

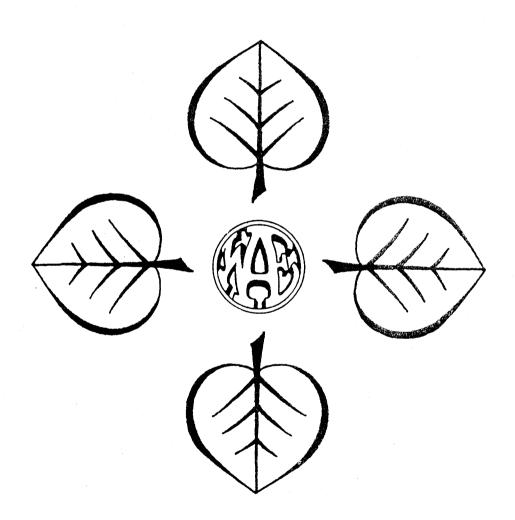
The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu


Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

338.1 667 1992

Papers of the 1992 Annual Meeting

Western Agricultural Economics Association

Colorado Springs, Colorado July 12-15, 1992

AN EVALUATION OF SCS STREAMFLOW OUTLOOK BASED ON ADAPTIVE CROP COMBINATIONS Eric A. Wenberg, University of Wyoming Larry J. Held, University of Wyoming James J. Jacobs, University of Wyoming

ABSTRACT

The value of SCS water supply outlook information is examined in the context of adjusting crop combinations and irrigation rates for a 1000-acre Wyoming farm facing variable water supplies. Compared to using average water expectations, SCS outlook yielded added returns ranging from \$5.43/ac to \$10.20/ac and lower income variability.

With limited precipitation in western agriculture, realizing adequate supplies of irrigation water can become a major constraint and source of uncertainty for crop production. Water supply outlook as provided by the Soil Conservation Service (SCS) can be valuable for reducing such uncertainty. Water supply outlook reports are issued periodically each spring by the SCS to predict streamflow volume over the ensuing six-month peak flow period (April to September). Such information could be beneficial for adjusting production practices, e.g., in years when below average water is expected producers may elect to grow low water using crops and vice versa. The purpose of this paper is to examine the economic value of SCS water supply outlook information in terms of added income and reduced risk--within an experimental firm-level setting where crop enterprise combinations and irrigation rates can be adjusted in response to expected water supplies.

APPROACH

As described below, a linear programming model is developed for a 1000-acre farm unit in the Riverton area of northwest Wyoming. The Riverton area is an important irrigated crop production area in Wyoming, growing a combination of barley, corn, alfalfa and dry beans (Agee). Important components of the LP model will include monthly constraints for expected and actual water supplies, as well as monthly water requirements needed to achieve lower or higher yields for the above-mentioned crops. With the LP model, annual crop acreage is optimized with respect to expected water supplies; and resulting returns are then determined by water supplies actually incurred over the same 20-year period (1969-88).

Actual and Expected Water Supplies

Table 1 shows actual and expected monthly (May-September) water supplies developed for the 1000-acre model farm over a 20-year (1969-88) period. Actual monthly water supplies for the 1000-acre farm were derived by downsizing aggregate water withdrawals for the project area to a micro (1000 acre) farm-level, and using an overall project delivery and field efficiency factor of .3238 to account for the net amount of streamflow that is delivered and used by the farm (Wenberg, p. 92). It is noted from Table 1 that most ($\approx 80\%$) of the actual five month flow is withdrawn over a three month period, June through August.

Expected summer streamflow for the Wind River watershed is based on March 1 SCS outlook for the same 20-year period (1969-88). Projected summer streamflow for each of these years was distributed among the five months (May-September) in proportion to the average historical distribution of actual

streamflow (i.e., May = 15%; June = 35%; July = 30%; August = 14%; and September = 6%). Resulting forecasts of expected monthly water supplies for the 1000-acre farm are shown in Table 1.

Table 2 summarizes the performance of monthly derived forecasts in terms of: (1) annual error between actual versus predicted (20-year average flow); (2) annual error between actual versus predicted (SCS outlook); and (3) correlation between actual and monthly derived SCS forecasts. Water supply forecasts are shown to have reasonable predictive potential for peak midsummer flows (June-August) which constitute about 80 percent of May-September volume. However, forecasts do not appear to be advantageous for early season (May) or late season (September) flows which comprise an average of only 20% of May-September volume.

Crop Yields, Irrigation Rates and Gross Margins

Low and high crop yields associated with two levels of irrigation were derived with PLANTGRO, a crop yield-water response simulator developed by Hanks (1982). PLANTGRO estimates crop yield response to water by considering the relationship between actual and potential transpiration, such that when a plant is stressed, actual transpiration is less than potential transpiration.

Table 3 shows monthly irrigation requirements for high and low yield levels for each of the irrigated crops. Barley/Alf is a special barley enterprise needed to establish a stand of alfalfa; and the water coefficients for August (1.6 ac.in.) and September (2.8 ac.in.) are for irrigating newly established alfalfa planted in barley stubble and do not affect barley yields per se. Irrigation requirements for high yields were derived in PLANTGRO by applying water in sufficient quantities so as to not stress the crop. High yield levels correspond to those reported by Agee (1982) as being representative of producers using above average management techniques with adequate water supplies. After the high irrigation-yield combinations were identified, the amount of irrigation water was reduced by 40 percent. Low yields, as a result of 40% less water, were estimated to be the following percentage of high yield goals by crop: barley (80.8%); corn (82.5%); alfalfa (83.8%); and beans (87.1%). Cutbacks in irrigation water were made toward the end of the season (as opposed to being evenly distributed among all months) to better represent observed practices of Wyoming producers facing low water supplies. From Table 3, alfalfa and corn are shown to be relatively high users of water relative to barley and dry beans.

Using yield information derived above, gross margins (gross returns over variable costs) are estimated for each of the irrigated crops (Table 4). Gross returns are derived as the product of designated yield levels times corresponding crop prices. Crop prices are developed as a five year average (1983-87) of area prices reported by the Bureau of Reclamation, which are adjusted to a 1987 real dollar basis using the implicit GNP deflator. Variable costs are obtained from Agee and are likewise considered in 1987 dollars.

Linear Programming Models

Two distinct but similar LP models are used in the analysis. The first is an optimizing model used to derive a crop acreage mix based on expected water supplies; and the second is a calculating model for deriving income that

is subsequently realized from the crop mix planted on the basis of expected water supplies, given monthly water actually incurred.

The optimizing tableau shown in Table 5 consists of low and high yield activities for each crop (e.g., BY:LO and BY:HI for barley). Water supplies are based on expected monthly flows for a particular year (e.g., SCS forecasts featured in Table 1), which become components of the RHS in Table 5. Irrigation requirements (introduced in Table 3) are included as coefficients in the monthly water constraints. An upper limit of 500 acres is imposed on barley, corn and dry beans and a lower limit of 200 acres is required for barley. A fixed rotation is established for barley/alfalfa (50 acres) and alfalfa (200 acres).

Optimum crop combinations and irrigation rates are developed with the optimizing model for each year over the 20 year period (1969-88) given four alternative planning situations: (1) a non-adaptive fixed acreage mix (200 ac. barley; 500 ac. corn; 50 ac. barley-alfalfa; 200 ac. alfalfa; and 50 ac. dry beans), which represents the optimal plan based on a previous "long-term average water" supply expectation (1942-1968); (2) an adaptive strategy where the crop mix is revised annually with reference to SCS forecasts (from Table 1); (3) a more conservative adaptive strategy, whereby the crop mix is revised each year with reference to 80% (vs. 100%) of SCS forecasts given in Table 1; and (4) an artificial adaptive benchmark scenario, allowing crop acreages to be adjusted each year on basis of "perfect" information of variable water supplies (using actual water supplies, Table 1, as the source of expectations).

Table 6 shows the calculating tableau used to derive actual income for the 1000 acre farm with reference to the crop mix developed with the optimizing model. Actual (vs. expected) water supplies are used in the RHS of monthly water constraints. The crop acreage mix in the calculating tableau is predetermined by incorporating the crop combinations derived from the initial optimizing model. For those years when actual water supplies are short of expectations, abandon acreage activities (NO) are available in the calculating model with negative objective function values for barley (-\$89), corn (\$-110), and dry beans (-\$83)--to reflect the loss of selected unrecovered costs (fertilizer, chemicals, seed, fuel and repairs) as derived from Agee (1982). In this setting, an overly optimistic water supply expectation can result in large losses of unrecovered costs if expected water supplies failed to materialize. Conversely, overly pessimistic expectations can result in foregone opportunities if more water is received than expected. Another option to abandoning acreage in the model is irrigating at lower (LO) versus higher (HI) rates to the extent adequate water is available.

RESULTS

Crop acreages (based on expected water supplies), irrigation rates and resulting returns (based on actual water supplies) are shown for the 20 year period in Table 7 (average water outlook); Table 8 (100% SCS outlook); Table 9 (80% SCS outlook); and Table 10 (perfect knowledge of actual supplies). In all cases, some general acreage patterns emerge given either years of low water or years of abundant water. In years of low water the model favors barley and dry beans. Corn (a high water user) is planted in years when abundant water is expected. Also, when sufficient water was expected but failed to materialize, the model abandoned acreage to various degrees (Barley:

NO, Corn: NO, and/or Dry Beans: NO). Abandoned acreage was most evident with the average water outlook case (Table 7), and nonexistent in the perfect knowledge case (Table 10). In addition, using conservative (80%) SCS outlook (Table 9) tended to minimize the need for abandoning crops compared to 100% SCS expectations (Table 8).

Table 11 summarizes annual income from Tables 7-10, as well as associated 20-year average income, and related variability and risk measures given alternative cases of expected water supplies. Using the fixed crop mix case (based on average water outlook) as a reference point, the value of 100% SCS information is \$5341 (\$97,519 - \$92,178), while the value of using more conservative (80%) SCS outlook in even higher at \$10,201 (\$102,379 - \$92,178). The \$10,201 value is nearly 60% of the possible upper limit (i.e., value of perfect information) of \$17,259 (\$109,437 - \$92,178). Finally, adapting the crop acreage mix to SCS water supply outlook not only generated higher income, but less income variability (sd = \$32,803 for 100% SCS; and \$26,254 for 80% SCS) than the average water outlook case (sd = \$40,911). In all three cases, annual income fell below the designated (\$100,000) income target in nine of 20 years. However, the total amount that annual income missed the \$100,000 target over the 20-year period was substantially less for the 100% SCS case (\$293,144) and 80% SCS case (\$186,731) than the average water scenario (\$403,199). Finally, risk-preference properties of the income distributions associated with the four settings in Table 11 were examined with first and second degree stochsatic dominance (FSD and SSD). As expected, the perfect information setting dominated the other three by FSD. In addition, both of the SCS outlook strategies dominated the average water outlook case with SSD, confirming their preference by all classes of risk-averse decision-makers.

CONCLUSION

Usage of SCS water supply outlook appears to have potential for yielding income and risk benefits in terms of adjusting production practices in response to expected water supplies. To the extent that optimistic errors of expecting more water than realized can be more severe (in terms of unrecovered production costs from abandoned acreage) than errors of underestimation—additional payoff from conservative usage of outlook information seems reasonable. It is important to note that extra income from using SCS outlook was achieved in conjunction with both reduced income variability as well as lower risk of falling below a designated income target. This contrasts with many other management strategies in which reduced income variability is often associated with lower (vs. higher) income over time. Thus the value of using SCS outlook for adaptive decisions, may be especially pronounced for producers sensitive to both income and risk.

Hay.	J.	une		July		Augus	ıst	Se	ept.
	li		acre	inches/1	,000 acre	unit			
			Exp.	Act.	Exp.	VCT:	ă;	Act.	Exp.
		2	83	6588	7141	31/6	3515	non.	coci
		2	27	4944	5911	2416	2910	1096	1312
		100	45	7596	8449	3910	4159	1743	1875
		100	37	6301	8442	3275	4156	1195	1874
•		,	77	5791	6093	2889	5999	386	1352
		8	05	6376	6815	2503	3355	1245	1513
		7	72	11930	6369	2677	3135	922	1414
		2	45	6862	6681	2976	3289	1308	1483
4533		5	46	3200	4328	2341	2131	1420	961
9415		80	45	7758	7187	3026	3538	986	1595
5828		×	3	4159	6732	3063	3314	1171	1494
9340			. 67	7360	6534	1930	3216	511	1450
8968		- 7	6	4608	5425	2279	2670	7 86	1204
7522		8	23	9938	6867	4433	3380	2217	1524
11158			20	9228	6142	5043	3023	1756	1363
6613		-	45	7621	6515	3524	3207	1743	1446
		6	66	4222	5719	1245	2815	411	1269
		=	3	7721	9340	3723	4598	884	2073
		80	33	5230	6931	2167	3412	1196	1538
2745 5218		Ö	35	2354	5606	1332	2759	7	1244
		ř	12	6483	6661	2896	3279	1128	1478
556 2936		ä	149	2318	1134	949	228	492	252

Statistical Comparison of Observed and Expected Monthly Streamflow (1969-1988).

1+000	Max	June	July	August	Sept.
		acreacre	inches/1,000 acre un	acre inches/1,000 acre unit	
Error, (actual f)ow - 20-year Avg.)	1126	2936	2318	949	492
Errorz, (actual flow - SCS Outlook)	1141	2162	2126	933	628
Correlation (actual and SCS Outlook)	. 2202	.7557	.4129	.4690	.1678

 $E_1 = \sum [\{(A_1 - \overline{x})^2\}/19]^{14}$ 9

 $E_2 = \sum [\{(A_1 - SCS)^2\}/19]^{44}$

ھ

Monthly Irrigation Requirements and Corresponding Yields for Barley, Corn, Barley-Alfalfa, Alfalfa, and Dry Beans. Table 3.

	Bar	Barley	ဒ	Corn	Barley/Alf	y/Alf	A	Alfalfa	Dry Beans	eans
	•		;	:		:	į			
Month	-40%	Max.	-40%	Max.	-40%	Max.	-40%	Max.	-40%	Max.
	water	water	water	water	water	water	water	water	water	water
					acre-1	nches			-	
;	0	8 6	1 2	1.2	2.8	8.2	4.4	4.4	0.0	0.0
Tay.					7	0.4	7.6	7.6	1.0	1.0
June	•				2 6	8	3.6	8.0	7.6	7.6
y: no				, ,	-	9	0.0	0.9	0.4	4.4
Aug	9.6		9 6					0	0.0	5.0
Sept Total	9 6	15.6	13.7	22.8	13.8	20.0	15.6	26.0	9.0	15.0
	- 65	:	a 00	0 011	yteld	/acre	3.77	4.2	17.4	20.0
	(bu/ac)	(bu/ac)	(bu/ac)	(bu/ac)	(bu/ac)	(bu/ac)	(ton/ac)	(ton/ac)	(cwt/ac)	(cwt/ac)

Derivation of Gross Margins for Selected Crops, 1987.

Table 4.

		, and	Barlev/Alf Alfalfa		Dry Beans
	pariey	Gross Margins:	High Yields	High Yields	
	110 bulkac	110 hil/ac	90 bu/ac	4.5 ton/ac	20 cwt/ac
Theid	30 00/ 90	207/12	3 04/bu	65 67/ton	16.76/cwt
X Price (\$)	3.04/bu	00/16.7	20.00	296	335
■ Gross Return (\$/ac)	274	32/	*/7	112	000
- Var. Costs (\$/ac)	168	182	218	711	136
- Gross Margin (\$/ac)	106	145	d d	104	071
		- Gross Margins:	Low Yields		
	20/114 F CF	90 8 bu/ac	72.7 bu/ac	3.77 ton/ac	17.4 cwt/ac
Yield	/2./ DU/ ac	20.02	3 04/5	65 67/ton	16.76/cwt
X Price (\$)	3.04/bu	na / /6 · 7	3.04/20	348	202
= Gross Return (\$/ac)	221	270	177	0+7	101
(4/4)	165	179	215	103	907
- Var. costs (4/ac)	2		ď	139	86
 Gross Margin (\$/ac) 	99	7,	ò	ì	

LP Tableau for Optimizing Crop Combinations, Given Expected Water Supplies. Table 5.

		, 0	ć	12	Barley	//A1f	Alf	alfa	DIX	beans	
	(1) (2)	(2)	(3)	₹	(9) (9)	(9)	(7) (8)	(B)	6	(10)	OHO
	BY: LO	BY:HI	01:03	H 8	BA:LO	BA: H	7	II.	3	3	2
	Ş	30	ac	30	ာ	U (Ų,	8 3	9 6	3 5	
	26	106	91	145	ø	20	55	\$	8	150	
T. water (ac-in)					,	(٠	•			*
Aav-Water	2.8	2.8	1.2	1.2	2.8	8.2	4.0	• •		-	*
£.	4.0	4.0	5.3	5.3	4.0	0.	9.7	9.7		- r	; ;
: :		a	7.2	5.5	5.6	8.8	3.6	8.0	9./	٥.	
Jul-Water	0.7		:		-	-		6.0	4.0	4.4	*
Aug-Water										2.0	# # >
Sep-Water				1.0	0.7	0.7				:	
(creage (ac)											200
Min-Barley	1.0	1.0									22
ax-Barley	1.0	1.0									
lax-Corn			1.0	1.0							
					0	0					2
1x-Barley/Alf					:			-			- 200
ix-Alfalfa							?		-	-	200
lax-Beans							-	-			C=1000
	1.0	1.0	1.0	0.	0.1	o . .	?		2.	?	

*Expected monthly streamflow

LP Tableau for Computing Returns from Planted Crop Combinations, Given Actual Water Supplies. Table 6.

		뙶				*	*	*	*	*	ļ	*	*	*	*	*	
s l	(13)	BE: HI	å	126			-		. 4		2.						
y Bean	(15)	BE: LO	O.	86			-			5						-	2.
٥	Ξ	BE: NO	ည္ရ	-83												-	
lfa	(10)	AL: HI	ဗ္ဓ	184 -83 86 12		,			o 0	9					-	7.0	
Alfalfa	(6)	AL:LO	30	139		•			3.0							→	
/A1f	(8)	BA: HI	g	26		•	0.4		 	٠. د	8.2				0.1		
Barley	5	BALO	2	6 56		•	0.0	7	5.6	٠.٠	8.5			٠	0.1		
-				145			7.7	5.5	9.5	2.5	9.			?			
Corn	(3)	5.0		91		•	7.7	5.3	7.2				•	o.			
				-116										0.			
	į.	(2)	1	106			2.8	4 .0	8.8				1.0				
Danlan	100	(7)	01:10	26 56			5.8	4.0	5.6				1.0				
	1		2	ac \$)-89	:	~	L	Ļ	Ļ	Ļ	Ļ	(ac)	1.0		<u></u>		21
		ć	KOMS	Max. Return(S.T.		1) May-Water	2) Jun-Water	3) Jul-Water	4) Aug-Water	5) Sep-Water	Fix Acreage (ac	6) Barley	7) Corn	8) Barley/A	9) Alfalfa	10) Dry Beans

^{*} Actual Monthly Streamflow
** Forced Crop Acreage Based on Expected Water Supplies

Annual Crop Acreages (Based on Average Water Expectations); Irrigation Rates and Resulting Returns (Based on Actual Water Supplies), 1969-1988.

9	'	Kea Net	=	3 ~	2 -	: =	: 0	, =	; «	"		, -		=		· <u>~</u>	- 2		1,		10	n
Resulting Returns (Based on Actual Water Supplies), 1969-1988.	Ory Beans	NO CHI	131 360	1 1	S 5	16	282	; ;	89	3 ;	261	- 112 388	; ;	300		200	423	787	173	2	3 :	
1969-1988.		되	193		173	, ' !	200		: ==	109			157	152			500	9	46			;
Supplies),	Alfalfa	의	7	152		_		182						48 15		50	20	200	200	200	200	
Resulting Returns (Based on Actual Water Supplies), 1969-1988	Barley/Alf	의 되	50	20 22	20 2	20	20	20	- 20		20	20 30	20	20	20	20	20	20	20	20	20	: :
eturns (Based c	Corn	미미	50	: :	459	51 405	:	22	;	7 7	;	50	12	:	;	28	:	:	:	35 465	36	
Resulting R		HI NO	15	::	65	;	5	136	76	166	:	200	:	236	;	222	327	246	:	29	;	
_	Barley	NO CO	185	364	135	200	330	95	214	11	129 111		238		395	:	;	22 5	395	133	214	:
		Year	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1000
	battead	Net Inc.	117.457	79,924	128,541	113,427	98,391	114,393	18,362	121,140	16,400	127,706	58,009	114,521	70,544	120,449	134,378	128,131	59,768	126,609	87,783	
	sans	H	20	: :	. 20	22	کو	. 20	. 20	. 20	. 20	82	;	;	;	. 20	20	20	;	!	33	
	Ory Beans	이	1	- 20	;	1	!	i !	;	1	i !	- 5	20	- - -	: 20	:	;	:	50	:	=======================================	S
969-1988.	Alfalfa	IH OI	154 46		32 168	002				187 13				96 104		500		96 104		500	002	200
ater Supplies), I	Barley/Alf	IH 이	50	20	20	20	20		20	200	20	200	20	- 20		ر د د		20	20	22	- 20	1
Actually (based on Actual Water Supplies), 1969-1968.	Corn	NO CO HI	51 449	4 496	200			11	;	:	300 200	:	388	569	420	200	200	:	104 396	35 465		363 137
Silina	Barley	No UN	200		143 57	500	200	192 8	: ;	49	: : ::	5 5		9 8	992	201 205	: :	93 107		133 67	500	200
	•	Year	_	_		- 2/61		•		13/6				- 0861		5 7851						888

Realized Ret inc. 15. 1113, 771 19. 370 19. 330 19. 330 19. 340 114, 554 114, 554 114, 554 116, 575 127, 525 110, 725 52 110, 725 52 110, 725 52 110, 725 52 110, 725 52 110, 725 52 110, 725 52 110, 725 52 110, 725 52 110, 725 52 110, 725 52 110, 725 52 110, 725 52 110, 725 52 1127, 65 1127,

Annual Crop Acreages (Based on 100% SCS Water Supply Outlock); Irrigation Rates and Resulting Returns (Based on Actual Water Supplies), 1969-1988. Table 8.

	h		되	;	- 1	57	;	97	125	ł	49	;	194	;	387	;	200	200	107	;	134	6	:
	rley		의												113								200
	ã		외	;	;	:	;	;	¦	;	;	:	;	;	;	:	:	;	;	;	;	;	;
			Year	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988
		Realized	Net Inc.	117,457	90,735	128,451	113,427	95,212	114,418	66,840	120,950	39,129	127,706	59,494	113, 183	84,423	120,449	133,123	127,746	63,184	126,609	87.783	20,059
	ns Su		Ħ	20	423	20	22	123	3	249	129	271	28	:	;	338	20	391	210	135	;	33	82
	Ory Beans		의	;	;	!	;	292	:	35	:	ì	22	;	201	:	;	;	;	192	20	;	;
	占		외	;	11	:	;	:	;	:	:	21	;	105	;	101	;	:	;	172	1	2	414
	Ifa		Ħ	46	:	89	:	67	:	94	23	;	35	;	93	:	00	8	25	;	8	;	;
:	Alfalfa		9	154	200	35	200																200
:	'								••	_	_		_	~	_	~				~		2	2
	x/Alf		Ħ	1	;	:	;	:	;	20	;	;	;	;	;	;	ಽ	20	;	;	:	;	;
	Barley/Al		នាដូ	22	လ	ន	S	ន	င္သ	;	22	22	S	22	S	22	;	;	S	ន	20	22	20
	-1																						
	1	:	Ħ	449	;	200	1 13	;	Ξ	177	121	ŀ	000	:	231	!	00	59	40	;	165	;	;
	Corn		의	21	22		87								118		;		;		•		44
	٦	1	외	;	;	:	:		;		:	;	;		;	:	:	;	;	:	;	2	;
		:	I	;	:	23	;	;	=	;	99	;	177	;	161	;	<u>=</u>	200	140	;	67	;	;
	Barley	:	31 :	200	200	143	200	200	183	;	134	Ξ	23	200	33	232	:	;	8	200	133	200	205
	7	9	2 ¦	;	;	1	;	;	!	200	;	281	:	;	;	;	98	!	;	!	i	;	1
		2	Tear	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988

Annual Crop Acreages (Based on Perfect Information); Irrigation Rates and Resulting Returns (Based on Actual Water Supplies), 1969-1988. Table 10.

	œ)	Barley	1	1	Corn	1	Bar	Barley/Alf	Alf	Alfalfa	티	Dry Beans	SC	
Year	외	의	퇴	외	의	되	의	되	의	Ħ	외	의	되	Net Inc.
696	;	240	;	;	;	200		;	134	99	;	:		, a11
970	1	321	. ;	;	:	;	22	;	200	: ;	;	:	428	1001
971	;	143	27	;	1	200	20	;	32	168	;	:	5 5	128.5
1972	;	500	;	1	:	139	20	;	8	110	;	;	410	116.220
973	;	403	97	;	97	153	20	!	1	200	;	:	: :	101
974	ł	85	125	;	:	42	22	;	200	;	;	;	200	115.2
975	;	;	;	;	ţ	177	;	20	121	79	;	251	249	112.8
976	;	151	49	!	;	200	S	:	188	12	;	:	205	121.1
977	ł	Ξ	;	ľ	;	;	20	;	200	;	;	:	271	88
978	;	28	194	;	;	200	20	;	163	37	:	5	23	127 9
979	1	478	;	;	;	;	22	;	200	: }	;	' ;	172	000
980	:	113	387	;	13	231	20	;	93	107	;	;	; ;	115 50
981	;	388	;	;	;	;	20	;	200	;	;	;	361	95 41
382	;	;	200	;	ţ	270	;	20	;	200	;	;	279	135.2
983	;	;	200	;	;	437	;	20	;	200	:	;	12	138 4
984	;	93	107	;	;	200	20	;	96	104	;	;	25	128 13
985	;	200	;	!	8	169	20	:	200	; ;	:	;	; ;	86.51
986	1	151	134	;	;	465	20	;	;	200	;	;	:	127.20
387	;	566	6	;	;	:	20	;	200	; ;	;	;	474	103 27
388	;	500	:	:	;	;	5	;	200					

Annual and 20-year Average Income, and Measures of Variability and Risk, Given Alternative Water Supply Expectations.

Table 11.

	Average	100% CCC	80% SCS	Perfect Information
	Water	100% SCS	Out look	Outlook
<u>Year</u>	Outlook	Outlook	000 ac. unit (\$)	
		Net Income per 1	000 ac. unit (4)	
1969	117,457	117,457	113,771	118,236
1970	79,924	90,735	99,308	100,116
1971	128,541	128,451	128,442	128,541
1972	113,427	113,427	114,554	116,220
1973	98,391	95,212	96,760	101,051
1974	114.393	114,418	114,684	115,209
1975	18,362	66,840	81,020	112,882
1976	121,140	120,950	118,978	121,140
1977	16,400	39.129	56 ,47 8	68,497
1978	127.706	127,706	123,593	127,947
1979	58,009	59.494	72,624	89,126
1980	114.521	113,183	110,739	115,596
1981	70.544	84,423	93,791	95,412
1982	120.449	120,449	130,194	135,247
1983	134,378	133,123	127,563	138,414
1984	128,131	127,746	125,189	128,131
1985	59,768	63,184	78.320	86,510
1986	126,609	126,609	126,609	127,200
1987	87,783	87,783	99,881	103,773
1988	7,620	20,059	35,087	59,482
1900			· · · · · · · · · · · · · · · · · · ·	
20-yr Avg. (\$)	92,178	97,519	102,379	109,437
Std. Dev. (\$)	40,911	32,803	26,254	21,420
Coef. of Var.	.444			
Freq. (yrs. in 20 Annual Inc. is B \$100.000 Target:	elow	9/20	9/20	5/20
wide, our larger.	3,20		5,25	,
Total Amt. (1969- Annual Inc. is Below \$100,000	88)			
Target (\$):	403,199	293,144	186,731	100,973

<u>REFERENCES</u>

- Agee, D.E. "Costs of Producing Crops: Riverton Area, Fremont County, Wyoming." Agric. Ext. Bul. 619R. University of Wyoming, Laramie. August 1982.
- Hanks, R.J. "Plantgro: A Model for Simulating the Effects of Soil-Plant-Atmosphere and Irrigation on Evapotranspiration and Yield." Utah State University, Logan. 1982.
- United States Department of Agriculture, Soil Conservation Service. "Water Supply Outlook for Wyoming," Casper, Wyoming. Selected Issues, Annual Series.
- Wenberg, E.A. "An Evaluation of Streamflow Outlook Information Based on Adaptive Crop Combinations," Unpublished M.S. Thesis, Department of Agricultural Economics, University of Wyoming, August, 1990.