%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Q- Center for
" Development Research
University of Bonn

ZEF-Discussion Papers on
Development Policy No. 318

Oded Stark and Marcin Jakubek

Can the evolution of joint savings
agreements counter the effect of higher
costs of migration on its intensity?

Bonn, June 2022



The CENTER FOR DEVELOPMENT RESEARCH (ZEF) was established in 1995 as an international,
interdisciplinary research institute at the University of Bonn. Research and teaching at ZEF address
political, economic and ecological development problems. ZEF closely cooperates with national and
international partners in research and development organizations. For information, see: www.zef.de

ZEF — Discussion Papers on Development Policy are intended to stimulate discussion among
researchers, practitioners and policy makers on current and emerging development issues. Each
paper was subjected to internal discussion and quality control at the Center for Development
Research (ZEF). The papers mostly reflect work in progress. The Editorial Committee of the ZEF —
DISCUSSION PAPERS ON DEVELOPMENT POLICY includes Matin Qaim (Chair), Christian Borgemeister,
and Eva Youkhana. Alisher Mirzabaev is the Managing Editor of the series.

Oded Stark and Marcin Jakubek, Can the evolution of joint savings agreements counter the
effect of higher costs of migration on its intensity?, ZEF Discussion Papers on Development
Policy No. 318, Center for Development Research, Bonn, June 2022, pp. 47.

ISSN: 1436-9931

Published by:

Zentrum fir Entwicklungsforschung (ZEF)
Center for Development Research
Genscherallee 3

D -53113 Bonn

Germany

Phone: +49-228-73-1861

E-Mail: zef@uni-bonn.de

Website: www.zef.de

The authors:
Oded Stark, Universities of Bonn and Warsaw. Contact: ostark@uni-bonn.de

Marcin Jakubek, Polish Academy of Sciences.



mailto:ostark@uni-bonn.de
http://www.zef.de/

Acknowledgements

We are indebted to two referees for their thoughtful comments and kind words.
This paper is dedicated to the memory of Luigi Orsenigo, an inspiring colleague, insightful
scholar, and dear friend. Luigi was a stimulating and dedicated Co-Editor of the Journal of

Evolutionary Economics.



Abstract

In this paper we consider a population of would-be migrants in a developing country. To
begin with, this population is divided into two sets: those who save by themselves to pay for
the cost of their migration, and those who pool their savings with the savings of another
would-be migrant to pay for the cost. Saving jointly brings forward the timing of migration:
funds needed to pay for the migration of one of the co-savers can be accumulated more
quickly, enabling him, using his higher income at destination than at origin, to speed up the
migration of his co-saver. However, people may hesitate to save jointly for fear that a co-saver
who is the first to migrate might fail to keep his part of the agreement. We show that an
increase in the cost of migration stimulates the formation of co-financing, joint-saving
arrangements that enable would-be migrants to cushion the impact of the increase. The
evolution of joint-saving arrangements can create a time window during which the intensity of
migration need not decrease: no fewer people (and conceivably even more of them) will
migrate during a time interval that follows the increase in the cost. This prediction is at
variance with the canonical economic model of migration according to which if migration is

costlier, then there will be less of it.

Keywords: Cost of migration; Saving for migration schemes; Evolution of joint saving
agreements; Proximity in social space; Revised perception of the risk of joint

saving; The intensity of migration
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1. Introduction

According to the canonical economic model of migration, if migration is costlier, there will be
less of it. (Early examples of this model include the widely cited articles by Sjaastad, 1962,
and Todaro, 1969.) In migration research and in migration policy formation, this notion has
become the conventional wisdom, mainly because of its intuitive appeal. In this paper we
show that an increase in the cost of migration can result in intensification of migration: we say
that intensification occurs when more people migrate during a time interval that follows the
increase in cost than would have migrated during the same time interval had there been no
increase in cost. The reason for this outcome is that an increase in the cost of migration can
trigger changes in the financial and social circumstances designed to enable would-be
migrants to save enough to pay for the cost of their migration. Specifically, as explained
below and modeled in the next two sections, the increase in cost can shift the line of
demarcation between the set of lone savers and the set of joint savers in favor of the latter.
Because saving jointly speeds up the accumulation of funds to pay for the cost of migration as
compared to saving alone, the number of migrants during a time interval that follows the

increase in the cost need not decrease, and may even increase.

In a review of immigration in American history, Abramitzky and Boustan (2017)
remark that in the nineteenth century “[0]nce migrant communities were established in US
cities and rural areas, many prospective migrants were able to travel on prepaid tickets
financed by friends or family” (p. 1314). In evaluating the role of costs in shaping migration
patterns, Abramitzky and Boustan note that those costs “need not imply that the poor are
priced out of migration because of a lack of credit or financing for their journey. Both in the
past and the present, there is evidence that immigrant networks can alleviate such financial

constraints” (p. 1325).

Ilahi and Jafarey (1999) report that in Pakistan informal contracts agreed between
migrants and their extended families, whereby the latter finance the migrants’ travel abroad:
about 58% of the migrants borrow from their extended family, with the amounts borrowed
covering, on average, nearly half of the cost of migration. Borrowing from the extended
family is more common among migrants of rural origin, who face higher costs of migration
and are on average poorer, than among migrants of urban origin. Akkoyunlu and Siliverstovs
(2013) provide evidence that a higher cost of migration from Turkey to Germany encourages
the conclusion of informal financial contracts between would-be migrants and their extended

families to pay for the cost of migration, and that the remittances that the migrants send back



are likely to be used to finance subsequent migration by other family members. Genicot and
Senesky (2004) report that Mexican migrants whose travel to the US was arranged by
“coyotes” (migrant smugglers) were more likely to have received financial support from
relatives and friends than Mexicans who set off to the US on their own. A higher cost of
migration (arising from paying a “coyote”) appears to have been linked to reliance on an
extended financial support network. Indeed, Mexico-to-US migration, where an increase in
border patrols made migration more difficult and hence more expensive, but possibly

resulting in higher flows, could serve as a case study.

Texts on migrants’ remittances have particularly acknowledged and documented that
would-be migrants are helped by their families in obtaining the funds needed to pay for
migration, and that once they have migrated and landed gainful employment they share their
destination earnings with their families by means of remittances. (The articles on the reasons
for sending remittances by Lucas and Stark, 1985, and by Stark and Lucas, 1988, have
inspired a large empirical literature that has yielded insights about the motives for sending
remittances and about the roles that the earnings of migrants and the incomes of their families
play in determining the incidence of remittances and the sums remitted.) The line of reasoning
advanced in this paper is distinct. We model the behavior of a would-be migrant who enters
the “game” with own savings - these can be savings accumulated alone or jointly with his
family - yet still faces a period of waiting in order to amass the required funds. Cooperation
with another would-be migrant who faces a similar constraint is a strategy that goes farther
than reliance on the support that might be provided by their own family. This perspective is
similar to a setting in which a person who seeks insurance, while already covered by some
level of self insurance, can gain from an exchange of insurance promises with another,
independent self-insurer. And as mentioned below in footnote 7, the perspective has features

reminiscent of Rotating Savings and Credit Associations.

We consider a setting in which people who seek to migrate are financially constrained,
so that prior to migrating they have to collect the funds needed to pay for the cost of migration
and initial settlement in a country of destination where incomes are higher than at origin.! We
assume that a would-be migrant can do this either by accumulating the required funds himself,
“lone financing,” or by cooperating with another individual, “joint financing.” In lone

financing, the financier and the migrant are one and the same, and the raising of funds to pay

! Bryan et al. (2014) find that even in the case of internal seasonal migration, the cost of travel, food, and other
incidentals during the trip poses a barrier to migration.



for migration precedes and is completed prior to migration. In joint financing, migration and
the financing to pay for migration are intertwined: migration begins when sufficient funds are
amassed to allow one of the joint savers to set off, and co-financing by the migrant, who lands
a job in the country of destination, helps secure the funds needed to facilitate the migration of
the co-saver who has yet to migrate. There are advantages and disadvantages to each method.
Lone financing is free from the possibility of others reneging, but it takes longer than
(successful) joint financing. On the other hand, while joint financing speeds up the
accumulation of funds, it is subject to the possibility that the co-saver who departs first might

fail to support the migration of the co-saver who has yet to migrate.?

What incentive does a migrant have not to renege? What measures are available to an
individual, who contributed to the savings pool but did not end up as the first-to-go, to
effectively dissuade the co-saver who has already left from reneging? If they use means that
help cement joint saving, the perceived risk involved in joint financing can be moderated, and
this form of financing will be attractive. Conversely, when such means are not available, lone
saving will be more appealing. A standard menu of responses to the preceding two questions
includes social deterrents, reputational concerns, and repeat transactions, with obvious
linkages between the three. Compliance can be strengthened by applying social pressure, for
example in the form of sanctions such as ostracizing the miscreant migrant and his family.
The option of sanctioning will be effective when the migrant is close in social space to a co-
saver who has yet to migrate, but will not have teeth when the contracting parties are distant
in social space. Furthermore, sanctioning will be more effective when the migrant wants to
keep open the option of return migration, regardless of whether return is imposed or
voluntary, and regardless whether return is temporary or permanent. In the “grand” scheme of
things, this implies that migration is not a final event, the last act in a sequence of moves;
rather, it is a stage in a process, part of a broader, lasting, and dynamic relationship. (This
discussion implies that although altruism can support compliance, if it is absent or fails, there

are still available means to press for adherence.)

Let the opening configuration be such that the population of would-be migrants is
divided into two sets: those who save enough by themselves to pay for the cost of their

migration, and those who pair with others to jointly pool savings to pay for the cost. The first

2 QOur interest in this paper is in the position of the line of demarcation between the two types of savers. We
abstract from other forms of finance for migration: either they do not exist, or are far too costly / far too risky.
Turning to loan sharks who might be willing to advance the funds needed to facilitate migration might be worse
than giving up migration altogether.



set consists of people who accepted the time required for lone saving or who, while preferring
to save jointly, did not find people in sufficiently close proximity in social space to make low
risk co-saving arrangements feasible. Let the cost of migration increase. Then, lone savers
will be less hostile to entering a joint financing arrangement with people who are farther in
social space if the risk arising from participation with them in joint financing is more
acceptable than the delay in migration caused by the time required to provide for lone
financing. As a result, in a time window following an increase in the cost of migration, the

incidence of migration need not be less.

As a back-of-envelope illustration of such an evolution of the financial environment,
suppose that at time zero there are four individuals at origin who seek to amass the funds
needed for them to migrate. Two individuals are lone savers, the other two save together.
Suppose that monthly income is 2, that the cost of migration is 12, that individuals can set
aside all but one unit of their monthly income, and that income at the migration destination is
twice the income at origin. The pattern of migration will then be as follows. At the end of
month six, one individual out of the two who save together will migrate. Assuming the
migrant sticks to the terms of the joint savings agreement, three months later the other
individual will migrate. And after twelve months, the two lone savers will migrate. Now let
the cost of migration rise from 12 to 14 and suppose that, consequently, the two lone savers
shift to joint saving; saving alone as before would lead to too long a postponement. Then,
after seven months two individuals will migrate, and three and a half months later the
remaining two individuals will migrate. If we look at the time window of the first seven
months, then we will see that prior to the increase in cost, migration would have been by one
individual, and that following the increase, migration is by two individuals. This is the
intensification alluded to above. Figure 1 which presents these configurations is drawn under

the assumption of perfect compliance by the individuals who migrate first.3

% Intensification of migration in the time window of the first seven months will occur even when one or two of
the individuals who migrate first under the two joint saving agreements fail to comply and the betrayed
individuals fail to enforce compliance.
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Figure 1. The timing of migration in months, t, of four individuals: when the cost of
migration, C, is 12 (in which case, two individuals are lone savers, and the other two
individuals save together); and when the cost of migration is 14 (in which case, two pairs of
individuals who save together are formed). Light circles represent a migrant when the cost of

migration is 12, dark circles represent a migrant when the cost of migration is 14.

In Section 2 we construct an intertemporal utility model to investigate the possibility
that an individual enters a co-saving agreement with another individual to save together the
sum needed to pay for the cost of migration and initial settlement in the country of
destination, thereby speeding up migration. In Section 3 we present our two main results.
First, we show that the propensity to enter a co-saving agreement which carries the risk of a
co-saver defaulting increases with the cost of migration. The reason for the evolution of such
an arrangement is that when the cost becomes higher, people choose the lesser of two evils:
joint saving which could be risky, and postponed timing of migration if saving alone. When it
comes to the risk that a co-saver will renege, a stronger desire to save jointly lowers the bar of
acceptable social affinity of co-savers. Second, we formulate a condition under which the
dynamics (time pattern) of the migration outflow will be such that there will be a post cost-
increase period during which the incidence of migration will not be lower when the cost of
migration is higher. In Section 4 we list tentative empirical implications. Section 5 concludes.
In the Mathematical Addendum we present a detailed protocol for solving the utility-
maximization problem of individuals who save jointly. That procedure yields the parameters
that we use in the streamlined analysis undertaken in the main text of the paper.

2. Formal modeling

In a population of would-be migrants, let the normalized income, y(t), of a member of this

population be given by



t) = 2 when working in the home country,
Y= a + 3 when working in the destination country,

where time, t, measured in months, is taken to be continuous. We assume that the income of
an individual is divided into two parts: the part needed to meet the essential cost of living,

denoted by I(t), and the remainder, referred to henceforth as the spare income, which can be

set aside as savings or spent on non-essential consumption. When in the home country, the
monthly essential cost of living is I(t) =1, and the monthly spare income is 1. When in the

destination country, the monthly essential cost of living is I(t) = 4, where f>1, and the
monthly spare income is « >1. The savings of an individual at time t are denoted by s(t). In

addition, we assume a zero rate of interest on savings.

The individual’s instantaneous utility function is u(x(t)) =x(t)+1, where
X(t) = y(t) —s(t) —I(t) is the individual’s non-essential consumption at time t. Resorting to
this representation assumes that covering the essential needs of living yields the same level of
utility (which is equal to 1) in both countries. The utility of the individual can be increased by

spending the spare income x(t) on consumption.

Let the intertemporal preferences of the individual be expressed by a continuous

discount term e, where & >0 is the discount factor. And let the expected length of the

working life of an individual be T months. Then, the lifetime utility of an individual is
T o,
U (x(t)) = j e tu(x(t))dt.
0

Suppose that the cost of migration which, for example, includes the fees paid to brokers and
the expenses associated with the initial settlement in the destination country, is equal to
C >0. To render migration feasible, in all the scenarios analyzed below we assume that

ST _1
ed(T-3€12) _
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C < 2T /3,*and that « is greater than some critical value o, >1: o> =aq,.

4 Consider an individual whose length of working life is T months. Then, this condition implies that the cost of
migration is not too high to prevent an individual who after co-saving for C /2 months was betrayed and left to
save on his own for a period of C months: C/2+C < T . We revisit this condition in the discussion that follows
the proof of Lemma M1 in the Mathematical Addendum.

® The condition on « being greater than the critical value «,, which renders migration a viable option under

lone saving and under joint financing, is derived formally in the Mathematical Addendum (consult Lemma M1).



As a benchmark for comparing joint financing with lone financing, we consider first

lone financing.
Saving alone

Consider an individual who at month t =0 starts to save to pay for his migration. As shown in
Lemma M2 in the Mathematical Addendum, it is optimal for an individual to save his spare
income of 1 every month. Because the individual’s savings need to build up to meet the cost

of migration, C, the number of months of savings is T, =C (the subscript A stands for alone).

Thus, the lifetime utility of an individual who saves alone at the said rate of 1 per month
(during which time his non-essential consumption is nil), and who then migrates (during

which time his non-essential consumption is «) is

U, = j e~'u(0)dt + ]ef’tu(a)dt. (1)

TA
Saving jointly

Consider now an arrangement between two individuals who save together to meet the cost of
migration. In all relevant respects other than for the distribution of the levels of affinity to
others, which are individual-specific and are characterized below, the individuals are similar
to each other. This implies symmetry and invites randomness in the selection of roles. We
model the joint saving arrangement as follows. The individuals agree to save the maximum
amount available to them in the home country (1 per month each), and they entrust the
accumulated funds to a trustworthy third party (for example, the funds are kept safe by a
village elder). Once the individuals save enough between them to pay for the migration of one
of them, which happens after C/2 months of joint saving, they toss a coin to select the one
who will migrate first; henceforth we refer to this individual as the winner of the draw, and to
the other individual as the loser of the draw.® 7 The winner of the draw migrates. Using his
higher income in the destination country, which allows for greater savings than at origin, he
helps the loser of the draw who stayed behind to reach the destination country as fast as

possible. After the departure of the winner of the draw, the individuals continue to save the

& The parking of the savings with a trusted third party assures the winner of the draw that once realizing the
outcome of the draw, the loser of the draw will not be able to opt out with all his savings intact, which would
have been possible had he kept his savings for himself.

" This mechanism of joint saving resembles a ROSCA (Rotating Savings and Credit Association); consult Geertz
(1962), Ardener (1964), and Besley et al. (1993).



maximum amounts possible: the loser of the draw continues to save 1 per month in the home

country, and the winner of the draw saves « per month in the destination country.8:°

To reinforce our argument, we add the assumption that the income to be obtained in

the destination country is high enough (namely « > ¢, ) so that if the co-saving agreement is

annulled after the winner of the draw migrates, the cheated loser of the draw will still find it
attractive to save for migration, starting to do so all over again from scratch (at the maximum
rate of 1 per month), but this time without seeking to strike a new co-saving agreement with

yet another individual (“once bitten, twice shy”).1°

In a population of would-be migrants which is of finite discrete size N that is not too
small, we next characterize and measure the risk involved in a time-phased co-saving
agreement and the link between this risk, the cost of migration, and the propensity to enter a
two-person co-saving agreement aimed at facilitating migration. We relate the severity of the
risk to the distance in social space. To quantify the risk, we characterize the proximity in
social space between a pair of any would-be migrants by a single number between zero and
one, which measures the personal bond between the individuals. Thus, for individual j

(J=12,..,N), the values of the levels of the affinity towards individuals i=1,2,...,N are
given by a sequence P’ =(p/,p),...,p)), where 0< p) <1 for i=12,..,N . In terms of
the p; values, we can think of individual j as if he were positioned at some point, surrounded
by a sequence of circles of increasing radii, such that a radius is inversely proportional to p/ .

Naturally, members of individual j’s closest family will be characterized by the highest p/ s,

thus occupying the most inner circle, members of the extended family of j by somewhat lower

p. ’s, thus occupy the next, wider circle, friends of individual j by lower still p/ s, occupying

8 In Lemmas M3 through M5 in the Mathematical Addendum we show that these saving rates maximize the
expected utilities of the individuals who save jointly.

% In the scheme described in this paragraph, the winner of the draw will contribute more to the common pot of
savings than the loser of the draw. However, in terms of the sacrifice that each of the two individuals makes
rather than in terms of the financial contributions that each of the individuals makes, such a saving program is
fair.

10 That a cheated would-be migrant will next time go it alone could be reasoned in yet another way, namely
from the “supply side” rather than from the “demand side,” as follows. An individual who was cheated is likely
to have a stronger temptation to make up for the lost time by cheating a co-saver should he have one.
Illuminating evidence is provided by Houser et al. (2012) to the effect that an individual who was treated
unfairly in one encounter is more likely to cheat in a subsequent encounter with another person. Alempaki et al.
(2019) present intriguing findings in a similar vein. Assuming that other would-be migrants are aware of the fact
that an individual was cheated (and that he is likely to be vengeful), they will be reluctant to enter a co-saving
agreement with him. Thus, it will be hard for a cheated individual to find a co-saver.

11 For sake of notational consistency, the affinity of individual j “towards himself” is pjj =1.



the third outward circle, and so on. Taking affinity to be mutual, we assume symmetry in the

p’ values, thatis, p/ =p;. To map the affinity values onto the risk involved in a co-saving

agreement, we assume that the probability that individual j assigns to the likelihood of
individual i honoring the agreement after individual i emerges as the winner of the random

draw of who will be the first to migrate - a probability that we term the trust parameter

between jand i - is p; .2

We now assemble the building blocks needed to construct the expected utility function
of an honest individual j (that is, of an individual who is planning to keep his part of the

agreement if he emerges as the winner of the draw), who co-saves with individual i.

First, individual j has a 50 percent chance of winning the draw, in which case he

departs after T,, =C /2 months (where subscript W stands for winner). This individual sends

back the maximum available amount of & per month which, when combined with the savings
of the individual who stayed behind (1 per month), allows the latter to take the migration

journey after an additional LC months, namely T, :EC+ ! C= Sta C months

l+a 2 lta  201+a)

after striking the co-saving agreement. (The subscript L stands for loser.) From then on, the
two individuals can enjoy spending their income in the destination country as they please.

Such a realization of the arrangement yields utility to an honest individual of
Tw ) T T T ) T )
Uyl = [eu()dt+ [ e u(O)dt + [ e u(a)dt = e u(O)dt + e u(a)dt, )
0 Tw T 0 T

where U, stands for the utility of an honest winner. (The superscript H stands for honest.)

Second, individual j has a 50 percent chance of losing the draw, in which case his

utility will depend on the behavior of the winner of the draw who, we recall, is assumed to
fulfill the agreement with probability p/. If individual i does not renege, the utility of
individual j will be

Tw T T T T
U, = [e”u(0)dt+ [eu()dt+ [eu(a)dt = [eu()dt + [eu(a)dt=Uy,  (3)
0

Tw T 0 T

2 There is an obvious variability in the likelihood of reneging caused by variability in the degree of social
connectedness among co-savers. We do not need to include other contributing factors to that variability, even
though, if such factors were to be added, that could accentuate it (operate in the same direction) as does social
distance. In a laboratory experiment, Hermann and Ostermaier (2018) find that a reduction of social distance is
likely to promote honesty in social interactions.



where U, stands for the utility of a loser of the draw whose co-saver is honest.

Third, with probability 1— p) individual i reneges, in which case individual j’s utility

Tw Ten T Ten T
Ug = | eu(0)dt+ [ eu(0)dt+ [ eu(e)dt= [ eu(O)dt+ [ e u(e)dt,  (4)
0 Tw 0

Ten Ten

where U, stands for the utility of a loser of the draw whose co-saver behaves dishonestly,
and where T, =C/2+C =3C/2 is the point in time at which the cheated individual can

take the journey after saving alone from scratch. (The subscript Ch stands for cheated.) *3

Joining together the preceding three building blocks, the expected utility of an honest

would-be migrant j is

1. 1 - 1+p! w, 1-p
EU" ZEU\/‘V_' +E|:piJU|_ +(1_ piJ)UCh]: 2pl Uv'\-/| + 2p| UCh’ (5)

where the third part of (5) follows from the middle part of (5) because from (2) and (3),
U =u,.

In an analogous manner, we formulate the expected utility of a “dishonest” would-be

migrant j from striking a co-saving agreement with individual i, which is

EUD:%U\A?—i_%[pijUL—i_(l_ pij)UCh] (6)

(the superscript D stands for dishonest), and where
Tw T
Ul = j e 'u(0)dt + [ e 'u(a)dt
0 Tw

is the utility of a dishonest winner, namely the utility of an individual who wins the draw, uses
the savings of his co-saver to reach the destination country soonest (after T, =C/2 months),
and thereafter keeps for himself the higher income that he gets there.

To assess the inclination of individual j to enter a co-saving agreement, we look at the

difference between the expected utility from co-saving (this utility is measured by EU", the

13 We assume that the winner of the draw either reneges, failing to remit from the moment he arrives at the
destination country (because his gain from reneging is then at its highest), or that he sticks to the agreement all
the way up to the migration of the loser of the draw.

10



expected utility of an honest would-be migrant, as given by (5)) and the utility from saving

alone (this utility is U, as given in (1)). We express this difference as a function of the trust

parameter, p), and of the cost of migration, C:
AU (p!,C)=EU"(p/,C)-U,(C). (7)

It turns out that for a given pair (p/,C), the sign of AU(p/,C) determines whether
individual j, no matter if honest or not, will strike a co-saving agreement with individual i: if
AU (p!,C) >0, then individual j will strike an agreement, whereas if AU (p’,C)<0, he will
save alone. For an honest individual j, the reasoning is trivial. For a dishonest individual j, we
have that EU®(p/,C)>EU"(p/,C) for any p/ and C; therefore, EU®(p/,C)>U,(C)
whenever AU (p/,C)>0. Additionally, there exists a range of p/ for which
EU°(p/,C)>U,(C) even though AU (p/,C)<0. However, the willingness of individual j
to strike a co-saving agreement with individual i when AU (p/,C) <0 constitutes a signal of

bad (dishonest) intentions of individual j. Therefore, noting that as a measure of mutual

affinity p/ is known to both individual i and individual j, rational individuals (honest and
dishonest alike) will not be keen to form co-saving agreements for a p’ for which
AU (p!,C)<0.

3. An increase in the cost of migration and the evolving propensity to form joint saving

agreements

To determine the relationship between the propensity to strike a co-saving agreement and the

cost of migration, we inquire how a marginal increase in this cost influences the range of the

levels of p! that render co-saving agreements desirable, namely that result in AU (p/,C) >0.
To this end, we treat the p! in (7) as a continuous variable, and we refer to this variable as p.
We denote by p,(C) the critical level of the trust parameter, expressed as a function of the
cost of migration, such that for any p> p,(C) it holds that AU(p,C)>0. We can then
formulate and prove the following proposition.

Proposition 1. Let the initial cost of migration be C,. Assuming that a marginal increase in
the cost of migration from C, does not overturn the decision to migrate, the critical level of

the trust parameter p,(C) is a non-increasing function of C in the neighborhood of C,.

11



Moreover, if AU(0,C,) <0, then p,(C) is a decreasing function of C in the neighborhood of
C,.

Proof. Looking at the middle part of (5), we note that (because, obviously, U, >U_,) the
derivative of EU" with respect to p; is strictly positive and, thus, so is the derivative of
AU (p,C) (as per (7)) with respect to p for any C. On comparing (2) and (1), we see that
AU(@LC)=U;(C)-U,(C)>0 for any C. Because the sign of AU(0,C)

= %UV;' (C) +%UCh (C,)—-UL(C)) can be any, there are two cases to consider.

When AU(0,C))>0, an individual is willing to cooperate with any individual
regardless of that individual’s level of trust. A (marginal) increase of the cost from C, does
not interfere with this inclination, namely in the neighborhood of C,, p,(C) is a non-

increasing function of C.
When AU(0,C,) <0, p,(C) in the neighborhood of C, can be characterized as the
level at which AU (p,(C),C) =0, that s,

2U,(C)-Uy (C)-Uq(C)

Pl =050 -Ua ©)

which, on taking the integrals in the expressions U, (C) (as per (1)), U, (C) (as per (2)), and

U, (C) (as per (4)), and on performing several algebraic steps, yields

_ted) 5o
2 1_e 2(1+a)
P (C) =1- .

(228

1-g e
Taking the derivative of this expression of p,(C) with respect to C and evaluating the

derivative at C, yields

G 2 sc Zg:i)b‘cl
oe? |l+a+(a-1er* " —2ae

2
1+ a)[ewbcl —1}

P(C) =~

(8)

Because
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3¢,
2
B oe <0,

a 2
(1+a) (elmﬁq —1]

we will be able to determine the sign of (8) once the sign of the term inside the square

brackets in (8) is known. We denote this term by

a-1

2 s 2 sc,
R(a, Cl’ 5) =1+a+ (a _1)el+abc1 _ 2a62(1+a)

a-1

Let z=6C, >0, and let S(a,z) =1+a+ (o —Det’ — 209" Then

V limS(a,z)=0, 9)

a>1z7-0

and

a-1 V4
S(a,z) (a@-Dae®™? [ez—lj 0
= > V.
a>1, >0 oz 1+ o

(10)

From (9) and (10) it follows that the function S(«,z) is positive for every o« >1 and z>0,

and that the function R(er,C,,0) is positive for every o >1, § >0, and C, >0. Therefore,

5C,

Se 2 R(a,C,,0)
2 sc 2
1+ a)[ew 1-1}

for every o >1, 6>0, and C, >0, which leads us to conclude that in the neighborhood of

p(’J (Cl) =- < O!

C,, p,(C) is adecreasing function of C. Q.E.D.

Proposition 1 implies that after the cost of migration increases (but not by enough to
overturn the decision to migrate),* a would-be migrant will be in favor of entering a co-
saving agreement with another would-be migrant who is farther away in social space
(positioned at a farther out trust circle). If so, then as the cost becomes higher, more

individuals will be predisposed to enter co-saving agreements to facilitate their migration.

14 The increase in the cost of migration will not overturn the decision to migrate as long as following the increase

oT

. . . . . € .
in the cost of migration, the inequality & > —————— continues to hold.

S§(T-3C/2
e’ 1
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At first sight, the lesser stringent stance described might appear counterintuitive: after
all, as the cost of migration increases, the financial penalty incurred when a co-saver fails to
keep his side of the agreement is heavier. However, as the cost of migration increases, the
gain from co-saving can outweigh the possible loss: because individuals discount future
consumption (6 >0), a gain realized earlier due to co-saving can overshadow the possible

pain to be sustained in the more distant future.

We have implicitly assumed that the increase in the cost of migration does not imply
or invite re-evaluation of the trust parameters that an individual attributes to his potential co-

savers. Namely individual j, who accords a trust parameter p.! to individual i when the cost of
migration is C,, will keep this evaluation of i when the cost increases to C,; the longer period

of amassing the required funds in the case of increased cost of migration will not render a
given co-saver riskier. A reason for that is that when an individual selects a co-saver, the
individual bases his choice on an established bond (mutual affinity in social space), not on a
characteristic of a passing event (the prevailing cost of migration). Thus, individual j need not
formulate his assessment of the likelihood of a potential co-saver sticking in the future to a
deal as a function of the associated amount; he bases the assessment on the circle in social

space occupied by the candidate co-saver.

Drawing on Proposition 1, we next show that following an increase in the cost of
migration, there is a time window during which the intensity of migration will not be lower

when the cost of migration is higher.

Proposition 2. Let there be a marginal increase in the cost of migration from C, to C, such

3+a C,. Then,
a

that this increase does not overturn the decision to migrate, and such that C, <

in the course of time span T =[0,C, /2], the intensity of migration under cost C, will not be

lower than the intensity of migration under cost C, .

Proof. Under cost C,, co-saving agreements will be formed among individuals with a trust
parameter of at least p,(C,) . Let there be N, such individuals. The manner of the selection of
individuals into pairs notwithstanding, let the number of pairs formed when the cost is C, be
M, . Then, there will be M, /2 individuals (winners of the draws in co-saving pairings), each

of whom migrates after T, =C, /2 months.
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Let the cost of migration increase from C, to C,, where the increase does not overturn
the decision to migrate. Drawing on Proposition 1, then under cost C, co-saving agreements
will be formed among N, individuals with a trust parameter of at least p,(C,) < p,(C,).
Therefore, N, > N,. Under any plausible manner of the selection of individuals into pairs, the
number of pairs M, formed among N, > N, individuals under cost C, will not be lower than
under cost C,: M, >M,. Then, after T =C,/2 months, M,/2>M, /2 individuals will
migrate. Additionally, the losers of the draws in co-saving pairs formed under cost C, will

3+—Olcl >T,. months, which follows from the assumption
+

@)

migrate at the earliest after T =

of the proposition that C, < i+a C,. Thus, during time span T=[0,C, /2], the intensity of
+a

migration under cost C, will not be lower than the intensity of migration under cost C,.

Q.E.D.
4. Examples of empirical implications
Our model gives rise to implications that can be tested. By way of illustration, we list two.

First, suppose that there are two communities: a tightly-knit community A, and
community B where social links between members are loose; it is not difficult to imagine that
communities can and do differ in their “trust capital” or “social bonds capital.” To begin with,
we will observe an earlier participation in migration in community A than in community B.
The reason is that individuals in community A are more likely to enter migration-facilitating
joint saving agreements than individuals in community B. However, as Proposition 1 reveals,
when the cost of migration increases, we can expect that individuals in community B will find
entering joint saving agreements to expedite migration more attractive than continuing to save
alone. Then, an increase in the cost of migration could narrow the difference in the timing of

migration between communities that are dissimilar in terms of their “social bonds capital.”

Second, we have in place a cost-based explanation for the emergence of co-saving
agreements: high costs invite increased collaboration which, in turn and inter alia, assumes the
form of established migrants subsidizing / supporting the migration of other members of their
home community. Other things held constant, the higher the cost of migration, the higher the
prevalence of co-saving, and the higher the incidence of subsidization / remittances. An

intriguing testable prediction is that remittances to a community which responds to a rising
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cost of migration by higher incidence of co-saving will be higher when the cost of migration

increases.
5. Discussion and conclusions

We have studied how financial cooperation between would-be migrants could accelerate
costly journeys to a country where incomes higher than at origin can be enjoyed. The mutual
financing of the cost of migration allows would-be migrants to avoid the need to take out
expensive loans from loan sharks or pawn-brokers (if loan-taking is at all possible), or
become a prey to smuggling organizations and traffickers.’®> We have shown that when the
risk involved in entering a co-saving agreement is taken into account, the propensity to enter
an agreement depends positively on the cost of migration. An increase in this cost may not be
followed by a slow-down in migration. And a possible intensification of migration is not
caused by the expectation of an even higher cost in the future, but rather by a shift of the line

of demarcation between the set of lone savers and the set of joint savers in favor of the latter.

In the analysis undertaken in this paper we have (implicitly) assumed that in terms of
productivity and chances of finding employment at destination, the individuals who
contemplate migrating are homogenous. Seemingly, in an “asymmetrical” environment with
relatively low-skilled would-be migrants and relatively high-skilled would-be migrants, if
mixed pairs were to form, a rational choice would be to forfeit the random selection of the
first-to-go migrant and instead to let the relatively high-skilled individual migrate first.
However, this is only “apparently” so because when skills heterogeneity is introduced, there is
a good chance that a high-skilled individual will gain little by pooling his savings with a low-
skilled individual. Consequently, we can expect a pairing of similar-by-skill would-be
migrants, with the random draw process retained. If matching by skill type is not possible and
a mixed match is considered better than no match then, because it is likely that the random
selection of the first-to-go will be replaced by an agreement that the high-skilled individual
will leave first, the entire ex ante risk involved in striking the joint financing agreement will
be borne by the low-skilled individual. If the affinity of this individual to the high-skilled
individual is close enough, then the risk taken might not be too high to negate the appeal of an

asymmetrical pairing.

In our analysis, we have based our definition of the “trust parameter” between the

would-be migrants on the concepts of proximity in social space and affinity. A possible

15 According to Djaji¢ and Vinogradova (2014), the interest rate on a loan a migrant takes from smuggling
organizations can reach 60 percent per annum.

16



alternative perspective, under which our main result will hold, is to base the evaluation of the
trustworthiness of a potential co-saver on the latter’s known and well-established record. An
example borrowed from the US financial scene can be used to illustrate. In the US, the best
possible credit (FICO) score is 850. Superimposing the US setting on our migration scenario,
suppose that when the cost of migration is low, individual j might prefer to save alone rather
than to save together with another individual because that individual’s score is 700, which
measured as a ratio of 850 is 0.82. Nor will individual j want to co-save with yet another
potential co-saver whose credit score is 600, which measured as a ratio is 0.71. These
measures, which are based on past record and a history of honoring financial commitments,
serve as individual j’s “yardsticks.” When the cost of migration increases, individual j gives a
second consideration to co-saving with someone else; and when the cost is becoming higher
still, individual j might even consider co-saving with the “0.71 individual.” The numbers
850/850 = 1, 700/850 = 0.82, and 600/850 = 0.71 serve as probabilities that an individual will
be a trustworthy collaborator in a pending saving scheme.

We have analyzed the difference between joint saving and lone saving under the
assumption that joint saving is undertaken by two individuals. We took this track because we
were of the opinion that this comparison nicely encapsulates the advantages and
disadvantages of joint saving as opposed to lone saving, and because doing so was
analytically manageable. A question could nonetheless be raised whether the qualitative
conclusions drawn from that comparison will hold if more than two individuals were to team
up to co-save: will not co-saving by, say, three individuals expedite migration by more than
co-saving by two individuals? In response, we note that an increase in the number of co-
savers is not an ideal means to expediting the accumulation of funds needed to facilitate
migration. In Stark and Jakubek (2013) we studied the optimal size of a joint saving scheme
in the context of the formation of a migration network, and we showed that this size is
limited: even though adding another individual to the scheme can expedite the migration of
co-savers, it is also the case that enlargement of the group of co-savers involves recruitment
of people who are farther away in social space. Thus, for a given cost of migration, the risk
involved in a bigger saving scheme can fast overshadow the potential gain from speeding-up
migration. Under what conditions individuals will be willing to bear the associated increased
risk when the cost of migration is increasing calls for a full-scale analysis of the optimal
number of co-savers as a function of the cost of migration, an intriguing subject for future

inquiry.
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Mathematical Addendum

In this Addendum we show that the saving rates presented in the main text of the paper are the
solutions of utility maximization problems of, respectively, a single individual who saves
alone, and of two individuals who save jointly, and we provide strict conditions regarding the
relationship between the parameters of the model (C, T, «, and &) which render migration a

viable option under the alternative schemes of saving.
Case 1: Saving alone

Consider an individual who at the beginning of month t =0 elects to save alone in order to
finance his migration. To concentrate on essentials, we assume that in each month the
individual saves a constant amount out of his spare income, say an amount s(t) =s, . In order
to meet the cost of migration, C, saving at this rate requires T,(s,) =C/s, months of saving,

where subscript A stands for alone. We normalize at 1 the maximum monthly amount
available to a single individual for saving after covering the essential costs of living. To

render migration possible, we assume throughout that C < 2T /3. Because the period of

saving cannot possibly be longer than the length of a working life, we have that s, € [C /T,l] .

Thus, the lifetime utility of an individual who saves alone at the rate of s, per month and then

migrates is
Ta(sa) T
U,(s,) = j e 'u(l—s,)dt + j e 'u(a)dt,
0 Ta(sa)

where u(-) is defined in Section 2 of the main text of the paper. We denote by s, the saving

rate that maximizes U ,(s,).

To derive a condition that renders migration a viable option for an individual who

saves alone, we denote by U, the utility of an individual who spends his entire working life

in his home country,
.
uHsjeﬁwnm. (M1)
0

In the following lemma we present a requirement that needs to be fulfilled regarding a
constellation of the parameters C, T, «, and & that render migration a viable option for an

individual who saves alone. We formulate the requirement as a condition on the parameter «
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because in the subsequent analysis this formulation will be the most straightforward one to

use.

Lemma ML1. If

(ﬂ-_
a>—2 1 _o (M2)

ed(1-3C12)

then there exists s, €[C/T,1] such that U,(s,) >U,, ; that is, it is desirable for an individual

to choose to save alone and migrate, rather than to spend his working life in his home country.

Proof. Let s, =1. Then, the lifetime utility of an individual who saves the amount of 1 per

month in order to be able to migrate is
1 l+a
U, ==(1-e)+—=(e-e").
W0 =5(1-e )+ =—=( )

The requirement that migration after saving at the rate s, =1 is a gainful option for an

individual is equivalent to the condition U, (1) -U,, >0. We have that

U,(®-U, =%(1—e—5c)+1+7"‘(e-§C —e-“)—%(l—e-“)

1 1 (M3)
:g[ae—éc —(a—l)ef‘w _1] S g[aefsscm —(a—l)e*ﬂ _1]

from which it follows that U,(1)-U,, >0 if %[ae”w —(a-1)e”" -1]>0, and for which
to hold it is sufficient that

e’ -1

o> ———.
@o(T-3C12) _q

Q.E.D.

Comment: from (M3) it is seen that the condition (M2) on « is sufficient, but not
necessary, for migration to constitute a viable option for a single individual. (In a similar vein,
in the case of a single individual, the requirement that C <2T /3 is sufficient, but not
necessary.) However, as will be clarified in Lemma M4 below, conditions (M2) and
C < 2T /3 are sufficient also for an individual who was cheated in a co-saving agreement to
find it desirable to start saving alone from scratch. Thus, in order not to introduce assumptions
superfluously, throughout our analysis we have chosen (M2) as the single assumption on «,

and C < 2T /3 as the single assumption on C.
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In the next lemma we derive the optimal saving rate of a single individual who on his

own accumulates the funds that are needed to facilitate the migration journey.

Lemma M2. If condition (M2) is met, then an optimizing individual chooses a saving rate

that is equal to his spare income, namely s, =1.

Proof. We consider the following maximization problem:

max {U,(s,)} = max 275, 1_(3,% J1re ei%—e*gr
ssfcrg U AYAY T ey S o ’

assuming that « > «, (defined in (M2)). Differentiating this objective function with respect to

sC
e [si [1—eSA J+5C(a +5, —1)]
e

5s2

s, yields

UL(sn) = (M4)

Because s,,0,C >0, the sign of U,(s,) is the same as the sign of the expression in square

oC

brackets in (M4). We denote F(s,,a,5,C)=s; (1—eSAJ+5C(a +s,-1).

First, we note that
Z—Z(SA,a,§,C)=5C>O. (M5)
In addition,
F(Le,5,C)=1-e +asC.
Using (M5) and (M2), we get that
FlLa,6,C)>F0a,,0,C).
Treating ¢, in (M2) as a function of T, we get that

a3(T1+C) (e"‘C —1)5

2
(ea‘r _e% )

a(T)=- <0,

and that
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lime,(T)=e* =a, .
T

Using (M5), we get that

dF (Lo, (T),5,C) . oF
o =a;(1) 5 Ly (1),5,C) <0,

and, thus,
F(l,a0,5,C)>TIim F@e(T),0,C)=F(,,,5,C)
=e[e®+5C-1]>0,
where the inequality in this last expression is due to the property that for any x>0,
e *+x-1>0. Thus,

0<F@Le«,,5,C)<F(a,5C)<FlasC) (M6)

forany 0<C<T, 6>0,and a > «,, which yields U, (1) >0. Additionally,

2 5C
—1 6C(2s, -6C
OF (s, 0,5.C)=2+e" 9C(25,-9C) ,|_ f(s,,C,5).
os2 A s A
A A
Because
of 52C3e%
_(SA,C,5):_ 3 <0’
00 Sa

2
we get that f(sA,C,§)<!5irrgf(sA,C,§):0 and, therefore, Z—F(SA,a,&CkO.
> S

2
A

Consequently, because with respect to s, €[C/T,1] the function F(-) is concave and for
s, =1 its value is positive (consult (M6)), this function can cross zero at most once for
s, €[C/T,1]. We denote by s,(«,0,C) a point on [C/T,1] at which F(s,,a,5,C)=0 for
given a, o, and C. Because the sign of F(-) is the same as the sign of U, (:), there are two

possibilities.
(i) Such s,(a,0,C) does not exist in the interval [C/T,1] and, thus, F(s,,,0,C)>0 in
the entire interval [C/T,1], which is equivalent to U ,(s,) constituting an increasing

functionup to s, =1.
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(if) Such s,(«,0,C) €[C/T,1] exists, in which case the function U,(s,) is decreasing in
the interval [C/T,so(a,é,C)), with s, =C /T being a local (border) maximum, and

increasing on (so(a,d,C),l], with s, =1 being another border maximum. However,
T ) T )

U,(C/T)= Ie“”u(Z—C /T)dt < Ie“”u(Z)dt =U,,, and from the proof of Lemma M1
0 0

and condition (M2) it follows that U, (1) >U,, . Consequently, U ,(C/T) <U,(2).

Pooling together (i) and (ii), we conclude that s, =1 is a global maximum. Q.E.D.

In sum, the optimal duration of saving of a single individual is

T,=T,(s,) =C/s, =C. The corresponding maximum lifetime utility is
Ta T
U,=U,®1) = j e 'u(0)dt + j e 'u(a)dt, (M7)
0 T,

which is the same as expression (1) presented in the main text of the paper.
Case 2: Saving jointly

We first analyze a joint saving agreement under the assumption of complete compliance, that

is, an agreement where the risk of reneging is not taken into consideration, which is
equivalent to setting the affinity level p’ at 1. Once we derive the optimal saving rates in a
complete-compliance agreement, we will show that allowing p/ <1 will not affect the
solutions of the corresponding utility maximization problems.

The individuals who save jointly choose three optimal saving rates in order to
maximize their lifetime utility. Initially, when the individuals are in their home country, then

until the draw determines who will be the first to migrate, they are indistinguishable. We

therefore assume that each of them saves at the common rate 0<s,, <1, accumulating
together the amount of 2s,, per month. Following the draw and the migration of one of the

individuals, the individuals can potentially save at different rates. We therefore denote by

S, €[0, ] the saving rate of the individual who is already in the destination country, and by

S,,, €[0,1] the saving rate of the individual who is still in the home country.

Under a complete-compliance agreement, the only random event is the one in which it

is determined who will be the winner of the draw. The winner will be able to take the
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migration journey after T, (s,,,) EL months, whereas the loser of the draw will be able to
H1

migrate after an additional period of

months; that is, at the point in time
SD—i_SHZ

T, (Sy1,Sh-,Sp) = + . Thus, the expected utility of an individual entering a
L\YH1'YH2'*~D
28, Sp+Su>

complete-compliance, two-person joint saving scheme is
1 1
EUcc (SHl’ SH27SD) = EUW (SHl’ Sz SD) +EU L(SH17 SH27SD) ) (M8)

where subscript CC stands for complete-compliance, and where

Tw (SH1) TL(SH1:SH2:5D)
U (SupSunrSo) = | eul-s,)dt+ [ eu(ar—s,)dt
0 Tw (SH1) (Mg)

]
+ j e u(ar)dt

TL(SH1:SH2:5D)

and
Tw (Su1) TL(SH1:SH2:5D)
U SunSunSo)= | eull-s,)dt+ [ e ul-s,,)dt
0 Tw (su1) (MlO)

]
+ j e u(a)dt

TL(SH1:SH2:5D)

are, respectively, the lifetime utility of the winner of the draw, and the lifetime utility of the
loser of the draw.

In the following lemma we specify the saving rates that maximize EU_.(S,;,Sy,:5p)

which we correspondingly denote by s, , s;;,,and s .

Lemma M3. Assuming that condition (M2) is met, the two individuals who are optimizing

EUcc (Sy1Su20Sp) Will choose rates of saving that amount to their entire spare incomes, that
is, s, =Sy, =1, S, =«a.

Proof. We consider the following maximization problem:
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max {EUqc (Su1:Su2,5p)}

C C (M11)
st.0<s,,,8,,<10<s, <q, + <T.
2SH1 Sn2 5o

The first two constraints in (M11) express the assumption that savings cannot be higher than
the corresponding spare incomes. The third constraint in (M11) means that the time needed to
accumulate the funds required to cover the costs of migration by the two individuals cannot be
longer than the working life of each of them.®

In order to show that the global maximum of problem (M11) is obtained for

*

S, =Sy, =1 and s, =a, we will proceed as follows. First, without loss of generality, we
will rewrite problem (M11) so that the objective function EU_.(S,,,Sy,,Sp) Will be replaced
by a simpler function of two variables, EU(S,,,,S,5). Then, in Supportive Lemmas M1 and
M2 we will derive properties of the derivatives of EU(s,,,S,) With respect to s, and
Sup- These properties will allow us to identify the maximum of EU(s,,,S,,) and,

consequently, the maximum of EU . (S,,,S,:Sp) -

By combining (M8), (M9), and (M10) we obtain

SH1 l%H;rSHzC*'SD
e*5t(4—23H1)dt+E _[ e (3+a—s,,—s,)dt
C
2511

1
EUcc (Sp1Shz:Sp) = E

N
ot 0O

-
e j e 21+ a)dt.
2 C N Cc
2541 SH2+Sp

We simplify the maximization problem in (M11) by merging the two saving amounts s,,, and
S, into one variable, s, =s,,+S,, and we denote s, =2s,,. Because we will show that
the solution of the problem defined in (M12) below is to set s, as high as possible, it follows
that this solution translates to a well-defined solution of (M11) with respect to s, and s ;

both amounts will have to be set at their upper limits. Namely

16 We do not contemplate a possibility that, for example, the migrant who turned out to be the second to go
decides not to migrate but stay in the home country and boost his consumption by spending there the funds sent
by the first migrant; the saving scheme is aimed at expediting the migration of both individuals.
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max {EU(S.,,S.p)
{ Lk (M12)
st.0<s,, <2,0<s,p <l+a,

where

Clspyn
EU (Sp:Sup) = 9 j e (4_SHH )dt

0

C/syy+Clsyp T
+ I e (3+a—syp)dt+ I e 2(1+a)dt |,
Clsyy Clsyy+Clsyp

and, thus, EU_.(S,;,Sy,,Sp) = EU(2S,1, S, +Sp) -

Compared to (M11), in (M12) we changed the permitted ranges of the variables to
strict inequalities with respect to zero, and we have done so because this is necessary for the
third condition in (M11) to hold. However, for the sake of simplifying the analysis that
follows, in (M12) we omit this condition; at the end of the proof of Supportive Lemma M3
below we show that, nonetheless, this condition is satisfied in the solution of problem (M12).

In what follows, we assume that « satisfies condition (M2).

We next draw on a property of the derivative of EU(:) with respect to s, that is
similar to the property found for U () in the proof of Lemma M2. That is, we first show that

oEU

a—(SHH ,Sup) 1S positive for the border value of s, =2, and that it can cross zero at most
SHH

once in the range s, €(0,2). Therefore, in the search for maxima, we can concentrate on the

borders where s,,, =2 and where s, — 0. With regard to the border s, =2, @(Z,SHD)

HD

is positive for s, =1+« , and it can cross zero at most once for s,; €(0,1+«) and, thus,
either a maximum is obtained for (s,,,S,,)=(2,1+a), or for s,; —0 the function EU (:)
grows beyond EU(2,1+ ). With regard to the border s, — 0, we get that the function

Iim0 EU(s,,,S.p) IS constant with respect to s,,, and, therefore, all that remains in order to

Spy
resolve existence and pinpoint the global maximum of EU() on the set

(Sh »Sup) = (0,2]x(0,1+ ] is to compare the values of EU (2,1+ ), IimO EU(2,s,,), and

SHp —>

IimO EU (S Swp) - We note that

Spy !
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oEU
08y

o= x(f X (M13)
_9C(suntsn)  5C [a +Sp —1+€™ (& + S,y —Spo —1)j|+esHD [l—eSHH ]sfm

(St +Suo)

e SHHSHD

2652,

We further note that the sign of ZE—U(SHH,SHD) for s,,, €(0,2] and for s, €(0,1+«] is the
SHH

same as that of the expression inside the curly brackets in (M13), which we denote by
o o o
G (S Spp» @, 0,C)=6C {a +Sp —1+€™ (& + S,y —Spp —1)}+e5**° (1—eSHH ]s,ﬂH.

In the following supportive lemma we present two properties of the G(-) function.

Supportive Lemma M1. G(s,,,S,.@,0,C) is a concave function with respect to

Sy €(0,2] forevery s, €(0,1+«], and G(2,s,5,a,9,C) >0 forevery s, € (0,1+«].

Proof. We first deal with the concavity property. We note that

oC

2 oc | 287, —e% (§°C? ~25Cs,,, +25%, )
TG (5150,2,8,C) = &

M14
— (M14)

2
ShH

Denoting the expression in square brackets in (M14), which determines the sign of

0°G
—— (S, Sup @, 0,C) , by
aSaH HH HD
5C
0(Syy @, 0,C) =257, —e™ (5°C* —25Cs,,, +257,, ),
we obtain

Thus, for 6 >0, we get that

9(Sw».0,C) <limg(s,y,, @, 6,C) =0,
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2
from which we get that $(SHH ,Supr @,0,C) <0.
HH

To determine the sign of G(2,s,,,,«,J,C), we note that

oC oC 1

(2,80, @5,C) =% [4+5C (1+ & — 5, ) |+ 6C (@ + 5, 1)~ de™ 7,

from which we obtain
5C
%(Z,SHD,(L&,C) =5C£1+eSHD ] >0,

so that, consequently, for « > ¢, (as defined in (M2)) it follows that
G(2,5,p5.2,0,C)>G(2,5,5,2,,0,C). (M15)
Treating ¢, in (M2) as a function of T, we get that

e3(T+C) (e‘sC —1)5

ay(T)=- (ea-r_esc)z <0, (M16)
that
!imao(T) —eC =g, (M17)
and that
dG(2,s (T),6,C) -
’ HD;;‘I_O il =5C{1+e5”°]aéa)<o- (M18)

Thus, from (M18) we get that

G(2 5119, @,6,C) > lIM G (2,55, % (T),6,C) = G(2,5,p,2,.,6,C)

€ isc ki s, (M19)
=5C| e +e™  +s5,,—1|+e* [4+5C(1-s,,)]-de™ 2.

Without loss of generality, we replace the term 6C >0 in (M19) by a variable r>0,

denoting

r

9(Syp. 1) = r[er Lo +S,p —1J+es**0 [4+ r(l—sHD)]—4e$+E.
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Then,

a1 {4 —re?+sie o Z_g? [4+1(1=55)+5S0p }}
0 re’w

H (SppT) = - (M20)
OSyp SHp

We denote the expression in curly brackets in (M20) by

r _rr r
7(Syp. r)=4—-re? +sie ™ ?—e 2[4+r(1—sHD)+sf,D}.

Then

r r r

Q(SHD,r):e}Hf’fE % (1 —25,5) + T +25,5 |- (M21)
OSp

We denote the expression inside the square brackets in (M21) by

r

o(r,s,p) = eSTD(r—ZsHD)+ r+2S,5,

and we get that

Iri_rfg 6’([‘, SHD) =0, (MZZ)
that
0%0 rese
—(r,s,,)=——>0, M23
6'_2 ( HD) SliD ( )
and that
00 eg r-S.,.)+S
E(r,sHD): ( SZHD) b _———0. (M24)
HD

Combining (M24) and (M23) vyields Z—f(r,sHD)>0 which, together with (M22), yields

o(r,s,5) >0 and, finally, we get that
U (5,5,7)>0. (M25)

0Sip

From (M25) we get that for every s, >0 and r >0,
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7 (Sup: 1) < lim y(5,5.7) :%[Bez —8-2r—2re" + rz} :

Spp —>®

Let

o(r)=8e2 —8—2r—2re" +r°.

It follows that

limg(r) =0, (M26)
that
¢'(r)=—(2¢' —2)—(2er —2e;j—2re“ <0, (M27)
and that
(p'(r):2{2e2+r—er (1+ r)—l}Tm. (M28)

Combining (M27) and (M28) yields ¢'(r) <0 which, together with (M26), implies that for

every r >0, ¢(r) <0 and, consequently, ;/(sHD, r) <0, so that also
9 (5.0,1)<0. (M29)

Now (M29) implies that for every s, >0 and r >0

r

9(Sp, 1) > lim g(Syp,T) =4-4e24+2re" —r?=p(r).

r

Because Iingp(r)zo and p'(r)=2(er—e2j+2r(er—1)>0 , then 0< p(r) < g(s,p,r) for

every s,,>0 and r>0 which, upon incorporating (M15) and (M19), gives us that
0<G(2,8,p.2,,0,C)<G(2,5,,¢,,0,C) <G(2,S,5,,0,C). This completes the proof of
Supportive Lemma M1. Q.E.D.

Returning to the main line of the proof of Lemma M3, from the properties of the

function G(-) in Supportive Lemma M1 we infer that the derivative of EU(:) with respect to
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Sy 1IN (M13) is positive on the right-hand border of the permitted range (s,,, =2), and that it

can cross zero only once in the range s, €(0,2).

Consequently,
VSHDE(O,lJra]vSHHe(O,Z)EU (SHH ) SHD) <max{EU (21 SHD)’ s“rno EU (SHH ) SHD)} J

namely for every s, €(0,1+ ] either the maximum with respect to s, is obtained at the
right border (s, =2), or it cannot be obtained if the function increases as s,,, —0 beyond
the level EU(2,s,,) and, thus, we can constrain our search for maxima to the borders

Sy =2 and s, >0.

Investigating first the border s, =2,

5
5C_sC [{1@“0 Jsﬁm +6C(a+Syp 1)]

OEU 2 s
~(2.50)=* ; (M30)
Sto 208,
. OEU . :
We note that the sign of —(2,s,,,) for s,; €(0,1+ ] is the same as that of the expression
HD
inside the square brackets in (M30), which we denote by
5C
H(SHD,a,é,C)z(l—esHD]sﬁD+5C(a+sHD -1). (M31)

We next will show that H(s,,,a,d,C) is concave with respect to s,; € (0,1+«] and,

using Supportive Lemmas M2 and M3 below, we will also show that H(1+ «,,6,C) >0.

Supportive Lemma M2. H(s,,«,0,C) is a concave function with respect to

Syp €(0,1+¢],and H(l+«,,6,C)>0.

Proof. Attending first to the concavity property, from (M31) we get that

T (s, 5,C)=2+e%
aSaD( HD ) 'iD

) 5C
0C(2s,, —0C
o*H { ( SHp )—Z}Eh(SHD,ayé‘!C)'

We next get that
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and, therefore,

h(SHD’aié"C) < L,ingh(SHDaa,é‘,C) :0,

o 0°H
which yields as—z(SHD’a'5’C) <0.

HD
To determine the sign of H(1+ «,«,6,C), we denote

oC

Hl+a,a,8,C)=2a6C —(1+a)? (e“a —1} = u(a,5,C).

We get that
ou fasa
a—(a,é,C) =et [6C-2(1+a)]+2(1+a +5C),
(04
that
oC
2 ta| 0°C*+2(l+a)’ —26C(l+
OH (2,6,C)=2-& [ (ra) —20C1 )]
oa (1+a)
and that
sC
3 3 3a1+a
TH (4,6,0)=22" 0. (M32)
oa (1+a)
From (M32) we get that
o’ u . Ou
,0,C)<lim ,0,C)=0,
~ 2 (@,6,0)<lim—* (2,6,C)
which, in turn, implies that
ou . ou
——(a,0,C) > lim——(«,0,C)=06C >0. (M33)
oa a—»© O

We note that (M33) implies that for > ¢, (recalling (M2)),

u(a,0,C) > u(e,,0,C).
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Treating ¢, as a function of T, from (M16) and (M33) it follows that

du(a,(T),5,C) =a(’)(T)6—’u(a,5,C) <0.
dT Oa

Recalling (M17), we get that

(e, 5,C) > lim 11(a,(T),8,C) = (e, 5,C)

-
=2e°°sC —(1+ e‘gc) (e“eb’c —1].

Without loss of generality, we replace 6C >0 in the preceding expression with a variable

r >0, and we rewrite this expression as

f(r)=2e'r—(1+ e')2 (e“re' —1} .

(M34)

We next show that f(r)>0 for r>0. Using the following representation of the

exponential function

2 3 4 n
=1y Y Y Y Y :
1 2t 31 41 n!
we can likewise write
: r r? re r r

el+Er _ 1 —

and, therefore,

_r 2 3 4 n
(1+er)2[e1+e' —1}:r(1+e’)+r—+ ' r ' +o.

r + r 2+ + ryn-2
2! 3l(1+e") 4l(1+e") ni(l+e")

Using (M35) again,

) 2 rS r4 r
e'r=r+—+—+—+..+
1 21 3! (n-1)!

n

+.,

and, thus,
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1+e" 21(1+e")” 3!Q+e")” 4l(1+e") n!l+e")

(M35)

(M36)



2 3 4 n
r r r r r r r
2e'r=er+er=er+r+—+—+—+...+
r 2t 3i (n=1)!
2 3 4 n
:r(er+l)+r—+—+r—+...+ '
1 21 3 (n=D)!

+...
(M37)

+....

Combining (M36) and (M37),
2e"r —(1+ er)2 (eM' —1}

e e e e
=l —— |t == |+ = |+..+ = +...
1 21| |21 310+e") | |31 4ll+e)? (n-1)! nil+e")"?

it} ity it
=r’ | =—— |+ | = ————— |41 | == ———— | +...+T - +...
T 21 3i(l+e") 31 4ll+e’)? (n-1! nll+e)™?

= [ 1 1
:nzz;‘r {(n—l)!_n!(uer)"-z}o’

where the inequality is due to r >0, and because

B 1
(n-D! nl@l+e)"?

>0 for any n>2.

Consequently, f(r)>0 for r>0.

In sum: 0< u(er,,5,C) < p(ex,,6,C) < u(ex, 5,C), which yields H(1+ea,a,5,C) >0.
This completes the proof of Supportive Lemma M2. Q.E.D.

We now return to the main line of the proof of Lemma M3, noting that from the

properties of the H(:) function displayed in Supportive Lemma M2 we infer that the
derivative with respect to s, in (M30) is positive on the right-hand border of the permitted
range (S,, =1+«), and that it can cross zero only once in the range s, €(0,1+«a).
Therefore, either the maximum at the border s, =2 is obtained for s, =1+« or it cannot

be obtained if the function increases for s,,, — 0 beyond the level EU (2,1+ ). Namely

v EU(2,5,5) < max{Eu (21+a), lim EU(2 sHD)}.

Syp €(0,1+a)

For the point (s,,,,Syp) = (2,1+a),

_(3ta)sC

EU (2,1+a):%{1+ae 2(ive) —(1+0¢)e“’7}. (M38)
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Comparing the expression for EU (2,1+¢) in (M38) with U, (recalling (M7)), and drawing

on the assumption that under condition (M2) saving alone for migration is rational, we see
that

EUQl+a)>U,>U,,, (M39)

(B+a)

where the first inequality in (M39) is due to ——= <1 forany a >1.
21l+a)

For the limit s, — O at the border s, =2,

IimO EU(2,s,,) = %[2"‘(1-{-0{)(6_‘%/2 90T )]

Spp =

and from a comparison of this last expression with (M38), we get that

_(8+a)sC S5C

EU(21+a)~ lim EU(Z,SHD):% 208 2™ _(1+a)e 2 |.

Now, we denote

_(3+a)sC S5C

J(a,C,8) =2ae 2 _(1+a)e 2

and we replace the variable o with b:Ll' Because «>a, >1, then be(0,b,), where
a+

2

b, =
° o, +1

<1. Thus,

2 o 9CUb) SCb
J2-1c,5|=Se 2 |2-b-e2 |[. (M40)
b b

_5C(1+b)

Obviously, Be 2 >0 and, therefore, the sign of J (%—1,&5} is the same as that of the

expression inside the square brackets in (M40). We denote

6Cb

K(b,C,5)=2-b—e 2 .

oCh

Then %(b,c,a):—(u%ezac}o and, therefore, K(b,C,o)>K(b,,C,5). Because

b, =

<1, it follows from (M2) that
o, +1
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2 [eﬁ(T—3C/2) _1]

5(T-3C12) _ o

b0(|')=

e’ +e
where we have expressed b, as a function of T. Then,

z[ea‘r _ e&(T—SC/Z) ] S

0, (T) = |:eé‘l' 4 @d(T-3c12) _2]2 >0

and

. 2 B

T"ﬂlbo(r)zmw=bw-
Furthermore,

5Chy (T)
dK(bOg:_)’C’g)=—%bé(T)(2+5Ce 2 j<o,

and, thus,

o
K(b,(T),C,8) > lim K (b,(T),C,5) =K (b,,C, 5) = 2—ev* _1+if>‘c .

Without loss of generality, we once again replace 6C >0 in the preceding expression by

r

r >0, and we denote x(r)=2 —gle’ —% . We note that x(0) =0, and that
+

2e" — eﬁ + e(l+ﬁjr (r-1)
(1+ e’ )2

K'(r) =

Let

r 1 r
I(r)=2e" —e +e[1+§] (r-1).

1+1 r

For re(0,1), I(r)>29'—e5+e[ ZJ (r—l).We denote

r 3

M(r)=2e" —e? +e2 (r-1)
for r €[0,1) . We then get that

M(0) =0,
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that
: 1ol gr o
M (r)=§e{4e2—e (1—3r)—1]
that

M’(0) =1,

and that
n 1 £ L r
M (r)=ze{8e2+e (9r+3)—1}>0

for r €(0,2) and, thus, M'(r) >0, and M(r) >0 for re(0,1).

For r>1,

r

I(r)>2e"—e? >0,

and, therefore, 1(r) >0 forall r>0. It then follows that «'(r) >0 for r >0 which, combined

with x(0) =0, implies that «(r) >0 for r >0.

Thus, we conclude that 0< K(bw,C,5)<K(b,C,5)=J(§—1,C,5j, and that

EU(21+a)— IimOEU(Z,sHD)>0. Therefore, the maximum at the border s,, =2 is

obtained for s, =1+«.

Now, at the border s, — 0, the limit function is

. 1 _
lim EU (S, S0) =g[2—(l+ a)e "T],

Shy =

this limit is constant with respect to s, , and
: e (a-1
U, - IlmoEU(sHH +Shp) =%>O,
SpH —>

so that adding in (M39) yields EU (2,1+ @) > Iim0 EU (S, Sip) -
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Summing up the discussion pertaining to the maximization problem (M12), the global

maximum is obtained at (s;,,S,p) = (2,1+a). Returning to the original problem (M11), we

obviously get that s;,, =1, s;,, =1, s, =«, and because

* + * *
2S4; Su,+Sp

c c E+—C <E+9:C<T,

2 l+a 2 2
the last condition in (M11) is also satisfied. This finally concludes the proof of Lemma M3.
Q.E.D.

We see that when they save at the optimal rates, the time of departure of the winner of
the draw and the time of departure of the loser of the draw are, respectively,
c 1 C C 1 1

~ --C, and T =T (s..,5.,,5.)=—+———==C+—C
25, 2 =TSz So) 2s1, So+Sy, 2 l+a

. 1
Ty =Ty (S42) :EC

+ . - : :
_ 3ta C. Thus, the maximum level of utility attainable under a complete-compliance

" 2(+a)

agreement is

T T
EU.. (L1 @) :%UW(l,l, a)+%UL(1,l, o) = j e~ 'u(0)dt + j e 'u(a)dt.
0

T
By comparison of the right-hand side of the preceding expression with (3), we see that

EU..(LLa)=U}' =U_, (M41)

where U, and U, are, respectively, the lifetime utility of an honest winner ((2) in the main

text of the paper), and the lifetime utility of a loser of the draw ((3) in the main text of the
paper).

We next dispose of the assumption that joint saving is of the complete-compliance
type, so as to incorporate the possibility that the winner of the draw will renege, neglecting to
contribute funds to enable the loser of the draw to migrate. We show that under assumption
(M2), the cheated individual will find it desirable to start saving alone from scratch at the rate

Se, (subscript Ch stands for cheated).!” We denote the utility of the loser of the draw when

the winner of the draw reneges by

7 In the main text of the paper we provide a rationale why striking a joint saving agreement with yet another
individual is not an appealing option for a cheated individual.
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Tw (Sh1) Ten (SHa:Scn) ] T )
Ua(SupSe) = | eul-s,)dt+ [ eul-sg)dt+ [ e u(a)dt,
0

Tw (Sh1) Ten (SH1:Sch)

+£ IS the point in time at which the cheated individual can take

where T, (Syy:Scy) =
H1 sCh

the migration journey after saving alone at the rate s, . In the following lemma we show,
given that condition (M2) regarding « holds, the cheated individual indeed finds it rational to
start saving from scratch, and that the saving rates that maximize U, (S,;,Sc,) are

Sh1 = Sep =1.

Lemma M4. If C<2T /3 and the condition (M2) is met, then saving alone in order to
migrate after being cheated is a desirable choice for an individual, that is, there exists

0<s,,,,Se, <1 such that U, (s,;,Se,) >U,, . For such o, the function U, (s,,,Sz,) obtains a
maximum at s,,, =g, =1.

Proof. The proof of this lemma is structured as follows. First, we will show that conditions
C < 2T /3 and (M2) are sufficient for saving from scratch in order to migrate to be a desirable

act for an individual after being cheated in a joint saving scheme. Next, we will define an

optimization problem for the utility function U, (s,,.Sc,), and we will exhibit Supportive

Lemma M3, which serves to reveal a property of the derivative of U, (s,,;,Sz,) With respect

H1
to s,,. This property will allow us to determine that the maximum value of U, (S,,,Sc,) IS
obtained at s;,, = s, =1.

To show that if conditions C <2T /3 and (M2) hold, then an individual who was
cheated in a joint saving scheme will be inclined to save for migration from scratch, we let

S.1 =Sc, =1. Then, the lifetime utility of a cheated individual is
Ug, (L1) = %[u ae ™ —(L+a)e™ |.

The requirement that the migration of a cheated individual after saving s, =s., =1 per
month is a gainful option is tantamount to the condition U, (1,1)-U, >0, where U,, defined

in (M1) is the lifetime utility of an individual who spends his entire working life in the home

country. We note that
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U @D -U,, = %[ae—sfsmz —(a-1e" —1] :

which translates into the condition

e -1

ed(1-3¢12)

a>

for U, (L) -U, >0, which is (M2). When condition (M2) holds, not migrating after a
period of saving any amount s>0 in an unsuccessful joint saving, which is surmised by the
utility function

Cls T
Ugo() = [ e u@@—s)dt+ [ e 'u(@)dt,
0

Cls

is not preferred to saving the amount of 1 per month while in a futile joint saving, and saving
alone from scratch the amount of 1 per month. To see this consideration clearly, we note that,

obviously, Ug,(s)<U,, and then, by incorporating (M2), we get that
Ucna(8) <Uyy <Ug, (L2).

We formulate the maximization problem of a cheated individual as

max {UCh (S1s SCh)}

SH1:Sch

2-3 B\ pos [ A BN qigf 2
= max{ (SHl[l—e 25“l]+—5 = (e g B SC”J+—§0[ [e e Son @O }} (M42)

¢ +£ST.

H1 SCh

s.t.0<s,,, S <1,

Replicating steps that are similar to the ones taken in the course of the proof of Lemma M3,
assuming that « satisfies condition (M2), and ignoring temporarily the second constraint in

(M42) which, as shown at the end of the proof of Lemma M4, is satisfied at the optimum

5C
_oc o [séh [1— g J+ SC (o +5q, —1)]

ouU e 2541 Sch
—Ch(SHl’SCh) =

0S¢, 255Z,

anyway, we get that

(M43)

The expression inside the square brackets in (M43) is the same as that inside the

square brackets in (M4) for s, =s, . Therefore, drawing on the proof of Lemma M2, we note
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that Y,

(S4;,1) >0, and %(sm,s@) can cross zero only once for s, €(0,1).
Ch Ch

Consequently,
Vs con Vs, conYen (Sh1sScn) < Max {UCh (Sups D), SLETOUCh(SHv SCh)} -

Thus, just as in the case of the function EU(:) in the proof of Lemma M3, either the

maximum is reached at the border s, =1, or it is not obtained if the function increases as

Sy — 0.

Next, we deal with the properties of U, (s,,,,1) . We get that

23
—aUCh (SHl’l) =£

5C
0T o {50 [a +e% (s, —1)] +2e%° (1— g1 ]s,ﬁl}
M44
S,y 265%, (M44)

Denoting the expression inside the curly brackets in (M44), which determines the sign of
oU,

H1

(Sy1.1), by L(s,, «,0,C), we show that L(-) is a concave function of s, €(0,1], and

that L(1, «,5,C) >0. This we do by using the following supportive lemma.

Supportive Lemma M3. For the function
5C
L(suy. @, 6,C)=5C[a+e% (s, —1) |+ 2™ (1—e25H1 ]531

it holds: (i) that the function is concave with respect to s,, (0,1, and (ii) that

L, «,6,C)>0.
Proof. We begin by proving part (i). From

oL =
g(sm,a,&C) =e° {50 +e*m (5C —4sHl)+4sH1}

H1

we get that

o°L
35}y

oC
] | 0C(4s,,—0oC
(SH11a15,C)=eéc{4+est1|: ( H21 )
28,

—4}}5 (s, @, 5,C).

Because
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e
ol 5°Cl¥m

—(Sy;,¢,0,C)=— <0,
65( H1 ) zsal

2
then I(s,,, «,6,C) < Iﬁirrgl(sHl,a,&C) =0, which yields 2—2L(SH1,05,5,C) <0.
> S

H1

Proceeding to prove part (ii), from the definition of the function L(-) we get that

36C

L(La,5,C)=2e" —2e 2 +adC.

We note that
a—I‘(l,oz,é,C) =6C>0,
ou

and, consequently, upon taking into account (M2), L(},«,5,C) > L1 ¢,,5,C). Treating «,

as a function of T, we then get from (M2) that

goT+30C/2 (e35C/2 _1)5

(1) =~ (ea‘r _e35C/2)2 <0

and that
1l-|m ao(l') — e3é‘C/2 = aoo .
Then,
dL(L «,(T),5,C) , oL
= — (@1, a,6,C)<0,

dT a,y(T) aa( o )

and, thus,

L(1,¢,8,C) > imL(L,z,(T),5,C) = L{Lz",6,C)

we sec o
=2e°—2e 2 4¢ 2 5C:e‘sc[2+e2 (§C—2)}.

Without loss of generality, we once again replace the product 6C >0 in the preceding

r

expression by a variable r >0, denoting the term in square brackets by v(r) = 2+e5(r—2).

We note that
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1 r
vI(iy==re? >0,
(r 5

so that v(r)> Iirrg v(r)=0. Consequently, 0<L(,a",0,C)<Ll«,,0,C) <L ,8,C),
which concludes the proof of Supportive Lemma M3. Q.E.D.

Returning to the proof of Lemma M4, from the properties of the function L(-)
displayed in Supportive Lemma M3, we infer that either the maximum of U (s,,,1) is
obtained for s,, =1, or that it cannot be obtained if this function increases for s, —0

beyond the level U, (1,1).
Recalling (M2), in (s,;,Ss,) =11,
Us,@D)>U,, (M45)

whereas for s, =1 and s,; -0,
. 1 .
Jim Ug (511,1) :g[z—(lm)e . (M46)

Comparing IimOUCh (Sy;,D) with U, (as defined in (M1)) yields

U, - |im0UCh(sH1,1)=§(a—1)e-éT >0, (M47)

and, consequently, upon making use of (M45), we get that U, (L) >U,, > IimOUCh(sHl,l)
and, therefore, for s, =1 the maximum is obtained at s,,, =1.

We now investigate the case of s, — 0. We get that

_oc
IimOUCh (SHl’ SCh) = %[2"' SHl(e o _]}_(1"'05)951

and then

oC

& [ s5C?
s, [ IC:TOUCh (SHl’sCh):| = Tal >0.
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Consequently, the function IimOUCh(s Se,) 1S convex with respect to s, €(0,1], which
Sch ™

H1?
implies that either it obtains a maximum for s, =1, or a maximum cannot be obtained if the

function increases for s,,, — 0 beyond the level IimOUCh (L, se;,) - We note that
Sch

lim [Iim UCh(sHl,sCh)}:%[2—(1+a)e“”].

Sy1—0| sch—0

Comparing this last expression with (M46), and using (M47), we see that

lim [Iim uCh(sHl,sCh)} lim Ug, (5.0.)

S1—0| scp—0

and, therefore, U, (1,1) >U,, > lim [Iim UCh(sHl,sCh)}. Also

SH1—0| scp—0
] 1 s _
lim Ug, (1 56;) :g[l+e R (Ata)e ],
and
- 1 —-6C/2 -oT
u, —slclhrDOUCh(l,sCh)=g[(1—e )+(a-De ]>o
because (1—e‘5c’2)>0 for 6C >0 and « >1. Therefore,
Ue, (LD >U,, >s|ciToUCh(1’ Sen)

Summing up the analysis pertaining to the maximization problem (M42), U, (L1) is

the global maximum over (s,,,,Sc,) = (0,1]x(0,1], obtained for (s;,,sc,) = (L1) . Because

*

c.,c_cc.s
2s,, S 2 1

— =
C

+—<T in

and because we have assumed that C < 2T /3, then also the constraint >
SHl SCh

(M42) is satisfied for (s;,;,Sc,) = (L1) . This concludes the proof of Lemma M4. Q.E.D.

It follows then that after T, =C/2 months of a futile joint saving, the cheated
individual will spend an additional C months saving, this time doing so alone. We denote by

Ten =Ten(Sh Sen) =C /(25,,,) +C /s, =3C /2 the point in time at which he will at last be
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able to migrate. Thus, the utility of the loser of the draw when the winner of the draw reneges,
namely U, as introduced in (4) in the main text of the paper, is
Tep T
U =Ug @) = [ e”u(0)dt+ [ e u(a)dt.
0 Ten
Then, the expected utility of an honest would-be migrant j (an individual who is
inclined to keep his part of the agreement if he were the winner of the draw) derived from

striking a joint saving agreement with individual i is

EU" (Sh1:Sh2:Sp+ Scn)
1 1
:E EUcc (S, SHZ’SD)+E|: PEU cc (Shyr Sz SD)+(1_ p)UCh(SHUSCh):I (M48)

1+ p)

1-p/
EUcc (SHl’SHZ’SD)+TpUCh(SH1'SCh)'
Lemma M5. If T >3C/2 and condition (M2) is met, then the saving rates S,,;,S,,,Sp,Sch
that maximize EU"™ (S,,;, 5,5 Sp»Scn) ar€ Sy =Sh, = Se, =1, and s, =« for any level of p.

Proof. We can write the maximization problem that pertain to the expected utility defined in
(M48) as

max {EU " (SHrSHz'SD’SCh)}

SH1:SH 2:5D:Sch

SH1:SH 2,5D:Sch

1+ p/ 1-p;
= Mmax { 2pl EUCC(SHl’SHZ’SD)+TpIUCh(SHl!SCh)}'

First, we note that because (1+ p’)>0 and (1-p/)>0, there is no “trade-off” between the
maximized functions EU.(-) and U (-) (both functions enter the objective function with
non-negative coefficients). Second, the maximization of EU_.(-) and the maximization of
U, () each yields the same result with respect to the common variable s, ; that is, in both

cases s, =1.

Summing up: the values of s,,,S,,,Sp,Se, that maximize EU™(:) are the same as

those that maximize EU..() (Sh;,ShoSp from Lemma M3), and U () (Sp,,Se from

Lemma M4) separately. Q.E.D.
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Thus, the optimal level of the expected utility of a honest migrant, namely EU", as

introduced in (5) in the main text of the paper, is

1+ p/ 1-p/

EU" =EU" (S, 50,50, S0) = EU. (L1 )+ Ug, (L1)

1+ pij

i
EU,. +1T‘O'uCh

1+ p| 1-p/
ZTUV'J +TUCh,

where the last equality above follows from (M41).

The expected utility of a dishonest would-be migrant j from striking a joint saving

agreement with individual i is
D _ 1 D 1 i _nl
EU (SHl’SHZ’SD’SCh)_EUW (SH1)+§|:pi EUCC(SH17SH2’SD)+(1 P; )UCh(SHl’SCh)]

where superscript D stands for dishonest, and

To (Su1) T
UL (s,,) = j e u(l—s,,)dt + j e 'u(a)dt
0 To (SH1)

is the utility of a dishonest individual who ends up as the winner of the draw, and who uses

the savings of his co-saver to embark on migration after T,(s,,)=C/(2s,,) months. By

proceeding in a manner that is similar to the ones undertaken in proving Lemmas M4 and M5,

it can be shown that for the dishonest individual, the saving rates that maximize
EU®(Sy1rSu0r S Sey) are Sy, =Si, =So, =1, and s; =a. Then, T, =T,(s;,,) =C/(2s,,)

=C/2=T,,
Ty T

Up =U(sn) = [ e u(O)dt+ [ eu(a)dt,
0 Tw

and the expected utility of a dishonest would-be migrant, namely EU®, as introduced in (6)

in the main text of the paper, is

o x x 1 1r . -
EU® = EUP (S, Suz: S5, 50) = 5 Ui + 5| P/EUce +(1- 9 )Uo |

:%U\E +%[pijUL +(1— pij)UCh:|’

where the last equality above follows from (M41).
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