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of Oklahoma) 
Introduction 
Information technology has been developing rapidly for more than a decade. The usefulness or value of 
information is sometimes questioned to help guide the development of information systems. This paper 
reports on a stream of research emanating from Lamb’s (1981, p. 1001) call for expanded research on "how 
climate forecast schemes could/should be used." At issue has been the identification of factors affecting the 
value of climate information. Prior work, including that of others, has focused on the economic value of 
climate information in agricultural production (Mjelde et al., 1988; Katz, Murphy and Winkler, 1982; Byerlee 
and Anderson, 1982). Similar efforts continue to investigate which decisions are benefitted by climate 
forecasts and the characteristics of the forecasts that give rise to their value. 

The methods used to value climate information are based on Hilton (1984). They describe the difference in 
the expected value of outcomes with and without information. That is, the value of information set Py is: 

V(py) = Max J m(x,,6)p(@|k)d@ - Max § a(x,6)p(@)dé (1) 
XE Xx 

where the outcome a is dependent upon a decision set (x, Or x), and a stochastic event (@). The decision 
maker’s perception of the probability distribution of @ is altered by the information set Pp, Or, more 
specifically, by the prediction k. The outcome in this model, a, represents profit or return above variable 
costs (Mjelde et al.). Thus, the information only has value to the extent it alters the optimal decision Set such 
that the solution to the first term is not equal to the solution to the second term, i.e. X, x . The value 
of the information system is the expected value of equation (1), where the expectation is taken over possible 
predictions coming from the information system. This model is easily adaptable to agricultural production, 
where climate is the stochastic event and decisions relate to the use of variable inputs. 

Most research along this vein has endowed the decision maker with perfect knowledge of historic climate 
probabilities, which are used to establish the probability distribution of 6 in the "no information" scenario. 
This assumption of perfect historical prior probabilities is challenged here. The theory behind the use of 
alternative prior probabilities is reviewed in the next section. This is followed by a comparison of 
information value when alternative prior probabilities are used. Then a report on an elicitation of climate 
expectations from a sample of agricultural producers is given, comparing their prior beliefs to historic 
probabilities. The last section describes an application of calibration theory, a method of assessing differences 
between the true and subjective probabilities. 

Venture Theory: Decision Weights Instead_of Probability 
The process of decision making under uncertainty has a rich history in the literature of psychology, 
economics, and management science. Most models have used mathematical probabilities to prescribe 
behavior for risky choice. However, the use of probabilities breaks down in describing observed behavior 
of individuals making risky choices (Allais, 1953; Ellsberg, 1961). Where risk characterizes a situation if 
the decision maker knows the relative chance of each outcome, ignorance describes a situation if the decision 
maker has "no basis whatsoever on which to judge the relative likelihood of potential outcomes of [a] decision 
(Yates and Zukowski, 1976, p. 19)." Alternatively, ambiguous decisions lie between these two extremes: 
there is some basis for assessing relative probabilities, but not with precise confidence. 

Einhorn and Hogarth (1985, 1987) describe a model of decision making under ambiguity which employs an 
“anchoring-and-adjustment strategy in which an initial probability is used as the anchor (or starting point) and 
adjustments are made for ambiguity (1987, p. 46).". The source of the initial probability may be any 
information, historical or otherwise, available to the decision maker. The subjective probability used in 
decision making, S(p), is given by: 
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S(p =pa tk (2) 

k =k, + kg ‘ 3) 

where pa is the anchor probability and k is the adjustment. The adjustment is made from a mental evaluation 

of higher and lower values of p, where Ky is the effect of simulating higher values of p and k, is the effect 

of simulating lower values of p. 
Hogarth and Einhorn (1990) further expanded this theory to include other factors that affect the 

adjustment. Because these factors affect the assessment of subjective probabilities, they refer to the adjusted 

probabilities as decision weights, which are arrived at by "venturing" or mentally simulating outcomes. 

Adjustment factors include outcome uncertainty, the degree of ambiguity, the context of the decision, and the 

sign and size of payoffs. 

Outcome uncertainty refers to the number of outcomes a decision maker anticipates experiencing. Consider 

a midwestern U.S. agricultural producer making a decision on the timing of fertilizer application. If he 

applies fertilizer in the fall there is some chance winter precipitation will be sufficiently heavy to leach 

nitrogen from the soil, rendering his expenditure ineffective. In this situation he experiences one outcome 

from the decision. Say the fertilizer application cost $10,000 and that there is a 50 percent chance that 

precipitation will be above some specified level that will cause the expenditure to be revisited in the spring. 

It is of little value to know that the expected outcome is -$5,000. Contrast this to a gambler at a slot machine 

with 1,000 coins, where the expected value of the payoff is more meaningful because of the number of plays; 

the net outcome is likely to be closer to the expected the value. Thus, there is less outcome uncertainty. 

The maintained hypothesis is that for individuals exhibiting cautious behavior, the greater the outcome 

uncertainty, the more mental simulation takes place that results in the overweighting of losses and the 
underweighting of gains. The same is true for the degree of ambiguity; the less confident a decision maker 

is in his assessment of anchoring probabilities, the more mental simulation he performs. The degree of 
under- or overweighting is affected by the size of the payoff. The degree of caution exercised in the process 
of mental simulation is a function of the decision context. It 1s interesting that unlike probabilities, the 

decision weights need not sum to one, which is consistent with the Allais and Ellsberg decision paradoxes. 

A Comparison of Climate Information Value Under Alternative Priors 

Recall from equation (2) that the value of information fundamentally depends on the prior probabilities (@) 

and the adjusted probabilities given the forecast (@|k). To illustrate the differences in climate information 

value, consider an average farm in east central Illinois, growing 320 acres of corn. Assume the relevant 

climate parameters are 1) the amount of winter precipitation, 2) July rainfall, and 3) the general summer 
growing conditions (a composite of precipitation, solar radiation, temperature, and pan evaporation). Using 

historic climate probabilities, this decision maker would plan to apply 150 Ibs. of nitrogen fertilizer per acre 

in the spring. In fact, this is the observed average application rate in this area, as well as a reasonable 

approximation of average corn acreage per farm (Illinois Department of Agriculture). 

However, other practices are observed. These include applications of 150 pounds of nitrogen in the fall and 

only 100 pounds of nitrogen in the spring. Extremely minor modifications in the historic probabilities of 

the three climate parameters casts these observations as optimal decisions. Furthermore, it has been suggested 
that recent events affect decision weights more than distant events, suggesting an analysis of priors built on 

recent history. The value of climate information in these cases will depend upon how it affects the prior 
decision. 

Table 1 contains the results of a model simulating corn production over actual climate from 1971 to 1985. 

A decision maker endowed with the full range of pertinent historical climate information (15-year prior) 

would expect to receive a maximum average annual benefit of $1,000 for adopting the information contained 

in a perfect forecast of the relevant events described above. Alternatively, a decision maker whose decision 

} 

—-16- 

   



weights were based on the most recent three years’ experience would expect to recelve a maximum average 
annual benefit from the forecast of $3,084, or $9.64 per acre of corn. Again, this assumes that the forecast 
completely replaces any prior notion of the decision weights. For a farmer whose ambiguity leads to 150 
Ibs. per acre of fall applied nitrogen, the maximum average annual value of the forecast rises to $5,237, or 
$16.37 per acre. 

The value of changing the ambiguous decision weights to coincide with historic climate probabilities is clear. 
For the farm modeled in this exercise, if rational behavior leads to fall nitrogen application there is a $4,237 
annual expected benefit simply from understanding the probabilities of winter precipitation. Thus, there 
appears to be a substantial benefit in changing farmers’ perceptions of prior decision weights, bringing them 
more in tune with historical probability. To ascertain the frequency and magnitude of these discrepencies, 
research was conducted to elicit farmers’ assessment of the probability of climate events that affect growing 
crops. The next section reports on the design and results of that Survey. 

Describing Farmer Expectations of Climate Variables 
A survey was conducted to better understand the formation of farmers’ climate expectations and observe their 
consistency with venture theory. Participating farmers were selected for their 1) cooperation with FBFM 
record keeping association, 2) their close proximity to a single weather reporting station (to mitigate the 
potential effects of widely differing experiences), 3) relatively large cash grain operation, and 4) 
understanding of probability concepts. Personal interviewers elicited 5 to 7 fractile breaks (i.e. the level of 
rainfall at which the 1, 10, 25, 50, 75, 90, and 99 cumulative percentiles occurred) through a series of 
questions posed in both the CDF framework and inverse CDF framework. After checking for internal 
consistencies, fifty-one useable surveys were collected. (Copies of the survey document are available from 
the authors upon request.) Specific variables of interest were April rainfall and July rainfall.“ A large 
amount of April rainfall is considered a negative outcome as it delays planting. A large amount of July 
rainfall is considered a positive outcome as it Supports crop growth. Thus, venture theory would suggest that 
probabilities of large April rainfall would be overweighted by respondents, while probabilities of large July 
rainfall would be underweighted. . | 

Decision weights or subjective beliefs (PDF®) are compared to the “objective” or "true" probability measure 
for each variable (PDF®°).° A variant of the Burr-3 distribution was used to model both PDFY and each 
farmer’s PDF. The Burr has zero support (negative levels are disallowed), may take on a wide range of 
skewness and kurtosis, and can be used to fit almost any set of unimodal data (Tadikamalla, 1980). The Burr 
PDF and CDF for rainfall, Y, with parameters A,and 7 are: 

fap(Y}A7) = Ary HCI yy for A7, Y >0, (4) Fap(YjAv7) = (+74 = (YIU+Y7) (5) 
This distribution has been used extensively in various forms to model precipitation amounts (Mielke: Mielke 
and Johnson), as a function for business losses (Lomax, Dubey) and by the insurance industry as a candidate 
for loss distributions. 

Results 

Historic weather data from 1903 to 1990 were used to estimate the parameters of the "true" distributions of 
April and July rainfall. Nonlinear least squares was used to estimate the parameters of each farmers’ 
subjective distributions for both April and July rainfall.4 The findings are both summarized across farmers 
and in terms of each farmers fit to the historic probability function. Figure 1 gives a sample of the farmers’ 
subjective beliefs about April rainfall along with PDF°. 
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Table 2 examines the cross section of farmer 

responses. For each fractile break elicited, the 

collective responses were summarized and compared 

to the actual. For example under April rainfall, at 

the 25% level (the level at which there is a 25% 

chance of observing less rainfall and 75% chance of 

observing more) the precipitation level 

corresponding to the true distribution is 2.34 inches. 

In other words, there is a 75% chance of observing 

at least 2.34 inches of rain in the month of April. 

Of the farmers surveyed, 63% replied with a higher 

number (i.e. expected more rainfall at the 25% 

level), the average of all responses was 2.785 

inches and the standard deviation of the response to 

that question was 1.003. Notice that the average 

expected rainfall is greater than the true at all 

percentile levels greater than the 10 percentile level. 
Further, the percentage of farmers overstating expected precipitation is greatest at the 50th percentile of the 

true CDF. Clearly, this "negative outcome" is overweighted in subjective probability. | 

Representative PDFs 
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Figure 1. April Rainfall: PDF° and Sample PDF® 

However, farmers, on average, understate the incidence of rainfall in July. For example, at the 90th 

percentile, the true level of July rainfall is 6.74 inches, but the average of the farmers’ responses was 6.49 

inches with a standard deviation of 2.23. Two-third of the farmers understated the 50th percentile level of 
rainfall, thus underweighting the probability of a positive outcome. 

As was discussed earlier, for individuals, the value of climate information depends upon the entire prior 

distribution and the process of revising expectations through the adoption of information. Further, observed 

decisions indicate that much od the value of climate information (as it pertains to midwestern crop production) 
is contained in the historic distribution. Hence we need a method to conveniently represent the differences 
between expectations and objective measures at all levels of the CDF. 

Calibration Tests 

Calibration refers to the correspondence between a predicted and an actual event. In terms of distributions, 

calibration describes how close the predicted and resulting functions are. Heuristically, if there were a reason 

for the individual expectations to yield estimated parameters that required an adjustment to correspond to the 

"true" parameters, then this adjustment is termed the calibration function. Specifically, if the true parameters 
of a distribution are #(x) and the estimates are F(x), then K(F(x)) = (x) implicitly defines a transformation 

K(@) of F to generate estimates, K(F(x)), that are well calibrated or reliable (Sherrick, et al.). The function 

K(@) is called the calibration function. 

A simple test for calibration may be performed by testing the uniformity of K, for if F(@) is already well 

calibrated, K is simply a uniform mapping. Regions of K(®) with slope greater than one correspond to regions 

of the CDF® that need to have mass added and regions of K(¢) with slope less than one correspond to regions 

of the forecasted distribution that have too much mass and need to be decreased. A parametric form can be 

chosen for the calibration function.and estimated using standard methods. The parameters of the estimated 

function can shed light into the nature of the mis-calibration (Fackler and King). For the purposes of this 

study, the calibration function is based on the beta distribution with density 

K(x) = xP"! 1-x)9°1/8(, 4), 6) 
where 8(p,q) is the beta function with parameters p and q. As noted in Fackler and King, the Beta 

distribution is well known, flexible and contains the uniform distribution as a special case when p=q=1, 

implying perfect calibration. Thus a likelihood ratio statistic is easily constructed for the hypothesis that the 

\ 
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  calibration function is uniform. Other shapes of the 
fitted calibration curve indicate the "reweighting" of 
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the estimated distributions needed to correspond to, of uniform | 
those subsequently observed. At least 5 general Aaeeeey 
shapes for the calibration function emerge that serve °F ee a 
well to summarize the nature of the miscalibration °f 
displayed by each individual. Figure 2 displays the | _ 2? 
sample calibration functions corresponding to the | ¥ ¢f ee 
following cases: (1) well calibrated or uniform, Sf eee 
p=q=1; (2) underconfidence or an overstatement of Sf we 
dispersion, p>1, q>1; (3) overconfidence or an | 3}: oe 
understatement of dispersion, p<1, q<1; (4) sk,’ ee 
overstatement of location, p<1, q>1; and (5) gle eee hd   understatement of location, p>1, q<1. The slope 
of the calibration function reflects the reweighting 
of the subjective distribution that is needed to make 
it correspond to the true distribution. 

Subjective Fractile —r     

Figure 2 Sample Calibration Functions 

Calibration functions were estimated for each sample farmers’ CDF® for both April and July rainfall. The 
results are given in table 3. With respect to April rainfall, the propensity is to understate variability and also 
understate location. The estimated July calibration functions suggest a different result -- that nearly half the 
farmers had subjective distributions that overstated variability. Further, the location tended to be understated 
reflecting pessimism about the likelihood for favorable July precipitation. Again, these observations are 
consistent with venture theory. 

Conclusions : 
Interpreting the results of this study is quite clear; what to do in reponse is not so clear. The value of climate 
information in crop production has been shown to increase dramatically when decision makers’ subjective 
assessment of probabilities is in need of calibration.. A sample of farmers showed their subjective 
distributions of April and July rainfall were consistent with the adjustments predicted by venture theory, based 
both on the sign of the payoff and their ambiguity level. Calibration functions indicate the alterations 
necessary to equate their subjective beliefs with historic probability. This indicates that a mere educational 
program alone might not be sufficient make the distributions equal. Rather, it indicates that some exageration 
(both underweighting and overweighting) may be necessary. 

Notes 

|. This section reports on results of decision models whose development is beyond the scope of this paper. 
For more information on the construction of these models see Mjelde et al. and Mazzocco (1989) and 
related references therein. 

2. Data were also collected on winter snowfall, expected prices, interest rates, and other variables affecting 
financial success. 

3. We take the historic distributions to be an adequate characterization of the objective or true PDF of 
weather events. The possibility of climate change is thus not addressed. 

4. The Gausy programming language was used on an IBM compatible microcomputer. Briefly, a nonlinear 
Optimization routine with a quadratic loss function was used to recover parameters. Given the flexibility 
of the distribution function, the fit was typically very good in terms of squared distance between farmer 
responses and levels on the estimated CDFs. The procedure has unknown power though due to the 
prespecified interval breaks at which respondents were polled. 
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Table 1. Value of Perfect 3-Category Forecast vs. Historical and Ambiguous Priors, E. Central Ill, Corn. 

  

Prior _ Expected Value of Forecast ($) 
Belief 320 acres Per acre 
15-year historical probability 1,000 3.12 
Ambiguous, most recent 3 years 3,084 9.64 
Ambiguous, resulting in 100 lbs. Spring N 3,133 9.79 
Ambiguous, resulting in 150 Ibs. Fall N 5,237 16.37 

Source: Mazzocco (1989) 

  

Table 2. Summary of Farmers’ Subjective PDFs on Climate Events 
  

  

  

  

  

  

  

  

  

  

  

        

                    
  
  

  

  

  

  

  

Percentile Level 

10% 25% 50% 75% 90% 

APRIL Rainfall % of farmers 31.5 63 85.1 74.1 61.1 
(inches) >= actual 

True(inch) | 1.57 2.34 3.47 4.93 6.54 

Average response 1.415 2.785 4.444 5.806 7.461 

Std. Dev. 0.551 1.003 1.219 1.426 2.035 

JULY Rainfall % of farmers 85.2 77.8 66.7 55.6 57.4 
(inches) <= actual 

True(inch) 1.27 2.05 3.27 4.89 6.74 

Average response 0.813 1.781 3.008 4.614 6.489 

Std. Dev. 0.528 0.704 0.821 1.164 2.23 

Table 3. Calibration Functions Summary 

Parameter Groups April Rainfall July Rainfall Interpretation 

(No. of farmers) (No. of farmers) 

P>1,Q>1 12 23 Over dispersed, under confident 

P<1,Q <1 21 12 Over confident, under dispersed 

P>1,Q <]l 3 12 Overstated location 

P<1,Q>1 15 4 Understated location 

Uniform ** tk Well calibrated                 
  

5S had pseudo P-values on the likelihood ratio test > .05 and could be considered well calibrated. 
However, the variance of the estimator is biased toward low values due to the procedures used to estimate 
subjective PDFs. 

#7 8 had pseudo P-values on the likelihood ratio test > .05 and could be considered well calibrated. 
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