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INTRODUCTION 

This volume contains the proceedings of the 1999 W-133 Western Regional Project Technical Meeting 

on "Benefits and Costs of Resource Policies Affecting Public and Private Land." Some papers from W- 

133 members and friends who could not attend the meeting are also included. The meeting took place 

February 24" - 26" at the Starr Pass Lodge in Tucson, Arizona. Approximately 50 participants 

attended the 1999 meeting, are listed on the following page, and came from as far away as Oslo, 

Norway. 

The W-133 regional research project was rechartered in October, 1997. The current project objectives 

encourage members to address problems associated with: 1.) Benefits and Costs of 

Agro-environmental Policies; 2.) Benefits Transfer for Groundwater Quality Programs, 3.) Valuing 

Ecosystem Managment of Forests and Watersheds; and 4.) Valuing Changes in Recreational Access. 

Experiment station members at most national land-grant academic institutions constitute the official W- 

133 project participants. North Dakota State, North Carolina State, and the University of Kentucky 

proposed joining the group at this year's meeting. W-133's list of academic and other "Friends" has 

grown, and the Universities of New Mexico and Colorado were particularly well represented at the 

1999 W-133 Technical Meeting. The meeting also benefitted from the expertise and participation of 

scientists from many state and federal agencies including California Fish and Game, the US. 

Department of Agriculture's Economic Research and Forest Services, the U.S. Department of Interior's 

Fish and Wildlife Service, and the Bureau of Reclamation. In addition, a number of representatives 

from the nation's top environmental and resource consulting firms attended, some presenting papers at 

this year's meeting. : 

This volume is organized around the goals and objectives of the project, but organizing the papers is 

difficult because of overlapping themes. The last section includes papers that are very important to the 

methodological work done by W-133 participants, but do not exactly fit one of the objectives. -- I 

apologize for the lack of consistent pagination in this volume. 

On A Personal Note... Any meeting or conference is successful (and fun!) only because of its 

participants, so I would first like to thank all the people who came and participated in 1999 - listed 

below. I also want to thank Jerry Fletcher for all his help at this meeting and prior to it, and John 

Loomis who passed on his knowledge of how to get a meeting like this to work, and who continues to 

have the funniest little comments to lighten the meetings up. I especially thank Paul Jakus, who helped 

me to organize this conference and have a lot of fun during it and afterward. Finally, I want to thank 

Nicki Wieseke for all her help in preparing this volume, and Billye French for administrative support on 

conference matters. 

W. Douglass Shaw, Dept. of Applied Economics & Statistics, University of Nevada, Reno. 

June, 1999 

P.S. PF. and J.C. - As far as I can tell, that darn scorpion is still dead!
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Abstract 

Estimating a demand system under the assumption that preferences are homogeneous will lead to 

biased estimates of individuals’ parameters and significantly different expected consumer surplus 

estimates if preferences are in fact heterogeneous. This paper investigates with revealed 

preference data several different parametric methods to incorporate heterogeneity in the context 

of a repeated discrete-choice logit model. The first is the classic method of assuming preference 

parameters to be functions of individual characteristics. Allowing parameters to vary across 

individuals as a function of individual characteristics results in preference heterogeneity that 

persists across choice occasions. Second, a random parameters method is proposed, where 

preference parameters have some known distribution. Random parameters logit causes the 

random components to be correlated across choice occasions and, in a sense, eliminates ITA. 

Finally, two methods are proposed to relax the assumption that the unobserved stochastic 

component of utility is identically distributed across individuals: the logit scale as a function of 

individual characteristics and randomization of the logit scale. The randomization of the scale, 

which is new, allows noise levels to vary across individuals without the added burden of 

explaining the source using covariates, or the added econometric difficulties with individual- 

specific scales. Results from an application to Atlantic salmon fishing suggest that imposing 

homogeneity leads to significantly different expected consumer surplus estimates. 

* Thanks to Jose Canals, Nick Flores, Kathleen Rossmann, and Donald Waldman for suggestions that have made this a 

better paper.



1. Introduction 

A common assumption in most consumer demand models is homogeneity of preferences. That 1s, 

all individuals are forced to have the same preference parameters in the deterministic portion of 

utility, and the variance of the random component is assumed to be iid. These strong assumptions 

will lead to biased parameter estimates on the individual level and significantly different mean 

consumer surplus estimates if in fact preferences do vary across individuals, which is expected to 

be the rule rather than the exception.’ 

Several methods are proposed and applied to relax the assumptions of preference 

homogeneity. Each is discussed separately in the context of a repeated discrete-choice 

multinomial logit model (MNL) using revealed preference (RP) data,” and the advantages and 

disadvantages are considered. The classic method allows demand parameters to vary as a function 

of observable socioeconomic characteristics of the individual. Classic models include income- 

effects models and all other models that make model parameters a function of individual 

characteristics. 

Another technique assumes that preference parameters for all individuals are drawn 

randomly from some known PDF, although the parameters for any specific individual are 

unknown. Random paramters logit (RPL) is appealing because it allows correlation of random 

disturbances across choice occasions, and because, in a sense, it eliminates independence of 

  

| Fowkes and Wardman (1988) demonstrate by simulation that the mean of sample-wide parameters, if allowed 

to vary, may be statistically significantly different from parameters estimated assuming no taste variation, in the presence 

of nonlinearities. 

* Morev and Rossmann (1999) have recently examined heterogeneity of preferences using choice experiment 

data. A nested logit model is not used as the basic model because some of the heterogeneous methods can be used instead 

of nesting to allow for more general substitution patterns without imposing an a priori nesting structure. The basic MNL 

form is used to conduct likelihood ratio tests; otherwise the models would not be comparable on the basis of nested tests. 

l



irrelevant alternatives (ILA). Independent stochastic terms and IIA are two often-criticized 

assumptions inherent in a logit model. The nested logit model was originally introduced to reduce 

ILA assumptions and to increase the flexibility of the MNL. See, for example, Herriges and Kling 

(1995), Morey (1999), Morey et al. (1993), Morey et al. (1995), and Shaw and Ozog (1996). 

However, the nesting structure still imposes restrictions on substitution patterns, while the RPL 

can allow even more general substitution patterns. 

New methods to allow the variances of the random components to vary across individuals 

or groups are also discussed. While permitting variances to differ across data collection methods 

is fairly common in the literature (e.g., RP versus stated preference (SP)), there exist very few 

studies that allow variances to differ across individuals to incorporate heterogeneity. These 

methods allow some individuals to have “noisier” choice patterns than others, which is empirically 

indiscernible from parameter proportionality, where the demand parameter vector only varies 

across individuals by a factor of proportionality. A new contribution of this paper is the 

introduction of a random logit scale parameter, which allows noise levels to vary across 

individuals without the added burden of having to explain the source of the different levels as a 

function of individual characteristics that may or may not be correlated with the noise, or the 

added econometric difficulties associated with trying to estimate individual-specific scales. 

The application is a utility-theoretic repeated logit model of Atlantic salmon fishing site 

choice and participation. Empirical results demonstrate that accommodating heterogeneity 

significantly improves model performance in each case, and restricting preferences to be 

homogeneous often leads to significantly different consumer surplus estimates. For models that



include socioeconomic characteristics to address heterogeneity, preferences vary as a function of 

these characteristics in plausible ways. 

In Section 2, the techniques are described in detail, along with discussion of relevant 

existing applications. In Section 3, the methods are applied to the Atlantic salmon recreation 

demand model, and extensions are proposed throughout. In Section 4, conclusions are presented. 

2. Techniques to accommodate preference heterogeneity 

Heterogeneity of preferences can be addressed either through the vector of demand parameters 

(denoted 8, for individual 7) or by assumptions about the distribution of the stochastic component 

of utility (or by using multiple methods simultaneously addressing both components). The first 

two methods mentioned in the previous section, which allow B, to vary across individuals either as 

a function of individual characteristics or randomly based on some distribution, take the former 

approach. 

Other techniques pursue the latter by letting error variances differ across individuals, 

which may reflect different levels of coherence in decision-making or interest in the activity or the 

included variables. Allowing the variance of the disturbance term to differ across individuals 

results in the same likelihood function as allowing the preference parameters to vary across 

individuals up to a factor of proportionality, because the logit scale parameter and the vector of 

preference parameters are confounded in estimation. 

U
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2.1 A repeated multinomial logit model of recreation demand with homogeneous preferences 

Consider a logit model of recreation demand. On each of T choice occasions, the individual 

chooses from J alternatives the alternative that provides the greatest utility. The utility individual 7 

receives on choice-occasion f if he chooses alternative / 1s: 

U_.=V,+¢,, f=1,2,...,7. (1) 
jt I! / 

Assume the term V,, is deterministic from both the individual's and the researcher's perspective. It 

is a linear function of B, and a vector of explanatory variables x, associated with angler 7 and 

alternative j that are time-invariant, so V,, = B,'x,.° The €'s vary from period to period and across 

individuals in a way the researcher cannot observe. Assume E,,; 1s independently drawn from a 

univariate Extreme Value Distribution with the cumulative distribution function: 

Fle) = exp[-e (2) 

where s, is a positive scale parameter (Morey, 1999). This distribution has E(€,) = (0.57721/s;,) 

2 
and o2, = =. The probability that individual i will choose alternative j on choice-occasion / 1S: 

6S; 

Pad, 

Prob... = ——. 3) 

Derk 
k=1 

Given these assumptions, the observed trips (y,) have a multinomial distribution, and the log of 

the likelihood function for the N recreators is: 

  

> The model can easilv be generalized to allow time-variant explanatory variables, leading to a more complicated 

likelihood function than that presented here.



N 
d= SS Yi x In(P. r ob.) (4) 

i=1 j=1 po
m 

Homogeneity of preferences is defined as B, = § and s,=s5 V 7. Preference homogeneity 

implies that the random components are independent and identically distributed, a restrictive 

assumption which means that the error variances across anglers are assumed to be the same, and 

also that there is no correlation in random components across choice occasions for a given angler. 

Homogeneity of preferences also means that choices for a given individual are no more correlated 

than choices across individuals. 

Without loss of generalization, let s = 1, the usual assumption in logit models. In Section 

3.4, s will be allowed to vary across anglers, introducing heterogeneity in the variance of the 

stochastic component. It is clear from Equation 3 that allowing to s’s to vary across individuals is 

empirically equivalent to allowing the B’s vary up to a factor of proportionality, although the 

underlying theoretical assumptions are quite different. 

2.2 Interacting preference parameters with individual characteristics 

This and the following section relax the assumption that B, = 8 V 7, while maintaining the 

assumption that s,= 1 Vi. The utility angler 7 receives from alternative j during choice-occasion f 

is therefore: 

U.,=B,'X, +E ys J= 12,00. (5) 

The random component é€., is iid.



The classic and perhaps most straightforward way to allow preferences to vary across 

individuals is to interact individual socioeconomic characteristics, such as age, gender, or income, 

with model parameters (Adamowicz et al., 1998). Pollack and Wales (1992) summarize methods 

of using demand parameters that depend on demographic variables, based on their earlier work 

and the work of others. Two applications of this technique are Morey (1981) and Morey et al. 

(1995). The first is a choice-share model of skiing in Colorado, in which individual demand 

parameters for ski area characteristics are assumed to be functions of skier attributes. The second 

is a repeated nested logit model of recreational trout fishing in southwestern Montana, where 

model parameters are interacted with resident status to allow nonresident anglers to have different 

preferences from residents. In the latter case, forcing nonresidents to have the same preferences 

would significantly lower economic values for environmental improvements. 

Any model that admits income effects also allows for systematic heterogeneity among 

individuals as a function of their incomes, and there are a multitude of examples. Morey (1999), 

McFadden (1996), and Herriges and Kling (1997) discuss the theoretical underpinnings of income 

effects in logit models, and some empirical examples include Morey et al. (1993 and 1998) and 

Buchanan et al. (1998). Models with income effects are not investigated here. Also, a new 

literature is emerging that includes latent constructs and psychometric measures based on 

individual attitudes and perceptions in addition to demographic factors in discrete choice models. 

McFadden (1986) initiated work in this area to develop market forecasts. See Boxall and 

Adamowicz (1998) for an application to explain wilderness park choice, and also Ben-Akiva et al. 

(1997).



Note that allowing B, to vary across individuals as a function of individual characteristics 

results in preference heterogeneity that persists across choice occasions. For example, suppose 

that the catch parameter in a fishing model is increasing in skill level. An individual with high skill 

will have a higher than average catch parameter in each of the choice occasions. As a result, the 

deterministic component of utility, ’,, is correlated across choice occasions. 

One reason that an application of this well-known method is included in this paper is 

because it is useful to compare the assumptions and results to other heterogeneous models, and 

because a complete treatment of heterogeneous preferences is incomplete without it. The main 

advantage of this technique is to allow B, to vary across individuals in a systematic way as a 

function of individual characteristics. The researcher can predict how different types of individuals 

are affected by different policies, and consequently reach conclusions about distributional 

impacts.* The primary drawback is that 8, may not in fact vary as a function of observable 

individual characteristics, and model results are expected to be sensitive to the way in which the 

parameters and data are allowed to interact. 

2.3 Random parameters logit 

Another way to incorporate heterogeneity through f is to assume that one or more parameters in 

the vector is drawn from a known distribution, although the unique values of the parameters for a 

given individual in the sample cannot be known. RPL is a special case of mixed logit because the 

probability of observing an individual’s sequence of choices is a mixture of logits with a 

prespecified mixing distribution (Revelt and Train, 1997). 

  

* Benetits can varv widely as a function of individual type. See, for example, Morey et al. (1998). 
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Two recreational site choice examples using RPL with revealed preference data are a 

partial demand system of fishing site choice in Montana (Train, 1998) and a complete demand 

system of participation and site choice in the Wisconsin Great Lakes region (Phaneuf et al., 1998). 

Our random parameters model, unlike Phaneuf et al., addresses preferences for unobserved 

characteristics. Both of these studies find that randomizing parameters significantly improves 

model fit and significantly affects consumer surplus estimates for changes in environmental 

quality. RPL has also been applied to choice experiments (conjoint analysis) to model demand for 

a wide array of commodities and environmental amenities, including alternative-fuel vehicles 

(Brownstone and Train, 1996); appliance efficiency (Revelt and Train, 1997); forest loss along the 

Colorado Front Range resulting from global climate change (Layton and Brown, 1998); and the 

level of preservation of marble monuments in Washington, DC (Morey and Rossmann, 1999). 

RPL addresses heterogeneity across the population without having to confront the sources 

of individual heterogeneity, which is both its strength and weakness. As noted by Adamowicz et 

al. (1998), RPL provides more flexibility in estimating mean utility levels but little interpretability 

in terms of distributional impacts associated with heterogeneity. 

Like interaction, the RPL model specification assumes the B,’s vary across anglers rather 

than being restricted to be the same as assumed in Section 2.1. The coefficient vector for each 

individual is expressed as the sum of two components, the population mean vector (6) and an 

individual vector of deviations (v,): B, = 5+v,. By assuming that v, is constant over choice- 

occasions for each individual, the unobserved components of utility become correlated. By 

allowing for preference heterogeneity in this fashion, the restriction of independence associated



with the nonrandom logit model is removed (Phaneuf et al., 1998). Train (1998) expects such 

persistence in the unobserved factors that affect utility over time and over sites. 

If we knew each angler’s preferences, the B,’s, the probability of observing angler 7's 

choices over the season would be: 

(6) 

However, the individual deviation v, is unobservable. Only the PDF (PB) is assumed to be known, 

so the joint probability of observing angler 7’s choices conditioned on v is the integral of Equation 

3 over B: 

J B'x,, 
P= f W[———}* AplO)d j Mt Tat AGIB)AB om 

k=1 

where 6 represents the parameters of the distribution of B. V;, is no longer deterministic, but is 

now a random variable. Analytical evaluation of this integral is generally not possible, but 

advances in computer simulations allow for easy approximation based on a large number of 

random draws, R, from ff) using a pseudo-random number generator:” 

1 & J o Prt . 

SP,=— & Ti {[———_} 
R r=t j=l 5 hrkt (8) 

k=l 

  

° If only a small number of elements of B are randomized, other techniques to evaluate the integral such as 

Gaussian quadrature mav be used to increase speed and accuracy (Abramowitz and Stegun, 1965). See Stern (1998) for a 

discussion of simulated ML and its advantages.



where B. is a single draw from f(B), and SP, is the simulated probability of observing the 

individual’s choices. The simulated log-likelihood function for the RPL is therefore: 

N 
st=)> In(SP,) (9) 

i=1 

Nonrandom logit has the property that the ratio of probabilities of visiting two sites is 

unaffected by the inclusion of or change in a third site. RPL does not have this property due to the 

correlation in unobserved utility across choice occasions and alternatives resulting from persistent 

preference heterogeneity incorporated randomly, rather than deterministically as in the previous 

section. © The absence of this property is clear by examining the ratio of probabilities of visiting 

sites j and j’ on the f-th choice occasion (conditioned on the PDF of 8, but unconditional on 

alternatives chosen.on other choice occasions): 

~ Bs, 

[ — sB1)a8 
-= Sy gh ki 

kel 
Bx, 

[ +— £6108 
fe 

= Ee is 
k=l 

  (10) 

In a nonrandom logit model, the denominators cancel out, leaving the ratio as a function only of 

the characteristics of j and j’. In the RPL, the denominators do not cancel out of the integrands 

because they also contain v. 

  

© Hausman and Wise (1978) were the first to incorporate correlation across choice occasions in the context of a 

random probit model. Heterogeneity of preferences was addressed by allowing correlation among the random components 

of utility across alternatives. At the time, simulation methods were not available, so they were limited to three alternatives 

because their probit model integrates over utility differences between alternatives rather than parameter distributions as in 

the RPL. 
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If ILA means that the ratio of probabilities of visiting two sites is unaffected by changes in 

a third site, then RPL eliminates ILA. This interpretation is shared by Brownstone and Train 

(1996), Train (1997), Revelt and Train (1997), and Phaneuf et al. (1998). However, even with 

random parameters, how an individual ranks any two alternatives is independent of the existence 

or characteristics of any other alternative. Remember that B, is not a random variable from the 

individual’s perspective. In this sense, how the individual ranks alternatives is independent of 

irrelevant alternatives. 

2.4 Heterogeneity of the stochastic component 

The interaction and RPL methods address heterogeneous preferences by allowing f in the 

conditional indirect utility functions to vary across the population. Another strategy is to allow for 

heterogeneity in the stochastic components, the e’s. Although it is assumed that all individuals 

have the same f’s, and therefore expected behavior of two individuals with the same 

characteristics would be identical, the assumption that each individual’s €’s are drawn from the 

same distribution is relaxed. The assumption that the e’s are independent across choice occasions 

is retained, but different individuals can have different error variances (o.,”). As a result, different 

individuals with the same characteristics are allowed to have different levels of noise in their 

decision-making (for example, see Johnson and Desvouges (1997)). 

As discussed in Section 2.1, it is typical to assume that all individuals have stochastic 

components drawn from the same distribution. Under this assumption, all of the individual scale 

parameters, the s,’s in Equation 3, are the same and usually normalized to one without loss of 

generality. To allow for heterogeneity in the stochastic component, this restriction is relaxed, and 

individual- or group-specific s’s are estimated separately, or s can be randomized as in the RPL, 

11 
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the latter being a completely new method proposed in this paper. One scale must be normalized 

(to one or some other value) to achieve identification in the model. As emphasized above, 

allowing s to be heterogeneous is empirically indistinguishable from parameter proportionality 

(Louviere, 1996); that is, all B,’s are scaled up or down proportionately across individuals, as 

shown in Equation 3. In that sense, the methods in this section are more restrictive than either 

RPL or interaction. While heterogeneous scales require parameters to vary only up to a factor of 

proportionality across individuals, the other methods allow more general variation.’ Note that s, is 

inversely proportional to o.,°. Therefore, an individual with a small (large) amount of noise in the 

decision process will have a relatively large (small) s,, and the model will predict the individual’s 

choices relatively well (poorly). 

Several studies allow for differing levels of noise in different data sets or resulting from 

different data-generating processes, rather than to admit unobserved heterogeneity across 

individuals.* Incorporating heterogeneity of preferences through s is a much different exercise 

with a groundbreaking goal, and which also presents new challenges. For example, when merging 

k datasets, only & - 1 scale parameters need to be estimated, where & is some small integer; 

preference heterogeneity may require that a different s, be estimated for every individual, or 

subsets of individuals where grouping is nonrandom and based on logic or some expectation. 

  

’ Note that when there is only one slope parameter, allowing s or B to vary is equivalent because s and 8 cannot 

be separated in estimation. 

® For example, Swait and Louviere (1993) propose a test for multinomial logit parameter comparisons using 

identical utility specifications but different data sources. Louviere and Swait (1997) propose a nonparameteric approach for 

estimating scale parameters when different data sets are aggregated. Swait et al. (1994) use scaling to explain differences 

in the magnitudes of unexplained variance between SP and RP data from the same respondents in a model of freighter 

shipping choice under the assumption that the SP data reflects tradeoffs more robustly and therefore contains less noise. 

Ben-Akiva and Morikawa (1990) also examine the differences between RP and SP data-generating processes using scales. 
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Alternatively, the new random scale method is an appealing way to circumvent the 

problems associated with estimating a huge number of individual-specific s’s. First, it may be 

difficult or impossible to estimate a different S. and its standard error for each individual in the 

sample. RP data sets may have many corner solutions and limited variability across the data, and 

attempting to estimate individual-specific parameters may be asking too much. A finite ML 

estimator of s, a prerequisite for consistency, may not exist for those who make purely random 

choices, or for those whose choices are completely explained by B, because the likelihood 

function may be continuously increasing as s, ~ 0 or s; - » (Morey and Rossmann, 1999). Second, 

even if individual scales could be estimated for everybody, they would provide no information on 

why a given individual’s error variance is high or low. Using a random scale parameter in a similar 

way as the random preference parameters in the RPL allows for heterogeneity across individuals 

in the variance of the stochastic term, but it requires estimating only enough parameters to 

characterize the distribution of the scales (e.g., two for the lognormal distribution) rather than n - 

1 different individual-specitic scale parameters. Further, the random scale does not require 

estimation of the scale parameter as a function of individual covariates, the specification of which 

may lead to specification bias. 

2.5 Individual-specific preference parameters 

It is possible in theory to estimate individual-specific models, in which no parameters are shared, if 

the quantity of data is sufficient and the data exhibit enough variation. Usually the data do not 

allow identification or estimation of all of the parameters at the individual level. Successful 

estimation of individual-specific models is most likely using choice-experiment data, with many 

13



observations per individual that exceed the number of parameters to estimate.’ Individual-specific 

recreation demand models using RP data would be difficult to estimate because of the typical lack 

of variation in choices and a small number of trips taken by many individuals, which could be 

avoided by the careful design of a choice-experiment survey (for discussion, see Morey and 

Rossmann (1999)). 

A consistent estimator of slope parameters in models with some individual-specific 

parameters and some shared parameters does not exist. Chamberlain (1984) demonstrates that a 

unique feature of the logit formulation is the ability to estimate individual fixed-effect constants 

without introducing inconsistency in the other shared parameters. This result does not extend to 

slope parameters, so interaction and RPL are the best alternatives to individual-specific B,’s to 

admit heterogeneity in V,,. 

3. Repeated logit models of Atlantic salmon fishing participation and site choice that 

allow heterogeneity 

The empirical application is a repeated nested logit recreation demand model of Atlantic salmon 

fishing participation and site choice. The model is utility-theoretic and complete. Each of the 

techniques is applied to the model, and expected compensating variations are estimated for 

changes in site characteristics. The basic model assuming homogeneous preferences is developed 

  

? For examples, see Johnson and Desvousges (1997); Beggs, Cardell, and Hausman (1981), and Morey and 

Rossmann (1999). Estimating a large number of individual-specific coefficients is alwavs a daunting task. For example, 

about one-fourth of the individuals are nonconvergent in the first studv, and about half have undetermined coefficients in 

the second study. 

14



and estimated in Section 3.1. The techniques to add heterogeneous preferences are discussed and 

applied in Sections 3.2 through 3.4, along with comparisons to the basic model. 

3.1 Model 1: A logit model of Atlantic salmon fishing with homogeneous preferences 

During a fishing season, an Atlantic salmon angler has a finite number of choice occasions, 

assumed to be 100,!° to allocate to nine alternatives, including five salmon river groups in Maine 

(Penobscot, Machias group, Dennys, Kennebec group, and Saco), three salmon river groups in 

Canada (Nova Scotia rivers, New Brunswick rivers, and Quebec rivers), and a nonparticipation 

alternative that allows substitution in and out of fishing. 

The data used to fit the logit model are from a sample of 145 Maine anglers who held 

Atlantic salmon fishing licenses in 1988 and were active at these sites. The data set includes 

complete trip records on the number of visits each angler took to each of the eight Atlantic 

salmon fishing areas (y,). The average angler took about 20 trips to these sites and 14 to the 

Penobscot River in Maine alone. The data also include exogenous expected catch rates, angler 

incomes, and fishing costs, the p;; , which vary widely across anglers and sites. Trip costs 

comprise transportation costs, on-site costs such as guides and lodging, and the opportunity cost 

of time, including fishing, travel, and additional on-site time (e.g., waiting time, overnight time). 

Finally, the data set includes socioeconomic characteristics for each angler, including age, years of 

fishing experience, and whether the angler belongs to a Penobscot fishing club. This particular 

data set was first used to estimate a nested logit model of participation and site choice with 

income effects in Morey et al. (1992). 

  

10 Over 97% of sample anglers took 100 or fewer trips during the season. 
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The deterministic portion of angler 7’s conditional indirect utility function for fishing at site 

j, Vi, is a function of a constant (c)), a dummy (D,) that equals one if the site is in Canada, the 

budget per choice occasion (B;), the trip cost to visit site j (p,,), and the site-specific expected 

catch rate: V,= a) + GD, + By(B; - p,) + «(1 - D,)(catch,) + a,(0,.D,)(catch,), j = 1, 2, ..., 8. The 

expected catch rates at the Canadian sites are considerably higher than at the Maine sites. To 

account for this difference, the catch parameter is a step function constructed by multiplying the 

catch parameter (a,) by a catch-scale parameter («,,) if the site is in Canada. The price parameter, 

6, 1s interpreted as the marginal utility of money. The conditional indirect for nonparticipation, 

V 555 is a function of a constant, the budget per-choice occasion spent on the numeraire if fishing is 

not chosen, and socioeconomic characteristics of the angler: 74, = a, + Bo(B,) + a,age, + a.yrs,; + 

a,club,, where age is the angler’s age, yrs is years of fishing experience, and club equals one if the 

angler is a member of the Penobscot fishing club."’ This is a no-income-effects model; the choice- 

occasion probabilities are not a function of the budget. 

The ML algorithm (version 4.0.18) in Gauss (Aptech Systems, 1996) was used to find the 

estimates of the parameters that maximize the likelihood of observing the sample trip records, 

given exogenous trip costs, expected catch rates, and angler characteristics. The parameters are 

all significant and are reported in Table 1. The estimated parameters indicate that site visitation 

increases in expected catch and is a decreasing function of trip cost. The catch step function 

shows that increases in catch are more important when catch is lower (the Maine sites) than when 

  

1! The three constants Go, Soc, Og Were included to account for the effects of any unobserved variables in the 

participation decision and the choice of region. The model was identified by setting a equal to zero. Note that because the 

conditional indirect for nonparticipation is a function of angler characteristics, Model | does allow preferences to be 

heterogeneous in the classic sense to some degree in terms of the participation decision of how much to fish, although the 

model is called “homogeneous”. Modeling participation as a function of demographic variables is common in the 

recreation demand literature, so this does not represent a new contribution. 
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Table 1 

Parameter Estimates’ 

Model 1 Model 2 Model 3 Model 4 Model 5 

Parameters Homogeneity Interaction RPL Group scales Random Scale 

Fishing 

parameters’ 
Loc 4.409 (7.95) 5.124 (13.88) 2.971 (1.87) 3.969 (7.46) 3.993 (7.48) 

Bo -0.0157 (43.00) | -0.0154 (-42.61) | -0.0175 (-38.34) | -0.0144 (-29.99) | -0.0147 (-30.32) 

a, 15.834 (15.00) 32.363 (9.46) 39.220 (8.21) 14.808 (13.95) 12.466 (11.57) 

Xie 0.0620 (4.65) 0.0377 (5.87) 0.133 (1.45) 0.0630 (4.68) 0.0743 (4.51) 

Particip. 

parameters’ 
Loo 2.296 (17.93) 3.726 (11.89) 4.517 (6.03) 2.304 (18.47) 2.322 (18.10) 

L, 0.0200 (12.08) -0.0121 (-1.87) -0.0240 (-1.49) 0.0167 (8.94) 0.0218 (11.68) 

Xs -0.121 (-18.09) | -0.152 (-6.04) -0.0577 (-1.09) -0.100 (-12.10) -0.134 (-15.60) 

Q, -0.647 (-13.52) 0.386 (2.14) -0.404 (-1.01) -0.868 (-12.80) | -1.0025 (-13.80) 

Hetero. 

parameters 

y, for age -~0.373 (-5.22) -0.613 (-5.41) 

Y, for yrs -0.437 (-1.55) 1.210 (2.76) 

v; for club 12.314 (6.16) 6.158 (2.14) 

Doc 6.653 (9.50)° 

Ooo 1.995 (14.84)° 

group 1.0 (fixed), 

scales* 1.270 (20.05), 
0.945 (28.33), 

1.236 (18.70), 

1.087 (28.56), 

1.211 (21.53), 

1.034 (28.82). 

1.117 (25.14) 

G,,° 0.642 (16.15) 

Lik. ratio NA 67.96 4054.20 47.30 1956.95 

stat. (d.o.f.] [3] (5] [7] [1] 

Asymptotic t-statistics in parentheses. 

? Fishing : I, = a) + GcDj + Bo(B; - pi) + 0 - D,)(catch,) + «(a tcDj)(catch,), j = 1. 2, .... 8: M fixed at 

zero for identification in all models. 

3 Participation: | 3, = &g9 +Bo(B; +a,age, + ayyrs, + a,club,. 

‘ Group 1: young. inexperienced. no club; Group 2: young. inexperienced, club: Group 3: young, 

experienced. no club: Group 4: young, experienced. club: Group 5: old, inexperienced. no club; Group 

6: old, inexperienced. club: Group 7: old. experienced. no club: Group 8: old, experienced. club. 

° g,, is the standard deviation of In(s) in Model 5 where s is the random scale. The mean of In(s) is fixed 

at zero for identification. - 

6 Coc (Mg) is the mean and Opc (Ooo) is the standard deviation of the normal distributions of the Canadian   (nonparticipation) contant in Model 3.     
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catch is high (the Canadian sites). Socioeconomic characteristics such as age, years of fishing 

experience, and club membership are all important in the participation decision of how often to 

fish. Older anglers tend to fish less, and those with more years of experience or belonging to a 

fishing club tend to fish more. 

The Penobscot River in Maine is a very popular fishing site with relatively high catch for a 

Maine site. Expected compensating variations, E(CV)s, are estimated for three environmental 

changes at the Penobscot for all models: doubling the catch rate, halving the catch rate, and 

elimination of the site entirely. Both improvement and deterioration experiments are conducted 

because million-dollar fish stocking policies to improve the catch rate and dam projects for 

hydroelectric power (which would lower the catch rate) are relevant to the Penobscot. The E(CV) 

per choice-occasion for angler 7 for a logit model with no income effects is simply calculated as: 

E(CV) = (/B,) x - %1, (11) 

where V, = In( z exp(V’,)), the expected utility per choice occasion, and the superscripts denote 
Je 

conditions before and after the change (Morey, 1999). The total seasonal E(CV) is the choice- 

occasion E(CV) multiplied by 100. Seasonal E(CV)s and confidence intervals for the mean E(CT’)s 

simulated using 500. pseudo-random draws based on the estimated covariance matrix of the 

parameters are presented for Model 1 in Table 2. The mean seasonal E(CV) for doubling the 

catch, for example, is $2,270, which is consistent with the very avid, serious nature of these 

recreational anglers who pay high trip costs to go fishing (often in the hundreds or thousands of 

dollars), and receive high benefits from the activity. 
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Table 2 

Expected Seasonal Compensating Variations for Three Penobscot Scenarios’ 

Model 1 Model 2 Model 3 Model 4 Model 5 

E(CV)s Homogeneity Interaction RPL Group Scales Random Scale 

Double catch 

mean $2270 $2978" $3514 $2300 $3140 

conf. interval | $1707 to $2833 | $2345 to $3301 $2720 to $4308 | $1606 to $2994 | $1976 to $4304 

median $2081 $1489 $2104 $2102 $2748 

minimum $4 -$68 -$26 $6 $1 

maximum $6859 $17305 $20561 $7421 $10115 

Halve catch 

mean -$470 -$521 -$743° -$475 -$164° 

conf. interval | -$537 to -$403 | -$590 to -$452 -$908 to -$578 -$557 to -$393 -$213 to -$115 

median -$346 -$220 -$391 -$361 -$92 

minimum -$1960 -$3711 -$4931 -$2030 -$1446 

maximum $0 $36 $13 -$1 $0 

Eliminate site 

mean -$908 -$939 -$1312° -$911 -$582° 

conf interval | -$965 to -$851 | -$996 to -$882 | -$1579 to -$1045 | -$989 to -$833 -$653 to -$511 

median -$638 -$627 -$900 -$681 -$230 

minimum -$4129 -$5074 -$6704 -$33882 -$1789 

maximum -$] -$1 -$1 -$2 -$1 

Confidence intervals for the mean E(C?’)s were simulated using the estimated covariance matrix. 

2 Statistically significantly different from the Model 1 mean at a 10% level of significance. 

3 Statistically significantly different from the Model 1 mean at a 5% level of significance.   
  

3.2. Model 2: A logit model with the catch parameter as a function of angler characteristics 

In Model 1, only the participation decision is a function of angler characteristics. In this section, 

the model is generalized by making the site-choice decision also a function of angler 

characteristics. The catch parameter is interacted with age, years of experience, and the club 

dummy. The variables are interacted linearly, so the conditional indirects for the fishing 

alternatives become: V;,, = a) + Ugo, + Bo(B; - p,) + HCl - D)(catch,) + o&(&,-D,)(catch,) + y,(1 - 

D)(age,)(catch) + y,(1 - D,\yrs)(catch) + (1 - D)(club,)(catch,+ ¥(e4cD;lage,)(catch,) * 

¥2(0,-D,)(yrs,)(catch,) + ¥3(0,~D,)(club;)(catch,), j = I, 2, 99 8. 

Parameter estimates reported in Table 1 indicate members of a fishing club are more 

concerned with catch, and older anglers are less concerned. Perhaps fishing club members are 
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more interested in the sporting aspect of fishing, and older anglers are more interested in fishing 

for the pure enjoyment of the activity, regardless of what they catch. Years of fishing experience 

is not a significant determinant of the catch parameter in Model 2. Two individuals in the sample 

who are older and are not club members have negative catch parameters, and thus negative 

E(CV)s for catch improvements. Negative catch parameters may simply be an artifact of the 

model specification. Alternatively, some individuals may in fact have negative catch parameters if 

omitted variables are correlated with catch. For example, a larger catch rate is expected to be 

correlated with higher visitation and possibly more congestion at a given site. Perhaps these 

anglers have a strong preference for isolated sites with few visitors, even if it means catching 

fewer fish. 

A likelihood ratio test shows that Model 2 is statistically superior to Model 1; 

incorporating heterogeneity matters. Further, although older anglers who are not club members 

have E(CV)s for catch improvements in the interactive model that are lower than in Model 1, the 

mean E(CV)s for the sample as a whole, reported in Table 2, are somewhat larger in absolute 

value from Model 2 for all Penobscot scenarios, although the medians are smaller. Club members 

tend to have the highest E(CV)s. Perhaps the most important finding is that the range of E(CV’)s 

over the sample is much larger in Model 2. Incorporating heterogeneity by making the catch 

parameter a function of socioeconomic characteristics not only allows the researcher to 

determine which groups are most affected by environmental changes, but also allows a much 

wider range of behavior of and estimated impacts on different types of anglers. 

3.3. Model 3: A RPL model with interaction 

Model 3 is a RPL model that is an extension of Model 2, and therefore uses two heterogeneous 

methods; heterogeneity of the catch parameter is again accomplished using the same interactions 
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as in the previous section. The constants 1. and Og. (the Canadian and nonparticipation 

constants, respectively) are natural candidates to be random parameters because they represent 

the effects of all other relevant variables on the participation decision and regional choice (d) for 

Maine is still fixed for identification of the model). It is likely different anglers respond to 

unobserved variables differently, but the way specific individuals respond is by definition 

unobservable. Therefore, it is assumed that these constants vary across anglers randomly. They 

are drawn from normal distributions with means Gy and Cg, and standard deviations Og, and Oos, 

which are estimated in the model. A normal distribution was used for both constants because 

there are no restrictions on the signs, and because the proportion of possible values decreases for 

value ranges farther from the mean.” 

Note that Model 3 allows for systematic variation in the catch parameter because it 1s 

reasonably explained in terms of socioeconomic characteristics. It may be more informative for 

the researcher to be able to explain why parameters differ across individuals in a systematic 

fashion where possible, as in Model 2 (and again in Model 3) where interaction of the catch 

parameter with angler characteristics is statistically significant. Therefore, only the constants are 

randomized in Model 3 with unobserved variables. 

A comment is warranted about the choice of the number of repetitions, X, an issue that is 

not examined extensively in the literature. The simulator is unbiased with only one draw of B. 

  

12 Distributional assumptions are simply approximations of the true distributions, which are unknown. The 

normal and lognormal are typically used, the latter to impose restrictions on a parameter’s sign. Train (1998) uses a 

lognormal distribution for the parameter on fish stock to constrain it to be positive (1.e., all anglers are assumed to gain 

utility from catching fish), but Phaneuf et al. (1998) use a normal distribution. Train (1998) also allows the price parameter 

to be random and lognormally distributed. Layton and Brown (1998), however, warn of undesirable effects on the 

distribution of the E(CT )s as a result (because the price parameter is in the denominator of the CV formula), and hold the 

price parameter fixed. Phaneuf et al. (1998) also hold the marginal utility of money fixed. RPL results may be sensitive to 

the distributional assumptions. For example, in the Atlantic salmon model, both normal and lognormal distributions for the 

catch parameter were investigated in preliminary analyses. E(CV)s were found to be highly sensitive to the standard 

deviation of the catch parameter, especially in the lognormal case. The long right tail combined with the nonlinearity of the 

E(CV) calculation led to unrealistically enormous economic values. 
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However, increasing the number of repetitions increases the accuracy of the simulator and reduces 

simulation noise (Layton and Brown, 1998). 

The number of draws should be large enough so that the model parameters and E(CV’)s 

are insensitive to different random number draws. A total of 2,500 draws was used in the 

integration simulators in this paper. With this large number, most model parameters did not vary 

at two or three significant digits. Perhaps more importantly, mean E(CV)s changed by less than 

1%, whereas with only 100 draws they changed by more than 10%. Note that this number of 

draws is considerably larger than the numbers reported in other studies, which range from 250 to 

1,000, although one can expect the appropriate number to vary with the study.*° 

Model 3 is statistically superior to both Models 1 and 2 on the basis of likelihood ratio 

tests, and in addition, 04. and Oo. have highly significant asymptotic ¢ statistics. The parameter 

estimates for the RPL are reported in Table 1.'* The values of Oo, and Og, are 2.97 and 6.65, and 

the values of G45 and Gy. are 4.52 and 2.00. The ratios of the standard deviation to the mean are 

2.24 and 0.44, which match well with the ratios for random parameters in other studies valuing 

environmental improvements. The range over 20 parameters in 3 studies is 0.40 to 14.29, with a 

mean of 2.28 and a median of 1.43 (Train (1998), Phaneuf et al. (1998), and Layton and Brown 

(1998)). 

  

13 Brownstone and Train (1996) examine the sensitivity of average probabilities, the log-likelihood function, and 

parameter gradients to different numbers of draws and different sets of random numbers (i.e., different values for the 

random number generator seed), but hold the estimated parameters constant as they conduct the tests (i.e., a new model is 

not estimated for every value of the seed). 

14 1) estimation of RPL models. it was found that scaling the parameters was critical to obtain convergence. 

Parameters should be scaled so that the diagonal elements of the Hessian are roughly the same order of magnitude. Note 

that the RPL software developed by Kenneth Train was not used to estimate Model 3. In this study, site characteristics do 

not vary over choice occasions, so the coding of the likelihood function was simpler than that coded by Train. Programs are 

available from the first author upon request. 
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For a RPL model, the E(CV) per choice occasion for angler 7 is obtained by simulating 

integration of Equation 11 over the PDF of £: 

R 

= E (VB)*V, ~ Val (12) 
r=] 

E(CV,) = 

Because seasonal E(CV)s are additive and each component can be integrated separately, the 

seasonal E(CV) can be computed as the simulated E(CV) per choice occasion multiplied by the 

number of choice occasions. The mean and median seasonal E(CV)s from the RPL in Table 2 are 

Statistically significantly higher for all scenarios than for either Models 1 or 2, indicating that 

randomization has a significant impact on economic values. The ranges on E(CV’)s are also wider. 

Removal of IIA assumptions in terms of probabilities is a desirable property of RPL. 

Making the regional constants random removes IIA between Maine and Canada, but not within a 

region. As an example, the percent changes in the probabilities of visiting each of the eight fishing 

sites on the f-th choice occasion (independent of what occurs on other choice occasions) when the 

catch rate at the Penobscot doubles are computed. The RPL and nonrandom Model 1 are 

compared using a representative angler.’° 

The nonrandom model predicts the angler’s probabilities of visitation to all other sites on 

the #-th choice occasion when the Penobscot catch doubles will decrease by the same amount 

(60%), as aresult of ILA. The probability of visitation to the Penobscot will increase by 155%. 

The particular randomization of the constants in Model 3 results in a feature similar to that of a 

nested logit model. When the Penobscot catch doubles, the probability of visiting any of the other 

  

> For this example, the angler is 63 vears old, has fished for 11 vears, is a member of the Penobscot fishing club, 

faces low tip costs to the Penobscot of $37, and took 4 trips to the Penobscot. 
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Maine sites falls by 76%, and the probabilities for the Canadian sites all fall by 33%. ILA is 

retained within the two regions, and the higher level of substitution among Maine sites 1S a 

reasonable result. The probability of visitmg the Penobscot increases by 88% when the catch 

doubles. To eliminate IIA assumptions entirely, different random «’s could be estimated for each 

alternative, rather than for each region. 

3.4 Models 4 and 5: heterogeneity in the stochastic component 

Three approaches were investigated to allow heterogeneity in the random component of utility: 

1) individual-specific scales; 2) group-specific scales; 3) and a random scale parameter. Compared 

to Model 1, all three resulted in significant reductions in the likelihood function and different 

monetary values. The results from two of those models, Model 4 (group scales) and Model 5 (a 

random scale) are presented below. 

A model attempting to estimate individual-specific s,’s was run, but it only converged 

when a restrictive upper bound was placed on the scales, suggesting that the likelihood is 

monotonically increasing in the scale for certain individuals. The Hessian for the full model would 

not invert, although inversion was obtained separately for the B’s. When individuals were 

examined on a case-by-case basis, it was discovered that about 60% had undetermined scales. 

Johnson and Desvousges (1997) also estimate a model with individual-specific scales using choice 

experiment data and report difficulties with convergence, although they do not report the 

proportion of individuals for whom the model did not converge. These findings are not surprising; 

as noted above, the ML estimator may not even exist for some individuals. Below, two 

alternatives to the individual-specific method are discussed, both of which have desirable features. 

Although Johnson and Desvousges (1997) state that individual-specific scales can indicate 

whether groups of respondents make random or repetitive choices, or are having trouble with the 
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survey design in the case of choice experiments, the individual scales themselves contain no 

information about the type of person fitting these categories. An alternative that does allow the 

researcher to reach conclusions about how scale varies across types of individuals is the use of 

different scale parameters for different types of groups.’° This specification is also much easier to 

estimate because it reduces the number of scales to be estimated considerably. 

Model 4 examines whether scales vary significantly based on age, experience, and club 

status. The Atlantic salmon anglers were divided into eight groups on the basis of the mean values 

of age and years of experience (47 and 6.5, respectively) and club status. Each angler was 

assigned a corresponding group-specific scale, and one scale was normalized to one to achieve 

identification.!’ The estimated parameters are reported in Table 1, and a likelihood ratio test 

shows that Model 4 is statistically superior to Model 1. For models with s’s that vary, E(CV)s are 

a function of the scales:** 

i ji E(CV’) = [1/s8,)] [In exp(s,V.°)) - in exp(s,V,,"))], | | (13) 
j=l j=l 

Again, the mean E(CP’)s are higher for Model 4, but only slightly as compared to Model 1. They 

are not statistically significantly different from the Model 1 means. 

  

16 Note that an alternative to group scales would be to estimate scales as a nonnegative function of individual 

characteristics (see, for example, Cameron and Englin (1997) and Morev and Rossmann (1999)). 

17 The scale was fixed for the younger, inexperienced anglers who are not members of a club. They are the most 

numerous and took approximately the average number of trips for the sample. As a result, they had a large influence on the 

likelihood function of Model 1, the source of the starting values for Model 4. 

18 Tf there is only one alternative in each state of the world for the proposal being evaluated, the s’s drop out of 

the formula for E(CV), although the estimation of B is still affected by the presence of heterogeneous scales in the 

likelihood function. 
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The club members as a group have the smallest random component variance, which 

suggests that they are very careful and systematic about fishing decisions. This is consistent with 

membership of a fishing organization. Of club members, younger anglers have smaller random 

components, but of the nonclub group, older anglers have smaller random components. The 

group scales range from 0.94 to 1.27. 

Model 4 is estimated under the assumption that B does not vary across anglers, only 0,7 

varies (or similarly, that parameter proportionality holds). Section 2.5 discussed why individual- 

specific models cannot usually be estimated for revealed preference data, but group-specific 

models, where all parameters are allowed to vary across groups, may be identified if there are 

multiple individuals in each group with adequate variability in choices and with each facing a large 

number of choice occasions. Group models can be used to test the hypothesis of parameter 

proportionality (which is empirically indistinguishable from testing that preference parameters are 

the same across individuals, but only variances of the stochastic term differ) by adding up the log- 

likelihoods across the group models and comparing to a model with group-specific scales (Swait 

and Louviere, 1993). Parameter proportionality could not be tested here.”” 

Louviere (1996) notes that parameter proportionality is retained consistently across 

different types of data sets in numerous studies. If that finding extends to types of individuals, 

then using group scales is an appropriate way to address heterogeneity. Even in cases where 

parameter proportionality is statistically rejected, Louviere suggests that modeling only error 

variability will account for most of the heterogeneity. However, the significance of Model 3 

suggests that parameter proportionality may not hold. Because s, and B, are confounded in a MNL 

  

19 Of eight group-specific models using the group definitions listed above, inversion was obtained for only two, 

primarily because of the small number of anglers in some groups and the small number of trips taken to the Canadian sites 

(only 34 across the sample, and zero in several groups). 
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model, if parameter proportionality is rejected, it is not possible to discern whether: 1) both 

parameters and scales vary, versus 2) just the parameters vary on the basis of individual-specific 

estimates of s, and B, (Swait and Louviere, 1993). However, 1s noted by Morey and Rossmann 

(1999), the model would be identified if s, and 8, were estimated as functions of individual 

characteristics, or if both s and a subset of the elements of 8 were randomized. 

Model 5 takes a different approach. While it is assumed that the s’s vary across people, it 

is also assumed that they vary unsystematically from the researcher’s perspective. Using a similar 

procedure to Model 3, s is assumed to be a random scale parameter with some distribution. The 

lognormal distribution is chosen to restrict s,> 0 V1. To obtain identification, the median scale is 

fixed at one (by setting the mean of In(s) = 0). Anglers whose choices are rational and 

appropriately sensitive to characteristics of alternatives will have scale parameters close to the 

normalized value of one (Johnson and Desvousges, 1997). Those making random choices or those 

who do not care about the alternatives or their characteristics will have smaller scales: those for 

whom the model predicts extremely well, or who make repetitive choices, will have larger scales. 

Again, 2,500 draws were used to minimize simulation noise. Given the lognormal 

distribution, the following formulas can be used to determine the mean and standard deviation of 

the random scale: E(s) = exp(o,7/2); and o, = exp(o,,/2) x | [exp(o,,”) - 1], where a,, is the 

estimated standard deviation of In(s). The mean s is 1.23, and the standard deviation of s is 1.99. 

Model 5 is statistically superior to Model 1. E(CV)s were simulated, and again the mean (and 

median) E(CV)s for doubling the catch rate are larger in absolute value than Model 1. For the site- 

deterioration scenarios, the means and medians are significantly smaller. 
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4. Conclusions 

Several methods to incorporate heterogeneous preferences have been proposed to generalize the 

restrictions inherent in assuming homogeneity. These methods address four broad category types 

of heterogeneity: 1) systematic heterogeneity in the deterministic component of utility, 2) random 

heterogeneity in the (formerly) deterministic component; 3) systematic heterogeneity in the 

stochastic component; and 4) random heterogeneity in the stochastic component. While each of 

these types is dealt with individually in this paper, multiple types could be dealt with at once to 

reduce model restrictiveness and to allow for a much richer treatment of heterogeneity. One could 

envision an even more general model that combines the interaction and random parameters of 

Model 3 with the random scale of Model 5. 

An important empirical finding in this paper is that restricting preferences to be 

homogeneous tends to result in significantly different mean expected consumer surplus and has 

important implications for the range of expected values as well. In some cases, mean E(CV)s for 

models incorporating heterogeneity were not statistically different from the means from Model 1 

that does not have the features. However, in all cases allowing heterogeneity significantly 

improved model fit, which alone justifies use of the methods. Also, heterogeneity results in larger 

ranges in the E(CV)s across the sample, which is an implication of the model allowing for a wider 

range in individual behavior. 

The systematic heterogeneity methods should be used where possible to allow the 

researcher to reach conclusions about subgroups of the population, which may be relevant for 

environmental policy targeting different types of recreationists. Systematic heterogeneity allows 

the researcher to assess the distributional impacts of policies. However, the random logit scale 

parameter provides the researcher a way to allow for variation in the distribution of the random 
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component across individuals without the potential biases associated with estimating the scale as a 

function of covariates, or the difficulties associated with individual-specific scales. 

Final model selection can depend on a mix of economic theory and intuition combined 

with empirical comparisons. In developing a model with heterogeneous preferences, it is 

important to consider the types of individuals in the sampling frame. How they differ in terms of 

geographic proximity, socioeconomic variables such as income and education, and avidity in 

terms of dependent variables such as number of recreational trips, and how responses differ to 

attitudinal questions, may provide insight on whether (and which) preference parameters should 

be expected to vary much across individuals, and whether those variations can be observed. These 

same factors, plus written and verbal comments perhaps, might be used to assess the level of 

coherence in decision-making and interest in the activity, and therefore could be used to decide 

whether iid assumptions about the random components are reasonable. As heterogeneity features 

are added to the basic model, their relative importance and impact can be evaluated not only on 

the basis of the likelihood function, but other factors including predictive power, and the 

robustness of parameters and other model results such as consumer surplus. 
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