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Dynamically Optimal and Approximately
Optimal Beef Cattle Diets Formulated
by Nonlinear Programming

Greg Hertzler

Cattle purchasing, feeding, and selling decisions are described by a free-time optimal

control model. The nutrient constraints of the National Research Council and a
recently published dry matter intake constraint augment the model and make it
nonlinear in the feed ingredients, the daily gain, and the weight of the cattle. Optimal

feeding programs are calculated by nonlinear programming under two scenarios: first,
when the feedlot has excess capacity and, second, when animals must be sold to make

room in the feedlot before more can be purchased. An approximately optimal feeding

program is calculated by nonlinear programming and is all but identical to the

dynamically optimal programs.

Key words: beef cattle, diets, nonlinear programming, optimal control.

Since the mid-1970s, net returns from beef
cattle feeding have been volatile. Planning of
marketing strategies and feeding programs has
become crucial to the economic survival of
cattle feeders. Cattle feeders must determine
which cattle to purchase, what diet to feed the
cattle for producing daily gain, and when to
sell the cattle.

Kennedy, and Meyer and Newett were the
first to solve dynamic optimization models of
cattle feeding and marketing decisions. Using
a "hybrid" solution algorithm of dynamic pro-
gramming and linear programming, they cal-
culated optimal beef diets and rates of gain
over a feeding program of fixed length. Apland
developed a linear programming model to
minimize the cost for beef cattle to reach a
fixed selling weight. Chavas, Kliebenstein, and
Crenshaw used nonlinear programming to find
the diets and rates of gain for swine when nei-
ther the length of the feeding program nor the
market weight were fixed. They also consid-
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ered a Faustmann rule for replacing animals
when space in the feeding facilities is limited
and the current animals have to be sold before
a new lot can be started. This study extends
the methods of Chavas, Kliebenstein, and
Crenshaw to beef cattle and devises a method
to closely approximate dynamically optimal
decisions.

Embedded within a dynamic model for cat-
tle feeding must be a diet model for the pro-
duction of daily gain from the feeds in the diet.
The advent of the net energy system (Lofgren
and Garrett) was the first in a series of refine-
ments to make diet models for beef cattle non-
linear. The net energy system was successfully
incorporated into linear programming by
Brokken. Brokken's Model II for least-cost diets
has been widely used and adapted (Ladd and
Williams; Olson, Willham, and Boehlje; Rozzi
et al.; Glen). His Model III for optimal-return
diets (choosing the daily gain as well as the
feeds) is more difficult to implement because
the energy requirement is significantly nonlin-
ear with respect to gain.

In addition to energy, the National Research
Council (NRC 1984) has since changed the
requirements of other major nutrients to de-
pend nonlinearly on gain. Dry matter intake
restrictions (NRC 1987, Plegge et al.) have been
proposed to adjust for the energy concentra-
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tion of the diet and make the diet model sig-
nificantly nonlinear with respect to the feed
ingredients as well. For a dynamic decision
problem, it is also important that the nutrient
requirements and the dry matter restriction are
nonlinear in the weight of the cattle. In short,
a modem diet model is significantly nonlinear
in every variable.

One purpose of this paper is to construct
and solve a general model of the decision prob-
lem facing a cattle feeder and determine the
dynamically optimal purchasing, feeding, dai-
ly gain, and selling decisions. Unfortunately,
the solution process is quite involved, which
limits its practical application by cattle feeders
and nutritionists. Another purpose, then, is to
develop a quick and easy approximation meth-
od.

The general model is especially difficult to
solve because it is a free-time optimal control
problem. The model's high degree of nonlin-
earity adds to the difficulties of finding a so-
lution. Fortunately, a dynamically optimal
feeding program can be approximated by a
series of optimal-return diets at increasing
weights of cattle. Each optimal-return diet is
"static" in the sense that the effects of current
feeding decisions on future decisions are ig-
nored. However, the dynamically optimal sell-
ing weight can still be determined and the cal-
culated daily gains and diets are close to
optimal.

Optimal Feeding Program

Consider a model of the decisions made by a
farmer-feeder who does not feed continuously
or by a commercial feeder whose feedlot is not
operating at full capacity. Modeling the opti-
mal decisions of a commercial feeder whose
feedlot has no empty pens requires a modifi-
cation to include the opportunity cost of lim-
ited space. The objective is to maximize the
discounted revenue from selling the animals
minus the feed costs, variable costs, marketing
costs, and initial expenditures for purchasing
the animals. Two state variables in the model
will evolve over time. The weight of the ani-
mals will increase with gain, and the number
of animals will decline with death loss. For-
mally, the model is

(la) J(Wo, No) = max( 1 + [PT W - M]NT

- 0 [F(Wt, Gt) + V]Nt

-Po WONO;

subject to

(lb) Wt+1

(lc) Nt+

- W= G, t=0 .. ., T- 1;
- Nt =-N, t= 0. . .., T- 1,

where J is the optimal value function, Wis the
weight of each animal in kilograms, N is the
number of animals, P is the expected price of
an animal per kilogram of weight, M is a mar-
keting charge per head, F is feed costs per day,
G is gain in kilograms per day, V is variable
costs per day, T is the length of the feeding
program in days, i is the daily interest rate,
and 6 is the daily rate of death loss.

To simplify the presentation, feed costs are
specified as a function of weight and gain. Con-
ceptually, a least-cost diet has been calculated
for each possible combination of weight and
gain and the costs summarized as F. Once the
weight and gain are determined by the dynam-
ic model, the optimal feeds in the diet are
known. For the actual application to follow,
feeds and gain are determined simultaneously
by including the nutrient and dry matter con-
straints of a beef diet model for each day of
the feeding program. Other constraints for the
availability of feeds, the size of the pen, the
number of cattle available, and the availability
of capital could be added as well.

Variable costs, V, are incurred daily and in-
clude fuel, electricity and perhaps labor costs
but do not include interest expenses nor death
losses. It might seem natural to include the
actual interest paid as a variable cost. How-
ever, in a dynamic planning model such as this,
short-term interest expenses are the opportu-
nity costs of investing in cattle production and
are incorporated automatically through dis-
counting. This point will be discussed in more
detail later. Death losses are incorporated into
the model through the rate of death loss. Both
the interest rate and rate of death loss could
be allowed to change over time if needed. The
fixed costs of depreciation, interest, property
taxes, and insurance on corrals and equipment
cannot be avoided no matter what cattle feed-
ing program is chosen and are not considered
in the model.

The cattle purchasing decision is an all-or-
none proposition. To see this, first solve dif-
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ference equation (Ic) for the number of ani-
mals at time t:

N, = (1 - )' No.

Then substitute the result into the objective
function, equation (la):

J(W, No) = max [+ ) [PTWT - M

- 1 -- [F(Wt, Gt) Vt]
t=o 1 +I

Po Wo]No.

The final result discounts the future more
heavily to account for death loss and separates
the objective function into the net returns per
animal over the feeding program multiplied
by the initial number of animals purchased. If
net returns per animal are positive, the number
of animals purchased should be as large as pos-
sible. Presumably there is some upper bound
corresponding to the availability of space in
the feedlot, cattle, or capital. Moreover, dif-
ferent types of animals will each have different
net returns. The type of animals with the larg-
est net return should be purchased.

Let the interest rate adjusted for death loss
be r = (i + 5)/(1 - 6). For a given group of
animals, the optimal feeding program can be
determined by maximizing the net returns per
animal:

(2a) J(W0 ) = max (1 [PTWT- M]

t= + r[F(W, G1 ) + V+~ \

subject to

(2b) W,, - Wt=G,; t=O,... ,T- 1.

the feeding program for each new group of
cattle in this sequence is identical to all others,
a Faustmann-type problem results (Chavas,
Kliebenstein, and Crenshaw). The objective
function in equation (2a) would simply be mul-
tiplied by an additional discount term,
1/(1 - (1 + i)- 7), where Tis the length of each
of the feeding programs. Each feeding program
would be shorter than the length of a feeding
program in a feedlot with discontinuous feed-
ing or with excess capacity, and the optimal
diets and daily gain would be indirectly af-
fected as well.

The optimal daily gain at any time during
the feeding program can be found by maxi-
mizing the current-value Hamiltonian (Ka-
mien and Schwartz, p. 151). The current-value
hamiltonian is a dynamic measure of returns
above costs for a single day. It is formed by
first multiplying the daily gain on the right-
hand side of equation (2b) by a costate vari-
able, say X, interpreted as the implicit price for
gain. This gives a dynamic measure of total
returns. Then the total feed and total variable
costs for day t are subtracted.

(3) H, = Xt, G,- [F(W,, G,) + Vtl;

The three kinds of first-order conditions
equate the marginal feed costs with respect to
gain to the costate, describe the change over
time in the costate due to discounting and due
to the marginal feed costs with respect to
weight, and relate the costate at the end of the
feeding program with the expected selling price.

(4a) OH -0 = Xt+ -;

OG,- 1G,
t=0,...,T- 1;

(4b) - = x - ( + r),t =ow, t ow)

Although the initial purchase expenditure,
P0 Wo, is a constant, it affects the decisions in
a commercial feedlot operating continuously
at full capacity because the net returns per head
determine when the current group of cattle
should be sold to make room for a new group.
In this situation, a sequence of future feeding
programs for successive groups of cattle must
be modeled. If it is assumed that there are an
infinite number of feeding programs and that

(4c)
1

X'T 1 PT
l+r

The current-value costate must be known
for the optimal gain in equation (4a) to be
chosen. At the end of the feeding program,
terminal condition (4c) equates the costate to
the expected sale price discounted one day.
Earlier in the feeding program, however, the
expected sale price is discounted to day t, as
seen in condition (4b). Further, increasing the
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weight of the animals will increase feed costs
in the future, making gain in the present rel-
atively less profitable by making the costate
even smaller. In short, the costate is a dynamic
price which accounts for the effects that current
decisions will have on the future.

The Hamiltonian is also important in char-
acterizing the optimal length of the feeding
program. To see this, first notice that T could
initially be fixed at a relatively small value in
the maximization problem of equations (2a)
and (2b). The optimal value function, J, would
increase with successively longer lengths of the
feeding program until the optimal length was
reached and then would decrease thereafter. It
follows that a procedure for solving the free-
time optimal control problem would start with
a short length of time and then repeatedly solve
a series of fixed-time optimal control problems
for increasingly longer lengths. The optimal
length of the feeding program and the optimal
daily gains are found when the optimal value
function no longer increases.

Suppose that G* and T* are the optimal
gains and length for a feeding program in a
feedlot with excess capacity. Further, suppose
that, after determining the optimum, the cattle
are sold one day too early. The loss of dis-
counted net revenues would be the difference
in J, the optimal value function of equation
(2a), evaluated at T* and J evaluated at T*
- 1:

(1 1 )*[PTW - M]

-(1+ rY [[F(WT-1, G*_1) + VT_,]

-(- 1+) r [PT-- WT - M] > 0.

Substituting the relationship WT-1 + G*T-
for WTand rearranging slightly gives the trans-
versality condition for the variable T (Kamien
and Schwartz, p. 143). The dynamic profita-
bility of feeding the animals on day T* - 1
exceeds the opportunity returns from selling
them.

(5) ( r)G*1 - [F(WT- 1, G-1) + VT-1]

> (r r)[PT-IWT-- -M]

-( 1 r)[PT-PT 
1 WT-+ +

With the help of equation (4c), the left-hand
side of equation (5) is seen to be the Hamil-
tonian for day T* - 1. The right-hand side
has two terms. The first is the opportunity of
earning interest from selling the animals at day
T* - 1 and investing the proceeds at the rate
r. The second term on the right-hand side ad-
justs for any changes in the expected sale price.
If a Faustmann rule were applicable, the right-
hand side would also contain a third term for
the opportunity return to scarce feedlot space.

Reconsider the question of whether interest
expenses are properly accounted for by the op-
portunity returns on the market value of the
animals, as in equation (5), or whether a daily
interest charge should be levied instead on the
initial investment to purchase the animals and
on the accrued feed and variable costs. The
latter method may be the more common cost-
accounting approach for tracking actual ex-
penses. However, in planning for the future,
past purchase and feeding decisions already
have been made and the interest on the initial
investment plus accrued costs is like any other
fixed cost. Instead, the optimal selling decision
at day T* - 1 should compare the opportunity
return on the animal's market value to the
dynamic profitability of continued feeding.

In summary, the Hamiltonian in equation
(3) is the key to determining the optimal diets,
daily gains, and the optimal selling weight dur-
ing a feeding program. Approximating an op-
timal feeding program requires an approxi-
mation of the Hamiltonian for every day except
the last. More specifically, some assumption
about the costate variable must be made. Sup-
pose the marginal feed costs with respect to
weight were to be ignored in equation (4b) and
the rate of interest adjusted for death loss were
ignored as well. Then the costate would be
assumed constant over time and, according to
equation (4c), would be equal to the expected
selling price discounted one day. This seem-
ingly crude approximation will be shown to be
surprisingly accurate. Notice, however, that no
approximation is needed to find the optimal
selling weight according to equation (5), al-
though the length of the feeding program will,
of course, depend upon previous daily gains.

Optimal-Return Diet Model

To keep the notation uncluttered, the dynamic
model in equations (2a) and (2b) summarizes
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the diet for any day during the feeding program
as the least-cost function, F. In applying the
model, the feed cost function can be made ex-
plicit and the model can be augmented by a
diet model for each day comprised of a set of
nutrient constraints and a dry matter con-
straint. For presentation purposes, it is less
cumbersome and just as informative to aug-
ment the Hamiltonian in equation (3) for a
single day. An optimal-return diet model will
be defined as an approximation to the aug-
mented Hamiltonian with a simplifying as-
sumption about the costate variable.

In a diet model, nutrient constraints com-
pare the available nutrients in the diet with the
nutrient requirements of an animal, and a dry
matter constraint compares the weight of the
feeds in the diet with a maximum dry matter
intake for the animal. Net energy for mainte-
nance (NEm), net energy for gain (NEg), crude
protein (CP), calcium (Ca), phosphorus (Ph)
and dry matter (DM) in the diet will be com-
pared with the NRC (1984, p. 38) nutrient
requirements and the dry matter intake re-
striction of Plegge et al. (see also NRC 1987).
The nutrient requirements are all nonlinear in
the weight of the animal and in daily gain. The
DM intake restriction and the availability of
NEg are nonlinear with respect to the animal's
weight and the feed ingredients.

The estimation of dry matter intake is, at
present, an active area of research in the field
of animal science (NRC 1987). The reason that
the DM restriction of Plegge et al. was chosen
for the diet model is that it adjusts intake both
for the energy concentration of the diet and
for the weight of the animal. An accurate ad-
justment of intake for increases in the animal's
weight is crucial in a dynamic model.

The Hamiltonian is to be maximized subject
to the nutrient and dry matter constraints. For-
mally, the maximization problem for a me-
dium-frame steer is

(6a) Hamiltonian ($/d) max X,+ Gt

- CiF + Vtj

subject to

(6b) NEg(Mcal/d) NEgF[1 - .077 W 75/

i NEmi F

> .0557 W75G'.097;

(6c) CP (g/d)

(6d) Ca (g/d)

(6e) Ph (g/d)

C CPiF

- 33.4 Fi + 2.75W 75

+ .2W6 + 268G - 29.4

*(.0557 W75G1 °97)]/.594;

Ca iF

- [.0154W + .071

*(268G- 29.4

(.05 57 W
7 5

G1.0
97

))]/.50;

2 PhiF

> [.0280 W+ .039
*(268G - 29.4
*(.0557 W 75G'l 097))]/.85;

(6f) DM(kg/d) C F

< -42.925 - .004(250)
+ .00003(250)2

+ 36.8326(W/500)
- 20.8356(W/500) 2

+ 24.5011

( MEiF/ F

- 4.4019
2

(\ MEJF, F);

where X is the costate, or implicit selling price
of the steer in dollars per kilogram; G is the
daily gain in kilograms per day; Ci is the price
of the i th feed in dollars per kilogram of DM;
Fi is the quantity of the ith feed in kilograms
per day of DM; V is the daily variable costs
excluding interest expenses and death losses in
dollars per day; W is the animal's live weight
in kilograms; NEmi, NEgi, and MEi are the net
energy for maintenance, net energy for gain,
and metabolizable energy of the /th feed in
thousand calories per kilogram of DM; and
CPi, Cai, and Ph, are the crude protein, cal-
cium, and phosphorus of the ith feed in gain
per kilogram of DM.

A separate constraint for NEm is not includ-
ed because the NEm requirement is satisfied
implicitly through the NEg constraint for non-
negative G. Nutrient availabilities are on the
left-hand sides, and nutrient requirements and
the DMintake restriction are on the right-hand
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sides of the constraints. The nutrient require-
ments for animals other than a medium-frame
steer will have different coefficients. For ex-
ample, a medium-frame heifer has an NEg re-
quirement of.068 W 75G'11 9 (NRC 1984, p. 38).
In the DM restriction, 250 kilograms is the
weight at which the animals were first placed
on feed (which may be less than initial weight
W0 if the animals were fed by a previous own-
er) and the finished weight at which 70% of
similar animals will grade low-choice has been
set to 500 kilograms.

The control variables are gain, G, and the
feeds, Fi. Parameters to be assigned values are
the costate, X, the feed costs, Ci, daily variable
costs, V, the nutrients in each feed, NEm,, NEgi,
MEi, CPi, Cai, and Phi, and the current weight
of the steer, W.

Suppose the assumption is made that the
costate is approximately equal to the expected
selling price discounted one day,

(7) = t+, PT,X+r

where P is the expected selling price in dollars
per kilogram and r is the death-loss adjusted
interest rate. Then a sequence of optimal-re-
turn diets can be calculated at increasing
weights to approximate the dynamically op-
timal sequence of diets. Early in the feeding
program, the assumption in equation (7) is an
overestimate of the costate causing the opti-
mal-return diets to prescribe faster than op-
timal daily gains. Toward the end of the feed-
ing program, the approximation becomes better
until equation (7) gives the actual value of the
costate at the optimal selling weight. The op-
timal selling weight is determined when the
objective function from the optimal-return diet
in equation (6a) no longer exceeds the oppor-
tunity costs of selling on the right-hand side
of equation (5).

Application

The dynamic model of optimal cattle feeding,
complete with nutrient and dry matter con-
straints for each day, can be solved as a large-
scale nonlinear programming problem by the
MINOS software for mainframe computers
(Murtagh and Saunders). MINOS uses sparse
matrix techniques that can easily accept the
large but sparse matrices of optimal control

models like the cattle feeding model. Nonlin-
ear objective functions are solved by a reduced
gradient algorithm and nonlinear constraints
by a projected lagrangian method. MINOS is
intended for use by researchers, and no at-
tempt has been made to make the software
user-friendly.

In contrast, the optimal-return diet model
is a small-scale nonlinear programming prob-
lem which can be quickly and easily solved by
the GINO software for microcomputers (Lieb-
man et al.). Nonlinear objective functions are
solved by a reduced gradient algorithm and
nonlinear constraints by a generalized reduced
gradient algorithm. Although GINO can solve
only small problems the software is intended
for use by nonprofessionals and is user-friend-
ly.

One question remaining is how often diets
should be calculated. Over a 200-day feeding
program, for example, up to 200 different diets
could be determined. Say there are 5 possible
feeds in each day's diet. Then a nonlinear pro-
gram to solve for the optimal 200-day feeding
program would have 1,401 nonlinear vari-
ables, 1,000 nonlinear constraints, and 201
linear constraints. Such a problem would be
considered medium-sized by the authors of
MINOS. It is questionable, however, whether
diet models have enough precision to warrant
daily diet calculations. In this application diets
are calculated weekly, easing the computation-
al burden by a factor of seven.

Nutrients analyses for alfalfa hay, corn for
grain, corn silage, soybean meal, and limestone
are shown in table 1 (NRC 1984, pp. 48 and
62). Hay costs 60 per kilogram of dry matter;
corn 13¢ per kilogram; corn silage, 7¢ per ki-
logram; soybean meal, 16¢ per kilogram, and
limestone 6¢ per kilogram. These costs are es-
timates of market prices rounded to the nearest
penny, except for corn silage. Corn silage has
a limited market and so has been priced at
55% of corn for grain. The expected selling
price will be set conservatively at $1.30 per
kilogram so that the model does not always
push for the maximum rate of gain. The mar-
keting charge will be set at $4.00 per head, the
daily variable costs will be 4o per day, the
annual interest rate will be 13.0%, the annual
interest rate adjusted for death losses will be
14.6%, and the purchase price of a medium-
frame steer at an initial weight of 350 kilo-
grams will be $1.35 per kilogram.

Table 2 contains a comparison of feeding
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Table 1. Nutrient Analyses

Midbloom,
Sun-cured Grade 2 Corn, Silage, Soybean Meal

Alfalfa Hay Corn Well-eared Solv. Extract Limestone

MEi (Mcal/kg) 2.10 3.25 2.53 3.04
NE,, (Mcal/kg) 1.24 2.24 1.63 2.06
NEi (Mcal/kg) 0.68 1.55 1.03 1.40
CPi (g/kg) 170 101 81 499
Cai (g/kg) 14.1 0.2 2.3 3.3 340
Phi (g/kg) 2.4 3.5 2.2 7.1 0.2
DM (kg/kg) 11 1 1 1 1

Source: NRC 1984, pp. 48, 62.

programs and a selection from the many diets
actually calculated. Three different models were
run: (a) a dynamic model for the decisions of
a farmer-feeder or a feedlot operator with ex-
cess feedlot capacity, (b) a dynamically opti-
mal Faustmann model for the decisions of a
cattle feeder who feeds continuously with no
excess feedlot capacity, and (c) an optimal-
return model as an approximation to the two
dynamically optimal models. The diets from
the beginning and ending weeks of each feeding
program are reported. All of the models were

en _-Z.t

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

run on MINOS to make the results as com-
parable as possible.

In the dynamic model, the steer is fed from
a weight of 350 kilograms to 502.6 kilograms
during a nineteen-week period, netting a return
before fixed costs of $23.40 per head. The im-
plicit price of gain, which in this case is the
costate variable, starts at 84.4¢ per kilogram
and increases during the feeding program to
equal the selling price discounted by one week,
or $1.296 per kilogram. Daily gain, on the oth-
er hand, starts fairly high and declines, even

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 1. Returns above feed plus variable costs for a medium-frame, 350-kilogram steer
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Table 2. Comparison of Feeding Programs and the Beginning and Ending Diets Fed to a
Medium-Frame Steer

Dynamic Model Faustmann Model

Net present 23.40/head 18.83/head
value ($)

Length of 19 weeks 13 weeks
program

350-359.0-kg Steer 496.0-502.6-kg Steer 350-359.1-kg Steer

Implicit price .844 1.296 1.001
of gain
($/kg)

Gain (kg/d) 1.280 .931 1.306

Reduced Reduced Reduced
Feeds Cost Feeds Cost Feeds Cost

Hay ($/kg) -. 016 -. 027 -. 017
Corn (kg/d) 4.638 5.641 5.167
Corn silage 2.480 2.105 1.846

(kg/d)
Soybean meal .268 $-.045 .262

(kg/d)
Limestone .080 .065 .086

(kg/d)

Excess Shadow Excess Shadow Excess Shadow
Nutrients Price Nutrients Price Nutrients Price

NEg $ -. 161/Mcal $-.193/Mcal $ .192/Mcal
CP $-.000/g 31.788 g $-.000/g
Ca $-.000/g $-.000/g $-.000/g
Ph 4.305 g 3.901 g 4.582 g
DM $.115/kg $.163/kg $.160/kg

as the energy concentration of the diet is in-
creasing. Hay is never fed because soybean meal
supplements the protein and because lime-
stone supplements the calcium. For the diet
fed to a 350-kilogram steer, hay has a reduced
cost of 1.6¢ per kilogram, meaning that the
price of hay must be reduced to 6 - 1.6 =
4.4¢ per kilogram before it will be included.
In this same diet, the nutrients, NEg, CP, and
Ca are limiting and valuable. An additional
thousand calories of NEg in a feed is worth
16.1 per thousand calories. Dry matter in-
take, DM, is restrictive and an extra kilogram
of dry matter in a feed costs 11.5¢ per kilo-
gram. The composition of the diets changes
gradually until, by the end of the feeding pro-
gram, the diet fed to a 496-kilogram steer has
excess CP and soybean meal has been exclud-
ed.

In the Faustmann model for limiting feedlot
capacity, the diets and daily gains are very sim-
ilar to those of the dynamic model, even though
the costate variables (reported as the implicit
prices of gain) are greater. However, there are

substantial differences in the length of the feed-
ing program and the selling weight. When feed-
lot capacity is limiting, the steer is fed for only
thirteen weeks to a weight of 462.2 kilograms,
compared with nineteen weeks and 502.6 ki-
lograms when there is excess capacity. The net
returns per head are reduced from $23.40 to
$18.83, but the returns per week are higher,
$1.45 in the Faustmann model and only $1.23
in the dynamic model. Each steer is to be sold
fairly quickly and replaced by a younger, faster
growing steer. However, each steer is sold so
quickly that it will surely be of a lower quality
grade and may be unacceptable to packer buy-
ers. The Faustmann example does illustrate
that animals should be rotated as quickly as
possible out of a feedlot with limiting capacity.

The surprising result in table 2 is that the
net returns, the length of the feeding program,
the daily gains, and the individual diets from
the optimal-return model are, for all practical
purposes, the same as those from the dynamic
model. If the cattle were sold at thirteen weeks,
the optimal-return model would also closely
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Table 2. Extended

Faustmann Model Optimal-Return Model

18.83/head 23.03/head

13 weeks 19 weeks

454.5-462.2-kg Steer 350-359.2-kg Steer 498.4-504.9-kg Steer

1.296 1.296 1.296

1.109 1.321 .920
Reduced Reduced Reduced

Feeds Cost Feeds Cost Feeds Cost

-. 029 -. 020 -. 029
6.100 5.572 5.604
1.812 1.337 2.126

.004 .257 $-.047

.075 .090 .065

Excess Shadow Excess Shadow Excess Shadow
Nutrients Price Nutrients Price Nutrients Price

$-.206/Mcal $-.250/Mcal $-.202/Mcal
4.838 g $-.000/g 32.912 g

$-.000/g $-.000/g $-.000/g
4.984 g 4.761 g 3.805 g

$.181/kg $.246/kg $.170/kg

approximate the Faustmann model. This re-
sult is surprising because a very crude approx-
imation to the costate variable was used as the
implicit price of gain in the optimal-return
model. The first-order condition for choosing
gain, condition (4a), compares the implicit price
of gain with marginal feed costs, and, in gen-
eral, substituting the wrong implicit price
should do great damage to optimality.

The reason that the optimal-return model
approximates the dynamic optimum so well is
the unique shape of the least-cost feed func-
tion. In figure 1, a series of least-cost diets at
increasing rates of gain have been calculated
for a 350-kilogram steer. The variable costs
per day, which are constant with respect to
gain, have been added to feed costs to give the
feed plus variable costs curve. These costs in-
crease slowly and then abruptly to infinity at
a high rate of gain. Beyond a maximum of
1.357 kilograms per day, the nutrient and dry
matter constraints of the diet model cannot be
satisfied and the feed costs must become in-
finite.

The dynamic returns line in figure 1 repre-
sents the costate variable times the rate of gain,
making the difference between it and the feed
plus variable costs curve equal to the hamil-
tonian of equation (3). The dynamically op-
timal diet is that least-cost diet producing 1.280
kilograms per day of gain. For the optimal-
return model, the static returns line represents
the selling price discounted one week multi-
plied by the rate of gain. The optimal-return
diet is that least-cost diet producing 1.321 ki-
lograms per day of gain. Because daily gain is
chosen within a very narrow range, the dy-
namically optimal choice is insensitive to crude
approximations for the implicit price and op-
timal-return diets are nearly optimal, even in
the early weeks of a feeding program.

Conclusions

A model of dynamically optimal cattle pur-
chasing, feeding, and selling decisions was con-
structed and a simple static model developed
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to closely approximate dynamically optimal
decisions. The models were solved using the
nonlinear programming software, MINOS.

Dynamically optimal purchasing decisions
are an all-or-none proposition. If the net pres-
ent value of the feeding program is positive,
as many cattle should be purchased as possible,
subject to constraints on the size of the pen,
the availability of cattle, and the availability
of capital. Among different types of cattle, those
with the greatest net present value should be
purchased. The dynamically optimal choice of
feeds in the diets and the daily gains during
the feeding program will be determined by the
implicit price of gain, i.e., the current-value
costate variable. The costate variable will be
less than the expected selling price of the an-
imals for two reasons. The first is discounting;
the second is the fact that gain produced today
will make the cattle heavier in the future, which
will increase future feed costs. Cattle fed dy-
namically optimal diets will gain more slowly
in the early weeks of the feeding program than
cattle fed optimal-return diets calculated using
the expected selling price. The optimal selling
weight is chosen when the profitability of feed-
ing one more week no longer exceeds the op-
portunity returns from selling the animals plus
the opportunity returns, if any, to scarce feed-
lot space.

The dynamic model is a free-time optimal
control problem which makes its solution more
difficult than if the length of the feeding pro-
gram were fixed. Essentially, a series of fixed-
time optimal control problems must be solved
for different lengths of the feeding program.
The optimal solution is the one with the largest
net present value. Another difficulty in solving
the model is the high degree of nonlinearity of
the nutrient and dry matter constraints. Dy-
namically optimal solutions were obtained,
however, for two scenarios. The first scenario
was for a farmer-feeder who does not feed con-
tinuously or for a commercial feeder who has
excess capacity in his feedlot. The second sce-
nario was for a commercial feeder whose feed-
lot is filled to capacity, so that an opportunity
return can be earned if feedlot space is made
available by selling animals. The length of the
feeding program in the second scenario was
almost one-third shorter than under the first
scenario because the feedlot operator substi-
tutes younger, faster growing animals to max-
imize the return per week rather than the re-
turn per head. However, severe marketing

penalties for lighter, less finished cattle may
preclude such a short feeding program.

Finally, the interesting result was obtained
that the dynamically optimal feeding program
can be closely approximated by a series of stat-
ic optimal-return diets. The reason for the
goodness of the approximation is not the same
as that for other approximately optimal deci-
sions rules which require accurate assumptions
about the costate. Rather, the optimal daily
gain is insensitive to assumptions about the
costate and will usually lie within a narrow
range close to the maximum feasible rate of
gain. The implication of this finding is that
approximately optimal cattle purchasing, feed-
ing, and selling decisions can be made by cattle
feeders and nutritionists with access to the new
generation of user-friendly nonlinear program-
ming software, such as GINO for microcom-
puters.

[Received February 1987; final revision
received September 1987.]
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