the two main motivations for the bi-dimensional

multi-valued causal framework with partially-observed terroir that is now presented. This allows us

to define causal signaling values, shape restrictions, and a price decomposition.

4.1 Price equation

We consider observed vineyard prices to be generated according to a counter-factual mapping

between the three main groups of variables considered above.17 We note y the price variable, X∗ the

full set of partially-observed terroir variables, d ∈
{
0, 1, . . . , J

}
the vertical names from the lowest

to the highest level, c ∈
{
0, 1, . . . ,K

}
the horizontal commune names from the northernmost to the

southernmost (see Figure A.15 of OA), and ε the errors with:18

y = h(X∗, d, c) + ε, with E(ε | X∗, d, c) = 0. (2)

We assume additive errors with conditional mean independence to focus on the three determinants

of vineyard price inside the unspecified price function. This model is fairly general as the full set of

terroir variables X∗ is not assumed to be observed in the data. We consider that we observe only

a subset X ⊂ X∗ of them, indicating that some aspects of the terroir that impact vineyard price

through wine quality are not available to the econometrician.19 The effects of vertical and horizontal

names d and c on price are unrestricted, they can be arbitrarily correlated with the terroir X∗.

16The precise linear proxy assumptions that are sufficient to interpret previous hedonic evidence as causal according
to the framework of this section are presented in Section A1.1 in OA.

17In the rest of this section, we omit control variables Z of sale characteristics without loss of generality. They are
reintroduced additively in the empirical part of the paper.

18Henceforth, all these terms are considered as random variables. Univariate variables are noted in lower case,
multivariate variables are noted in upper case. Realizations of these variables are indexed by i.

19These terroir variables are nevertheless observed in the field by informed persons, such as buyers and sellers.
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We assume that the causal hedonic function h is twice continuously differentiable in X∗ for

each value of d and c, and that y has finite moments. These are the classical regularity conditions

of the semiparametric setting (Robinson, 1988; Li and Racine, 2007; Cattaneo, 2010). In contrast,

the discrete nature of the random variables d and c produces discontinuous jumps of the hedonic

price function that are taken into account in the identification strategy we propose. A more implicit

restriction in Equation 2 is the stable unit treatment value assumption, according to which the price

of one plot is not affected by the names of the other plots (Holland, 1986).

4.2 Incremental name premiums

This causal model of vineyard price is closely related to the potential outcome framework used

in program impact evaluation (Wooldridge, 2010). The only differences concern the additivity of

mean-independent errors ε and the specification of individual heterogeneity exclusively through

the partially-observed terroir variables X∗. In particular, this framework presents a bi-dimensional

multi-valued treatment structure with unspecified heterogeneous treatment effects. For a given

vineyard plot characterized by (X∗i , εi), its counter-factual price for any vertical name j , di and any

horizontal name k , ci is h(X∗i , j, k) + εi. This implies (J + 1) × (K + 1) − 1 counter-factual prices

(94 in our case) for each vineyard plot, one for each alternative combination of wine names.

A high number of causal statistics can be defined from this counterfactual framework, but some

are of more particular interest. Firstly, we note δ jk(X∗) ≡ h(X∗, j, k) − h(X∗, j − 1, k) the individual

incremental vertical premiums and γ jk(X∗) ≡ h(X∗, j, k) − h(X∗, j, k − 1) the individual incremental

horizontal premiums, each defined for j = 1, . . . , J and k = 1, . . . ,K for a given X∗. They represent

respectively the causal value added by changing the vertical name from j−1 to j and by changing its

horizontal name from k − 1 to k.20 Secondly, we defined two aggregate measures of these individual

incremental premiums by averaging them across plots according to the current designation of names.

These latter statistics are well-known average treatment effects on the treated:

δ jk ≡ E
[
δ jk(X∗) | d = j, c = k

]
and γ jk ≡ E

[
γ jk(X∗) | d = j, c = k

]
. (3)

20This incremental structure is more immediate for the vertical names indexed by j than for the horizontal names
indexed by k. Nevertheless, Figure A.15 in the OA shows that, because of the spatial contiguity, all the bilateral
horizontal premiums can be recovered additively from the individual incremental horizontal premiums defined here.
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The expectation operators are taken from the distribution of X∗ conditionally on the particular

values of d and c. There is a slight abuse of notations in Equation 3, as the indices j and k of

the statistics represent both the individual incremental causal premium of interest (following the

expectation operators) and the vineyard plots that are averaged (within the conditioning sets). This

notation significantly decrease the number of treatment effects under consideration, while keeping

them consistent with the capitalization literature by focusing on treatment effects on the treated

(Kuminoff and Pope, 2014). As E
[
h(X∗, j, k) | d = j, c = k

]
is directly estimable from a random

sample of sales, the critical counterfactual estimands are E
[
h(X∗, j − 1, k) | d = j, c = k

]
and

E
[
h(X∗, j, k − 1) | d = j, c = k

]
. Their estimation requires the computation of the average price

that vineyards of vertical name j within the commune k would have if they were named as j − 1

without changing k, and the average price that the same plots would have is they were named as

k − 1 without changing j. The spatial proximity between j − 1 and j, and k − 1 and k (Figure A.2 in

the OA) suggests that, among the full set of average treatment effects on the treated defined, these

incremental causal estimands δ jk and γ jk compare neighboring plots, which are expected to have the

most similar terroir under spatial continuity of the partially-observed variables X∗.

Thirdly, we aggregate the latter statistics by averaging them respectively on all horizontal

and vertical names. This give J average incremental vertical premiums AIVP j and K average

incremental horizontal premiums AIHPk on which we base our main identification results.

AIVP j ≡ E
[
h(X∗, j, c) − h(X∗, j − 1, c) | d = j

]
= w−1

j· ΣK
k=0 w jk · δ jk, (4)

AIHPk ≡ E
[
h(X∗, d, k) − h(X∗, d, k − 1) | c = k

]
= w−1

·k ΣJ
j=0 w jk · γ jk. (5)

The expectation operator in AIVP j is taken from the joint distribution of X∗ and c, conditionally on

d = j (and symmetrically for AIHPk). The term w jk is the population acreage of plots with both

the vertical name j and the horizontal name k, w j· is for plots with the vertical name j (whatever

the horizontal name), and w·k for plots with the horizontal name k (whatever the vertical name).

For all plots currently designated as j, the AIVP j statistic is the average signaling value they have

from being designated j instead of j − 1, for their given distribution of horizontal names (and

symmetrically for AIHPk). Because they average individual signaling values according to the joint

distribution of d and c, these statistics include the interaction between wine names.
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4.3 Shape restrictions

This rich set of treatment effects allows us to define and test shape restrictions of general economic

interest, in order to characterize the distribution of signaling values between horizontal and vertical

names more extensively. Due to the partially-observed nature of X∗, we focused on aggregate shape

restrictions that are also conditional moment inequalities (Chetverikov et al., 2018).

Monotonicity. The first shape restriction concerns the consistency of quality signaling, accord-

ing to which the ordering of names is stable across dimensions. We define monotonicity separately

for horizontal and vertical dimensions, and begin with the vertical one that is more intuitive given

its hierarchical structure. The vertical name j is monotone relatively to j′ , j if:

E
[
h(X∗, j, k) − h(X∗, j′, k) | d = j, c = k

]
≶ 0, for all k = 0, . . . ,K. (6)

Vertical monotonicity implies that a higher name has more value within each commune, while a

lower name could be more valued between communes. For each couple ( j′, j), the average value

added by j is either positive or negative for all horizontal names, while we expect it is positive if

j′ < j and negative otherwise. With J = 4, there are J(J + 1)/2 = 10 bilateral comparisons between

all ( j′, j) pairs for each K + 1 = 19 horizontal names. Hence, the vertical monotonicity is assessed

from a total of 190 bilateral comparisons. Figure A.6a in OA shows that vertical monotonicity is

verified from the hedonic evidence (we observe only one gap between the Coteaux and Région

levels in Auxey-Duresse-Saint-Romain, see Section A.1.1 in the OA for the formal derivation of

monotonicity for the hedonic model).

Symmetrically, the horizontal name k is monotone relatively to k′ , k if:

E
[
h(X∗, j, k) − h(X∗, j, k′) | d = j, c = k

]
≶ 0, for all j = 0, . . . , J. (7)

Monotone horizontal names present the same ordering of the bilateral signaling values across all the

vertical names. For our application with K = 18, there were K(K +1)/2 = 171 bilateral comparisons

between k and k′ for each of the five vertical names, which give a total of 855 comparisons.

Figure A.6b in the OA shows that, because of the high number of horizontal names, monotonicity
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is less easily assessed visually. We test it by bilateral Spearman’s rank correlation coefficients

between the horizontal signaling values of each vertical level, as reported in Table 2. Horizontal

monotonicity has a strong support from the hedonic evidence, more particularly between the vertical

levels Village and Premier cru and between the Coteaux and Region. Horizontal names present an

implicit ordering that is generally preserved between all the vertical names.

Table 2: Spearman’s Rank Correlation between Horizontal Values for all Vertical Levels.

Coteaux Region Village Premier cru

Region 0.868
Village 0.688 0.833
Premier cru 0.587 0.637 0.902
Grand cru 0.699 0.773 0.806 0.746

Notes: Spearman’s rank correlation coefficients are statistical measures of monotonicity, they are computed between the
horizontal name values reported in Figure A.6b in the OA, for each pair of vertical levels. The Spearman’s coefficients
are all significant at 95%. The details of their computations are reported in Section A1.1 of the OA.

Complementarity. The second set of shape restriction concerns the presence of spillovers

between the two dimensions of names. Accordingly, vertical premiums of complementary names

are higher for higher horizontal premiums (and inversely). The combination ( j, k) of names is

complementary relatively to the combination ( j′, k′) with j′ < j and k′ < k if:21

E
[
h(X∗, j, k) − h(X∗, j′, k) | d = j, c = k

]
> E

[
h(X∗, j, k′) − h(X∗, j′, k′) | d = j, c = k

]
. (8)

For the (J + 1) × (K + 1) = 95 combinations of vertical and horizontal names in our case study,

Equation 9 consists in 4 465 bilateral combinations that cannot be summarized easily. We assessed

the complementarity of wine names by the Kendall rank correlation coefficients between vertical

and horizontal name premiums. This is a classical measure for the concordance of signs between

the two sides of Equation 9. We obtained a significant value of 0.67 from the hedonic results, which

suggests that wine names are complementary in two out of three cases. Figure A.7 in the OA shows

more intuitively that vertical premiums spill over the horizontal names. Horizontal names that have

more acreages with high vertical names have higher signaling values. This can be interpreted as the

presence of umbrella effects under the linear proxy assumptions of A.1.1 in the OA.
21There is a slight abuse of notation in k′ < k, where we implicitely supposed a monotone ranking of horizontal

names. If the names are not monotone (vertically or horizontally), this definition of complementarity is not relevant.
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4.4 Price decomposition

Finally, we decompose the total signaling value of the wine names into a vertical part, a horizontal

part, and an interaction part. As such, we estimate the respective contributions of each name

dimension in the full signaling scheme. Such detailed decompositions are not unique because they

are based on the arbitrary choice of the reference modality (Fortin et al., 2011).22 We define this

reference modality as the least valuable combination ( j∗, k∗) of names without loss of generality. By

noting Π the total signaling value of all wine names on the area, we have:

Π ≡ ΣJ
j=0Σ

K
k=0 w jk E

[
h(X∗, j, k) − h(X∗, j∗, k∗) | d = j, c = k

]
(9)

= ΣJ
j=0 w j· E

[
h(X∗, j, c) − h(X∗, j∗, c) | d = j

]
+ ΣK

k=0 w·k E
[
h(X∗, d, k) − h(X∗, d, k∗) | c = k

]
+ ΣJ

j=0 ΣK
k=0 w jk E

[
h(X∗, j∗, k) + h(X∗, j, k∗) − h(X∗, j, k) − h(X∗, j∗, k∗) | d = j, c = k

]
.

The first equality is definitional, the second equality contains three additive terms: the part of

the value attributed to vertical names, the part attributed to horizontal names, and the interaction

between them. One can verify that all terms of the vertical (horizontal) part are positive if the

vertical (horizontal) names are monotone, and the third part is negative for complementary names.

Because the vertical and horizontal parts are averaged according to the joint distribution of c and

d, they count twice the interactions between names that are subtracted in the third term. The two

first terms can be decomposed once more by separating the value of each in summed terms. From

hedonic results, the total signaling value is about €1.8 billions, representing about €160 000 per

hectare on average (65% of the average price). The vertical part represents 80% (€130 000 per ha),

the horizontal part 35% (€55 000 per ha), and the interaction part −15% (€25 000 per ha). The

Village level is the greatest contributor to the vertical part, followed by Premier cru, Région, and

Grand cru (see A.1.1 of OA for the details). The relative contributions of the horizontal names are

more balanced because the heterogeneity of horizontal values is less marked. The interaction part is

negative because the wine names are both monotonic and complementary.

22Using the terminology of Fortin et al. (2011), we are interested in the detailed decomposition of the structural (or
unexplained) effects, which are shown to be average treatment effects on the treated by the authors.
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5 Regression discontinuity evidence

This section presents the multi-cutoff spatial regression discontinuity (SRD) framework applied to

the geographic delineations of wine names. The normalized distances between vineyard plots and

borders are used as running variables in order to identify local incremental signaling values.

5.1 Spatial structure of delineations

The spatial delineations of horizontal and vertical wine names produce a complex web of borders

(see Figure A.8 in the OA). We count about 300 km of borders between the five vertical levels and

about 50 km of borders between the 19 horizontal names. The spatial structure of wine names

is such that horizontal borders are globally West-East oriented and vertical borders are mostly

North-South oriented (see also Figure 1 below and Figure A.9 in the OA).

We noted V the bi-dimensional random vector of geographic coordinates (i.e., longitude and

latitude). ` j|k(V) is the euclidean distance between the plot at V and the closest point of the border

that separates the vertical names j − 1 and j in the commune k.23 We note `′k| j(V) the distance

between the plot at V and the closest point of the border between the horizontal names k − 1 and k

within the vertical level j. As the vertical levels j and j − 1 are overwhelmingly contiguous and

the k index is ordered from North to South, these incremental borders represent more the 98% of

all borders (see Figure 1 for one of the few counter-examples). Hence, the centroid V of each plot

with a given combination of names ( j, k) is uniquely defined by the four distances to its closest

incremental borders: ` j−1|k(V), ` j|k(V), `′k−1| j(V), and `′k| j(V).

To derive the incremental vertical premiums of commune k, we considered the subset of plots

within the horizontal name c = k with a vertical name d ∈ { j − 1, j}. These plots present two

different vertical names for a same horizontal name, and are geographically separated by only one

vertical incremental border where ` j|k(V) is the distance to it. Plots designated as d = j − 1 are

on one side and plots designated as d = j are on the other side, within the same commune (see

Figure 1). The SRD approach consists in normalizing these distances to the incremental border

23For a given plot Vi =
[
v1i, v2i

]
, we have ` j|k(Vi) =

√
(v1i − v1( j|k))2 + (v2i − v2( j|k))2 where v j|k ≡

[
v1( j|k), v2( j|k)

]
represents the geographic coordinates of the closest point of the border between j − 1 and j within the commune k.
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Figure 1: Focus on the communes of Puligny-Montrachet and Saint-Aubin.
Notes: The map displays two southern communes of Puligny-Montrachet (in the East) and Saint-Aubin (in the West,
see Figure A.2 of the OA). Parts of the communes of Meursault and Chassagne-Montrachet are respectively located
in the North and South of the map. The centroids of plots sold over the period 1992–2017 are market by black dots.
Horizontal borders always delineate contiguous communes (i.e., between k − 1 and k) and vertical borders delineate
overwhelmingly incremental names (i.e., between j − 1 and j). Two exceptions appear on this map, the East of the
Grand cru ( j = 4) is contiguous to a Village ( j = 2), and a part at the North-West border between a Village name ( j = 2)
a Coteaux name ( j = 0). These non-incremental borders are not considered in the SRD analysis. The white areas
without an official names are developed lands at the center of the communes and cropland or forest at the periphery.

through the following running function:

r j|k(V) ≡ 1[d = j] · ` j|k(V) − 1[d = j − 1] · ` j|k(V) = ` j|k(V) ·
[
d j − d j−1

]
, (10)

where d j ≡ 1[d = j] is a dummy variable defined from the indicator function 1[·]. This class of

functions r j|k(·) for j > 0 ∀k normalizes the distances to give negative values for plots designated

as j − 1 and positive values for plots designated as j. We defined a symmetric class for horizontal

names k > 0 within a same vertical name j: r′k| j(V) = `′k| j(V) ·
[
ck − ck−1

]
with ck ≡ 1[c = k].

These two classes of running functions are used to estimate local values of the incremental

signaling premiums δ jk and γ jk in a SRD procedure that is presented below. Following the common

practice in multi-cutoff SRD (Cattaneo et al., 2016), the estimations of aggregated incremental pre-

miums AIVP j and AIHPk are obtained by pooling each horizontal and vertical names respectively,

in addition to the normalization of distances. Considering the subset of plots with a vertical name
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d ∈ { j − 1, j} for j > 0 regardless of the commune k they belong, we define:

r j(V) ≡ ΣK
k=0 ck · r j|k(V) = (d j − d j−1) · ΣK

k=0 ck · ` j|k(V). (11)

These functions return the distance to the closest incremental vertical border within the commune

k to which plot V belong, positively for d = j and negatively for d = j − 1. They are used to

pool horizontal names for each couple of contiguous vertical names in order to estimate average

incremental vertical premiums AIVP j. The symmetric class r′k(V) = (ck − ck−1) · ΣJ
j=0 d j · `

′
k| j(V)

for k > 0 is defined from the pooled sample of vertical names to estimate incremental horizontal

premiums AIHPk. The four classes of running functions r j|k(V), r′k| j(V), r j(V), and r′k(V) produce a

sharp SRD design for the wine names, as they depend deterministically on V .

5.2 Spatial assumptions for terroir

Under the two following assumptions, we show that SRD identifies local incremental signaling

values, from which we derive the implicit weights of the pooled SRD estimates.

SRD Assumptions.

• SRD.1 (Spatial continuity): E
[
h(X∗, j, k) | V, d, c

]
is continuous in V for all j, k.

• SRD.2 (Spatial ignorability): E
[
ε | X∗,V, d, c

]
= E

[
ε | X∗, d, c

]
.

The first assumption SRD.1 considers that terroir variables X∗ produce spatially continuous

counterfactual price variations. The expected price for any given combination of names ( j, k)

is continuous conditionally on V , and whatever d, c. This corresponds to the combination of

Assumptions 2 (continuity) and 5 (cutoff ignorability) of Cattaneo et al. (2016), and implies that the

designation of wine names is ignorable conditionally on V: E
[
h(X∗, j, k) | V, d, c

]
= E

[
h(X∗, j, k) | V

]
.

This spatial continuity assumption SRD.1 concerns the full support of V on the studied area. It is

not limited to a particular cutoff point or to a particular set of points as in classical and multi-cutoff

RD (Imbens and Lemieux, 2008; Abadie and Cattaneo, 2018). This difference is not restrictive, as

situations where continuity holds at some arbitrary cutoff points but not for all the other points are

peculiar in applied settings (Lee and Lemieux, 2010). SRD.1 stems from our definition of terroir as
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coming exclusively from the natural characteristics of land, jointly with the axiom that nature does

not make jumps. This assumption is not rejected by a placebo analysis of the absence of significant

discontinuities for the conditional expectations of observed biophysical variables at borders.

The second assumption SRD.2 considers that the errors from observed vineyard prices (already

assumed to be linearly independent from terroir and wine names by the causal model) do not present

any spatial pattern. Wooldridge (2010) in chapter four (p.138), describes the ignorability assumption

as rarely controversial because a proxy variable is generally irrelevant to explain the outcome in a

conditional mean sense. In our case, SRD.2 amounts to using geographical coordinates V as proxy

variables for the partially-observed terroir. They are prevented from having a direct effect on the

errors from vineyard prices. This restriction that V would not matter if X∗ are known is not testable,

but it is made virtually in all empirical applications that use spatial continuity for identification

(Keele and Titiunik, 2016; Michalopoulos and Papaioannou, 2018).

5.3 Identification from spatial discontinuities

The SRD framework is quite general as it requires neither the full observation of terroir, nor

the presence of constant signaling premiums. For the population of vineyard plots designated

as ( j − 1, j, k) with j > 0, the usual SRD approach identifies a local average of the individual

incremental vertical values presented in Equation 3 (see A.1.2 in OA for the complete proof):

δSRD
jk ≡ lim

ε→0+
E
[
y | r j|k(V) = ε, c = k

]
− lim

ε→0−
E
[
y | r j|k(V) = ε, c = k

]
(12)

= lim
ε→0+
E
[
h(X∗, j, k) | ` j|k(V) = ε

]
− lim

ε→0+
E
[
h(X∗, j − 1, k) | ` j|k(V) = −ε

]
= E

[
δ jk(X∗) | V = v j|k

]
.

The first line of Equation 12 is definitional, the following is implied by spatial continuity (SRD.1),

by spatial ignorability (SRD.2), and by the definition of the normalized running functions. The last

equality comes from the continuity of the hedonic function in X∗ for given d = j and c = k, ∀ j, k, as

defined from the causal model. The two-dimensional vector v j|k corresponds to the geographical

coordinates of the centroid of the border that delineates the vertical levels j − 1 and j within the
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horizontal name k.24 It is straightforward to obtain the symmetric result for the local signaling

values of horizontal names γSRD
jk = E

[
γ jk(X∗) | V = vk| j

]
from each triplet ( j, k − 1, k).

These results show that local incremental name premiums are identified from classical SRD

procedures at each incremental vertical and horizontal border. These local statistics do not represent

average treatment effects on the treated if the incremental values depend on unobserved terroir

variables, in which case the plots at V = v j|k are not representative of the population of treated

vineyards. Nevertheless, these values could be policy relevant to estimate the partial equilibrium

causal effect of a marginal change of name delineation (i.e., a small movement of the border).

Consider now the SRD estimation from pooling vineyard plots designated as j−1 or j regardless

of the horizontal commune name k they belong to. Using previously defined r j(V) as the running

variable, this leads to (see, again, Section A.1.2 in OA for the complete proof):

δSRD
j ≡ lim

ε→0+
E
[
y | r j(V) = ε

]
− lim

ε→0−
E
[
y | r j(V) = ε

]
(13)

= ΣK
k=0 ω

SRD
jk · E

[
δ jk(X∗) | V = v j|k

]
,

with ωSRD
jk ≡ P(c = k) × fV |c=k(v j|k | c = k)/ fV(v j).

This result closely follows Lemma 1 of Cattaneo et al. (2016) for the general multi-cutoff RD.

We note fV(v j) ≡ ΣK
k=0 fV |c=k(v j|k | c = k) · P(c = k) the density of plots at the proximity of the

incremental vertical border of j regardless k. The proof requires the spatial continuity of this density,

which is assessed and not rejected by the data. In Equation 13, pooling horizontal names puts an

implicit weighting scheme on local incremental signaling values, the weights sum to one for each

couple of incremental vertical names across communes. The pooled estimators have the same local

meaning as previous δSRD
jk and γSRD

jk so that, in general, δSRD
j , AIVP j and γSRD

k , AIHPk.

As shown by Cattaneo et al. (2016), pooled SRD estimators are double averages: they are the

weighted averages between borders of local averages within borders. If the incremental values do

not depend on terroir variables (e.g., if they are constant for the treated with δ jk(X∗) = δ jk), the

local SRD premiums identified from Equation 12 can be interpreted causally (δSRD
jk = δ jk). In this

24Contrary to Keele and Titiunik (2016), we did not consider heterogeneous treatment effects within a given border.
We represented a border by its centroid to simplify the analysis, this is not a strong assumption given the small length of
the borders defined for each triplet ( j − 1, j, k) as shown by Figure 1 in text and Figure A.9 in the OA.
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case, the pooled premiums from Equation 13 identify AIVP j under the harmless condition that

the distribution of population acreages w jk/w j· is equal to the distribution of incremental borders

ωSRD
jk (i.e., the size of a region with a given name is proportional to the length of its incremental

borders). Figure A.16 in the OA provides some support for this restriction with the data at hand, so

the pooled SRD weights are not expected to produce a high bias for AIVP j and AIHPk. The local

nature of individual and pooled SRD estimates (for V = v j|k) is probably the most important source

of bias for vineyard plots far from borders. Given the small size of incremental borders and the

small number of vineyard sales close to some of them, the pooled SRD estimates are determinant to

obtain precise estimates of average vertical and horizontal name signaling values. Recognizing the

rich set of causal information that can be derived from the multi-cutoff SRD also allows us to test

several shape restrictions (but not all) about the full signaling scheme of nested wine names.

5.4 Results from spatial discontinuities

Table 3 presents the average incremental vertical premiums δSRD
j from pooled SRD with third-order

polynomials and standard errors clustered within sales (Cattaneo et al., 2019, see also Figures A.11,

A.12, A.13, and A.14 in the OA for the graphical analysis). The top panel of the table shows that

SRD premiums (expressed as a percent of vineyard prices) are much smaller than the hedonic

premiums from Section 2. Hedonic WLS estimations present upward biases distributed from 150%

to 190%, where the highest biases are found for the highest vertical names. Table 3 also reports

alternative SRD estimators with commune fixed effects and with vineyard prices demeaned by

commune. This evaluates the robustness of pooled estimations when controlling for unobserved

commune effects (see Section A.1.2 in OA for details). These alternative SRD estimators are not

significantly different from the raw SRD estimations but they are more precise, in line with Calonico

et al. (2019). The ranking of vertical incremental values is the same between SRD and hedonic

models. The biggest premiums are found between Région and Village levels, followed by Premier

cru and Grand cru, Coteaux and Région, and finally Village and Premier cru. The bottom panel

of Table 3 reports the placebo analysis of the spatial continuity of observed biophysical variables

and plot size (see also Figures A.11, A.12, A.13, and A.14 in the OA). The borders between wine

names do not produce other discontinuities than in vineyard prices, in line with assumption SRD.1.
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Table 3: Average Incremental Vertical Premiums from SRD Estimations.

Région Village Premier cru Grand cru
(N = 3 090) (N = 6 297) (N = 4 671) (N = 750)

Estimator: WLS 0.956∗∗∗ 1.907∗∗∗ 0.700∗∗∗ 1.279∗∗∗

(0.075) (0.041) (0.033) (0.119)
Estimator: SRD pooled 0.584∗∗∗ 1.265∗∗∗ 0.390∗∗ 0.686∗∗

(0.201) (0.291) (0.180) (0.350)
Estimator: SRD with fixed effects 0.384∗∗∗ 0.962∗∗∗ 0.658∗∗∗ 0.744∗∗∗

(0.143) (0.233) (0.155) (0.280)
Estimator: SRD within commune 0.302∗ 1.013∗∗∗ 0.390∗∗∗ 0.696∗∗∗

(0.174) (0.218) (0.131) (0.260)

Placebo: Elevation 0.010 0.260 0.287 0.797
(1.039) (1.149) (0.463) (1.265)

Placebo: Slope −0.385 0.408 0.850 −1.956
(0.706) (1.012) (0.830) (1.283)

Placebo: Solar Radiation −0.002 0.417 0.120 −1.571
(0.151) (0.273) (0.130) (1.125)

Placebo: Exposition −0.212 0.026 −0.167∗ −0.321∗

(0.152) (0.106) (0.090) (0.195)
Placebo: Plot Size 0.182 −0.005 −0.305 −0.120

(0.585) (0.265) (0.258) (0.499)

Standard errors (reported in parentheses) are clustered by vineyard sales: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1.
Notes: The first row of the Table is a benchmark estimation of the hedonic model of Equation 1 by weighted least

squares (see Section A1.1 of the OA for details). Each remaining cell in the top panel is a pooled spatial regression
discontinuity estimator of incremental vertical premiums with the log of per-ha vineyard price as the outcome variable.
The first column reports the causal effect of having a Région name relatively to a Coteaux name (in % of vineyard
price), the second column is the effect of having a Village name relatively to a Région name, and so on. Figures A.11a,
A.12a, A.13a, and A.14a of the OA represent the results graphically. In the following rows of the top panel, commune
fixed effects are introduced as covariates and a within commune transformation of the outcome is applied before SRD.
The bottom panel reports the pooled SRD estimations for observed biophysical variables and plot size, as a heuristics
placebo analysis for SRD.1. These latter results are displayed in Figures A.11, A.12, A.13, and A.14 in the OA.

Table A.4 in the OA reports pooled horizontal SRD premiums γSRD
k for the 18 sub-samples

of contiguous horizontal names (see also Figure A.15a in the OA). In the majority of cases, both

hedonic and SRD premiums are not significantly different from zero because the narrowness of

horizontal borders decreases the precision of the estimates. We do not observe a systematic upward

bias between hedonic and SRD estimations (i.e., between column 1 and columns 2 to 4 in Table A.4

of OA). This confirms that controlling for unobserved terroir effects is not as critical for horizontal

names as for vertical names, as suggested by the partial R2 of Table 1. Table A.5 in the OA reports

both hedonic and SRD estimations for the incremental values of vertical levels, separately for each
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horizontal commune name (see also Figure A.15b of the OA). These individual incremental values

are rarely significant between Coteaux and Région names. This result can be interpreted both

as the absence of differentiated signaling values and as the lack of statistical power due to small

sample sizes close to the individual incremental borders. This is not the case for signaling premiums

between Région and Village vertical names. They are almost all significant with a similar hierarchy

of horizontal names to that in hedonic models.

We observe in Table A.5 of the OA that vertical names are still monotone from SRD results

(only one significant negative value exists between Coteaux and Région levels for the commune

of Chassagne-Montrachet). Spearman rank correlations between the horizontal values recovered

from the same SRD estimations are not significantly different from zero. This does not validate

horizontal monotonicity. Under the additional assumptions reported in Section A.1.2 of OA (about

additive terroir effects and parsimonious interactions) pooled vertical SRD estimations δSRD
j reported

in the second row of Table 3 identify AIVP j, and the SRD estimations δ2k between Région and

Village levels in the fourth column of Table A.5 in the OA identify AIHPk. This shows that the

complementarity of wine names fades out in SRD estimations (Figure A.16 of the OA) and suggests

that the complementarity of names from hedonic estimation is an artifact due to unobserved terroir

heterogeneity. According to the price decomposition of Equation 9 (still under the assumptions of

A.1.2 in OA), vertical names have a total value of €618 millions (average of €55 000 per ha, 42%

of which is obtained from hedonic estimations) and horizontal names have a total value of €724

million (average of €63 000 per ha, 115% of which is obtained from hedonic estimations). The full

decomposition of the total signaling value cannot be computed because neither the interaction part,

nor the total signaling value are recovered from SRD.

6 Doubly robust evidence

This section presents our preferred doubly robust (DR) evidence that combines the control for

unobserved terroir quality and the extrapolation of causal signaling values away from the borders.

We show that name designations depend on historical lobbying actions that increase the overlap

between vineyard plots, therefore providing precise estimates for the full signaling scheme.
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6.1 Specification assumptions

The DR approach is based on an ordered model with commune-specific thresholds, where vertical

name designations are assumed to depend on partially-observed terroir variables. Following Ay

(2021), the latent variable d∗ ≡ b(X∗) + ξ specifies a vineyard quality index that underlies vertical

designations. The unknown function b(·) describes the relation between terroir and vertical names,

according to historically accumulated knowledge and repeated wine tasting that are not observable

to the econometrician. The random part ξ accounts for unobserved variables not related to the

terroir, which enter incidentally into the designation under E(ξ | X∗) = 0. The designation model

combines the latent vineyard quality to additively separable thresholds α j + µk. The vertical name

of the plot i in the commune ci = k satisfies (with α0 ≡ −∞ < α1 < · · · < αJ ≡ +∞):

di = j ⇔ α j−1 + µk < d∗i < α j + µk. (14)

The designation of vertical names is specified through varying thresholds µk as the horizontal

delineations k correspond to the administrative scale at which lobbying took place during the second

part of the ninetieth century and the beginning of the twentieth century (Jacquet, 2009; Ay, 2021).

Through the reputation of past landowners, their influence with decision makers or their collective

actions, some communes enjoyed privileged treatment. Their vineyard plots are placed higher in

the vertical hierarchy than similar plots in other administrative units. Recall that the horizontal

commune delineations pre-existed the vertical ones and were not initially intended to signal wine

quality. Some plots with the same terroir quality b(X∗) but in different communes face different

probabilities of having a given vertical name, without any tangible justification. The name variations

from µk do not depend on potential terroir quality and will serve our identification strategy.

At first glance, the estimation of the designation model is subject to the same limitation as

the vineyard price equation. The identifications of the latent index b(X∗) and both terms of the

thresholds α j +µk rely on the control of terroir that is only partially observed from the data. However,

the crucial difference lies in the possibility of estimating the designation model on the exhaustive

population of vineyard plots, whereas the price model can only be estimated from the sample

of sales. This multiplies by more than six the spatial density of observations (60 000 instead of
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9 000 in the same area). This also allows to precisely control for unobserved spatial heterogeneity

through high-dimensional methods (Belloni et al., 2014; Athey and Imbens, 2019). With the same

population data, Ay (2021) found that spline transformations of biophysical variables and geographic

coordinates by penalized maximum likelihood (Wood et al., 2016) accounted for unobserved terroir

effects in estimating commune coefficients from the delineation of vertical names.

In line with this prior result, we specify partially-observed vineyard quality b(X∗) through

additive spline transformations of covariates noted B(X,V)>ψ. The high-dimensional vector ψ of

unknown coefficients is associated with the series transformation of the biophysical variables and

the geographical coordinates (see Section A.1.3 in OA for details). This specification gives the first

sufficient DR.1 assumption presented below. The second sufficient DR.2 assumption concerns the

specification of counter-factual hedonic functions, which are expected to depend on the vineyard

quality index of the designation model. As is well known (Robins and Rotnitzky, 1995; Słoczyński

and Wooldridge, 2018), the DR identification is reached if at least the propensity score or the

outcome is well specified, which amounts to one of the following DR assumptions in our case:

DR Assumptions.

• DR.1 (Designation specification): P
(
d 6 j | X,V, c

)
= Φ

[
α j + Σk µk · ck − B(X,V)>ψ

]
,

• DR.2 (Hedonic specification): E
[
h(X∗, j, k) | X,V

]
= κ jk + ρ jk · B(X,V)>ψ.

In DR.1, Φ denotes the cumulative distribution function of errors ξ, from which generalized

propensity scores are specified to make causal inference about multi-valued treatments under

unconfoundedness (Imbens, 2000; Cattaneo, 2010; Uysal, 2015). As the probability of having a

low vertical name d increases with µk, a commune k with a high coefficient µk is systematically

disadvantaged by designations. Because the range of a cumulative function is bounded by the unit

interval, DR.1 implies a vertical overlap of plots with 0 < P
(
d = j | X,V, c

)
< 1 for the full range

of X,V, c (i.e., where c is included as a pre-treatment variable). In DR.2, we use the dimension

reduction property of the propensity score (Rosenbaum and Rubin, 1983) for the specification of the

hedonic function, where ρ jk measures the partial correlation between the latent vineyard quality and

expected vineyard prices. This linear dependence is allowed to change between j and k, whereas

the saturated form of wine name effects κ jk is included without loss of generality.
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6.2 Doubly robust identification

In a direct application of Lemma 3.2 from Słoczyński and Wooldridge (2018) to our framework, we

show in Section A.1.3 of the OA that Assumptions SRD and DR.1 are sufficient to identify the full

set of signaling premiums defined from the causal model of Section 4. We obtain:

E
[
h(X∗, j, k) | d = l, c = m

]
= w−1

lm · E
[
ωDR

jk|lm(X,V) · d j · ck · y
]
, (15)

with ωDR
jk|lm(X,V) ≡

Φ
[
αl + µm − B(X,V)>ψ

]
− Φ

[
αl−1 + µm − B(X,V)>ψ

]
Φ
[
α j + µk − B(X,V)>ψ

]
− Φ

[
α j−1 + µk − B(X,V)>ψ

] × P(c = m | X,V)
P(c = k | X,V)

.

From the first line of Equation 15, the average price that vineyards designated as (d = l, c = m) would

have if they were designated as (d = j, c = k) is identified by a weighted expectation of the observed

prices y for the vineyards currently designated as (d = j, c = k). The weighting scheme is based on

the ratio of two generalized propensity scores from DR.1. They are multiplied by the ratio of two

conditional probabilities about horizontal designations (at the end of the second line of Equation 15).

While the vertical overlap is implied by DR.1, the horizontal overlap 0 < P
(
c = k | X,V

)
< 1, ∀k, is

more critical, and could generate an irregular identification (Khan and Tamer, 2010).

This first DR result is quite general, as it identifies average counterfactual prices for each

combination of names ( j, k, l,m) with j, l = 0, . . . , J and k,m = 0, . . . ,K. The second part of the DR

proof about the sufficiency of DR.2 is more direct and is only reported in Section A.1.3 of OA for

completeness. Accordingly, the full causal signaling scheme is identified from Equation 15 and the

shape restrictions can be tested for each combination of names in the data (i.e., for w jk,wlm > 0).

Average individual incremental premiums of Equation 3 are recovered from:

δ jk = (w·k/w jk) · E
{[

d j − ω
DR
( j−1)k| jk(X,V) · d j−1

]
· y | c = k

}
, (16)

γ jk = (w j·/w jk) · E
{[

ck − ω
DR
j(k−1)| jk(X,V) · ck−1

]
· y | d = j

}
.

The ratio of the conditional probabilities P(c = m | X,V)/P(c = k | X,V) from ωDR
jk|lm(X,V) in

Equation 15 that threaten identification simplifies in ωDR
( j−1)k| jk(X,V). So, horizontal overlap is not

required to identify the individual incremental vertical values of the first line of Equation 16 because

only vineyard plots with c = k are used. As a side effect, the name variations between communes

29



from historical lobbying are not used for identification because µk appears both at the numerator and

the denominator of the weights. In the second line of Equation 16, the identification of incremental

horizontal values relies on P(c = k | X,V)/P(c = k − 1 | X,V) in ωDR
j(k−1)| jk(X,V) and consequently

requires horizontal overlap. Because the terroir bias is not as critical for horizontal names, we put

this point aside and come back to it empirically in Section 6.3 below.

The pooled average incremental vertical premiums can be recovered from Equation 16, by

using AIVP j = w−1
j· ΣK

k=0 w jk · δ jk from Equation 4. This identification relies on using communes as

pre-treatment variables, which is not required to have vertical unconfoundedness from SRD.1.25 In

fact, AIVP j can be identified from generalized propensity scores evaluated at any arbitrary commune

m without loss of generality. Under the sufficient assumptions SRD and DR.1, we can identify the

pooled premiums of vertical names from (see Section A.1.3 in the OA for the complete proof):

E
[
h(X∗, j, c) | d = l

]
= w−1

l· E
[
ωDR

jm|lm(X,V) · d j · y
]
, ∀m = 0, . . . ,K. (17)

This original result shows that average treatment effects on the treated can be identified from

generalized propensity scores with a counterfactual assignation of vineyard plots between the

communes. The proof of Section A.1.3 in OA presents the formula for averaging propensity scores

among the set of communes, which produces the highest overlap in our empirical application. As

first recognized by Ichimura and Taber (2001), an unconfoundedness assumption is an exclusion

restriction for the treatment that, in our case, is equivalent to considering commune dummies as

instrumental variables. The exclusion restriction for c in SRD.1 is not necessary (as AIVP j can

be recovered from equations 4 and 15) but allows us to increase overlap between vineyard plots

with different vertical names. From the chain rule, 0 < P(d j = 1 | X,V, c = m) < 1 is implied by

0 < P(d j · cm = 1 | X,V) < 1 (∀ j,m). The overlap condition for Equation 15 is more restrictive than

for Equation 17 on the full support of (X,V) ∀m. Alternative identification strategies have been

developed recently to deal with limited overlap, though distributional assumption (Rothe, 2017),

resampling (Ma and Wang, 2020) or bias correction (Sasaki and Ura, 2018). To the best of our

knowledge, the use of exogenous variations of the treatment assignment is new.

25SRD.1 implies that E
[
h(X∗, j, k) | X,V, d

]
= E

[
h(X∗, j, k) | X,V

]
by the law of iterated expectations, so vineyard

prices are conditionally mean-independent from d even without controlling for c as a pre-treatment variable.
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6.3 Doubly robust estimation

Słoczyński and Wooldridge (2018) showed that weighted least squares WLS on sub-samples defined

from the treatment status recovered causal statistics under DR assumptions very close to ours

(see Cattaneo, 2010; Uysal, 2015 for alternative estimation procedures). For each couple ( j, k) of

names, we can consistently estimate the κ and ρ coefficients by using the weights from Equation 15.

Because we estimate average signaling values, the coefficients depend on the population of treated

plots (through the weighting scheme), so using the identification result from Equation 16 for each

combination ( j, k, l,m) necessitates the estimation of 5 184 models (from 72 weighting schemes for

each of the 72 combinations of names). From them, we can then compute (we omit indexation of

the weights on coefficients for the sake of clarity):

δ̂DR
jk = (κ̂ jk − κ̂( j−1)k) + (ρ̂ jk − ρ̂( j−1)k) · w−1

jk · Σ
N
i=1 1[di = j, ci = k] · B(xi, vi)>ψ̂, (18)

γ̂DR
jk = (κ̂ jk − κ̂ j(k−1)) + (ρ̂ jk − ρ̂ j(k−1)) · w−1

jk · Σ
N
i=1 1[di = j, ci = k] · B(xi, vi)>ψ̂.

Under SRD assumptions, only one of assumptions DR.1 and DR.2 is sufficient to have δ̂DR
jk = δ jk

and γ̂DR
jk = γ jk. The possibility to finely control for V from the full population data with a high

spatial density of plots allows us to use the spatial continuity of terroir as in SRD estimation of

Section 5, without being limited to estimate local causal statistics. We can compare DR and SRD

results by computing individual average incremental premiums from Equation 18 at vi = v j|k.

Using the identification result of Equation 17 consists in pooling vineyard sales with a different

horizontal name c for each level of vertical name j. This leads to the model:

yi = c>i κ j + ρ j · B(xi, vi)>ψ̂ + εi. (19)

The unknown coefficients κ j and ρ j are estimated separately for each J + 1 = 5 sub-samples

of vertical names and for each 5 different weighting schemes, with l = 0, . . . , J in ω̃DR
j|l (xi, vi) ≡

ΣK
m=0 ω

DR
jm|lm(xi, vi)/(K + 1). These 25 WLS estimations give 25 sets of coefficients noted κ̂(l)

j for the

K + 1 horizontal premiums and ρ̂(l)
j for the coefficients associated with the predicted latent vineyard

quality (the exponents in parenthesis mark the vertical level l used for the weights). Note that index
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k is dropped from DR.2 in Equation 19 because this restriction is not rejected by the data (the

interaction between ci and B(xi, vi)>ψ̂ is not significant from a F test on WLS models). Finally, all

incremental signaling values, all shape restrictions, and the full price decomposition from Section 4

can be recovered from these sub-sample WLS estimations (see Section A.1.3 in OA for details).

6.4 Doubly robust results

We first present the results from name designation models on the whole population data with a

logistic distribution of errors (see the left panel of Table A.1 in the OA for the summary statistics).

Table 4 reports the relative importance of each variable or group of variables in explaining the

designation of vertical names with different degrees of spatial smoothing of geographical coordinates

(as measured by χ2 statistics about joint significance). As a whole, the three models have high

explanatory and predictive performances with pseudo-R2 greater than 0.7 and more than 85% of

correct predictions. Following the bivariate smoothing function of geographical coordinates, the

commune dummies are the second most important group of variables in terms of joint significance,

followed by elevation, solar radiation, slope, and exposition. As expected, increasing the complexity

of the smoothing functions of geographical coordinates (i.e., decreasing the spatial smoothing of

the latent quality variable) decreases the joint significance of other included exogenous variables,

while the commune dummies about lobbying effects stay the second most significant group.

The similarity between the marginal effects of biophysical variables in the designation of vertical

wine names (Figure A.17 in OA) and their marginal effects in the hedonic models of vineyard

prices (Figure A.4 in OA) is striking. The spline transformations of elevation produce a U-inverted

effect with a maximum probability of a high vertical name at less than about 300 meters. Slope

and solar radiation also have very similar effects as in hedonic models. This illustrates once more

the strong statistical relationships between the designation of vertical wine names, biophysical

variables, and vineyard prices. The unequal treatments between communes in terms of vertical

name designations are displayed by Figure A.18 in OA. It shows highly significant differences

between communes and a stable ranking of them for the different spatial smoothing specifications

of Table 4. The rankings of the communes are similar to those obtained by Ay (2021), who provides

additional interpretations related to the local context and the historical justifications of lobbying
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Table 4: Joint Significance χ2 Statistics of Exogenous Variables in Designation Models.

Outcome variable: Ordered Vertical Wine Names

Variable ( df= 500 ) ( df= 700 ) ( df= 900 )

Elevation 2 378.3∗∗∗ 1 994.7∗∗∗ 1 974.6∗∗∗

[ 8.84 ] [ 8.83 ] [ 8.841 ]
Slope 273.94∗∗∗ 183.69∗∗∗ 167.74∗∗∗

[ 8.368 ] [ 8.25 ] [ 8.051 ]
Solar Radiation 1 245.2∗∗∗ 1 155.3∗∗∗ 811.18∗∗∗

[ 8.035 ] [ 8.181 ] [ 7.938 ]
Spatial Coordinates 104 224∗∗∗ 107 858∗∗∗ 114 093∗∗∗

[ 484.4 ] [ 662.1 ] [ 841.2 ]
Exposition 69.604∗∗∗ 47.667∗∗∗ 15.037∗∗∗

[ 4 ] [ 4 ] [ 4 ]
Communes 4 988.8∗∗∗ 3 255.6∗∗∗ 2 578∗∗∗

[ 19 ] [ 19 ] [ 19 ]

Number of Observations 59 838 59 838 59 838
McFadden R2 69 72.24 75.15
Percent of correct predictions 84.31 86.81 88.83
Akaike Information Criteria 53.72 48.6 44.04

Effective degrees of freedom [reported in brakets] determine significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1.
Note: Each column of the Table reports the χ2 statistics for the joint significance of each group of spline transfor-

mations related to the variables in rows (Wood et al., 2016). The models are of increasing spatial complexity (i.e.,
decreasing spatial smoothing) from left to right. The first column restricts the maximal degree of freedom from spline
transformations of geographical coordinates to be less than 500, to obtain a penalized effective degree of freedom of
484.4 (eighth line). The two following columns put the maximal degrees of freedom to respectively 700 and 900.

effects. Figure A.19 in OA shows the spatial patterns of the predicted vineyard quality that underlies

the designation of vertical wine names for df = 900. The spatial precision allowed by the small size

and high density of vineyard plots from population data produces very fine spatial variations of the

vineyard quality index as revealed by the designation of vertical names. It is important to note that

horizontal delineations from administrative commune borders do not produce any discontinuity in

these predictions that rely only on the geographical coordinates of vineyard plots.

Figure A.20a and Figure A.20b in the OA show the gain of overlap from counter-factually

assigning vineyard plots between communes. The raw predictions of propensity scores (without

commune averaging in the panels A) only produce enough overlap to estimate incremental premiums

between contiguous vertical names. For instance, vineyards named as Coteaux present an overlap

only with Région vineyards, as the overlap areas with Village, Premier cru, and Grand cru are thin
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or even empty. As displayed in the bottom panels B of the Figures, averaging propensity scores

between counter-factual assignment of communes membership increases the overlap between plots

with different vertical names sharply. Coteaux vineyards are then overlapped with Région, Village,

and Premier cru vineyards. However, the commune instruments are not sufficiently strong to obtain

an overlap between Coteaux and Grand cru vineyards, so the corresponding results should be

interpreted with caution. The Figure also shows that overlap gains are higher for df = 500 than for

df = 900, i.e., where the commune coefficients are more significant (as reported in Table 4).

Table 5 gives the pooled vertical values from DR estimations, where average incremental vertical

values AIVP j appear just above the empty diagonal. The pooled vertical DR values correspond to

incremental signaling values (per hectare in 2017) of €19 300, €114 000, €150 000, and €400 000,

for respectively Région, Village, Premier cru, and Grand cru (as the respective average prices are

€36 400, €87 100, €325 500, and €688 400). Vertical DR premiums are much lower than vertical

hedonic premiums of Table A.3 in the OA and slightly higher than vertical SRD premiums of

Table 3. Incremental DR vertical premiums are not significantly different from SRD premiums

when generalized propensity scores are evaluated at the borders, i.e., for v = v j|k in Equation 19

(unreported results). The similarity between SRD and DR decreases significantly when moving

away from the diagonal of the Table (i.e., when we compare plots further from geographical borders).

Symmetrically, average premiums reported in the first line of Table 5 are closer to the hedonic

values. The DR approach combines the internal validity of the SRD and the external validity of the

hedonic approach, and produces results that are between the two.

Table A.6 in OA displays additional diagnostics for the 25 WLS regressions used to obtain the

vertical signaling values. Commune fixed effects from Equation 19 are more significant for Village

and Premier cru levels. This is in accordance with the impossibility for lower levels Coteaux and

Région to combine their horizontal names and with the small number of Grand cru observations.

The vineyard quality index from the designation model has a globally significant positive effect

on price, especially for Village names. The full R2 are significantly lower than in the hedonic

regressions because of both sub-sampling and the approach chosen to account for control variables z

from Equation 1.26 The results are obtained without trimming extreme predicted propensity scores,

26To control for sale characteristics, we regress the logarithm of per-ha vineyard price on the variables to obtain the
vector θ of coefficients, then the WLS sub-sample estimations are made on the residuals.
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Table 5: Pooled Average Vertical Premiums from Double Robust Estimations.

Coteaux Régional Village P. cru G. cru

Coteaux 0.53∗∗∗ 2.01∗∗∗ 2.73∗∗∗ 4.06∗∗∗

(0.10) (0.15) (0.16) (0.29)
Régional −0.60∗∗∗ 1.31∗∗∗ 2.37∗∗∗ 3.68∗∗∗

(0.14) (0.08) (0.22) (0.38)
Village −2.12∗∗∗ −1.45∗∗∗ 0.46∗∗∗ 1.58∗∗∗

(0.39) (0.07) (0.05) (0.19)
Premier cru −3.25∗∗∗ −2.28∗∗∗ −0.47∗∗∗ 0.58∗∗∗

(0.79) (0.53) (0.09) (0.13)
Grand cru −6.18∗∗∗ −3.90∗∗∗ −1.89∗∗∗ −0.91∗

(1.32) (0.62) (0.38) (0.40)

Standard errors (reported in parentheses) are from stratified bootstrap: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1.
Notes: Reported numbers correspond to pooled average vertical premiums (as a percent of vineyard price) between

the names in columns and the names in rows for vineyards actually designated as the name in columns (i.e., average
treatment effects on the treated). In the second cell of the first row, Région vineyards are 53% more expensive that
they would be if designated as Coteaux, according to their actual distribution among horizontal names. Because of the
estimated weights and latent quality index, standard errors are bootstrapped with a stratification of vineyard sales. The
details of the 25 WLS estimations from which these numbers are computed are reported in Table A.6 in the OA.

so the number of observation is constant in each sub-sample. Table A.7 in the OA reports the

average incremental horizontal premiums AIHPk, showing that they are a little weaker than the

hedonic ones reported in Table A.3 in OA. Again, controlling for unobserved terroir heterogeneity

appears less important for horizontal premiums than for vertical ones.

From Table 5, vertical signaling values are pairwise monotone, as we find positive increasing

signaling values at the top right corner and negative decreasing ones in the bottom left corner.

Table 6 reports Spearman’s rank correlation coefficients from commune fixed effects of Table A.7 in

the OA. It shows that horizontal monotonicity is verified from DR results, although with a smaller

significance than the hedonic results from Table 2. We find that the complementarity of horizontal

and vertical names is also verified, as displayed by Figure A.21 in OA. An increase of 1% of the

average vertical value for a given commune is associated with an increase of 0.66 points in its

horizontal value. Nevertheless, this evidence is only significant at 15% (t = 1.58). According to

the price decomposition of Equation 9, we find a total DR signaling value of about €1.3 billions

(in 2017), representing about €115 000 by hectare on average. The vertical part represents 61%

(€70 150 per ha), the horizontal part 53% (€60 950 per ha), and the interaction part −12% (€13 800

per ha), instead of respectively 80%, 35% and −15% from the hedonic results. The total signaling
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value of nested wine names is revised downward to about 40% compared to hedonic results. The

part of horizontal names increases (both in share of total value and absolute value) and the share of

the interaction part remains roughly stable, while it is divided by two in monetary units.

Table 6: Spearman’s rank correlation between horizontal premiums for each vertical level.

Coteaux Region Village Premier cru

Region 0.707
Village 0.317 0.410
Premier cru 0.612 0.612 0.897
Grand cru 0.143 0.257 0.086 0.429

Notes: Spearman’s rank correlation coefficients are statistical measures of pairwise monotonicity. We computed them
from horizontal fixed effects from Equation 19 in each sub-sample of vertical names. The designation model used to
predict vineyard quality index is with df = 900, see also Table A.6 for the estimated values of raw coefficients.

7 Conclusion

This article provides a causal valuation of nested wine names, controlling for unobserved terroir

quality that impacts both name designation and vineyard price. Our preferred identification strategy

exploited a historical bias in name designation, from lobbying actions that took place one century

ago. We show that averaging counter-factual propensity scores along this exogenous dimension

increases the overlap between observations, which improves the causal inference.

By providing a hierarchy of quality to consumers, the vertical dimension of names has the

highest signaling value, although it was over-estimated by a hedonic model (by a factor of about

two) and under-estimated by a spatial regression discontinuity design (by a factor of about 0.85).

The differences between the methods are respectively explained by unobserved terroir heterogeneity

and by unobserved heterogeneity of signaling values, which both increase for vineyard plots away

from the borders between names. Conversely, the signaling values of horizontal names are not

significantly biased by unobserved terroir heterogeneity, and benefit from spillovers of vertical

names. For a given terroir quality, a horizontal name is more valuable when it is nested with high-

valued vertical names. This provides a first causal evidence of complementary quality disclosure

from bi-dimensional multi-valued signals with both a horizontal and a vertical dimension.
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The complementarity of nested names accounts for about 15% of their total signaling value.

This could explain the frequency of this nested structure for consumption goods in particular and

for many other quality signals in general. For several centuries in Burgundy, wine production was

segmented according to this nested structure, and we show that it is still relevant today despite

changes in production techniques, tastes, and market structures. Moreover, the monotonicity of

wine names within their respective horizontal and vertical dimensions indicates a consistent quality

signaling that gives a stable ordering of names. The relative signaling value of a given horizontal or

vertical name is preserved whatever the combination to which it belongs. This empirical finding

provides a causal support for the monotonicity condition often used in the information theory.

The extent of terroir’s significance for vine cultivation and for the production of high-quality

wines is regularly debated in the natural science literature and in the wine industry. We provide

evidence of a high economic importance of fine-scale terroir quality that is neither unobserved

by the researcher from data, nor by the typical consumer from bottled wines that cannot taste it.

These terroir variables are only observable from the field and probably have to be combined with

external knowledge from experiences of wine production and wine tasting to reach their fullest

extent in value. By focusing on the willingness to pay on the land market (by buyers and sellers,

but also real estate and consulting agencies), we reveal the importance of terroir quality from the

agents that hold this knowledge and use it in bidding for a wine name when buying a vineyard. This

estimation relies on their perceptions from the land market and it would be interesting to objectify

the underlying natural processes behind the terroir concept in future researches.

Our results were obtained from a spatial continuity assumption about terroir quality. This is

justified by the well-recognized smooth geographical variations of natural processes and the tiny

size of vineyard plots for the area under study. We have to highlight that the causal signaling values

that we define and estimate are partial equilibrium statistics under the current market equilibrium of

Burgundy’s wines. Their external validity for other areas or other products needs to be addressed

adequately. Additional research is also needed to study the general equilibrium determinants of the

signaling values of other names, in line with changing consumers’ knowledge, learning, fashion,

or taste. This research agenda would inform better policies about better quality disclosures, by

endogenizing both consumers’ and producers’ reactions.
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8 Data availability

The population data about the official wine names and biophysical variables for the 60 000 vineyard

plots of the area are freely available at the dataverse https://data.inrae.fr/dataset.xhtml?

persistentId=doi:10.15454/ZZWQMN
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A Online Appendix

A.1 Complete proofs

This section presents the complete proofs for, respectively, the causal interpretation of hedonic
evidence (Sections 3 and 4 of the main paper), the regression discontinuity evidence (Section 5 of
the paper), and the doubly robust evidence (Section 6 of the paper).

A.1.1 Causal interpretation of hedonic evidence

Under the linear proxy Assumptions A1.1, we show that hedonic estimates of Section 3 are
asymptotically consistent for the causal statistics described in Section 4.

A1.1 (∀ j, k) E
[
h(X∗, j, k) | X, d, c

]
= E

[
h(X∗, j, k) | X

]
= η jk + X>β. (20)

The first equality assumes that conditioning on the proxy X ⊂ X∗ is sufficient to ignore the
distribution of horizontal and vertical names in the conditional expectations of hedonic functions.
The second equality specifies these conditional expectations as a vector of homogeneous coefficients
β and the saturated form of homogeneous names premiums η jk (Angrist and Krueger, 1999). Under
A1.1 and the law of iterated expectations (LIE), the incremental causal statistics from Equation 3 of
the main text can be written as linear forms with:

δ jk = E
{
E
[
h(X∗, j, k) − h(X∗, j − 1, k) | X

]
| d = j, c = k

}
= η jk − η( j−1)k

γ jk = E
{
E
[
h(X∗, j, k) − h(X∗, j, k − 1) | X

]
| d = j, c = k

}
= η jk − η j(k−1).

By substituting these expressions respectively in Equation 4 and Equation 5 of Section 4, we have:

AIVP j = w−1
j· ΣK

k=0 w jk
[
η jk − η( j−1)k

]
and AIHPk = w−1

·k ΣJ
j=0 w jk

[
η jk − η j(k−1)

]
,

where w jk, w j·, and w·k are the population acreages for respectively plots with names j and k, plots
with name j (whatever k), and plots with name k (whatever j).

From Equation 2 with X ⊂ X∗ and LIE, we have E(ε | X, d, c) = 0. As dummies for d = 0 and
c = 0 are omitted and the design matrix is full rank, the OLS estimation of Equation 1 gives:

δ̂OLS
j

p
→ E

[
E(y | X, d = j, c = 0) − E(y | X, d = 0, c = 0)

]
= η j0 − η00 = Σ0<l6 j δl0

γ̂OLS
k

p
→ E

[
E(y | X, d = 0, c = k) − E(y | X, d = 0, c = 0)

]
= η0k − η00 = Σ0<m6k γ0m

λ̂OLS
jk

p
→ (η jk + η00) − (η j0 + η0k) = Σ0<l6 j (δlk − δl0) = Σ0<m6k (γ jm − γ0m).

The parameters δl0 and γ0m in the two first lines are the average incremental effects on the treated
from Equation 3 in the text. The last line follows from δ̂OLS

j + γ̂OLS
k + λ̂OLS

jk

p
→ η jk − η00. The last

two equality show that coefficients of interactions are double differences. In addition, we have
δ̂OLS

j − δ̂OLS
j−1 + λ̂OLS

jk − λ̂OLS
( j−1)k

p
→ η jk − η( j−1)k and γ̂OLS

k − γ̂OLS
k−1 + λ̂OLS

jk − λ̂OLS
j(k−1)

p
→ η jk − η j(k−1).
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Hence, the average incremental vertical and horizontal premiums of Equation 4 and Equation 5
of the text can be consistently estimated from OLS estimation and population data by:

̂AIVP ols
j = δ̂OLS

j − δ̂OLS
j−1 + w−1

j· ΣK
k=0 w jk

[
λ̂OLS

jk − λ̂OLS
( j−1)k

]
̂AIHP ols

k = γ̂OLS
k − γ̂OLS

k−1 + w−1
·k ΣJ

j=0 w jk
[
λ̂OLS

jk − λ̂OLS
j(k−1)

]
This result allows us to compare the descriptive evidences with the causal results presented in
Sections 5 and 6 of the main text. More precisely, the coefficients reported in the WLS row of
Table 3 and in the WLS column of Table A.4 in this OA are estimated from weighted least square
estimation of Equation 1 with the weights of Gibbons et al. (2018) [equation (3), page 4]:

ωOLS
i| j =

[
V̂
(
d̃l | l = j

)]−1/2
and ωOLS

i|k =
[
V̂
(
c̃m | m = k

)]−1/2
.

With this procedure, we obtain ̂AIVP ols
j and ̂AIHP ols

k directly from the OLS estimation and we
cluster standard errors more easily according to the formula presented in Gibbons et al. (2018).

Under previous Assumptions A1.1, shape restrictions and decomposition from Section 4 can
be assessed from the hedonic OLS coefficients with full interactions (Equation 1). The following
inequalities are obtained by substituting previous OLS estimators from the definitions of the text.

The vertical monotonicity of Equation 6 implies ∀ j, j′, k:

δ̂OLS
j − δ̂OLS

j′ ≶ −(λ̂OLS
jk − λ̂OLS

j′k ).

The horizontal monotonicity of Equation 7 implies ∀ j, k, k′ such that:

γ̂OLS
k − γ̂OLS

k′ ≶ −(λ̂OLS
jk − λ̂OLS

jk′ ).

The complementarity of Equation 9 implies ∀ j, j′, k, k′:

λ̂OLS
jk − λ̂OLS

j′k > λ̂
OLS
jk′ − λ̂

OLS
j′k′ or λ̂OLS

jk − λ̂OLS
jk′ > λ̂

OLS
j′k − λ̂

OLS
j′k′ .

The estimated decomposition of the full capitalized value of vineyards is then:

Π̂OLS =ΣJ
j=0 ΣK

k=0 w jk
(
δ̂OLS

j − δ̂OLS
j∗ + λ̂OLS

jk − λ̂OLS
j∗k

)
+ ΣJ

j=0 ΣK
k=0 w jk

(
γ̂OLS

k − γ̂OLS
k∗ + λ̂OLS

jk − λ̂OLS
jk∗

)
+ ΣJ

j=0 ΣK
k=0 w jk

(
λ̂OLS

j∗k + λ̂OLS
jk∗ − λ̂

OLS
jk − λ̂OLS

j∗k∗
)⇔

Π̂OLS =ΣJ
j=0 w j·

(
δ̂OLS

j − δ̂OLS
j∗

)
ΣK

k=0 w jk
(
λ̂OLS

jk − λ̂OLS
j∗k

)
+ ΣK

k=0 w·k
(
γ̂OLS

k − γ̂OLS
k∗

)
ΣJ

j=0 w jk
(
λ̂OLS

jk − λ̂OLS
jk∗

)
+ ΣJ

j=0 ΣK
k=0 w jk

(
λ̂OLS

j∗k + λ̂OLS
jk∗ − λ̂

OLS
jk − λ̂OLS

j∗k∗
)
.

By comparing this last decomposition with shape restrictions for j′ = j∗ and k′ = k∗, it appears that
each term of the vertical (resp. horizontal) part of the decomposition is positive if the vertical (resp.
horizontal) monotonicity is verified. Moreover, the third interaction term of the decomposition is
negative if the names are complementary.
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A.1.2 Details for Spatial Regression Discontinuity evidence

The observed vineyard price y from Equation 2 of the main text can be rewritten as the sum of
counter-factual hedonic functions (with dl ≡ 1[d = l] and cm ≡ 1[c = m]):

y = ΣJ
l=0 ΣK

m=0 dl · cm · h(X∗, l,m) + ε,

which can be substituted in each SRD limit of Equation 12 of the main text:

lim
ε→0+
E
[
y | r j|k(V) = ε, c = k

]
= lim
ε→0+
E
[
ΣJ

l=0 ΣK
m=0 dl · cm · h(X∗, l,m) | r j|k(V) = ε, c = k

]
+ lim

ε→0+
E
[
ε | r j|k(V) = ε, c = k

]
.

The second term is zero by LIE and spatial ignorability (SRD.2):

E
{
E
[
ε | X∗,V, d, c]︸            ︷︷            ︸

=0

| r j|k(V) = ε, c = k
]}
.

This leaves the first term rewritten as:

lim
ε→0+
E
[
y | r j|k(V) = ε, c = k

]
= lim
ε→0+

ΣJ
l=0 ΣK

m=0 E
[
dl · cm · h(X∗, l,m) | r j|k(V) = ε, c = k

]
= lim
ε→0+
E
[
h(X∗, j, k) | r j|k(V) = ε, c = k

]
= lim
ε→0+
E
[
h(X∗, j, k) | ` j|k(V) = ε, c = k

]
= lim
ε→0+
E
[
h(X∗, j, k) | ` j|k(V) = ε

]
= E

[
h(X∗, j, k) | V = v j|k

]
.

In the right hand side of the first equality, dl · cm is different from zero only when l = j and m = k,
which is implicitly the case when r j|k(V) > 0. The second equality simplifies with the definition of
the running functions (Equation 10 of the main text). Moving from the third equality to the fourth
requires spatial continuity of SRD.1 and the last equality comes from the fact that plot ` j|k(V) = 0
are such that V = v j|k. The proof of limε→0− E

[
y | r j|k(V) = ε, c = k

]
= E

[
h(X∗, j − 1, k) | V = v j|k

]
is

symmetric and allows obtaining Equation 12: δSRD
j|k = E

[
h(X∗, j, k) − h(X∗, j − 1, k) | V = v j|k

]
.

The proof of Equation 13 of the main text follows Lemma 1 of Cattaneo et al. (2016):

lim
ε→0+
E
[
y | r j(V) = ε

]
= lim

ε→0+
ΣK

k=0 E
[
ck · h(X∗, j, k) | ΣK

m=0 cm` j|m(V) = ε
]

= lim
ε→0+

ΣK
k=0 E

[
h(X∗, j, k) | ` j|k(V) = ε, c = k

]
· P

(
c = k | ΣK

m=0 cm` j|m(V) = ε,
)
.

From the chain rule, we have:

P
(
c = k | ΣK

m=0 cm` j|m(V) = ε
)

=
P
(
ΣK

m=0 cm` j|m(V) = ε | c = k
)

P
(
ΣK

m=0 cm` j|m(V) = ε
) · P

(
c = k

)
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Hence, we swap the limit and the sum operators, and use our previous result to obtain:

lim
ε→0+
E
[
y | r j(V) = ε

]
=

K∑
k=0

P
(
V = v j|k | c = k

)
P
(
V = v j

) · E
[
h(X∗, j, k) | V = v j|k

]
· P

(
c = k

)
=

K∑
k=0

fV |c(v j|k | c = k)
fV(v j)

· E
[
h(X∗, j, k) | V = v j|k

]
· P

(
c = k

)
from which we recover the weighting scheme noted ωSRD

jk in the main text. Symmetrically, the
continuity of the distribution of plots on each side of borders concludes the proof:

lim
ε→0+
E
[
y | r j(V) = ε

]
= ΣK

k=0 ω
SRD
jk · E

[
h(X∗, j − 1, k) | V = v j|k

]
Vertically pooled SRD estimates δSRD

j give a local estimation of AIVP j for j > 0 where
communes are averaged according the the size of their vertical borders and the densities of vineyards
sales around these borders instead of population acreages. We also report in Table 3 of the main
paper pooled vertical SRD estimations with commune fixed effects as covariates (Calonico et al.,
2019) and pooled vertical SRD on price deviations from commune averages using the log of
ỹ ≡ y − yc as the outcome variable (yc is the average vineyard price for the commune c). These
estimators allow to control for unobserved effects to verify the robustness of raw pooled estimators.

Assessing shape restrictions from SRD estimates requires additional Assumptions A1.2 in
addition to SRD.1 and SRD.2 of the main text:

A1.2 (∀ j, k) E
[
h(X∗, j, k) | V

]
= τ jk + g(V), (21)

with parsimonious interactions such that τ0k = τ0, τ1k = τ1, τ4k = τ4, and τ2k = τ3k = τ′k. This set of
assumptions corresponds to the additive separation between names premiums and the un-specified
spatial patterns of terroir. Under assumption SRD from the main text and A1.2, we have:

δSRD
jk = τ jk − τ( j−1)k = δ jk and γSRD

k j = τ jk − τ j(k−1) = γ jk

δSRD
j = ΣK

k=0ω
SRD
jk δ jk ≈ AIVP j and γSRD

k = ΣJ
j=0ω

SRD
jk γ jk ≈ AIHPk.

The last two equality are some approximation under the equivalence between area and border
weighting schemes (see Figure A.16 of this Online Appendix).

Hence, the vertical and the horizontal parts of the decomposition are respectively:

w1·δ
SRD
1 + w2·(δSRD

1 + δSRD
2 ) + w3·(δSRD

1 + δSRD
2 + δSRD

3 ) + w4·(δSRD
1 + δSRD

2 + δSRD
3 + δSRD

4 )

and ΣK
k=0(w2k + w3k) × (δSRD

2k − δ
SRD
2k∗ ).

Note that neither the interaction, nor the total value of wine names can be computed from SRD
estimations, so that the estimation of the full price decomposition cannot be recovered.
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A.1.3 Details for Doubly Robust evidence

Firstly, consider the penalized estimation of the ordered generalized additive model about the
designation of vertical names (DR.1), which allows us to compute generalized propensity scores in
the DR approach. The matrix B(X,V) of the main text is specified through additive low rank isotropic
smoothers of observed variables (Wood, 2017), which are uni-dimensional for each biophysical
variables xu with u = 1, . . . , u, and bi-dimensional for the geographic coordinates (v1, v2). The
maximum allowed transformation basis for each function bu(·) is shrinked endogenously in the
penalized estimation procedure. We set:

B(xi, vi)>ψ ≡ Σu
u=1 bu(xui)>ψu + b0(v1i, v2i)>ψ0.

Even with this additive structure, the spline transformations of each variable imply a high number
of coefficients to estimate and lead to the curse of dimensionality as in all high-dimensional method.
Hence, the variance of errors is minimized by penalized iterated weighted least squares and the
smoothing parameter is estimated using a separate criterion from the restricted maximum likelihood
framework. The smoothness of a given variable or group of variable is assessed by the effective
degrees of freedom that account for the endogenous penalization of any given dimension reduction
(Wood, 2017, p.273). To take into account the uncertainty related to the unknown smoothing
parameter, Wood et al. (2016) provide the corrections for inference and goodness-of-fit measures.

Secondly, consider the average counter-factual price that vineyards designated as d = l, c = m
would have if they were designated as d = j and c = k. We have (for wlm > 0):

E
[
h(X∗, j, k) | d = l, c = m

]
= w−1

lm E
[
dl · cm · h(X∗, j, k)

]
We can then develop further, following closely Słoczyński and Wooldridge (2018):

E
[
dl · cm · h(X∗, j, k)

]
= E

{
dl · cm · E

[
h(X∗, j, k) | X,V, d, c

]}
= E

{
dl · cm · E

[
h(X∗, j, k) | X,V

]}
= E

{
P
(
d = l, c = m | X,V

)
· E

[
h(X∗, j, k) | X,V

]}
.

The first equality comes from LIE, the second comes from the assumption of spatial continuity
SRD.1, and the third is again the LIE. We have also:

E
[
d j · ck · y | X,V

]
= E

{
d j · ck ·

[
ΣJ

j′=0Σ
K
k′=0 d j′ · ck′ · h(X∗, j′, k′) + ε

]
| X,V

}
= E

{
d j · ck · E

[
h(X∗, j, k) | X,V, d, c

]
| X,V

}
= P

(
d = j, c = k | X,V

)
· E

[
h(X∗, j, k) | X,V

]
.

The first equality comes from the structural model, the second from spatial ignorability SRD.2, and
the third from spatial continuity SRD.1 with LIE. By expressing E

[
h(X∗, j, k) | X,V

]
, plugging it in

the equation above, and using LIE a last time, we obtain Equation 15 of the main text:

E
[
h(X∗, j, k) | d = l, c = m

]
= w−1

lm E

[
P(d = l, c = m | X,V)
P(d = j, c = k | X,V)

d j · ck · y
]
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The regression adjustment part of the DR proof follows from Assumption DR.2 of the main text.

Thirdly, we keep the same structure of the proof to derive the pooled DR estimations:

E
[
h(X∗, j, c) | d = l

]
= w−1

l· E
[
dl · Σ

K
k=0 ck · h(X∗, j, k)

]
= w−1

l· E
{
dl · E

[
h(X∗, j,m) | X,V, d, c = m

]}
(∀m)

= w−1
l· E

{
E(dl | X,V, c = m) · E

[
h(X∗, j,m) | X,V

]}
.

The first equality is definitional, the second comes from LIE, and the third from spatial continuity
SRD.1 and LIE. It is crucial to note that the second equality is verified for all m = 0, . . . ,K,
according to which the choice of m is arbitrary. We have also (still for any m):

E
[
d j · y | X,V

]
= E

{
d j · E

[
h(X∗, j,m) | X,V, d, c = m

]
| X,V

}
(∀m)

= E
{
E(d j | X,V, c = m) · E

[
h(X∗, j,m) | X,V

]
| X,V

}
= E

[
E(d j | X,V, c = m) | X,V

]
· E

[
h(X∗, j,m) | X,V

]
.

Combining the two previous results by substituting E
[
h(X∗, j,m) | X,V

]
gives:

E
[
h(X∗, j, c) | d = l

]
= w−1

l· E

[
P(d = l | X,V, c = m)
P(d = j | X,V, c = m)

d j · y
]

where the choice of m is again arbitrary. From vineyard data at hand, we find that averaging the
probability ratio among communes m is the most efficient method (while the differences between
the m are not significant). The DR weights become (as for Equation 19 in the main text):

ω̃DR
j|l (X,V) = (K + 1)−1

K∑
m=0

Φ
[
αl + µm − L(X,V)>ψ

]
− Φ

[
αl−1 + µm − L(X,V)>ψ

]
Φ
[
α j + µm − L(X,V)>ψ

]
− Φ

[
α j−1 + µm − L(X,V)>ψ

] .
For the regression adjustment part of the DR estimation, we have (under DR.2):

E
[
h(X∗, j, c) | d = l

]
= E

{
ΣK

k=0 ck · E
[
h(X∗, j, k) | X,V

]
| d = l

}
= ΣK

k=0 (wlk/wl·)
{
κ jk + ρ jk · E

[
B(X,V)>ψ | d = l, c = k

]}
,

from which we recover:

AIVP j = ΣK
k=0 (w jk/w j·)

{
(κ jk − κ( j−1)k) + (ρ jk − ρ( j−1)k) · E

[
B(X,V)>ψ | d = j, c = k

]}
.
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Figure A.1: Exemples of Wine Labels from the Côte d’Or Region under Study.
Notes: The labels below are from the same producer-trader (négociant-éleveur) Louis Latour based on the commune
of Beaune (https://www.louislatour.com/en/wines/). Its portfolio of about 100 names from the Côte d’Or is
among the more diverse, other wine producers have on average about 10 different wine names. The two first panels (a)
and (b) present labels from the two lowest vertical levels Coteaux and Région without the mention of the horizontal
names. The following six panels present two horizontal levels for each of the three remaining highest vertical levels.

(a) Coteaux vertical level (b) Région vertical level

(c) Village level from Gevrey-Chambertin (d) Village level from Beaune

(e) Premier cru level from Beaune (f) Premier cru level from Chambolle-Musigny

(g) Grand cru level from Gevrey-Chambertin (h) Grand cru level from Aloxe-Corton
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Figure A.2: Topography and Wine Names for the Vineyards of the Côte d’Or.
Notes: The elevation on the left side map is discretized in eight classes of 50 m intervals. From the East to the West, the
elevation is first convex then concave, so the highest slopes are observed for average elevations. On the right side map,
highest vertical wine names are located on these highest slopes. The precision of the vertical delineations is such that
best vineyards, classified as Grand cru, are not visually well-separated from just below Premier cru. This map also
shows the names of the 31 communes of the area, which correpond to the horizontal dimension of wine names.
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Table A.1: Summary Statistics for Main Variables of Plot and Sale Data.

Plot Data (N = 59 967) Sale Data (N = 8 987)
Variables Min Q1 Q2 Mean Q3 Max Min Q1 Q2 Mean Q3 Max

Price (M euro/ ha) 0 0.04 0.14 0.35 0.39 23.39
Surface (ha) 0 0.05 0.11 0.19 0.22 9.61 0 0.06 0.13 0.2 0.23 8.2
Longitude (WGS84) 4.66 4.74 4.81 4.84 4.96 5.02 4.67 4.76 4.81 4.84 4.95 5
Latitude (WGS84/ 10) 4.69 4.7 4.7 4.71 4.72 4.73 4.69 4.7 4.7 4.71 4.72 4.73
Elevation (100 m) 2.1 2.41 2.71 2.86 3.18 5.05 2.1 2.36 2.61 2.77 3.07 4.5
Slope (degree) 0 1.54 3.43 5.73 8.69 36.97 0.06 1.42 2.72 4.95 7.67 19.99
Solar Radiation (M Joule) 0.58 1.05 1.06 1.06 1.08 1.23 0.83 1.05 1.06 1.06 1.07 1.21
Exposition (degree) -0.01 0.93 1.22 1.34 1.64 3.58 0.02 0.92 1.22 1.31 1.62 3.55

Horizontal / Vertical names Coteau Région Village P.cru G.cru Coteau Région Village P.cru G.cru

Marsannay 362 1523 2216 0 0 26 158 387 0 0
Fixin 117 627 1128 90 0 23 93 157 1 0
Gevrey-Chambertin 176 389 2734 567 391 12 62 434 99 24
Morey-Saint-Denis 657 177 688 314 146 146 17 87 26 3
Chambolle-Musigny 27 199 957 507 128 8 51 161 66 8
Vosne-Romanee-Vougeot 333 309 864 360 482 52 36 69 35 67
Nuits-Saint-Georges 326 575 1349 440 0 27 60 195 54 0
Cote-de-Nuits-Village 359 712 618 0 0 33 90 118 0 0
Aloxe-Corton-Ladoix 301 1259 1968 517 586 12 153 399 69 90
Savigny-Chorey-les-Beaune 325 664 1366 301 0 18 110 362 40 0
Beaune-Cote-de-Beaune 261 411 806 877 0 6 29 110 182 0
Pommard 435 1566 1147 433 0 58 439 314 69 0
Monthelie-Volnay 391 586 1575 708 0 84 135 453 118 0
Auxey-Duresses-Saint-Romain 3050 1755 1797 114 0 186 58 208 15 0
Meursault 1176 988 1373 412 0 163 204 208 60 0
Puligny-Montrachet 226 985 598 556 92 89 282 138 110 21
Saint-Aubin 816 1799 914 1119 0 63 203 102 164 0
Chassagne-Montrachet 201 290 1163 913 81 14 49 193 102 13
Santenay 231 293 1071 490 0 15 38 109 45 0

Notes: The top panel displays summary statistics for continuous variables both for the population of plots (left part) and for the sample of sales
(right part). The bottom panel reports the interacted frequencies between the horizontal names (in rows) and the vertical levels (in columns) for
each data set. The horizontal names reported in the Table are the 19 groups of communes aggregated from the 31 administrative communes on the
basis of pairwise homogeneity tests from hedonic models. Marsannay counts the communes of Chenove, Marsannay-la-Côte, and Couchey. Fixin
counts the communes of Fixin and part of Brochon. Vosne-Romanée-Vougeot counts Vosne-Romanée, Vougeot, and Flagey-Echezeaux. Cote-de-
Nuits-Village counts Premaux-Prissey, Comblanchien, and Corgoloin. Aloxe-Corton-Ladoix counts Pernand-Vergeless, Aloxe-Corton, and Ladoix-
Serrigny. Savigny-Chorey-les-Beaune counts Savigny-les-Beaune and Chorey-les-Beaune. Monthelie-Volnay counts Monthelie and Volnay. Auxey-
Duresse-Saint-Romain counts Auxey-Duresse and Saint-Romain.
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Table A.2: Estimated Coefficients from Control Variables in Hedonic Models of Table 1.

Dependent variable: logarithm of per-ha vineyard prices

(1) (2) (3) (4) (5) (6)

Log. of plot size −0.090∗∗∗ −0.248∗∗∗ −0.072∗∗∗ −0.160∗∗∗ −0.050∗∗∗ −0.012
(0.017) (0.023) (0.016) (0.021) (0.015) (0.015)

Occuped plot 0.318∗∗∗ 0.626∗∗∗ 0.252∗∗∗ 0.408∗∗∗ 0.167∗∗∗ 0.159∗∗∗

(0.039) (0.054) (0.037) (0.048) (0.031) (0.030)
Tenured plot −0.119∗∗ 0.033 −0.107∗∗ 0.003 −0.069 −0.102∗∗

(0.052) (0.076) (0.051) (0.062) (0.042) (0.040)

Type of Buyer (ref= Not mentioned)

Agricultural holding (GFA) 0.390∗∗∗ 0.930∗∗∗ 0.364∗∗∗ 0.808∗∗∗ 0.408∗∗∗ 0.403∗∗∗

(0.105) (0.163) (0.104) (0.131) (0.094) (0.081)
Agricutural corporation 0.549∗∗∗ 1.119∗∗∗ 0.538∗∗∗ 0.938∗∗∗ 0.537∗∗∗ 0.485∗∗∗

(0.101) (0.161) (0.100) (0.126) (0.091) (0.078)
Agricultural person 0.111 0.363∗∗ 0.111 0.335∗∗∗ 0.149∗ 0.190∗∗

(0.097) (0.155) (0.096) (0.121) (0.088) (0.075)
Agricultural retired 0.196 0.477 0.144 0.328 0.056 0.036

(0.219) (0.360) (0.215) (0.344) (0.227) (0.221)
Non-agricultural holding 0.278 −0.123 0.241 0.223 0.383∗∗ 0.470∗∗

(0.218) (0.242) (0.204) (0.197) (0.173) (0.183)
Non-agricutural corporation 0.705∗∗∗ 1.264∗∗∗ 0.678∗∗∗ 1.025∗∗∗ 0.584∗∗∗ 0.512∗∗∗

(0.135) (0.206) (0.133) (0.166) (0.118) (0.101)
Non-agricultural person 0.176∗ 0.424∗∗∗ 0.208∗∗ 0.443∗∗∗ 0.309∗∗∗ 0.285∗∗∗

(0.106) (0.164) (0.104) (0.129) (0.096) (0.082)
Non-agricultural retired 0.067 0.329∗ 0.158 0.346∗∗ 0.318∗∗∗ 0.295∗∗∗

(0.134) (0.183) (0.127) (0.153) (0.121) (0.101)
Other types 0.267∗∗ 0.735∗∗∗ 0.274∗∗ 0.649∗∗∗ 0.380∗∗∗ 0.330∗∗∗

(0.114) (0.178) (0.112) (0.143) (0.102) (0.087)

Type of Seller (ref= Not mentioned)

Agricultural holding (GFA) −0.148 0.071 −0.127 −0.089 −0.054 −0.090
(0.166) (0.252) (0.166) (0.220) (0.162) (0.138)

Agricutural corporation −0.033 0.223 0.032 0.020 0.032 0.011
(0.159) (0.230) (0.157) (0.204) (0.154) (0.128)

Agricultural person −0.069 0.193 0.010 −0.069 −0.004 −0.023
(0.148) (0.214) (0.148) (0.191) (0.147) (0.122)

Agricultural retired −0.076 0.082 −0.041 −0.141 −0.037 −0.128
(0.239) (0.329) (0.236) (0.295) (0.212) (0.181)

Non-agricultural holding −0.598∗∗ −0.690∗ −0.428 −0.700∗∗ −0.275 −0.145
(0.301) (0.360) (0.284) (0.297) (0.287) (0.273)

Non-agricultural corporation −0.219 −0.044 −0.148 −0.297 −0.133 −0.197
(0.206) (0.304) (0.203) (0.269) (0.184) (0.156)

Non-agricultural person −0.266∗ −0.045 −0.181 −0.219 −0.179 −0.256∗∗

(0.151) (0.217) (0.151) (0.194) (0.150) (0.126)
Non-agricultural retired −0.359∗∗ −0.213 −0.283∗ −0.338∗ −0.184 −0.258∗∗

(0.149) (0.214) (0.149) (0.192) (0.148) (0.123)
Retrocession SAFER −0.133 0.457∗∗ −0.019 0.240 0.107 0.040

(0.149) (0.214) (0.149) (0.192) (0.147) (0.123)
Other types −0.327∗∗ −0.101 −0.254∗ −0.310 −0.171 −0.232∗

(0.149) (0.214) (0.149) (0.191) (0.148) (0.123)

Controls X X X X X X
Biophysical variables X X X X
Vertical names X X X X
Horizontal names X X X X
Interactions btw names X
Observations 8,987 8,987 8,987 8,987 8,987 8,987
R2 0.712 0.372 0.730 0.563 0.785 0.811

Standard errors (reported in parenthesis) are clustered by vineyard sales: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1.
Notes: Control variables include year of sale, see Figure A.3a. Biophysical variables include elevation, slope, solar radiation, and exposition, in

third order polynomials, see Figure A.4 for their marginal effects.
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Table A.3: Estimated Coefficients from Wine Names in Hedonic Models of Table 1.

Dependent variable: logarithm of per-ha vineyard prices

(1) (2) (3) (4) (5) (6)

Vertical Levels (ref= Coteaux)

Région 0.892∗∗∗ 0.913∗∗∗ 0.922∗∗∗ 0.960∗∗∗

(0.062) (0.062) (0.067) (0.077)
Village 2.569∗∗∗ 2.634∗∗∗ 2.639∗∗∗ 2.572∗∗∗

(0.059) (0.063) (0.068) (0.091)
Premier cru 3.409∗∗∗ 3.469∗∗∗ 3.312∗∗∗ 3.538∗∗∗

(0.065) (0.072) (0.076) (0.145)
Grand cru 4.562∗∗∗ 4.606∗∗∗ 4.482∗∗∗ 4.802∗∗∗

(0.114) (0.119) (0.120) (0.191)

Horizontal Names (ref= Marsannay)

Fixin 0.243∗∗ 0.235∗∗ 0.417∗∗∗ 0.299∗∗∗

(0.105) (0.102) (0.099) (0.080)
Gevrey-Chambertin 1.479∗∗∗ 1.752∗∗∗ 1.009∗∗∗ 1.020∗∗∗

(0.086) (0.079) (0.074) (0.102)
Morey-Saint-Denis 0.113 0.766∗∗∗ 0.934∗∗∗ −0.020

(0.174) (0.158) (0.115) (0.202)
Chambolle-Musigny 1.565∗∗∗ 1.839∗∗∗ 1.298∗∗∗ 1.118∗∗∗

(0.140) (0.125) (0.092) (0.136)
Vosne-Romanee-Vougeot 1.423∗∗∗ 2.257∗∗∗ 1.454∗∗∗ 0.374∗

(0.165) (0.143) (0.103) (0.213)
Nuits-Saint-Georges 1.035∗∗∗ 1.808∗∗∗ 1.176∗∗∗ 0.973∗∗∗

(0.117) (0.110) (0.086) (0.117)
Cote-de-Nuits-Village 0.017 0.901∗∗∗ 0.506∗∗∗ 0.062

(0.113) (0.112) (0.109) (0.098)
Aloxe-Corton-Ladoix 0.528∗∗∗ 1.351∗∗∗ 0.293∗∗∗ −0.071

(0.099) (0.103) (0.090) (0.117)
Savigny-Chorey-les-Beaune 0.474∗∗∗ 1.540∗∗∗ 0.394∗∗∗ 0.305∗∗∗

(0.087) (0.094) (0.082) (0.082)
Beaune-Cote-de-Beaune 1.039∗∗∗ 2.015∗∗∗ 0.512∗∗∗ −0.191

(0.109) (0.127) (0.103) (0.284)
Pommard 0.813∗∗∗ 1.746∗∗∗ 1.228∗∗∗ 0.642∗∗∗

(0.096) (0.094) (0.083) (0.093)
Monthelie-Volnay 0.776∗∗∗ 1.562∗∗∗ 0.891∗∗∗ 0.609∗∗∗

(0.102) (0.104) (0.087) (0.117)
Auxey-Duresses-Saint-Romain −0.601∗∗∗ 0.677∗∗∗ 0.274∗∗ −0.319∗

(0.127) (0.126) (0.111) (0.163)
Meursault 0.511∗∗∗ 1.977∗∗∗ 1.365∗∗∗ 0.590∗∗∗

(0.114) (0.107) (0.090) (0.131)
Puligny-Montrachet 0.735∗∗∗ 2.368∗∗∗ 1.389∗∗∗ 0.401∗∗∗

(0.127) (0.126) (0.098) (0.150)
Saint-Aubin 0.385∗∗∗ 1.148∗∗∗ 0.502∗∗∗ −0.383∗

(0.127) (0.130) (0.104) (0.199)
Chassagne-Montrachet 1.973∗∗∗ 3.225∗∗∗ 1.730∗∗∗ 1.291∗∗∗

(0.108) (0.110) (0.092) (0.167)
Santenay 0.645∗∗∗ 1.610∗∗∗ 0.625∗∗∗ 0.217

(0.118) (0.138) (0.104) (0.162)

Controls X X X X X X
Biophysical variables X X X X
Vertical names X X X X
Horizontal names X X X X
Interactions btw names X
Observations 8,987 8,987 8,987 8,987 8,987 8,987
R2 0.712 0.372 0.730 0.563 0.785 0.811

Standard errors (reported in parenthesis) are clustered by vineyard sales: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1.
Notes: Control variables include year of sale, plot size, type of seller, type of buyer, tenure status, and current occupation of vineyards. They are

included in all models, see Table A.2 and Figure A.3a for the details of estimation. Biophysical variables include elevation, slope, solar radiation, and
exposition in third order polynomials, see Figure A.4 for their marginal effects. The interaction effects are centered, ã jki ≡ (d ji−n jk/n j)(cki−n jk/nk)
for j = 1, 2, 3, 4 and k = 1, 2, . . . , 19, in order to maintain the interpretation of the main coefficients reported in the Table for model with interaction.
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Figure A.3: Time and Names Coefficients from Hedonic Models (1) and (2) of Table 1.
Notes: The trend break in 1996 comes from a change in data gathering, controled in the analysis by year fixed effects.
Horizontal names of the Panel (c) are ordered from the northernmost (at the left) to the southermost (at the right).
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Figure A.4: Marginal Effects of Biophysical Variables from Model (0) of Table 1.
Notes: The marginal effects displayed come from third-order polynomials specifications of biophysical variables,
with other explanatory variables fixed at their sample means. Pointwise confidence intervals are computed from the
variance-covariance matrix of coefficients (Friendly et al., 2013), clustered between vineyard sales.
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Figure A.5: Signaling Values from the Hedonic Model with Parsimonious Interactions.
Notes: The Figure reports on a log y-scale the predicted vineyard price for each existing combination of horizontal
(x-axis, from the North to the South) and vertical names (lines and points), with other explanatory variables fixed at
their sample means. As explained in the text, the interactions are limited to the intermediate vertical levels (Village and
Premier cru) because the two lowest levels (Coteaux and Régional) are precluded to put the horizontal names on labels.
The Premier cru line is discontinous at the two commune names that do not have this vertical level. Predicted price for
the highest level Grand cru is estimated from the seven communes that are marked at the top of the Figure.
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Figure A.6: Name Premiums from Hedonic Model with Full Interactions.
Notes: The same names premiums are presented in two different ways. Panel (a) displays horizontal names on the
x-axis with a different line for each vertical name, and panel (b) do the opposite. On panel (a), the only (non-significant)
gap from vertical monotonicity is for the Région of Auxey-Duresses-Saint-Romain with a line crossing. On panel (b),
horizontal monotonicity can be assessed from plot alignement for each vertical level (on the x-axis).
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Figure A.7: Hedonic Evidences about Complementary Wine names.
Notes: Reported name premiums are averaged as described in Section A1.1 of OA. For each horizontal name, vertical
premiums on the x-axis are acreage-weighted average of vertical premiums according to their within distribution.
Premiums are expressed in % of increase relatively to the less expensive vertical and horizontal levels: the Coteaux of
Marsannay located at the North of the area (Figure A.2). The slope coefficient is significant at 99% (t = 3.98).
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Figure A.8: Spatial Distribution of Borders between Horizontal and Vertical Names.
Notes: For the region of interest, the area shadded in grey corresponds to the population vineyards plots with an official
wine name. The map below also reports the administrative borders of the communes (in black) that correspond to the
horizontal names and the incremental borders (in colors) that separate vineyards of different vertical levels.
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Figure A.9: Zoom on Gevrey-Chambertin, Morey-Saint-Denis, and Chambolle Musigny.
Notes: This map displays the horizontal and vertical borders for three northern communes of the area (see Figure A.2
of this Online Appendix). For clarity, the full geometries of vineyards plots appear only for the commune of Morey-
Saint-Denis in the middle of the map. The commune of Gevrey-Chambertin is further north and the commune of
Chambolle-Musigny is further south. Black lines are the administrative commune borders, where some delineates both
horizontal and vertical names but not all. Centroids of vineyard plots sold on the period are marked by black dots.
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Figure A.10: Population weights w jk/w j· and implicit weights from pooled SRD ωSRD
jk .

Notes: For each couple ( j, k) of wine names, each dot represents the correspondig share of acreages (x-axis) and the
corresponding share of incremental borders (y-axis). The obserevd dependance depends directly on the shape of name
polygons. If the points are aligned on the first diagonal, the implicit weights from pooled SRD estimation are equal to
population weights, which means the only bias come from the local nature of SRD estimates and not their aggregation.
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Figure A.11: SRD Average Incremental Vertical Premium for Région wrt Coteaux.
Note: The SRD estimators and their standard errors are reported in Table 3 of the main text.
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Figure A.12: SRD Average Incremental Vertical Premium for Village wrt Région.
Note: The SRD estimators and their standard errors are reported in Table 3 of the main text.
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Figure A.13: SRD Average Incremental Vertical Premium for Premier cru wrt Village.
Note: The SRD estimators and their standard errors are reported in Table 3 of the main text.
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Figure A.14: SRD Average Incremental Vertical Premium for Grand cru wrt Premier cru.
Note: The SRD estimators and their standard errors are reported in Table 3 of the main text.
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Figure A.15: Horizontal and Interaction Borders Used in Pooled and Interaction SRD.
Notes: The left panel (a) presents the delineations of communes used to estimate the incremental values of horizontal
wine names (the index k = 0, 1, . . . , 18 appear in the boxes of each group of communes). The borders between
contiguous vineyards with different horizontal names are displayed by blue lines, black lines are the full adminstrative
delineations between communes. The aggregation of initial communes mentionned in the notes below Table A.1 appears
though dotted grey lines. The right panel (b) presents the spatial relationships used to estimate the incremental values
of vertical and horizontal names. Each straight line represents a contiguity between vineyards used to estimate an
incremental name premium (for a total of 51 SRD displayed in the rows of Table A.5 of this Online Appendix).

(a) Horizontal Wine Names (b) Interaction Between Wine Names
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Table A.4: Average Incremental Vertical Premiums from SRD Estimations.

WLS SRD pool SRD wfe SRD wc

Fixin & Marsannay 0.117 0.101 1.809 −0.171
(N = 256) (0.180) (2.409) (2.116) (2.409)
Gevrey-Chambertin & Fixin 1.045∗∗∗ 2.519∗∗∗ 1.981∗∗∗ 1.076∗∗

(N = 477) (0.088) (0.555) (0.565) (0.555)
Morey-Saint-Denis & Gevrey-Chambertin −0.188 1.002 0.888 2.272∗∗

(N = 344) (0.271) (1.170) (0.938) (1.170)
Chambolle-Musigny & Morey-Saint-Denis 0.130 −1.708 0.957 −3.094∗∗

(N = 349) (0.177) (1.255) (1.157) (1.255)
Vosne-Romanee & Chambolle-Musigny −0.215 1.360 0.983 1.422
(N = 299) (0.240) (1.248) (0.986) (1.248)
Nuits-Saint-Georges & Vosne-Romanee −0.226 0.054 0.258 0.336
(N = 299) (0.161) (0.655) (0.703) (0.655)
Cote-de-Nuits & Nuits-Saint-Georges −0.303∗∗ 0.023 1.591 1.056
(N = 213) (0.169) (1.645) (1.167) (1.645)
Aloxe-Corton-Ladoix & Cote-de-Nuits −0.761∗∗∗ −4.892∗∗ −4.977∗∗ −3.755
(N = 138) (0.274) (2.621) (2.269) (2.621)
Savigny-Chorey & Aloxe-Corton-Ladoix −0.074 −2.344∗∗ −2.096∗∗ −2.071∗∗

(N = 590) (0.111) (1.035) (0.988) (1.035)
Beaune-Cote-de-Beaune & Savigny-Chorey −0.570∗∗∗ −1.932 −1.793 −1.934
(N = 256) (0.205) (1.419) (1.212) (1.419)
Pommard & Beaune-Cote-de-Beaune 0.426∗∗ −0.126 −0.789 0.176
(N = 464) (0.199) (0.447) (0.561) (0.447)
Monthelie-Volnay & Pommard −0.046 −0.098 0.285 −0.141
(N = 888) (0.075) (0.532) (0.434) (0.532)
Auxey-Saint-Romain & Monthelie-Volnay −0.326∗∗ 1.211 1.204 1.366∗∗

(N = 503) (0.149) (0.799) (0.879) (0.799)
Meursault & Auxey-Saint-Romain 0.931∗∗∗ 1.520∗∗ 2.114∗∗ 1.439∗∗

(N = 248) (0.195) (0.739) (0.833) (0.739)
Puligny-Montrachet & Meursault 0.328∗∗ 0.669∗∗ 0.402 0.482∗∗

(N = 525) (0.089) (0.342) (0.273) (0.175)
Saint-Aubin & Puligny-Montrachet 0.948 −1.776∗∗ −1.240 −2.382∗∗

(N = 1 172) (0.506) (1.070) (0.842) (1.070)
Chassagne-Montrachet & Saint-Aubin 0.248∗∗ 1.776∗∗ 1.170 1.968∗∗

(N = 903) (0.071) (0.790) (0.842) (0.650)
Santenay & Chassagne-Montrachet −0.376 −1.678 −1.440 −1.873
(N = 578) (0.201) (1.234) (0.827) (0.99)

Standard errors (reported in parenthesis) are clustered by vineyard sales: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1.
Notes: For each couple of contiguous horizontal names in rows, the Table reports the spatial regression discontinuity

estimators for the first commune names relatively to the second (see Figure A.15a for the spatial structure). The first
column is a benchmark estimation of the descriptive model of Equation 1 by weighted least squares (see Section A1.1
of the Online Appendix for details). Other columns report the spatial regression discontinuity estimator with the log of
per-ha vineyard prices as the outcome variable (see Table 3 in the main paper for meanings of the labels).
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Table A.5: Vertical Incremental Estimations from SRD on Horizontal Subsamples.

Région & Coteaux Village & Région P. cru & Village

Horizontal names OLS SRD OLS SRD OLS SRD

Marsannay 0.406 1.412∗ 0.343∗∗ 1.188∗∗ − −

(0.288) (0.655) (0.112) (0.383)
Fixin 1.374∗∗ −0.438 0.883∗∗ 0.827∗∗ − −

(0.334) (0.511) (0.158) (0.303)
Gevrey-Chambertin 0.200 −1.361 2.122∗∗ 2.441∗∗ 0.504∗∗ 0.652∗

(0.516) (0.971) (0.150) (0.193) (0.093) (0.346)
Morey-Saint-Denis 1.803∗∗ 0.836∗ 0.972∗∗ −1.724 0.876∗∗ −0.316

(0.312) (0.426) (0.306) (1.183) (0.218) (0.273)
Chambolle-Musigny − − 2.437∗∗ 2.918∗∗ 0.521∗∗ 0.326

(0.173) (0.564) (0.123) (0.218)
Vosne-Romanee-Vougeot 0.470∗ 1.280∗ 2.224∗∗ 1.710∗ 0.793∗∗ 1.218∗

(0.214) (0.712) (0.191) (1.035) (0.172) (0.661)
Nuits-Saint-Georges 0.417 0.080 2.519∗∗ 1.960∗∗ 0.424∗∗ 0.299

(0.326) (0.380) (0.128) (0.319) (0.157) (0.299)
Cote-de-Nuits-Village 0.647∗ 2.014 1.290∗∗ 0.758∗ − −

(0.300) (2.865) (0.145) (0.405)
Aloxe-Corton-Ladoix 1.860∗∗ 2.211 1.941∗∗ 1.855∗∗ 0.912∗∗ 0.238

(0.455) (1.420) (0.169) (0.254) (0.166) (0.222)
Savigny-Chorey-les-Beaune 0.944∗ −0.169 1.458∗∗ 1.396∗∗ 0.520∗∗ 0.594∗

(0.420) (0.612) (0.129) (0.260) (0.074) (0.287)
Beaune-Cote-de-Beaune − − 1.693∗∗ 2.681∗∗ 0.832∗∗ 0.555∗∗

(0.413) (0.690) (0.113) (0.174)
Pommard 0.989∗∗ 1.254∗ 2.605∗∗ 1.903∗∗ 0.555∗∗ 0.046

(0.230) (0.667) (0.094) (0.292) (0.094) (0.120)
Monthelie-Volnay 1.439∗∗ 0.211 1.635∗∗ 1.532∗∗ 0.946∗∗ 0.485∗

(0.232) (0.350) (0.109) (0.304) (0.099) (0.206)
Auxey-Duresses-Saint-Romain −1.032∗∗ 1.211∗ 3.340∗∗ 3.085∗∗ 0.158 −0.140

(0.296) (0.636) (0.277) (0.577) (0.185) (0.691)
Meursault 1.316∗∗ 1.142∗∗ 2.484∗∗ 1.807∗∗ 0.627∗∗ 0.044

(0.147) (0.278) (0.110) (0.272) (0.111) (0.178)
Puligny-Montrachet 1.639∗∗ 1.611∗∗ 2.889∗∗ 2.925∗∗ 0.536∗∗ 0.788∗∗

(0.242) (0.448) (0.113) (0.317) (0.105) (0.153)
Saint-Aubin 0.958∗∗ 1.369∗ 1.806∗∗ 1.927∗∗ 1.076∗∗ 0.272

(0.298) (0.624) (0.220) (0.452) (0.181) (0.501)
Chassagne-Montrachet 0.135 −1.620∗∗ 2.374∗∗ 2.079∗∗ 0.882∗∗ 0.817∗∗

(0.368) (0.189) (0.180) (0.586) (0.096) (0.260)
Santenay − − 1.734∗∗ 0.348 0.604∗∗ 0.016

(0.195) (0.332) (0.120) (0.288)

Standard errors (reported in parenthesis) are clustered by vineyard sales: ∗∗ p < 0.01, ∗ p < 0.05.
Notes: Each cell of the Table reports a vertical incremental premium (in columns) for each horizontal name (in rows).

The OLS estimators are obtained from a vertical dummy on a subsample of sales with ( j − 1, j, k) names. Dashed cells
mark the cases when these borders do not exist, i.e., vertical names are not contiguous (see Figure A.15b above).
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Figure A.16: Umbrella Branding Intensity from SRD estimators.
Notes: ERRORS IN VALUES. Reported hedonic premiums are estimated by controlling for sale and vineyards
characteristics (Appendix A). Horizontal premiums on the y-axis are raw estimated coefficients from a log-linear model,
expected vertical premiums on the x-axis are acreage-weighted coefficients from the same model for each horizontal
level. Premium are expressed in % increases relatively to the less famous vertical and horizontal levels (Côteaux of
Marsannay) located at the extreme North of the region under study (Figure A1 in Appendix A). The slope coefficient is
significant at 99% (t = 2.98).
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Figure A.17: Marginal Effects from Designation Model of Table 4 with df= 900.
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Figure A.18: Ordinal Superiority Measures from Designation Models of Table 4.
Notes: For a given commune on the y-axis, ordinal superiority measures (Agresti and Kateri, 2017) are the differences
between estimated fixed effect µc and average fixed effect µ of all commune according to: ∆c = 2 ×Φ[(µc − µ)/

√
2] − 1.

(a) Ordinal Superiority Measures from Model with df= 500
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(b) Ordinal Superiority Measures from Model with df= 700
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(c) Ordinal Superiority Measures from Model with df= 900
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Figure A.19: Latent Vineyard Quality from the Designation Model with df=900.
Notes: The northern Côte de Nuits is reported in the left panel and the southern Côte de Beaune is reported in the right
panel to save place. From the notation of the main text, the two maps report the predicted values of the latent vineyard
quality B(x, v)>ψ for a regular grid v of 100 × 100 meters with the biophysical variables set at their sample averages x.
The latent predictions from an ordered models are unitless, as the vertical bar at the right of the maps.
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Figure A.20: Overlap Gains from Averaging Latent Quality Variables Across Communes.
Notes: For two designation models of Table 4 (with df= 500 in (a) and df= 900 in (b)), the Figure reports the relations
between observed vineyard price and predicted vineyard quality, respectively with commune dummies as pre-treatment
variables L(X,V)>ψ+µc (top panels A of each subfigure) and by an averaging of communes’ coefficients L(X,V)>ψ+µ
(bottom panels B of each subfigure). We average commune coefficients in µ to keep the same scale between predictions
and to better compare them. The confidence ellipsoids at 95% are computed from Friendly et al. (2013).

(a) Predictions from Designation Propensity Model with df= 500.
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A − Using commune as pre−treatment
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B − Averaging among communes
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(b) Predictions from Designation Propensity Model with df= 900.
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A − Using commune as pre−treatment
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Table A.6: Additional Diagnostic Statistics for Sub-Sample WLS Regressions.

Coteaux Régional Village Premier cru Grand cru

Coteaux (1) 7.14∗∗∗ 16.96∗∗∗ 7.04∗∗∗ 7.44∗∗∗ 1.29
(2) 7.24∗∗∗ 5.31∗∗∗ −0.13 −1.51 0.20
(3) 0.12 0.36 0.26 0.28 0.25
(4) 1035 1035 1035 1035 1035
(5) 100.00 80.68 75.75 63.96 51.21

Régional (1) 23.00∗∗∗ 20.85∗∗∗ 33.24∗∗∗ 50.47∗∗∗ 94.29∗∗∗

(2) 12.27∗∗∗ 9.50∗∗∗ 8.18∗∗∗ 7.99∗∗∗ 5.82∗∗∗

(3) 0.17 0.16 0.21 0.29 0.46
(4) 2267 2267 2267 2267 2267
(5) 98.76 100.00 95.32 90.60 83.77

Village (1) 91.59∗∗∗ 103.17∗∗∗ 120.29∗∗∗ 115.08∗∗∗ 108.66∗∗∗

(2) 17.95∗∗∗ 21.72∗∗∗ 18.61∗∗∗ 14.34∗∗∗ 10.28∗∗∗

(3) 0.28 0.31 0.37 0.39 0.42
(4) 4204 4204 4204 4204 4204
(5) 98.76 97.72 100.00 95.98 89.94

Premier cru (1) 153.28∗∗∗ 119.18∗∗∗ 53.21∗∗∗ 26.79∗∗∗ 38.60∗∗∗

(2) 7.51∗∗∗ −7.27∗∗∗ −3.37∗∗∗ 9.87∗∗∗ 13.64∗∗∗

(3) 0.76 0.74 0.54 0.31 0.43
(4) 1255 1255 1255 1255 1255
(5) 93.55 90.52 94.82 100.00 85.26

Grand cru (1) 43.57∗∗∗ 37.25∗∗∗ 18.20∗∗∗ 7.89∗∗∗ 5.75∗∗∗

(2) −19.66∗∗∗ −12.73∗∗∗ −7.55∗∗∗ −6.85∗∗∗ 1.90∗

(3) 0.80 0.73 0.59 0.47 0.15
(4) 226 226 226 226 226
(5) 46.55 88.68 95.36 99.56 100.00

Fisher and Student Statistics in the two first rows are clustered by sales: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1.
Notes: For each of the 25 combinations of vertical names, we run a WLS regression for a sub-sample of vineyard sales

with a given vertical name (in rows) and a given numerator in the weighting schedule (in columns). The structure of the
Table is such that rows correspond to k in Equation 19 and columns correspond to l in the weights . The diagonal reports
the OLS regressions as the weights are one when the sub-sample is both the control and the treatment (see Equation 17).
The rows (1) report Fisher statistics about the joint significance of commune fixed effects κ j(l).
The rows (2) report Student statistics about the significance of the predicted latent quality index ρ j(l).
The rows (3) report the full R2 for the each WLS regression.
The rows (4) report the number of observations in the sub-sample. Sub-sample are not trimmed to reach overlap.
The rows (5) report the underlying overlap area measured in % of treated units (in rows) that have a propensity score

within the 95% range of the propensity score of the plots that serve as controls (in columns).
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Table A.7: Horizontal Signaling Values from Sub-Sample Regressions in DR estimates.

Coteaux Régional Village Premier cru Grand cru AIHPk

Marsannay 1.93∗∗∗ 0.85∗∗∗ −0.55∗∗∗ - - 0.21∗

(0.39) (0.12) (0.06) (0.12)
Fixin 0.52 1.11∗∗∗ 0.02 0.56 - 0.46∗∗∗

(0.40) (0.14) (0.08) (0.57) (0.18)
Gevrey-Chambertin 1.96∗∗∗ 1.33∗∗∗ 1.25∗∗∗ 0.69∗∗∗ 0.18 1.06∗∗∗

(0.48) (0.17) (0.06) (0.13) (0.23) (0.12)
Morey-Saint-Denis 1.17∗∗∗ 1.71∗∗∗ 0.70∗∗∗ 0.68∗∗∗ 0.41 0.90∗∗∗

(0.35) (0.29) (0.12) (0.22) (0.49) (0.29)
Chambolle-Musigny 1.20∗ 1.15∗∗∗ 1.44∗∗∗ 1.26∗∗∗ 0.70 1.26∗∗∗

(0.57) (0.19) (0.09) (0.16) (0.48) (0.19)
Vosne-Romanee-Vougeot 1.64∗∗∗ 1.26∗∗∗ 1.50∗∗∗ 1.34∗∗∗ - 1.25∗∗∗

(0.36) (0.20) (0.10) (0.17) (0.18)
Nuits-Saint-Georges 1.93∗∗∗ 0.79∗∗∗ 1.17∗∗∗ 1.37∗∗∗ - 1.18∗∗∗

(0.40) (0.15) (0.08) (0.15) (0.16)
Cote-de-Nuits-Village 1.19∗∗∗ 0.71∗∗∗ −0.08 - 0.88∗∗∗ 0.25∗∗∗

(0.40) (0.15) (0.09) (0.18) (0.19)
Savigny-Chorey-les-Bea 0.83∗ 0.19 0.03 0.03 - 0.13

(0.42) (0.13) (0.06) (0.15) (0.12)
Beaune-Cote-de-Beaune 0.35 0.54∗∗∗ −0.11 0.13 - 0.14

(0.52) (0.20) (0.09) (0.12) (0.15)
Pommard 0.52 0.46∗∗∗ 1.04∗∗∗ 0.81∗∗∗ - 0.71∗∗∗

(0.37) (0.11) (0.06) (0.13) (0.12)
Monthelie-Volnay 0.32 0.67∗∗∗ 0.33∗∗∗ 0.41∗∗∗ - 0.42∗∗∗

(0.36) (0.14) (0.07) (0.13) (0.14)
Auxey-Duresses-Saint-R 0.88∗ −0.91∗∗∗ −0.11 −0.11 - 0.05

(0.35) (0.18) (0.08) (0.27) (0.23)
Meursault 0.82∗ 0.80∗∗∗ 1.19∗∗∗ 1.24∗∗∗ - 0.98∗∗∗

(0.34) (0.11) (0.07) (0.15) (0.19)
Puligny-Montrachet 1.36∗∗∗ 0.81∗∗∗ 1.20∗∗∗ 0.95∗∗∗ 0.58∗ 1.00∗∗∗

(0.38) (0.12) (0.09) (0.14) (0.31) (0.16)
Saint-Aubin 0.04 0.39 0.14 0.33∗∗∗ - 0.50∗∗∗

(0.41) (0.13) (0.12) (0.12) (0.18)
Chassagne-Montrachet 1.16∗ 0.97∗∗∗ 0.98∗∗∗ 1.18∗∗∗ 0.92∗∗∗ 1.07∗∗∗

(0.48) (0.17) (0.08) (0.13) (0.33) (0.16)
Santenay 0.41 0.24 0.15∗ −0.21 - 0.09

(0.44) (0.18) (0.09) (0.15) (0.15)

Standard errors (reported in parenthesis) are clustered by vineyard sales: ∗∗∗ p < 0.01, ∗∗ p < 0.05, and ∗ p < 0.1.
The Table reports the κ j from Equation 19 of the main text, estimated from sub-samples of vertical names reported in columns. The reference

reference modality is Aloxe-Corton-Ladoix, which presents the smallest signaling value on average. The last column reports the aggregation of
each individual average incremental horizontal premiums according to the population acreages of each combination of names (see Equation 5 in the
main text). These causal statistics are used to assess the monotonicty in the Table 6 of the main text according to the formula provided in OA1.3.
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Figure A.21: Umbrella Branding Intensity from DR estimators.
Notes: Average vertical premiums on the x-axis are acreage-weighted coefficients of vertical premiums from for each
horizontal name. Premiums are expressed in % of increase relatively to the less expensive vertical and horizontal levels:
the Coteaux of Marsannay located at the North of the area (Figure A.2). The slope is significant at 85% (t = 1.58).
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