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Abstract

Using a dataset with 16 climate variables for locations representing 813 wine regions that cover 99%
of the world’s winegrape area, we employ principal component analysis (PCA) for data reduction and
cluster analysis for grouping similar regions. The PCA resulted in three components explaining 89%
of the variation in the data, with loadings that differentiate between locations that are warm/dry from
cool/wet, low from high diurnal temperature ranges, low from high nighttime temperatures during
ripening, and low from high vapor pressure deficits. The cluster analysis, based on these three
principal components, resulted in three clusters defining wine regions globally with the results
showing that premium wine regions can be found across each of the climate types. This is, to our
knowledge, the first such classification of virtually all of the world’s wine regions. However, with
both climate change and an increasing preference for premium relative to non-premium wines, many
of the world’s winegrowers may need to change their mixes of varieties, or source more of their

grapes from more-appropriate climates.

Viticultural zoning, winegrape varieties, adaptation to climate change, cluster analysis, principal

component analysis
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Introduction
Climatic classifications of wine regions are important because they allow one to describe and to
compare wine regions that share similar characteristics. An example of a well-known climatic
classification was developed by Tonietto and Carbonneau (2004), using three climatic indexes to
create a multi-criteria climatic classification system. More recently, various studies have used
multivariate statistical methods to group wine regions based on climatic indexes or climate variables.
Examples of these studies are Herrera Nunez et al. (2011) in Italy, Montes et al. (2012) in Chile, Shaw
(2012) in 25 Pinot Noir regions around the world, Fraga et al. (2016) and Fraga et al. (2017) in
Portugal, Moral et al. (2016) in Spain, Karlik et al. (2018) in Austria, Cardoso et al. (2019) in
Northwest Iberia, and Vianna et al. (2019) in Brazil. With the exception of Shaw (2012), who focused
on selected Pinot Noir regions from eight countries, these studies focused on just one or two countries.
To our knowledge, there is no study describing and analysing the climate characteristics of
virtually all of the world’s wine regions using multivariate statistical methods. This research gap may
be due to data availability issues. However, we have an opportunity to address this gap by obtaining
location information on 16 climate variables for 813 wine regions that account for over 99% of the
world’s winegrape area (Anderson and Nelgen, 2020a, 2020b). This winegrape area database is an
updated and expanded version of an earlier variety x region vineyard area database (Anderson 2013).
The aim of this research is to classify virtually all of the world’s wine regions in groups that
share similar climate characteristics. Using a multivariate statistical approach allows for the grouping
of similar characteristics into a smaller set of components, which is easier to do than examining all
813 regions with 16 climate variables. Because the dataset used for this classification includes
information on the mix of varieties in each of these regions, it also allows us to infer the potential of
the world’s wine regions for high-quality wine production in the wake of climate change and a shifting

demand towards premium wines.

Materials and methods

1. Data

The source of the data for the 813 wine regions is Anderson and Nelgen (2020a). These regions are
sometimes legally defined geographical indications, but most times they are delimited by political
boundaries. A concordance between these regions and the ones in the World Atlas of Wine (Johnson
and Robinson, 2019) is provided in Anderson and Nelgen (2020b). We used the locations reported in
Anderson and Nelgen (2020b), which represent municipalities within or close to each wine region, to
extract climate data representing each region, for the 16 climate variables described in Table 1. The
source of the climate data for the wine regions is TerraClimate (Abatzoglou et al., 2018).
TerraClimate is built from multiple databases and uses climatically aided interpolation, combining

high-spatial resolution (1/24°, ~4-km) climatological normals from the WorldClim dataset, with time-
2



varying data from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRAS5). TerraClimate is updated

annually, but at the time of this analysis included the period of record from 1958-2018. For our

analysis we focused on the 30-year period from 1989 to 2018, but we also used data for the period

from 1959 to 1988 for comparisons on the evolution of climate between the two periods. The start of

the second 30-year period (late 1980s) corresponds to the breakpoint in temperature increase that has

taken place over the last few decades (Tomasi et al., 2011).

Table 1. Climate variables.

Variable Description Northern Hemisphere  Southern Hemisphere

AnnP (mm) Annual precipitation Year Year

GSP (mm) Growing season precipitation April to October October to April

HMP (mm) Harvest month precipitation September March

AnnT (°C) Annual average temperature Year Year

GST (°C) Growing season average April to October October to April
temperature

MIJT (°C) Mean January/July temperature July January

RPT (°C) Ripening period average August to September February to March
temperature

GDD (°C units) Growing degree days April to October October to April

HI (°C units) Huglin Index April to September October to March

GSDTR (°C) Growing season diurnal April to October October to April
temperature range

RPDTR (°C) Ripening period diurnal August to September February to March
temperature range

CNI (°C) Mean minimum March/September September March
temperature

VPD_GS (kPa) Growing season vapour pressure April to October October to April

VPD_SU (kPa)
SRAD_GS (W/m?)

SRAD_SU (W/m?)

deficit
Summer vapour pressure deficit

Growing season average day/night

downward surface shortwave
radiation

Summer average day/night
downward surface shortwave
radiation

June to August
April to October

June to August

December to February
October to April

December to February

* Notes: The base temperature for the GDD and HI calculations is 10 °C, with no upper cut-off value.

The climate data extracted from TerraClimate for this study is based on one geographical

location per region, usually a town or city within or adjacent to the region. The ideal climate data

would be an average for the area devoted to vines within the qualified geographic boundaries of each

region (spatial data). However, since such data are not available for all regions worldwide, we believe
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that a location extraction provides a general estimation of the area’s climate and helps link these
aspects to the varieties grown in each region. Other studies have encountered the same data
availability issue, and have also relied on one location for each region as a proxy of the spatial mean
of each climate variable in each region. Examples are Tonietto and Carbonneau (2004) who examined
97 locations near or within wine regions, and Shaw (2012) who examined locations near or within 25

Pinot Noir wine regions.

2. Methods

Principal Component Analysis (PCA) is a dimensionality-reduction method that is often used to
reduce the dimensionality of large data sets, by transforming a large set of variables into a smaller set
that still contains most of the information in the larger set. PCA starts with the eigen decomposition
of a correlation matrix. The eigenvectors from this decomposition are uncorrelated and normalised
(orthonormal). We subjected the 16 climate variables for the 813 locations to PCA.

We used the principal components with Eigenvalues greater than 1.0 resulting from the PCA
as the input for doing a k-means cluster analysis. With too many variables (16 in our case), the k-
means algorithm efficiency can be affected. This is because seeking neighbours (as is the case in the
k-mean algorithm) in high dimensions is difficult as it may seem like the data points are too far away
even though all other dimensions are close to each other. For this reason, we performed PCA before
the k-means cluster analysis.

K-means clustering allows one to classify observations in a predetermined number of (k)
groups. This is a partition method and, unlike hierarchical cluster analysis methods, each observation
is assigned to only one group. The process starts with all observations randomly assigned to the k
groups. The mean for each group is calculated and each observation is re-assigned to the group with
the closest mean. This process repeats until no observation changes group. K-means allow one to
employ more than one variable by using a similarity or dissimilarity measure. For this study, we used
the Euclidean distance, arguably the most used measure (Wu, 2012).

Stopping rules are helpful for choosing the optimal (k) number of groups. Milligan and Cooper
(1985) evaluate a wide variety of stopping rules and conclude that the Calinski—-Harabasz index is the
best rule for non-hierarchical cluster analysis. Therefore, we used the Calinski and Harabasz (1974)
pseudo-F index stopping rule to assist us in determining the optimal number of groups. A larger value

of the Calinski—Harabasz index is preferred, as it signals a more distinct solution.

Results

The data for the 813 wine regions provide evidence of the diverse climates that exist in the world’s
wine regions. Table 2 shows the summary statistics for all the regions combined. This climatic
variability is explained by latitudes that range from less than 10 degrees to almost 60 degrees from

the equator, and elevations as low as sea level to as high as almost 3,000 meters above sea level. For
4



example, annual precipitation (AnnP) ranges from basically zero in one of the driest regions of the
world in the northern Chile to 2996 mm in Taiwan. In addition, annual temperatures (AnnT) range
from quite cold (less than 8°C) at higher latitude locations in Canada and Norway to above 26°C in
regions such as India and Southeast Asia.

Table 2. Summary statistics and global weighted averages based on regional winegrape area as
weights (period: 1989-2018).

Variable Min p25 p50 Mean SD p75 Max Weighted mean
AnnP (mm) 0 510 685 730 362 931 2996 639
GSP (mm) 0 222 396 419 257 551 1974 334
HMP (mm) 0 32 56 62 43 85 338 51
AnnT (°C) 39 122 146 147 34 172 298 15.1
GST (°C) 99 172 193 194 28 213 308 19.8
MIJT (°C) 142 215 236 236 28 257 336 24.4
RPT (°C) 120 194 213 215 29 235 325 22.3
GDD (°C units) 314 1532 1973 1992 591 2383 4444 2097
HI (°C units) 582 2079 2447 2453 516 2772 4380 2552
GSDTR (°C) 58 106 121 124 2.7 144 20.8 12.2
RPDTR (°C) 50 107 123 126 3.0 145 234 12.6
CNI (°C) 40 111 133 136 33 158 26.2 14.4
VPD_GS (kPa) 265 540 6.49 7.16 247 853 16.89 7.42
VPD_SU (kPa) 132 290 359 386 132 450 8.98 4.18
SRAD GS (W/m?) 1028 1420 1571 1575 187 1724 2072 1597
SRAD SU (W/m?) 510 723 792 790 86 856 996 816

*Source: Authors’ computation. Notes: The climate variables are described in Table 1.

Table 3 shows the results of the PCA. This table provides the Eigenvalues and explained
variance of the components. The Eigenvalue (or the proportion of the explained variance) of the first
component is 8.52 and it explains 53% of the variation in the data. Choosing the components with
Eigenvalues greater than 1.0, which is the mean Eigenvalue, is one of the most used objective criterion
for selecting the number of components for data reduction (Jolliffe, 2002). Therefore, we chose the
first three components (i.e., Comp1-3). These three components explain 89% of the variance in the

data, demonstrating that PCA is a useful data-reduction technique in this case.



Table 3. Components' Eigenvalues and explained variance, and principal components’ loadings
and unexplained variance (period: 1989-2018).

Compl Comp2 Comp3 Sum
Eigenvalue 8.52 4.28 1.48 14.28
Explained variance 0.53 0.27 0.09 0.89
Loadings Unexplained
AnnP (mm) -0.16 0.29 0.35 0.25
GSP (mm) -0.16 0.33 0.42 0.05
HMP (mm) -0.12 0.37 0.37 0.08
AnnT (°C) 0.28 0.19 -0.08 0.18
GST (°C) 0.31 0.21 0.01 0.02
MIT (°C) 0.29 0.19 0.08 0.14
RPT (°C) 0.30 021  -0.03 0.05
GDD (°C units) 0.30 0.22 0.01 0.02
HI (°C units) 0.32 0.13 0.14 0.05
GSDTR (°C) 016 -0.33 0.43 0.04
RPDTR (°C) 014 -0.35 0.42 0.04
CNI (°C) 0.22 034 -0.24 0.02
VPD_GS (kPa) 031 -0.14 0.19 0.07
VPD_SU (kPa) 029 -0.16 0.20 0.11
SRAD_GS (W/m?) 027 -0.13 -0.10 0.28
SRAD_SU (W/m?) 024 -0.18 -0.14 0.33

*Source: Authors’ computation. Notes: The climate variables are described in Table 1. Sum is the
sum of the three principal components (Comp1-3). Unexplained is the proportion of the variance for

each climate variable that is unexplained by the three principal components.

Table 3 also provides the principal component loadings. PC1 accounts for 53% of the variation
in the data and distinguishes regions that are warmer and drier from regions that are cooler and wetter.
The regions that are warmer and drier also have medium to high DTRs, and higher VPDs and SRADs.
The regions that are cooler and wetter also have medium to low DTRs, and lower VPDs and SRADs.
PC2 explains an additional 27% of the variation in the data with the loadings highlighting locations
that have high GS and RP precipitation with lower DTR and warmer nights (+CNI) versus those that
have low GS and RP precipitation, high DTR, and cooler nights (-CNI). The wetter locations also
tend to have warmer temperatures and relatively low VPD, while the drier locations have cooler
temperatures and higher VPD. The first two PCs account for most of the variation in the data (80%),
with PC3 accounting for an additional 9% with loadings appearing to distinguish between locations
that are wet and have high DTRs and those that are dry and have low DTRs (Table 3).



The eigenvectors in Table 3 are small and never greater than 0.5. For testing the significance
of the eigenvectors, we estimated the PCA with the standard errors and related statistics (see
Supplementary Material). This estimation relies on the assumption that the data are multivariate
normal distributed. This assumption can be justified because the sample size is relatively large, so the
central limit theorem applies, and because PCA itself uses the central limit theorem implicitly by
transforming the variables to a zero mean and unit variance. The results of this estimation show that,
while the eigenvectors are small, all but two are statistically significant, which justifies the inclusion
of all the climate variables in the analysis.

The last column in Table 3 shows the proportion of the variance for each climate variable that
is unexplained by the three principal components. The variance of each of the 16 variables is well
explained, with only 11% unexplained on average. The least-explained variables are SRAD_SU and
SRAD_GS, followed by AnnP and AnnT, which extend beyond the growing season meaning they
are arguably less relevant for this analysis. Even so, a large proportion of these variables is explained
by the first three components.

We used the three principal components from the PCA for the k-means cluster analysis. For
choosing the k number of groups, we calculated the Calinski-Harabasz index for k-means cluster
solutions with two to 14 groups based on the three principal components. The results suggest that a
solution with three groups indicates the most-distinct clustering. Figure 1 is a score plot based on the
first and second principal components, where each of the 813 points represents a region and each of
the three colours represents a group of regions. A similar interpretation can be inferred from graphs

for the first and third and for the second and third principal components (not shown).
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Figure 1. Score plot of three-group classification (period: 1989-2018).

aSource: Authors’ computation.



Figure 2A shows the regions plotted against their GST and GSP. Groups 1 and 3 are warmer

than Group 2. Group 3 is, on average, wetter than Group 1, while a wide range of GSP is observed

for Group 2. A large degree of overlap between Groups 1 and 3 is evident in Figure 2A. These two

groups would appear more distinct in a three-dimensional graph with GSDTR on the third axis. That

is because part of the difference between the regions that overlap is given by their difference in
GSDTR. The regions in Group 1 have a higher GSDTR (Figure 2B). A wide range of GSDTR is

observed for Group 2.
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Figure 2. Scatter plots of three-group classification (period: 1989-2018).

aSource: Authors’ computation. Notes: GSP = growing season precipitation; GST = growing season

average temperature; GSDTR = growing season diurnal temperature range.

Figure 3A shows the regions plotted against their VPD_GS and GSP. Group 1 has higher

VPD_GS than Groups 2 and 3. This also explains part of the overlap between Groups 1 and 3 in

Figure 2A. Figure 3B shows the regions plotted against their SRAD_GS and GSP. A wide range of



SRAD_GS is observed in the three groups, although the average SRAD_GS is highest for Group 1

and lowest for Group 2.
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Figure 3. Scatter plots of three-group classification (period: 1989-2018).

aSource: Authors’ computation. Notes: GSP = growing season precipitation; VPD_GS = growing

season vapour pressure deficit; SRAD_GS = growing season average day/night downward surface

shortwave radiation.

Table 4 provides the summary statistics for the three almost-equal-sized groups of regions.

Group 1 is the smallest by number of regions (221) but the largest by surface (34.6% of the total

winegrape area). Group 2 is the largest by number of regions (346) but the smallest by surface

(31.5%). Group 3 includes 246 regions that cover 33.9% of the total winegrape area. The

Supplementary Material provides a table with the climate data and cluster classification for each

region. Table 4 also provides the summary statistics for elevation. While there are wide ranges of

elevation across the three groups (see

elevations and Group 3 the lowest.

Supplementary Material), on average, Group 1 has the highest



Table 4. Summary statistics for the three groups (period: 1989-2018).

Cluster Group 1 Group 2 Group 3

Variable/Statistic Mean Median SD Max. Min. | Mean Median SD Max. Min. | Mean Median SD Max. Min.
AnnP (mm) 433 374 225 1340 17 | 839 784 303 1865 7| 844 746 387 2996 0
GSP (mm) 192 193 93 578 17 496 452 198 1174 0 515 445 302 1974 0
HMP (mm) 25 23 17 89 0 68 62 31 209 0 85 78 50 338 0
AnnT (°C) 16.6 168 24 249 86| 120 118 20 178 39| 169 16.8 28 29.8 124
GST (°C) 21.1 212 22 296 156 16.8 169 15 194 99| 214 20.8 2 308 185
MIJT (°C) 25.2 252 23 336 201| 21.2 213 19 254 142 | 255 255 1.7 309 213
RPT (°C) 23.1 230 22 325 18.0| 189 191 16 228 12.0| 236 234 18 301 202
GDD (°C units) 2334 2342 461 4201 1256 | 1471 1480 290 2005 314 | 2417 2295 420 4444 1732
HI (°C units) 2864 2838 392 4380 2076 | 2009 2032 302 2636 582 | 2710 2647 345 4261 1907
GSDTR (°C) 15.6 158 18 208 11.2| 118 11.8 18 188 6.6 | 104 104 19 148 58
RPDTR (°C) 15.9 156 22 234 112| 121 121 20 199 6.7 104 106 19 144 50
CNI (°C) 13.7 140 27 250 6.0] 111 111 18 164 40| 169 16.6 24 262 123
VPD_GS (kPa) 10.36 990 194 16.89 6.77| 5.40 533 1.08 887 265| 6.75 6.63 117 11.26 3.45
VPD_SU (kPa) 5.55 545 1.08 898 3.04| 296 290 062 485 132| 3.63 3.66 0.65 6.38 1.60
SRAD_GS (W/m?) 1774 1773 105 2072 1513 | 1444 1417 145 2028 1096 | 1581 1579 129 1921 1028
SRAD_SU (W/m?) 876 880 58 996 713 | 737 730 65 950 566| 789 804 70 961 510
Elevation (m) 484 398 412 2045 2| 307 201 397 2952 2| 180 65 272 1896 -3

*Source.: Authors’ computation. Notes: The climate variables are described in Table 1.
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The first map in Figure 4 shows that there are regions in the three groups all across the globe.
Regions from Group 1 account for most of the surface in the New World, which is evident from the
second map in Figure 4, where the size of each region is proportional to its area. Group 1 includes
most of the winegrape area in Argentina, central Chile and South Africa, and a big proportion of the
area in the United States, Australia, and Chile. Group 2 is mainly represented by New Zealand, some
regions in Chile and most of southern Australia, and by New York and coastal and northern regions
in western North America. Last, Group 3 comprises most of Brazil and Uruguay.

Winegrape area outside of the Old World has a larger share of its area in Group 1, whereas
the Old World winegrape area is distributed more evenly across the three groups. Group 1 includes
large regions in the centre of the Iberian Peninsula, as well as other regions in Greece, North Africa,
and some countries in Asia. Group 2 comprises regions in the north of Spain and Portugal, the middle
and northern France, inland countries with regions at higher elevations such as Germany and Austria,
as well as Georgia and countries in Eastern Europe. Group 3 includes mostly coastal regions in the
Iberian Peninsula, the south of France, a large portion of regions in Italy, and some Eastern European
countries. The Supplementary Material shows maps of different regions in more detail, as well as a
link to an animated video of the world in which the area of each region is represented by the length
of each location’s bar.

We also explored the differences in the PCA between this period (1989-2018) and the
previous period (1959-1988). The results for the first period (see Supplementary Material) are very
similar to those for the second period. When using the first three principal components from the first
period to cluster the regions into three groups using k-means, only 35 out of the 813 regions change
their cluster membership. Some regions that are part of Group 1 (e.g., Valparaiso in Chile) and Group
3 (e.g., Great Southern in Western Australia) in the first period become part of Group 2 in the second
period, and some regions that are part of Group 2 become part of Group 3 (e.g., Rioja in Spain and

Cuneo in Italy).
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Figure 4. Classification maps. In the first map all regions have the same size, while in the second
map the size of each region is proportional to the region’s winegrape area.

aSource: Authors’ computation.

Besides looking at the differences in the PCA and cluster memberships between the two
periods, we explored climatic differences between these periods. Table 5 provides the mean values
and differences in mean values for the two periods for each of the three groups of regions and for all
observations. Annual precipitation has decreased slightly in all groups, while the precipitation in the
growing season has decreased slightly in the driest group (Group 1) and increased in the wetter groups
(Groups 2 and 3). In all groups, temperatures have increased, especially in the warmest months, and
daily temperature ranges have decreased. These changes in temperatures explain part of the changes
in the vapour pressure deficits, which have increased across the three groups. As expected, average
day/night downward surface shortwave radiation has not changed much over the two 30 year periods.

The changes in medians rather than changes in means (see Supplementary Material) suggest some
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slight differences in the interpretation of these changes, but reinforces the observation that the three

groups of regions are warmer and have higher vapour pressure deficits.

We conducted paired t-tests on the equality of the means between the first and second period,

for each climate variable, and for each group of regions and all the regions combined. The results

show that these differences are all statistically significant at a 1% level with the exception of the
differences in GSDTR and RPDTR for Group 2, and SRAD_GS for Group 1. The last column in
Table 5 shows the differences in climates between the two periods for all observations combined, all

of which are statistically significant. Overall, both GSP and GSDTR increased (and decreased) in

about half of the regions. GST, instead, increased in all but 2 regions. The increases in GST was
higher than 0.5 °C in 76% of the regions, and higher than 1 °C in 46% of the regions. VPD_GS

increased in 93% of the regions, while SRAD_GS increased in 72% of the regions.

Table 5. Mean values and differences in mean values for the two periods (P1: 1959-1988; P2:
1989-2018) for each group and for all regions.

Group 1 2 3 All

Variable/Period P1 P2 Diff. P1 P2 Diff. P1 P2 Diff. P1 P2 Diff.
AnnP (mm) 447 433 -14 849 839 -11 861 844 -17 744 730 -14
GSP (mm) 195 192 -3 488 496 7 503 515 12 413 419 6
HMP (mm) 26 25 -2 66 68 3 80 85 5 59 62 2
AnnT (°C) 16.0 16.6 06 111 120 09 16.2 16.9 0.8 140 147 0.8
GST (°C) 204 211 0.6 159 16.8 09 205 214 09 185 194 0.8
MIT (°C) 245 25.2 0.7 201 212 11 245 255 1.0 226 236 1.0
RPT (°C) 225 231 0.6 181 189 09 228 236 0.8 20.7 215 0.8
GDD (°C units) 2221 2334 113 1287 1471 184 2245 2417 172 1831 1992 161
HI (°C units) 2779 2864 85 1825 2009 184 2564 2710 146 2308 2453 146
GSDTR (°C) 158 156 -03 118 11.8 0.0 106 104 -0.2 125 124 -01
RPDTR (°C) 16.3 159 -03 121 121 0.0 106 104 -0.2 128 126 -0.1
CNI (°C) 13.0 137 0.7 106 111 05 163 16.9 0.6 13.0 136 0.6
VPD_GS (kPa) 10.05 10.36 030 4.83 540 057 6.23 6.75 052 6.67 7.16 048
VPD_SU (kPa) 538 555 0.17 259 296 037 329 363 033 356 386 0.31
SRAD GS (W/m?) 1776 1774 -1 1418 1444 26 1566 1581 15 1560 1575 15
SRAD_SU (W/m?) 879 876 -3 721 737 16 780 789 9 782 790 9

*Source: Authors’ computation. Notes: The climate variables are described in Table 1.

Discussion

This classification provides a description of the climates of the world’s wine regions across a wide

range of variables, including precipitation, average temperature, diurnal temperature range, vapour
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pressure deficit, and surface shortwave radiation. Compared to prior research classifying climates in
wine regions, this classification utilizes site locations across a wider range of regions that together
encompass virtually all the world’s winegrape area.

Despite its advantages, this classification has at least two limitations. First, the climate
variables are based on extracting location data from one point in or near wine regions. These locations
may not be an accurate representation of the average climate in some regions. A better representation
would come from using approved wine region boundaries (e.g., GI, PDO, AVA, etc.) summarizing
spatial climate data across the wine regions, but these boundaries are not available for the majority of
the regions studied.

A second limitation is that there may be other climate variables that are also relevant, but not
available in the spatial data used to extract the location data. Furthermore, the spatial climate data is
aggregated to the time periods, so models that use daily data inputs could not be used. In addition,
having phenological data for the main varieties in the region would allow for the application of novel
models, such as Grapevine Flowering Véraison and Grapevine Sugar Ripeness (Parker et al., 2020).
The impact of temporal variability in grapevine phenology (Hall and Blackman, 2019) is therefore
not accounted for in this analysis. Moreover, considering that terroir is important for winegrape
production and quality (van Leeuwen et al., 2020; van Leeuwen et al., 2018), the interactions between
soils and climates are not reflected in this climatic classification.

This classification reveals that premium regions can be found in each of the three groups of
regions. Group 1 includes Sonoma and Napa Valley (California), Uco Valley (Argentina), and
Barossa Valley (Australia). Group 2 includes Bordeaux and Burgundy (France), Mosel Valley
(Germany), and Marlborough (New Zealand). Group 3 includes Piemonte and Toscana (Italy), and
Rioja (Spain). These are just some examples of premium regions that can be found across the climate
types identified in this research, depending on style criteria and other factors (see Supplementary
Material).

The comparison between the two periods in our analysis reveals evidence of a changing
climate in the wine regions. The increase in average temperature during the growing season (GST
increased by 0.8 °C) and decrease in temperature range is perhaps the most concerning in relation to
winegrape quality. The influence of temperature on berry composition makes it the key climatic factor
affecting winegrape quality (Davis et al., 2019; Hall and Jones, 2009; Pons et al., 2017). Temperature
range variables (e.g., GSDTR) also are often related to winegrape quality, as cooler nights can be
positive for aroma and colour development due to a decrease in carbon use by respiration (Schultz,
2016).

Figure 5 shows the estimated GST ranges for producing high-quality winegrapes in the
Northern Hemisphere, according to Jones et al. (2012). In parentheses on the vertical axis is the share

of the global area of each variety (Anderson and Nelgen, 2020) that is planted within that temperature
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range. The 21 varieties in this graph account for 45% of the global winegrape area and a much higher
share of premium regions. In aggregate, 44% of that area is cultivated outside those temperature
ranges identified for high-quality winegrape production in Figure 5. Most of that share not within
those temperature ranges comprises regions that are too hot, rather than too cold.

The vertical lines in Figure 5 show the mean GST for each group. Groups 1 and 3 have the
highest mean GSTs. Recall that while these two groups have similar mean GSTs, Group 3 is wetter
and has lower diurnal temperature ranges and vapour pressure deficits than Group 1. The mean GSTs
of Groups 1 and 3 are hotter than what may be ideal for producing high-quality wine from the varieties
represented in the figure. Combined, these regions accounted for 60% of the world’s winegrape area
in 2016. van Leeuwen et al. (2013), however, argues that the upper limits from Figure 4 are

underestimated and our research here indicates that as well.

Nebbiolo (94%)
Tribidrag (13%)
Mazuelo (72%)
Sangiovese (63%)
Viognier (38%)
Garnacha Tinta (61%)
Cabernet Sauvignon (74%)
Dolcetto (96%)

Cot (50%)

Syrah (49%)

Merlot (65%)
Tempranillo (43%)
Cabernet Franc (74%)
Semillon (63%)
Sauvignon Blanc (63%)
Pinot Noir (56%)
Chardonnay (34%)
Riesling (67%)
Muller-Thurgau (38%)
Pinot Gris (14%) -
Gewurstraminer (45%)

Variety

11— Group 3 -
~|mean GST -

I I I I I I I I I I I
13 14 15 16 17 18 19 20 21 22 23
Growing season temperature (°C)

Figure 5. Optimal GST ranges for high-quality winegrape production (shares of world
winegrape area under the grey ranges are shown in parentheses on the vertical axis).
aSource: Jones et al. (2012) and authors’ computation. Notes: The vertical lines show the group mean

GST for each of the three groups.

It is also likely that some form of adaptation in grapevines to changes in climate has already
occurred (van Leeuwen et al. 2013). However, additional warming is expected in the future, as
projected in the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change
(IPCC, 2021). Further adaptation, either in the plant system or in vine management, will likely be

necessary as the share of the global winegrape area that is in GST ranges for high-quality winegrape
15



production will continue to decline. Most regions will need to adapt to further changes in climate,
including some of the premium regions that may be subject to deteriorating quality (Santos et al.
2020). While warmer growing seasons are sometimes beneficial in some of the coolest regions such
as the Mosel Valley in Germany (Ashenfelter and Storchmann, 2010), years with significantly higher
temperatures are associated with a decrease in quality in most of the world’s current wine regions.
Decreases in quality that may be induced by climate change are happening at a time when the
preference for premium wine is increasing (Anderson et al., 2018). Should this trend continue, the
need to adapt to climate change will only intensify (see Santos et al. (2020) for a review).

Much of the adaptation to climate change can take place in wineries. For example, oenological
advances can help lower alcohol concentrations and increase acidity in wines — two issues that will
intensify in some wine regions due future warming (Dequin et al., 2017). However, part of the
adaptation process will need to take place in the vineyards. Vineyard management techniques such
as alterations in training systems, canopy management, soil management, and irrigation strategies can
help maintain production and quality levels in less-than-ideal climates (van Leeuwen et al., 2019),
but further action may be required in some regions. Besides changing their vineyard management
strategies, grape growers can adapt to climate change by selecting either different plant material or
different sites (van Leeuwen and Destrac-Irvine, 2017).

Modifications in plant material include using different rootstocks or clones. New breading
technologies that rely on genome editing techniques have a promising potential to produce plant
material that can mitigate the effects of climate changes, but that potential is currently limited by the
state of advancements and the perception that winegrowers and consumers have about these
technologies (Dalla Costa et al., 2019). So winegrowers may need to diversify their production
towards varieties that can produce high-quality wines in warmer growing seasons. There is little
evidence, however, that the latter is happening at a global scale: between 2000 and 2016, the share of
the global area for the 21 varieties in Figure 5 that are cultivated within the temperature ranges shown
there decreased from 60% to 56%. The Supplementary Material provides a table with 1,565
winegrape varieties ranked from highest to lowest area-weighted average GSTs in the world, which
may be useful for identifying varieties that might be better adapted to warmer climates. Another
option for winegrowers who wish to retain their varietal mix is to source more winegrapes from

regions with more-appropriate climates.

Conclusions

We have used information on 16 climate variables to classify 813 wine regions that account for over
99% of the world’s winegrape area using multivariate statistics, namely PCA and k-means clustering.
The 813 regions were clustered into three groups of regions that are characterized by precipitation,

average temperature, diurnal temperature range, vapour pressure deficit, and surface shortwave

16



radiation variables. This is, to our knowledge, the first classification of wine regions that covers
virtually all the world’s winegrape area. By grouping the regions into clusters that share similar
climates, we provide an easy-to-interpret description of the climates of the world’s wine regions. This
classification reveals that premium regions can be found across all three climate types.

The comparison between two time periods (1959-1988 and 1989-2018) suggests that the
climate of each of the three groups has already changed. Current and further increases in temperature,
detailed by the IPCC’s AR6 , may be the most concerning in terms of winegrape quality when the
global demand for wine is likely to continue shifting towards more premium products. Therefore,
winegrowers in some regions may need to use varieties that are more appropriate to warmer climates
and/or to purchase or plant vineyards in cooler regions to maintain typicity of wine styles.

The present analysis could be enhanced by using spatial climate data as opposed to location
data, and by including additional climate variables that may prove useful in better understanding vine
growth, productivity, and fruit quality. To do so would require a global database of governmentally
approved wine region boundaries, allowing for a spatial assessment of all regions, and robust global
climate dataset with spatial resolutions and a wide range of variables suitable for assessing viticulture
and wine production. In addition, having spatial climate data that reflects temporal variability (i.e.,
monthly or daily data), as well as variables that are not climatic but relate to the terroir, the vine, and
winegrape quality (i.e., soils, phenology, fruit composition) would enhance this type of analysis.
Further research could also incorporate climate change projections across all wine regions globally
and consider the implications of the future climate scenarios on the wine production sector. This
would allow an analysis of the potential for some winegrape growing to shift to potentially more
appropriate climates and regions. Future studies could also identify winegrape varieties growing
successfully in regions with a similar climate to what any particular region is expecting its climate to
become in the decades ahead. The database analysed for this research can also be used for that
purpose, because it includes the area by variety for more than 1,700 prime varieties for all the 813
regions we have classified.

Furthermore, the results of this study indicate that more research needs to be done on climate
thresholds for winegrapes varieties worldwide. While previous research provide a framework for a
small subset of the varieties planted worldwide, further work is needed to examine the temperature
thresholds for a wider range of economically important varieties. Enhanced models using
phenological observations are clearly useful in this regard, yet data availability across both regions
worldwide and a larger set of varieties would be needed to refine our understanding of climate limits

to vine growth, productivity, and quality.
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