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Crop Irrigation Scheduling via
Simulation-Based Experimentation

Hovav Talpaz and James W. Mjelde

A method for optimizing the irrigation schedule is presented. When the response
surface, generated by "experimenting" with the crop simulation models is concave
(convex), an optimal solution can be found. The process is iteratively repeated till
convergence is achieved. Corn irrigation scheduling is demonstrated, with soil
moisture levels as control variables.

Key words: design matrix, experimentation, quadratic programming, response surface,
simulation.

Intraseasonal water allocation to a single crop
has been studied extensively. Previous studies
have emphasized the need to coordinate irri-
gation scheduling with several factors includ-
ing economic and physical constraints, amount
of soil moisture available at the time of irri-
gations, growth stage of the plant, interactive
effects from previous and/or subsequent irri-
gation, and the effect, timing, and stochastic
nature of weather conditions (e.g., Hagan;
Shipley, Regier, and Wehrly; Jensen and Mu-
sick). Experimental data incorporating these
factors which can be used in addressing the
irrigation scheduling question are limited. The
typical approach in obtaining these data has
been to perform expensive and time-consum-
ing field experiments at a specific location.

Recent developments in reliable crop-growth
simulation models have presented opportu-
nities for advanced production and policy
planning in macro- and microeconomics (Bog-
gess, Musser and Tew). The use of simulation
models was widely accepted in agriculture even
a decade ago (e.g., Johnson and Rausser); yet,
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in practice, simulation models have been cau-
tiously implemented. One reason was the lack
of efficient methodology for validation and cal-
ibration which is needed for the introduction
and adaptation of a model into a new location
and its environment. Developments in non-
linear parameter estimation using nonlinear
optimization techniques (Little and Sail, Mur-
tagh and Saunders) have made it possible to
perform model estimation and calibrations
adding to the reliability and applicability of
simulation models. Such an implementation
was performed by Talpaz, da Roza, and Heam
in calibrating a cotton simulation model. These
developments coupled with decreasing re-
search funds are leading to an increased use of
crop-growth simulation models for production
and policy analysis.

The use of crop-growth simulation models
in irrigation scheduling is not a new concept.
Numerical search techniques to determine the
optimal irrigation strategies have been applied
by Harris and Mapp (1980) and Zavaleta,
Lacewell, and Taylor. The results from these
studies indicate that optimal irrigation strat-
egies use less water and energy and provide
greater net returns than conventional water in-
tensive irrigation strategies. A limitation of
these studies is that the decision rules are de-
veloped ex post fashion, and therefore are not
implementable at the farm level. Economic
simulation studies incorporating crop-growth
simulation models were conducted by Ahmed,
van Bavel, and Hiler and Harris and Mapp
(1986). Such studies can not guarantee an op-
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Figure 1. Interface between optimization and experimentation

timal irrigation strategy without simulating all
possible irrigation strategies. Results reported
by Harris and Mapp (1986) indicate that at
least some water-conserving policies dominate
by first-order stochastic dominance the more
typical water-intensive irrigation strategy.

A methodological technique that has been
employed to obtain ex ante decision rules is
dynamic programming (DP). Burt and Stauber
developed a DP model for irrigation invest-
ment and associated problems of scheduling
for a sixty-day period for corn production.
Stopping short of fully simulating crop re-
sponse to water, Beilorai and Yaron developed
an empirical response function of grain sor-
ghum to soil moisture, which was later used
in a sophisticated way by Yaron and Dinar in
a DP-LP framework to allocate irrigation water
optimally during peak seasons. However, the
use of an estimated response to water in lieu
of full-scale simulation tends to localize the
results based on the empirical data used for
the response function. In contrast, a theoreti-
cally oriented simulation model (i.e., where
basic biological processes are determined func-
tionally) has a wider spread of applicability,
reliable response to dynamic changes of the
environmental conditions and, most impor-
tant, can respond functionally to the more re-
alistic -stochastically behaved-environ-
ment. The Yaron and Dinar study was also
limited by the deterministic setup governing
the environment. McGuckin et al. state two
especially important attributes for models de-
signed to determine ex ante irrigation strate-
gies: the model should account for stochastic
weather conditions and should provide flexible
decision rules.

Previous studies have indicated that there
is a potential for increased water use efficiency
in irrigation from developing optimal ex ante
decision aids. This increased efficiency is in
addition to that brought about by recent im-
provements in irrigation equipment (Mjelde et

al.). When simulated production processes are
optimized subject to real-world stochastic en-
vironmental conditions using stochastic ex-
perimentation, a powerful information base can
be created to assist the decision-making pro-
cess (Biles and Swain). The objective of this
study is to illustrate the implementation of the
methodology of optimization via experimen-
tation for irrigation scheduling. This meth-
odology combines the use of crop-growth sim-
ulation models and optimization techniques.
Such a methodology may be applied beyond
irrigation scheduling in agricultural econom-
ics, e.g., pesticide applications.

Optimization via Simulated
Experimentation

Obtaining optimal irrigation scheduling under
stochastic environmental behavior is funda-
mentally different from that under a deter-
ministic environment (Bertsekas). In the for-
mer case we have to deal with uncontrollable
and uncertain variables. The errors encoun-
tered under stochastic conditions reflect both
the model's bias and the unforeseen environ-
mental behavior. Therefore, the need for ex-
perimentation arises. The early foundation for
optimization via experimentation was rigor-
ously developed by Box and Hunter, following
the initial conceptual work by Box and Wilson.
Optimization via experimentation is a meth-
odological procedure that combines the seem-
ingly disjoint domains of experimentation and
optimization. This procedure has been used in
different, primarily nonagricultural industries
(e.g., Biles; Farrell, McCall, and Russell). The
interfacing of experimentation and optimiza-
tion is illustrated in figure 1.

The objective of the optimization procedure
is to take the current (kth) experiment re-
sponses (Rk) into account to provide new val-
ues, Xk+1, on the controllable inputs to be used
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in the next set of trials with the experimental
procedure. This iterative process involves ex-
perimentation yielding Rk, and optimization
yielding X k+l, which is initiated at a selected
set of starting values, X°. The process is re-
peated until an optimal solution, X*, is ob-
tained.

In this study the experimental procedure
employs a crop-growth simulation model. The
response variables are the per-acre net returns
generated from the simulation model over dif-
ferent weather patterns, while the control vari-
ables are soil moisture levels, where soil mois-
ture is measured as a fraction of the moisture
level at field capacity.

Many methods of optimization have been
proposed in conjunction with experimentation
(for a detailed discussion of these methods, see
Biles and Swain). Our proposed combined
technique is an extension of the quadratic re-
sponse surface methodology (e.g., Myers).

The quadratic response surface methodol-
ogy can be summarized as follows. First, an
interpolating polynomial (second degree in our
case) is fit, using least squares regression and
is used as a local approximation to the function
in the region of interest. In this regression, the
response, R, is the dependent variable, while
the decision vector, Xk, is composed of the
decision independent variables. The approxi-
mation given by the estimated response is the
basis for the second step of the overall meth-
odology; the maximum of the fitted polyno-
mial is solved for with respect to the decision
vector, X k+l . These values of X become the
new independent variables of the first step, and
so on. This iterative process continues until
convergence is achieved.

Mathematically, forsaking rigor, this meth-
odology is summarized by the following pro-
cedure: For the first iteration: Set the iteration
index k = 0. For all other iterations: Set k =
k + 1. Let Xk be a row vector containing the
n elements of the decision set and F(Xk) be the
corresponding crop simulation objective func-
tion response (i.e., per-acre net income). If m
such trials are considered, the corresponding
information is held by Xk[m x n] matrix, and
F(Xk) m-element vector, respectively.

For the neighborhood of Xk + AX, obtain a
second-order approximation using Taylor's
series:

(1) F(Xk + X) = F(Xk)+ VF(Xk)'X

and let

Rk = F(Xk + AX),

where AX is a perturbation [m x n] design
matrix (see an example in the appendix), V is
the vector of the gradient estimates with re-
spect to X, and V2 is composed of estimates of
the hessian matrix for the function F.

Consider AX to be the hexagonal experi-
mental design matrix (Box and Hunter), which
is known to possess the orthogonality and ro-
tatability characteristics and shown to be the
most efficient of those considered by Mont-
gomery and Evans.1 Performing "experi-
ments" amounts to the evaluation of the sim-
ulation model m times, each with a different
set of irrigation triggers, or "treatment," spec-
ified by the corresponding row in the (Xk +
bAX) matrix to obtain the response vector R[m
x 1]. From this response, a full quadratic func-
tion of the type R = tu'X + X'`QX(the quadratic
response surface of the objective function) can
be estimated using OLS regression. R is the
estimated response; 6 is a scaling unit of in-
crement; AL and Q are estimates of the vector
of linear and quadratic coefficients, respec-
tively. If 2 is negative (semi)definite, then con-
cavity is guaranteed and the conditional global
maximum can be found by solving the qua-
dratic programming (QP) problem.

(2) Maximize Y = ,'X + X'QX
S.T.

(3)

(4)

AX B

X> 0,

where A is a matrix of technological restric-
tions, Xopt are the values which maximize (2),
and B is a vector of constraint levels. In the
case study discussed below, equation (3) sim-
ply represents bounds on the xj's. Note that
additional iterations are necessary since tt and
Q are conditional on the original first guess
Xk =°. Repeat using the newly obtained optimal
values of X, namely, setting Xk+1 = Xot. The
process ends if convergence is achieved or a
prespecified maximum number of iterations
has been performed. Only a few such iterations
were necessary for the case study discussed
below.

' For details, see Biles and Swain (1980), pp. 136-55.
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A few technical remarks are necessary. Solv-
ing the QP problem equations (2) through (4)
provides a fast convergence and can be per-
formed using the QP solver designed by Har-
paz and Talpaz (1986). Difficulties arise when
Q is not negative (semi)definite. In such cases
an alternative approach can be taken, such as
the linear (setting Q = 0) gradient projection
algorithm as modified by Zoutendijk (see Bard).
However, in such cases a local rather than
global optimum may be achieved! Note that
because of the stochastic setting, whenever
convergence is achieved, it only converges in
probability to the optimal strategy, local or
global, respectively. A major consideration
must be given to the specification of X. These
decision variables must be carefully designed
to provide meaningful decision space and be
dimensionally low. Examples of possible de-
cision variables for irrigation scheduling are
dates of irrigation applications and quantities.
However, a much better choice is the fraction
of available soil moisture threshold. It can be
shown that moving away from absolutely de-
fined decision criteria like dates or quantities
toward policy-natured definitions like those
based on relative water stress or their proxies
(i.e., soil moisture level), not only makes more
sense economically but also increases conver-
gence efficiency. Equation (3) usually deter-
mines the feasible region for the decision vari-
able in X. For example, lower limits on soil
moisture triggering irrigation.

Important as they are, the optimal strategies
described above are not the only interesting
information generated by the optimization
process. Competing suboptimal strategies
should be collected along the optimization
process. Such information could provide use-
ful data under real-world conditions where
some aspect may not be quantifiable.

A Case Study: Irrigated Corn

The above methodology has been applied to
the corn simulation model developed by Stap-
per and Arkin under Texas High Plains con-
ditions. The model simulates daily corn growth
and development. The growth process is sen-
sitive to environmental factors such as tem-
perature, rainfall, and soil moisture deficit. Soil
moisture over the root zone is computed dy-
namically, accounting for water uptake
(evapotranspiration and evaporation) and

rainfall plus irrigation. It was calibrated for
various genotypes at six different locations
across North America. The code used here was
extended and updated beyond the 1980 pub-
lication date (Jackson and Arkin).

Daily data on temperature, and rainfall for
thirty years for the High Plains region of Texas
comprise the environmental data set. The sim-
ulation model's parameters associated with soil
characteristics have been adjusted to reflect the
High Plains area. Prices reflecting current con-
ditions for water and corn and other variable
costs are employed in calculating the net in-
come per acre. The common practice in the
High Plains regions is to plant corn at near
field capacity soil moisture level. Hence, a pre-
planting irrigation is assumed. To demonstrate
the methodology, it is further assumed here
that a maximum of three irrigations are to be
allocated beyond preplanting. Examination of
unpublished experimental data for the High
Plains area indicates that the number of post-
plant irrigations varied between three and eight,
with four and five irrigations being the most
common (Onken). Furthermore, previous re-
searchers have indicated that most fields are
over irrigated (e.g., Harris and Mapp 1986;
Mjelde et al.). Assuming three post-plant ir-
rigations is not unrealistic with the preceding
two observations in mind. Also, assuming three
irrigations allows for easier demonstration of
the optimization via experimentation meth-
odology. The quantity of water applied each
time is such as to bring the soil profile at the
root zone depth to field capacity. This is the
common practice in the real world, although
one finds other application practices too. Fill-
ing to soil capacity along with only three pos-
sible irrigations is taken here for ease of ex-
position. The methodology is flexible enough
to enable other modified strategies. Note,
though, that whenever the per-irrigation setup
cost is relatively high, optimal policy will be
shifted in favor of the filling to soil capacity
strategy anyway.

The decision criterion used here is the avail-
able soil moisture level in the root zone. The
problem is to find the soil moisture threshold
levels (in fraction of field capacity), or Xj (j =
1, 2, 3), which trigger corresponding irriga-
tions. That is, irrigate when soil moisture <xj.
Note that these thresholds, 0 - xj < 1, may
or may not be equal to each other.

Experimentation aimed at estimating the re-
sponse surface is handled through the evalu-

Talpaz and Mjelde
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Table 1. Net Returns ($/acre) and the Corresponding Decision Variables for a Single Set of
Ten Randomly Selected Years for the Simulated Corn Crop at Each Iteration Ck

Year CO C' C C C4

1954 18.79 -23.73 198.66 183.57 191.42
1955 100.74 76.38 267.11 270.37 248.91
1958 -10.76 23.58 215.21 205.74 217.54
1961 205.90 37.20 161.98 193.41 200.82
1962 248.40 115.49 175.14 247.40 251.00
1963 69.13 -29.98 240.71 232.93 229.26
1968 121.17 32.17 225.90 229.47 211.62
1969 150.05 82.96 237.81 240.86 222.04
1970 32.38 -37.99 196.81 169.21 198.80
1977 132.04 28.36 221.76 224.26 215.50

Mean 106.78 30.44 214.11 219.72 218.69
Standard

deviation 82.43 51.07 31.71 31.30 20.00
xI .50 .015 .142 .182 .195
x2 .50 .260 .371 .356 .256
X3 .50 .107 .333 .331 .295

Note: Net returns are calculated as gross returns minus irrigation and harvesting costs. Other costs, common to all considered alternatives,
like planting, seeds, cultivation, fertilizers, and land, are not accounted for. The price of corn was $1.75/bu.; the cost of irrigation water
was $2.66 per acre-inch.

ation of the simulation model's various com-
bination sets of xj (i = 1, 2, 3) defined by a
uniform precision central composite design
matrix (see the appendix and Montgomery and
Evans) with a = 1.684, a unit increment of 6
= 0.15 (Biles and Swain, pp. 264-69), and a
single central point.2 The initial guess is ar-
bitrarily set at X° = (.5, .5, .5). In order to
account for a stochastic environment for each
of these combinations, a set of ten years (ran-
domly picked from the available set of 30 years)
of environmental data was selected randomly
for a total of 150 evaluations per iteration.
These iterations are composed of ten years of
weather conditions and fifteen different soil
moisture triggers as given by the experimental
design matrix (appendix).

Results

Three case studies are presented to illustrate
the flexibility of the optimization via experi-
mentation methodology. In Case I a random
set of ten years' weather patterns is selected.
These same ten years are then used during each

2 This level of a (parameter of the design matrix), which is needed
for greater stability and concavity of the estimated response func-
tion, corresponds to six central points. Since randomness is intro-
duced here by drawing particular years, each such central point
would generate an identical response. Hence, only one central point
is used.

iteration of the experimentation process. For
Case II a different set of ten years is randomly
selected from the thirty years of data for each
experimentation iteration. These years are
drawn with replacement occurring. Case II
provides for a more stochastic setting. Finally,
the optimal soil moisture levels are deter-
mined using all the thirty years of weather data.
In all cases the convergence, or stopping, cri-
terion used is

[I 1F(Xk+l)- IF(Xk)l I F(Xk)] < 0.015.

Case I

Table 1 shows the optimal decision sets, the
mean, and standard deviation of the net in-
come per acre for each iteration. It is inter-
esting to note that not only the mean net in-
come increases toward achieving optimal
solution, but the solution is becoming more
robust. Apparently, the improved policies are
working primarily at increasing the net returns
in poor years and much less so at increasing
the net returns from good years.

The contribution of the optimal policy over
the arbitrarily picked initial decision levels is
depicted in figure 2, with the curves repre-
senting CO and C4 from the above table 1. It is
clear that, while both curves oscillate at basi-
cally similar frequencies, the optimal policy
leads to a much more stable net income. It
appears that the optimal set of the decision
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Figure 2. Optimal (solid) vs. initial guess (gray) lines of net income (in $/acre)

variables cannot completely override the in-
fluence of weather; but, by following the op-
timal decision criteria, a producer can sub-
stantially moderate fluctuations caused by
weather.

Cases II and III

In these cases a new set of randomly picked
years was used in evaluating each iteration. By
picking the years randomly, a stochastic situ-
ation is maintained (not quite in the event of
a small population, as in our case where ran-
dom drawings for weather conditions must
proceed with replacement to avoid exhausting
all choices). Comparing the results for each
iteration, however, is meaningful only for the
moments of the samples. Table 2 shows the
results of this procedure.

It is instructive to note the similarity be-
tween the final optimal decision sets (the C4

column) in both cases despite the relative dis-
similarity in years selected between them. As
a final test for the above apparent robustness,
this procedure was performed on the entire

thirty years of data. The final optimal solution
set was Xo, = (.203, .318, .310), with a mean
net income of 226.97 and a standard deviation
of 22.61. These results compare better with
Case II than Case I, but do not differ drasti-
cally. The practical meaning of all three cases
is to initiate the first irrigation when soil mois-
ture reaches about 0.2 and to irrigate again
once it falls below 0.3.

The strategy as reflected from the optimal
solutions is very simple: hold on "longer" or
drier early in the growing season, and be more
"protective" of the plants as the season pro-
gresses. Such a strategy is intuitively appealing
when one considers that in the later part of the
season reproductive stages occur and grain
mass is being generated. Agronomic research
has shown that the corn plant is more sensitive
to soil moisture stress later in the growing sea-
son (Rhodes, Shaw and Newman).

Remarks

The methodology described and demonstrated
here provides an approach to develop ex ante

Table 2. Mean, Standard Deviation, and Optimal Decision Set of Net Income ($/acre)
for Different Sets of Ten Randomly Selected Years for the Simulated Corn Crop at Each
Iteration Ck

Iteration CO C' C C3 C4

Mean 106.780 30.440 222.460 226.420 229.810
Standard

deviation 82.430 51.070 32.920 10.480 25.940
x, 0.500 0.015 0.142 0.201 0.215
x2 0.500 0.260 0.371 0.273 0.297
X3 0.500 0.107 0.333 0.309 0.307
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decision rules. Development of ex ante rules
allows for the implementation of the rules in
the stochastic decision making environment.
Most previous studies utilizing crop growth
models and optimization procedures have de-
veloped ex post decision rules that are by def-
inition not implementable. As such, optimi-
zation via experimentation has a fundamentally
important advantage over previous method-
ologies. Furthermore, it is potentially appli-
cable to any simulation model (e.g., crop-
growth, farm-level, macropolicy model) in
which a decision variable(s) is under the con-
trol or discretion of a decision maker.

Decision rules pertaining to corn production
in the High Plains area of Texas derived using
the optimization via experimentation meth-
odology indicate that the producer should be
more protective of the corn plant during the
second and third irrigations than during the
first. For a producer who is going to irrigate
three times, the soil moisture levels which trig-
ger the three irrigations are approximately .2,
.3, and .3, respectively. It is somewhat lower
than the general practice in that area, where
irrigation usually takes place with soil mois-
ture at or below the .5 level.

The optimization via experimentation has
certain advantages over previous methodolo-
gies, yet some improvements are necessary and
disadvantages are evident. Being a procedure
relatively new to the agricultural literature, a
summary of these points follows. This is a
somewhat incomplete list, and more research
and experience is required to enhance it.

(a) Optimization via experimentation is a
distinctly separated two-stage iterative pro-
cedure of experimentation and optimization.
The probing phase is performed by conducting
a full-scale experiment with "treatments" de-
termined by the described designed matrix.
The experiment evaluation is performed com-
pletely in a black box fashion; and, further-
more, the quality of the response is a function
of the simulation model's representation of
reality. Only trivial communication links are
required between the simulator and the opti-
mizer subsystems. This is an important ad-
vantage because the current simulation model
could be exchanged for any new, state-of-the-
art competing model with a minimal effort.

(b) The response information generated for
the optimizer can be controlled by the user,
who determines the resolution of the pertur-
bation matrix. Prior knowledge of the system's

behavior can be constructive here. Note that
the role of the Taylor's series approximation
is to estimate the response surface.

(c) Adaptation to new regions can be per-
formed provided information exists on the en-
vironment's behavior. Past scenarios or Monte-
Carlo-simulated environments can be adapted
at ease.

(d) Convergence rates depend on the shape
of the response envelope. Well-behaved esti-
mated envelopes (a strictly concave polyhe-
dron, for example) should lead to very fast
convergence via the QP algorithm. Noncon-
cave response functions may require the first-
order gradient process, which is much less
efficient and may lead to divergence or non-
damped oscillating solutions.

(e) A major improvement for irrigation
scheduling can be expected if good workable
rainfall forecasting can be installed as a part
of the simulation model. Such a forecast may
delay the need for, or even save, irrigation(s)
if the decision criteria is modified to be con-
ditional on the probability to rain in the next
decision period. Note that substantial rain oc-
curring shortly after irrigation may be dam-
aging to plants and, if forecast, could have saved
the cost of irrigation. This aspect is strongly
recommended for future research.

(f) Improvement in defining the decision set
is also desired. The soil moisture measure used
above was applied primarily for demonstra-
tion purposes, although it may be used in prac-
tice as well. It measures the soil moisture con-
ditions but completely ignores the state of the
plant. It is quite conceivable that adding such
plant indicators, or combinations of plant/soil
indicators, would provide a better decision
base.

(g) The computer resources required for im-
plementing this methodology are actually the
same as those used to run the simulation pro-
gram. That is, if such a program is run on a
personal computer using Fortran, the above
procedure can be easily implemented on it. A
more powerful computer may of course speed
up the optimization process. The number of
iterations depends on the behavior of the re-
sponse surface. A smooth and consistently
concave surface (under stochastic conditions)
may require only two iterations in terms of
figure 1, while in some cases, having a non-
concave surface, convergence may not be
achieved at all. In the cases studied above no
more than five iterations were needed.
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Appendix

Experimental Design

The experimental design matrix gives the soil moisture
trigger levels for given starting values on X (the first row
of the table Al) and changes in X. Trigger levels give the
soil moisture level at which the grower is assumed to ir-
rigate once this level is realized. The design matrix gives
fifteen different trigger level sets around the initial set. The

number of simulations per iteration is therefore 150 (= 15
levels * 10 years). Box and Hunter discuss the efficiency
related to the characteristics of such a design matrix. The
values of X in table Al are calculated by

X = AzX + (X, © W),

where X, is the three-element row vector of starting values
on X; W is a fifteen-element column vector of ones; © is
the Kroneker multiplication operator.

Table Al. The Experimental Design Matrix with X° = [.5, .5, .51, and 5 = 0.15

AX x

0 0 0 0.50 0.50 0.50
1 1 1 0.65 0.65 0.65
1 1 -1 0.65 0.65 0.45
1 1 1 0.65 0.45 0.65

-1 -1 0.65 0.45 0.45
- 1 0.45 0.65 0.65
-1 1 -1 0.45 0.65 0.45
- -1 1 0.45 0.45 0.65
-1 - -1 0.45 0.45 0.45

1.684 0 0 0.7526 0.50 0.50
-1.684 0 0 0.2474 0.50 0.50

0 1.684 0 0.50 0.7526 0.50
0 -1.684 0 0.50 0.2474 0.50
0 0 1.684 0.50 0.50 0.7526
0 0 -1.684 0.50 0.50 0.2474
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