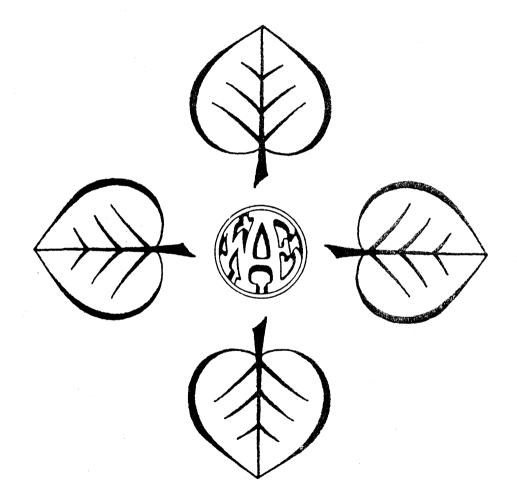


The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search


AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Papers of the 1992 Annual Meeting

Western Agricultural Economics Association

Colorado Springs, Colorado July 12-15, 1992 A Stochastic DominanceElizabeth R. Edens, University of WyomingEvaluation of AlternativeLarry J. Held, University of WyomingWestern Ranching SystemsDillon M. Feuz, South Dakota State University

<u>ABSTRACT</u>

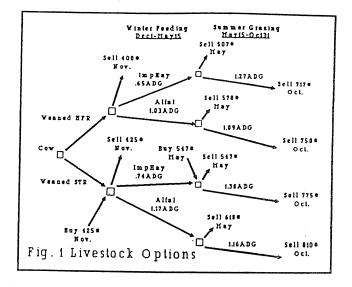
Riskiness of range livestock systems is analyzed with stochastic dominance. Although pure stocker systems appear too risky for even mildly risk averse producers, diversifying a few stockers with mixed short/long yearling sales is efficient over a wide range of risk aversion coefficients, while a cow-calf system is inefficient overall.

Evaluating the riskiness of alternative livestock systems with meanvariance analysis has been quite common. However, using criteria such as stochastic dominance which captures higher moments of a system's return distribution could have implications for evaluating the riskiness of purchase stocker or other mixed systems rendering extreme income variability, but yet high levels of returns. The purpose of this paper is to characterize a selected set of ranching systems in terms of their preferability for different classes of decision makers ranging from those who are risk neutral and mildly risk averse to those who are more highly risk averse. As described more fully below, this will be accomplished by using a mathematical programming model to develop alternative ranch plans, along with their corresponding income distributions, over a historic 28-year period (1963-90). These plans and income distributions are then tested within a stochastic dominance framework using the GSD program developed by Goh, et al.

<u>Approach</u>

A Target-MOTAD risk programming model (Tauer) was initially constructed for a large scale model mountain valley ranch, based on production data from a survey of mountain valley ranches (Feuz and Kearl). A detailed description of the ranch and Target-MOTAD model can be found in Edens. The general form of the Target-MOTAD model featured in Table 1 is:

Minimize vy (sum of negative deviations from target income) such that:


(1) $Ax \le b$ (2) $Rx + Iy \ge t$ (3) rx = e(4) $x, y \ge 0$

where:

v_	=	1 X s vector in which each element is 1 and where s is the number of years;
у	=	s X 1 vector of annual income deviations below the fixed level of target income;
A	=	m X n matrix of technical coefficients, where m is the number of constraints and n
		is the number of production activities;
x	=	n X 1 vector of production and market activities;
b	=	m X 1 vector of resource constraints;
R	=	s X n matrix of annual costs and returns for designated activities;
I	=	s X s identity matrix;
t	=	s X 1 vector of target incomes;
r	=	1 X n vector of mean net income for the ranch; and
е	=	mean income for the total ranch plan.

With reference to Table 1, Matrix A (rows 1 - 32; col. 1 - 42) contains production coefficients for the case ranch. Row 61 (e = 28-year mean income) incorporates production costs associated with designated activities, as well as 28-year mean livestock values. Matrix R (rows 33 - 60; col. 1 - 42) shows annual production costs, 1963-90 (which are held constant across years), as well as annual livestock values (which vary each year in response to price risk). The income target (t) is considered to be a critical level of income necessary for meeting fixed obligations. With a designated income target (\$40,000), a series of efficient solutions can be derived by parameterizing income (e) from the profit-maximizing amount (upper-limit) to successive lower values approaching a minimum risk solution (lower-limit).

Figure 1 summarizes the alternative livestock activities in the Target-MOTAD model (col. 14 - 40), which follow through the various stages of cowcalf, cow-short yearling, and cow-long yearling. Weaned calves can be sold in the fall, or wintered on improved hay (for a lower ADG) and/or alfalfa (for a higher ADG). Short yearlings can then be sold in May or summered for sale in October as long yearlings. Stocker steer calves (425#) can be purchased in November for wintering on improved hay, and similarly, spring stockers (547#) can be purchased in May for summer grass.

For purposes of estimating net income, costs of production as derived by Feuz and Kearl were updated using the prices paid index from the USDA. To derive livestock returns, the respective weights and prices (obtained from Kearl) were multiplied and adjusted to real 1990 dollars with the GNP deflator. Net income represents a return to deeded land; and machinery and equipment; and the \$40,000 income target reflects a near breakeven (or zero return) to deeded land.

The Target-MOTAD model was used to generate three separate sets of solutions including: (1) a series of solutions along a Target-MOTAD frontier; (2) several non-optimal predetermined solutions without any purchased stockers; and (3) several MaxiMin solutions wherein the model could select the plan having the highest "worst-possible" return, for a given amount of 28-year average income. As described by Hazell and Norton (p. 94 - 96), this was accomplished by (a) deleting the negative deviation activities (col. 43 - 70) and substituting a "worst possible return" activity (W) in column 43; (b) inserting a vector of -1s within the income rows (33 - 60) and a value of 1 in a maximize (vs. minimize) objective function for activity (W); and (c) revising the RHS values for the income rows (33 - 60) to be \geq zero (vs. t).

<u>Results</u>

Table 2 features income and risk measures for "eight selected ranching systems," comprised of: (1) three selected Target-MOTAD solutions (col. 1 -3); (2) three forced solutions without stockers including cow-calf, cow-shortyearling and cow-long-yearling (col. 4 - 6); and (3) two selected MaxiMin solutions (col. 7 - 8). Considering the Target-MOTAD solutions, (col. 1 - 3) the profit-max plan is a pure stocker operation with no breeding herd. This system is by far the most risky in terms of standard deviation (\$143,200) and total negative deviations (-\$713,613). Reducing income from the profit-maximizing level (\$112,232) to that associated with the minimum-risk solution (\$73,628), results in rather substantial reductions in risk, i.e., negative deviations decrease by a total of \$564,557 (from \$713,613 to \$149,056) in conjunction with reduced income of \$38,604, as a result of purchasing fewer stockers and incorporating a larger breeding herd.

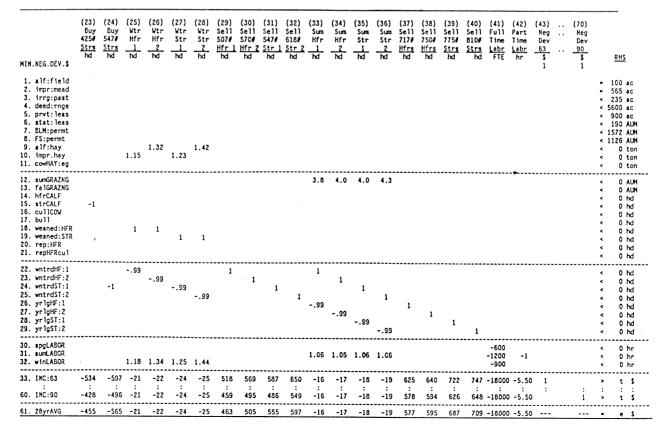
Eliminating the options of purchasing stocker steers in favor of pure cow-calf or cow-yearling systems (col. 4 - 6) greatly reduced 28-year average income (by a margin of over \$50,000 for cow-yearling; and over \$66,000 for the cow-calf). However, as a benefit, income variability was reduced by a large margin and downside target deviations were considerably lower for the cowyearling systems (-\$223,011 and -\$233,927 vs. -\$713,613). However, relative to cow-yearling systems, the cow-calf organization performed very poorly with respect to all measures, including: (1) a \$15,000 plus shortfall in returns (\$46,026 vs. \$61,392 and \$60,652); (2) higher income variability; and (3) a much greater degree of target risk (\$473,750 vs. \$223,011 for short-yearling and \$233,927 for long-yearling). Moreover, cow-calf returns exceeded cowyearling returns in only five of 28 years (1963, 1964, 1974, 1980, and 1981). The short-yearling system yielded slightly higher income (\$61,392) compared to long-yearling (\$60,652), and comparative risk measures were also very similar. However, the short-yearling system experienced two years of modest losses (1975, 1986), while the long-yearling system incurred none.

Two MiniMax solutions are shown in Table 2: a high income version (col. 7) and a low income (col. 8) version. The high income version was developed by setting 28-year average income equal to that realized with the min-risk Target-MOTAD solution (\$73,628). Compared to the min-risk solution (col. 3), the \$73,628 MiniMax showed higher income variability and target deviations with a greater mix of long yearling sales. However, its worst income year (1986) is slightly better (\$875 vs. -\$708). To derive the low income MaxiMin solution (col. 8), 28-year average income was left unconstrained. As a result the worst income level is more favorable (\$4412), however, 28-year average income is also considerably lower (\$55,830). In both MiniMax cases, stocker steers were not eliminated, but instead were held to modest levels.

Annual incomes from solutions in Table 2 were next incorporated into a stochastic dominance program for analysis, and the cumulative probability distributions (CPDs) of annual incomes were analyzed for several selected ranching systems. Figure 2 features CPDs for the "least risky" min-risk (#3) vs. the "most risky" stocker system. Since the distributions "cross" at approximately \$40,000, it follows that no preference exists in terms of first degree dominance. Essentially the probability of falling below the "higher" levels of income is much lower for the stocker vs. the min-risk solution, e.g., with the min-risk solution, there is nearly a 90 percent chance of falling below \$119,000 compared to only a 60 percent chance for the stocker option. However, the lower tail of the min-risk CPD crosses the horizontal axis at an income level of -\$708, reflecting a zero probability of expecting annual income below -\$708 is higher with the stocker option (15 percent).

The CPD for the cow-calf organization (Figure 3) shows the probability of realizing below zero income is quite high (25 percent) compared to min-risk (4 percent). Moreover, the cow-calf system is clearly inefficient by first degree stochastic dominance, since its CPD lies above and to the left of minrisk (#3). Finally, the min-risk CPD (#3) is plotted with the short-yearling system (Figure 4) and long-yearling system (Figure 5). In both cases, the min-risk CPD generally lies below and to the right of the other two CPDs (#5 and #6), but with a few points of crossing. Hence, neither the short-yearling or long-yearling systems are eliminated by first degree stochastic dominance.

Table 3 summarizes the efficiency status of the eight systems described above with selected stochastic dominance criteria. First-degree stochastic dominance (FSD) is applicable for all types of decision-makers (risk-averse, neutral and -seeking) and assume risk aversion coefficients (RACs) ranging from - ∞ to + ∞ where the RAC reflects the percentage change in marginal utility per unit of income. The cow-calf organization is eliminated from the FSD efficient set, in being dominated by Target-MOTAD solutions #2 (Med. Inc.) and #3 (Min-Risk) as well as MaxiMin High (#7). Second-degree stochastic dominance (SSD), which is applicable for risk-averse decisionmakers (with RACs ranging from 0 to + ∞), eliminates the short-yearling system (#5), as well as cow-calf (#4) from the efficient set. As expected, all of the Target-MOTAD solutions are SSD efficient.


With generalized stochastic dominance (GSD), selected subranges of RACs are specified to identify solutions acceptable for those who are only mildly risk averse (i.e., having smaller RACs closer to zero), vs. those who are more highly risk averse (i.e., having RACs increasingly greater than zero). The medium income Target-MOTAD solution #2 (which purchased 215 fall and 529 spring stockers) is acceptable within the mildly risk averse RAC ranges (.000005 to .00015). In contrast, the min-risk Target-MOTAD solution (#3) which included a small number of stockers is shown to be acceptable over a much wider range of RACs (.000005 to .0006), being unacceptable within only the most risk averse RAC range (.0003 and above). The long-yearling system (#6) is efficient within a very narrow risk averse range of RACs. As expected, the MaxiMin solutions are associated with the more risk averse ranges (.0001 and up). The extreme level of risk aversion associated with the low income MaxiMin solution (#8) vs. the min-risk Target-MOTAD (#3), is quite evident in observing that nearly \$18,000 of average annual income would be willingly sacrificed (\$55,830 vs. \$73,628) in exchange for incurring a \$4412 (vs. -\$708) worst possible outcome.

<u>Conclusion</u>

Pure stocker systems are shown to be too risky for even mildly risk averse producers since the magnitude of added risk is extremely high relative to the added income. However, the choice does not need to be limited, to either all or no stockers. Ranchers may wish to diversify a modest number of stockers with their breeding herd to capture some of their income potential without adding unnecessarily high amounts of risk. Stochastic dominance indicates these mixed strategies can be attractive for a wide range of producers who are only mildly to more highly risk averse, depending upon the number of stockers. In addition, as opposed to confining sales to either all short-yearlings or all long-yearlings, producers may wish to consider a combination of the two, in conjunction with purchasing a modest number of stockers. Finally, unless ranchers are able to wean heavier calves than generally observed in the study area, the cow-calf organization appears to be the poorest with respect to both income and risk.

abie	上•	<u>د</u>	ar	gei	J - IV		AD	Ma	UL															
IN.KEG.DEV.\$	(1) Grow Alf <u>Hay</u> ac	(2) Grow Alf <u>f Ha</u> ac	Imp	(4) Grow Imp <u>f Hay</u> ac	Irrg	(6) Graz Deed <u>Rnge</u> ac	(7) Graz Prvt <u>Leas</u> ac	(8) Graz Ste Leas AUM	(9) Graz <u>BLM</u> AUN	(10) Graz <u>FS</u> AUM	Leas	Feed	(13) Feed Imp <u>Hay</u> ton	(14) Cow- <u>Calf</u> hd		(16) Vean <u>Str</u> hd	(17) <u>Bull</u> hd	Yrlg	(19) Sell 400# <u>Hfrs</u> hd	Sell	(21) Sell Cull <u>Cows</u> hd	Sell	RH	2
1. alf:field 2. impr:mead 3. irrg:past 4. deed:rnge 5. stat:leas 5. stat:leas 7. ELK:permt 3. FS:permt 3. alf:hay 1. cowHX:eq	-3	-4	-1.5	-2.5	1	1	1	1	1	1		1	1	1.8			2.25						= 5 < 2 < 56 < 9 < 1 < 15	00 ac 65 ac 35 ac 00 ac 00 ac 90 AUH 72 AUH 26 AUH 0 ton 0 ton 0 ton
 sumGRAZNG falGRAZNG hfrCALF strCALF cullCOW bull weaned:HFR weaned:STR rep:HFR repHFRcul 	-1	-1	-1.5	-1.5	-4 -1.5	25	25	-1	-1	-1	-1			5.5 1.5 45 45 13 .05	1.9 .5 1 98	2.0 .5 1 98	7.3 2.0 -1	3.8 1.2 .05 90 10	1	1	1	1	<pre><</pre>	0 AUM 0 AUM 0 Ad 0 Ad 0 Ad 0 Ad 0 Ad 0 Ad 0 Ad 0 Ad
2. wntrdHF:1 8. wntrdHF:2 4. wntrdST:1 5. wntrdST:2 5. yrlgHF:1 7. yrlgHF:2 8. yrlgST:1 9. yrlgST:2																		1					< < 	0 kd 0 kd 0 kd 0 kd 0 kd 0 kd 0 kd 0 kd
0. spgLABOR 1. sumLABOR 2. winLABOR		.53 4.79	.60 3.42	.69 3.57	.12 .75							1.1	2 1.1	2.12 1.66 2 1.31				1.06					< < <	0 hr 0 hr 0 hr
3. INC:63 : : : : : : :	:	-168 : -168	:	-112 : -112	:	:	-3.00 : -3.00	:	:	:	:	:	:	:	-6 : -6	-7 : -7	-35 : -35	:	:	524 : 418	:	629 : 582	> ; ,	t \$ /:: t \$
1. 28yrAVG	-153	-168	-80	-112	-19	69	-3.0	0 -2.5	0 -1.9	7 -1.9	7 -8.2	5 -4.9	5 -4.9	5 -57	-6	-7	-35	-32	363	441	546	581	•	e \$

Table 1. Target-MOTAD Matrix

-134-

	Tar	get-MOTAD S	olutions		hing System Forced Solu		MaxiMin Sol.		
	(1)	(2)	(3)	(4)	(5)	(c)			
Head of	Prof			Cow-	Short	(6)	(7)	(8)	
Livestock	_Max.						High Inc.		
Cows	·	325	562	646	584	485	518	379	
Sell 400 # Hf	r			162				575	
Sell 425# St				285					
Buy 425# St		215	68	·			149	58	
Suy 547# St	r 259	529	19					70	
ell 507# Hfr ell 570# Hfr									
ell 547# St		81	139		144		128		
ell 547# St					110		·		
		204	149		145		98	45	
ell 717# Hfi ell 750# Hfi									
ell 750# Hfi ell 775# Sti	r 1240					119			
ell 810# Sti		673	180			44	272	93	
						166		246	
ear			,	Annual Inco	me (\$) ·				
963	55,689	84,967	89,655	79,215	80,610	72,903	83,767	63,389	
964	-33,824	33,279	23,673	44,987	16,705	19,586	18,797	17,426	
165	259,780	116,922	76,502	6,538	52,311	60,492	85,580	62,742	
966	192,468	99,975	90,896	37,435	75,275	71,183	94,503	66,838	
967	131,453	89,142	79,003	46,756	65,192	63,092	79,369	58,622	
968	114,036	81,191	77,274	47,577	65,700	60,758	76,425	56,155	
969 970	210,438	113,549	113,755	51,919	99,006	83,984	115,760	78,353	
971	108,513	95,637	95,942	74,443	83,808	80,315	94,020	71,263	
972	176,962	124,848	103,075	68,224	82,863	91,652	105,714	84,199	
973	260,516 324,283	175,579 206,838	147,928	98,528	121,372	130,645	151,972	120,075	
974	-334,479	6,574	214,156 31,785	144,010 129,239	191,033 41,655	184,566	216,673	162,582	
975	273,328	100,825	28,806	-34,058	-1,483	14,927 35,345	875	4,412	
976	48,693	-8,127	33,276	-12,030	39,228	4,912	44,653	42,777	
977	123,013	57,231	28,560	-3,562	13,249	27,438	30,319 33,521	6,209	
78	423,591	182,627	144,098	34,174	111,403	128,750	160,363	30,643	
79	256,753	153,621	206,050	136,176	196,879	161,910	205,128	122,505 138,637	
80	-31,356	107,697	110,703	160,248	99,346	117,162	101,280	94,954	
181	-79,855	35,767	48,839	81,148	46,851	45,137	39,074	34,799	
182	108,889	55,576	48,351	14,250	38,034	37,955	49,854	37,064	
83 84	1,752	-8,111	26,315	5,759	30,950	8,423	22,558	6,669	
185	102,192	48,518	25,769	-4,747	12,859	20,773	29,157	23,999	
186	22,986 21,169	-2,205	13,468	-9,245	13,434	2,953	12,530	4,412	
87	156,206	12,498 70,946	-708 40,159	-10,302 -3,867	-8,164	1,246	875	4,412	
88	120,365	85,065	40,159 62,529	-3,807 33,405	22,644 47,140	32,515	46,669	37,228	
89	56,765	50,089	48,269	39,290	39,533	49,090	62,795	49,467	
90	72,176	68,488	53,454	33,210	41,533	45,982 <u>44,568</u>	48,157	40,919	
-yr Avg nc. (\$)						,300	<u> 51,579</u>	42,477	
	112,232	79,965	73,628	46,026	61,392	60,652	73,628	55,830	
d. ev. (\$)	143,200	, 55,820	53,406	50,864	49,520	47 000	FF 151		
tal Amt.	,	00,020	00,400	50,004	73,320	47,229	55,451	41,329	
c. (63-90)									
\$40,000	-713,613	-210,325	-149,056	-473,750	-223,011	-233,927	-172,294	-232,727	

Table 2. Income and Risk Measures for Selected Ranching Systems

.

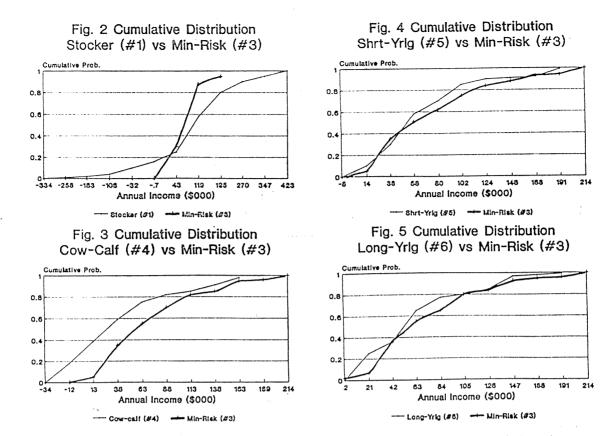


Table 3. Stochastic Dominance of Ranching Systems Associated with Various Degrees of Risk Aversion

Alternative Ranching Systems												
4 T	Target	-MOTAD Front	ier	For	rced Solutio	<u>MaxiMin Sol.</u>						
	$(\overline{1})$	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
Stoc Dom. Meth.	Prof.	Med.	Min.	Cow-	Short-	Long	High	Low				
& RAC Ranges	Max.	<u>Inc.</u>	<u>Risk</u>	<u>Calf</u>	<u>Yrlq.</u>	<u>Yrlg.</u>	Inc.	<u>Inc.</u>				
FSD												
-o to o	F	F	F		F	F	F	F				
<u>SSD</u>												
0 to ∞	S	S	S			S	S	S				
GSD												
.000005 to .00008		G	6									
.00001 to .00015		G	G									
.0001 to .00045			G			6	6	6				
.00015 to .0005			G				G	G				
.0002 to .00055			G				G	G				
.00025 to .0006			G					6				
.0003 to ∞								6				
<u>Summary Stat.</u>						~~ ~~~	70 000	FF 000				
28-yr Avg (\$)	112,232	79,965	73,628	46,026	61,392	60,652	73,628	55,830				
Low Inc. (\$) -:	334,479	-8,127	-708	-34,058	-8,164	1,246	875	4,412				
High Inc. (\$)	423,596	206,838	214,156	160,248	196,879	184,566	216,673	162,582				

E/ Systems within the efficient set, given first degree stochastic dominance (FSD)

 \underline{S} / Systems within the efficient set, given second-degree stochastic dominance (SSD)

G/ Systems within the efficient set, given generalized stochastic dominance (GSD) and assoc. RAC Ranges.

References

Edens, E.R. "Risk-Return Relationships for Mountain Valley Ranching Systems." M.S. Thesis, University of Wyoming. 1992.

Feuz, D.M. and W.G. Kearl. "An Economic Analysis of Enterprise Combinations on Mountain Valley Ranches."

RJ-207. Agr. Exp. Sta., University of Wyoming. 1987. Goh, S., C. Shih, M.J. Cochran and R. Raskin. "A Generalized Stochastic Dominance Program for the FBM PC." South. J. Agr. Econ., 21(1989):175-182.

Hazell, P.B.R. and R.D. Norton. Mathematical Programming for Economic Analysis in Agriculture. New York:MacMillan Publishing Co., 1986.

- Kearl, W.G. "Average Prices of Cattle and Calves at Billings, Montana." AE80-13, AE85-2, AE90-1, Dept. of Ag. Econ., University of Wyoming. 1981, 1985, 1990.
- Tauer, C.W. "Target-MOTAD." Amer. J. Agr. Econ., 65(1983):606-10.