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GARCH Time-Series Models:
An Application to Retail
Livestock Prices

Satheesh V. Aradhyula and Matthew T. Holt

This article applies recent developments in time-series modeling to analyze the retail
prices of beef, pork, and chicken. Specifically, generalized autoregressive conditional
heteroscedasticity (GARCH) models were fitted to these data to determine if, unlike
more traditional time-series models, the conditional variances of the underlying
stochastic processes are nonconstant. The estimation results indicate that the constant
conditional variance assumption can be rejected. Furthermore, ex post forecast
intervals generated from the GARCH processes indicate that the forecasting accuracy
of the estimated models has varied widely over time with substantial volatility
occurring during the 1970s and early 1980s.

Key words: conditional variance, confidence intervals, forecasts, GARCH models,
retail meat prices, time-series models.

In recent years, agricultural economists have
made extensive use of time-series analysis to
model economic data (Bessler and Brandt;
Harris and Leuthold; Shonkwiler and Spreen).
Indeed, time-series models, including univari-
ate autoregressive and/or moving-average pro-
cesses, vector autoregressions, transfer func-
tions, and dynamic regressions, have become
fundamental tools of economic analysis. The
considerable popularity of the time-series ap-
proach can be attributed to a number of rea-
sons. For instance, these models can be used
to gain insights into the dynamic properties of
complex systems (e.g., Bessler 1984; Brorsen,
Chavas, and Grant). In addition, time-series
analysis requires less subjective judgment on
the part of the analyst; model identification
and specification are obtained by exploiting
systematic relationships in the data. But per-
haps the most important reason for the wide-
spread use of these models is their forecasting
accuracy. Often, a parsimoniously specified
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univariate or multivariate time-series model
will yield better forecasts than more complex
structural econometric models (Brandt and
Bessler).

There are several possible reasons for the
enhanced forecasting performance of time-se-
ries models, but the most likely is that these
processes use past information optimally. To
illustrate, consider a standard first-order au-
toregressive (AR) process

(1) Yt = bo + bly,- + t,,

where y, is a random variable drawn from a
conditional density function f(, I y,) and E, is
white noise with mean zero and variance V(et)
= o2. The forecast of today's value of y,, con-
ditioned on past information, is simply
E(y, l yt-) = bo + b1y, -. Likewise, the uncon-
ditional mean of y, is bo/(l - bi).

The improved forecasting accuracy attrib-
uted to many time-series models clearly de-
rives from optimal use of past information.
Oddly enough, these optimal forecasting prop-
erties have not, until recently, been extended
to predictions of the variance. So, for real pro-

'To see this, note that the conditional variance of y, in (1) is r2 ,
whereas the unconditional variance is a2/(1 - b2). Thus, the con-
ditional variance is constant and does not use information per-
taining to past realizations of y,.
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cesses one might expect more accurate forecast
intervals if additional information on past ob-
servations of y, were allowed to condition the
forecast variance. A more general class of time-
series models seems desirable. Realizing this,
Engle proposed a class of autoregressive pro-
cesses better known as ARCH (autoregressive
conditional heteroscedasticity) models. The key
feature of an ARCH process is that the forecast
variance, h ,, is conditioned on past realizations
of yt. 2

Although ARCH processes have been used
successfully to model macroeconomic data by
Engle, Engle and Kraft, and Weiss, problems
arise because of nonnegativity constraints as-
sociated with the parameter vector a in the
conditional variance equation. This has re-
sulted in the use of rather arbitrary linear, de-
clining-lag structures in the ht equation to ac-
count for the long memory typically found in
empirical work. Recognizing this, Bollerslev
(1986) recently introduced a new class of con-
ditional heteroscedastic models known as
GARCH (generalized autoregressive condi-
tional heteroscedasticity) processes. A chief
advantage of GARCH processes over ARCH
processes is that, often, a more flexible and
parsimonious lag structure in the conditional
variance equation can be obtained. 3

There are a surprising number of areas in
economics where GARCH models could be
applied. For instance, portfolio models require
information about price variances and
GARCH processes are a logical tool for gen-
erating proxy variables for risk premiums.
Likewise, price and/or output risk variables
are often included in aggregate supply equa-
tions (Just, Antonovitz and Green; Aradhyula
and Holt; Seale and Shonkwiler). Although
ARIMA models are frequently used to predict
the means included in these equations, ad hoc
procedures are often employed to generate
variance terms. GARCH models provide a
natural framework for generating both con-
ditional means and variances in these situa-
tions. There has also been considerable interest
in modeling yields as stochastic processes (Bes-
sler 1980). However, the variance associated

2 For instance, the conditional variance of a first-order ARCH
process can be written as h, = a0 + ca 2-1. More generally, the
variance function can be expressed as h, = h(y, ... , y,p,; a),
where p is the order of the ARCH process.

3 The extension of the ARCH process to a GARCH process bears
a striking resemblance to the extension of the standard AR process
to a more general ARMA process.

with standard time-series models is constant
and consequently provides only limited infor-
mation about higher-order moments.

The purpose of this article is to develop,
estimate, and test GARCH models for the re-
tail prices of beef, pork, and chicken. Retail
meat prices seem reasonable to investigate be-
cause they were relatively stable during the
1960s but experienced substantial volatility
during the 1970s and early 1980s. The working
hypothesis, then, is that GARCH models will
yield more plausible forecast confidence inter-
vals for these retail meat prices than will tra-
ditional time-series models.

The plan of the paper is as follows. First, the
key assumptions underlying GARCH process-
es are reviewed. Next, GARCH models are
fitted to real beef, pork, and chicken prices,
and the empirical results are evaluated and
contrasted with standard autoregressive
models. The final section examines the use of
GARCH models to estimate conditional vari-
ances and reviews implications for future re-
search.

The GARCH(p,q) Process

Let et denote a real valued discrete-time sto-
chastic process and Q, the set of all information
available through time period t. The
GARCH(p,q) process for a normal conditional
distribution is then given by

(2)

(3)

where
p > 0,
ao > 0,

'3 > 0,

et t ~ N(0, ht),

q P

ht= ao + aiE2-i -+ + iht-i,
i=l i=l

q >0
ai 0, i = 1,..., q, and
i=l,...,p.

Note that, for p = 0, the process reduces to an
ARCH(q) process. Also, for p = q = 0 the
conditional variance is constant, as in typical
time-series models, and the innovation Et sim-
ply reduces to white noise.

In the ARCH(q) process, the conditional
variance is specified as a linear function only
of the past sample variances. Alternatively, the
GARCH(p,q) process allows lagged values of
the conditional variance to enter the h, equa-
tion as well. This corresponds to the extension
of an AR process to an ARMA process in tra-
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ditional time-series modeling and, consequent-
ly, implies some sort of adaptive learning
mechanism.

The GARCH(p,q) regression model can be
obtained by letting the c's be innovations in a
linear regression,

(4) , = Yt - x,'b,

where y, is the dependent variable, x, is a vec-
tor of observations on explanatory variables
including past realizations of y, and b is a
vector of unknown parameters to be estimat-
ed. If all roots of 1 - B(p) = 0 lie outside the
unit circle, (3) can be respecified as a distrib-
uted lag of past-squared innovations. That is,

(5) h, = a(1 - B(1))- 1 + A(L)(1 - B(L))-'t2

= ao(l
i=l

which, together with (2), implies an infinite-
dimensional ARCH(oo) process. The bi's can
be obtained from a power series expansion of
D(L) = A(L)(1 - B(L))- ' , where

(6) ,b=ai+ jbi-j i= 1 ,...,, q,
j=l

ARMA models (Box and Jenkins). Bollerslev
(1988) shows that these same functions as ap-
plied to the squared residual series can be use-
ful for identifying and checking the time-series
behavior of the conditional variance equation
of the GARCH form.

Identification and diagnostic checking of a
GARCH process proceed as follows. Let r, de-
note the nth autocorrelation and (kk the kth
partial autocorrelation of 2, obtained by solv-
ing the GARCH analogue to the Yule-Walker
equations. The usual interpretations apply. For
an ARCH(q) process, kk cuts off after the qth
lag. This is identical to the behavior of the
partial autocorrelation function of the esti-
mated residuals Et for an AR(q) process. Like-
wise the partial autocorrelation function of E2

for a GARCH(p,q) process is in general non-
zero and dampens slowly. In this manner, the
autocorrelation and partial autocorrelation
functions of the e2s can be used for identifying
and checking the GARCH form.

Estimation of the GARCH regression model
can proceed by using standard maximum like-
lihood (ML) methods. Let z't = (1, Et

2_ , ... ,
2 q; ht_-, ... , ht ), W' = (ao, a, ... , aq; fi,1

... , tp), and e = (b', w'). The GARCH model
in (2), (3), and (4) may then be rewritten as

- 2 flibi1 ,
J=

i=q+ 1,...,

and n = min{p, i - 1)}. Thus, if D(1) < 1, the
GARCH(p,q) process can be approximated to
any degree of accuracy by a stationary ARCH(q)
process with a sufficiently large value of q.

As an ARMA analogue, the GARCH pro-
cess could be justified through a Wald's de-
composition type of argument as a more par-
simonious description. Bollerslev (1986) shows
that a sufficient condition for the GARCH(p,q)
process defined in (2) and (3) to be stationary
is that A(l) + B(1) < 1. The unconditional
mean and variance of the innovation Et are
given by E(et) = 0 and var(e,) = ao/(l - A(1)
- B(1)). Thus, in the GARCH(p,q) process,
the unconditional variance is constant while
the conditional variance could change over
time.

Of practical concern is the identification and
diagnostic checking of the appropriate lag
structure for the conditional variance equation
in a GARCH process. Autocorrelation and
partial autocorrelation functions of the inno-
vation series are typically used when identi-
fying and checking the time-series behavior of

(7) et = yt - x'tb,
e, 1, ~ N(O, h,),

ht = z'tw.

Apart from a constant term, the log likelihood
function for a sample of T observations is

(8) LT= T - lit(O),
t=l

t(O) = -0.5 log h, - 0.5 e2h,-'.

The first and second derivatives of the log like-
lihood function in (8) with respect to 0 are
outlined in Bollerslev (1986, pp. 315-16).

A convenient feature of the GARCH model
is that the off-diagonal blocks of the infor-
mation matrix associated with the Olt/8bOw'
terms can be shown to be zero. Because of this
asymptotic independence, w can be consis-
tently estimated by using initial consistent
(OLS) estimates of b. This is a useful property
because initial consistent estimates of b and w
can be easily obtained for starting the ML it-
erative estimation. Finally, as with ARMA
models, the derivatives of(8) contain recursive

Aradhyula and Holt
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Table 1. Maximum Likelihood Estimates of Autoregressive Models Fitted

Price of Beef (PBt)
(1 - 0.889B - 0.184B4 +0.236B5)PB, = 29.737 - 0.198t + t,,

(0.065) (0.073) (0.065) (4.825) (0.042)
hl, = var(E,,) = 14.597 R2 = 0.85 MAPE = 3.03

(1.638)

Price of Pork (PP,)
(1 - 1.088B + 0.380B3

(0.047) (0.093)
h2, = var(E2,) = 15.993

(1.794)

- 0.323B 4 + 0.153B5)PP, = 7.991 + E2t

(0.111) (0.076) (1.045)
R2 = 0.85 MAPE = 4.52

Price of Chicken (PC,)
(1 - 0.755B - 0.201B8)PC, = 0.990 + E3t

(0.046) (0.042) (0.105)
h3, = var(e3t) = 7.818 R2 = 0.79 MAPE = 4.55

(1.242)

Notes: B is a lag operator such that BsX, = X,_s. Figures in parentheses are approximate standard errors. All prices are real retail prices
in cents per pound.

terms. To start the recursion, we need presam-
ple estimates for both t, and ht, t < 0. In this
paper we use the sample analogue T- 1 e'e to
obtain consistent estimates for the presample
values of et and ht.

Empirical Results

The estimates of GARCH models for three
retail price series-beef, pork, and chicken-
are reported here, along with the estimates of
standard AR models as applied to each series.
The retail prices of beef, pork, and chicken
were used because they have been associated
with varying degrees of volatility over the past
twenty years. During the 1960s and early 1970s,
meat prices were relatively stable. However,
large shocks in the price of feed grains, high
inflation rates in the nonfarm economy, price
controls, and the subsequent breeding herd liq-
uidations that occurred in the mid- and late-
1970s resulted in volatile meat prices during
this period. These casual observations would
suggest that it is reasonable to believe that the
forecast variances associated with these prices
would not have remained constant during this
period. More specifically, it may be that large
forecast errors and small forecast errors tend
to be clustered together. Consequently, an im-
proved model specification would allow the
conditional variance term to reflect this type
of behavior.

The estimated AR and GARCH models were

obtained by using quarterly data, from the first
quarter of 1967 through the last quarter of
1986, obtained from various published USDA
sources. All data were deflated by the CPI so
that each price series was expressed in real
terms. Deflated prices were used, in conjunc-
tion with linear time trends, to ensure station-
arity. Maximum likelihood estimates of the
model parameters were obtained by following
the procedures outlined in the previous sec-
tion. The parameter estimates were obtained
by using the Davidon-Fletcher-Powell (DFP)
algorithm with numerical derivatives.4

Estimation results for the autoregressive
models, along with sample MAPEs (mean ab-
solute percent errors) and R2s, are presented
in table 1. Additional summary statistics as-
sociated with each estimated AR and GARCH
model are reported in table 2. The linear time
trend was retained only in the AR model for
beef prices because preliminary estimates in-
dicated that linear drift was not present in the
estimated AR models for pork and chicken.

4 The DPF algorithm is a variable-metric algorithm that belongs
to the class of quadratically convergent algorithms. The goal of
the DFP algorithm is to accumulate information from successive
minimizations so that N such minimizations will yield an exact
minimum of a quadratic form. The DFP algorithm operates by
approximating the objective function locally as a quadratic form.
Computation of the objective function gradient is required at each
point of successive iterations. This information is used, in turn,
to build up iteratively an approximation to the inverse of the
hessian matrix. By using the gradient vector, the hessian matrix,
and successive function evaluations, the DFP algorithm moves
from point to point until an optimum is attained. For further
details, see Powell.

368 December 1988



GARCH Livestock Models 369

Table 2. Summary Statistics

y,- A, GARCH

Q(10) Q2(10) X Q(10) Q2(10) X

Price of Beef (PB,) 8.08 18.32 1.444 8.61 15.99 1.370
Price of Pork (PP,) 9.91 19.98 1.315 8.10 4.44 1.225
Price of Chicken (PC,) 6.92 27.41 1.018 9.44 6.81 1.028

Note: Q(10) and Q2(10) denote the Ljung-Box portmanteau test statistics for serial correlation in the levels and squares, respectively,
at ten degrees of freedom. X is the smallest root (in absolute value) associated with the polynomial of the lag operator for the conditional
means of the estimated AR and GARCH models. The value of the x2 distribution at 10 degrees of freedom and at the 5% (1%) level
of significance is 11.07 (15.09).

The roots of all three estimated AR models
are outside the unit circle, thus satisfying the
usual stationarity requirements (table 2). The
sample MAPEs and R2s indicate that the con-
ditional means of the fitted AR models do a
good job of tracking actual levels.

Further information about the validity of
the estimated AR models can be obtained by
examining the Ljung-Box portmanteau Q-sta-
tistic associated with the innovation series (yt
- t). In table 2, the Q-statistics are reported
for the innovations from each AR model at
ten degrees of freedom. In each case, the re-
ported Q-statistic is below the critical value of
18.31 from the asymptotic x20 distribution at
the 5% level. Thus, the null hypothesis that
the residuals from each estimated AR model
are white noise cannot be rejected.

A different picture is presented, however,
when the squared residual series (y - yt) 2 is
examined. As McLeod and Li report, the port-
manteau test statistic Q2(m) associated with
the first m-squared innovations will be dis-
tributed asymptotically as a X2 distribution. In
table 2, Q2 statistics at ten degrees of freedom
are reported for each estimated AR model. In
all cases, the Q2 (10) statistic is significant at
the 5% level, indicating that second-order se-
rial correlation may be present. As Bollerslev
(1987) suggests, this absence of serial corre-
lation in the conditional first moments, cou-
pled with the presence of serial correlation in
the conditional second moments, is one of the
implications of the GARCH(p,q) model.

As indicated previously, standard Box-Jen-
kins procedures can be applied to the squared
innovations (yt - A) to determine the appro-
priate orders for p and q; see Bollerslev (1988)
and Engle and Bollerslev. In the present case,
the autocorrelations and partial autocorrela-
tions of the squared residuals were used only
as an overall guide for specifying the appro-

priate order of the GARCH process. In all in-
stances, there were spikes in the autocorrela-
tion function that exceeded two standard
deviations. In addition, the partial autocor-
relations were positive and exhibited damp-
ening behavior, suggesting that retail meat
prices might be better represented as GARCH
processes.

For each price series, GARCH(1,1) models
were estimated first because they are parsi-
monious and are often the most likely candi-
dates in applied analysis. After these initial
estimates were obtained, several alternative
specifications of the conditional variance
equation, ht, were examined. The alternatives
were limited to GARCH(2,1), GARCH(1,2),
and GARCH(2,2) processes. Each alternative
was examined for improvements in model fit
and parameter significance relative to the
GARCH(1,1) process. Following this identi-
fication and selection process, it was deter-
mined that a GARCH(1,1) process was ade-
quate for explaining the conditional variances
of the beef and pork price series. On the other
hand, a GARCH(1,2) process was found to be
more suitable for the chicken price series.

The maximum likelihood estimates of the
GARCH regression models for beef, pork, and
broiler prices are reported in table 3. As in-
dicated in table 2, the stationarity conditions
for the conditional mean of each estimated
GARCH model are satisfied (i.e., the smallest
roots are all outside of the unit circle). Fur-
thermore, the stationarity conditions and non-
negativity requirements for the estimated pa-
rameters in the conditional variance equations
are satisfied in each instance. The Ljung-Box
test statistic for the standardized residuals,
th-2, and the standardized squared residuals,
tht- 1, from the estimated GARCH models are

also reported in table 2. In each case, the es-
timated values for Q(10) and Q2(10) are below

Aradhyula and Holt
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Table 3. Maximum Likelihood Estimates of GARCH Models Fitted

Price of Beef (PB,)
(1 - 0.908B - 0.251B4 + 0.282B5)PB, = 27.297 - 0.211t + (,

(0.052) (0.081) (0.074) (5.358) (0.044)

h, = 0.017 + 0.113E_, _ + 0.862h,,_
(0.031) (0.035) (0.030)

R2 = 0.85 MAPE = 3.05

Price of Pork (PP,)
(1 - 1.137B + 0.462B3 - 0.

(0.004) (0.016) (0.(

h2 = 1.502 + 0.178e2,_1 + 0.
(0.496) (0.011) (0.

R2 = 0.85 MAPE = 4.38

417B4 + 0.219B5 )PP, = 8.017 + e2t
015) (0.007) (6.144)

743h 2 -,_
072)

Price of Chicken (PC,)
(1 - 0.724B - 0.240B)PC, = 1.528 + E3,

(0.068) (0.057) (0.818)
h, = 2.610 + 0.379c2,_, + 0.028e2,_2 + 0.062h3,t_

(0.717) (0.124) (0.015) (0.016)
R2 = 0.79 MAPE = 4.40

Notes: B is a lag operator such that B'X, = X_,. Figures in parentheses are approximate standard errors. All prices are real retail prices
in cents per pound.

18.31, the critical value of the x20 distribution
at the 5% level. Thus, no further first- or sec-
ond-order serial dependence is indicated in the
estimated GARCH models. Finally, checks of
the estimated GARCH parameters indicate
that the fourth-order moment of E, exists for
each model.5 Hence, the asymptotic properties
of the maximum likelihood estimates are es-
tablished.

The reported MAPEs and R2s in table 3 in-
dicate that the estimated parameters associ-
ated with the conditional means of the esti-
mated GARCH models do a good job of
explaining historical movements; however,
these results do not indicate any improvement
in explanatory power relative to the AR models
in table 1. The implication is that GARCH
processes will not necessarily improve upon
the forecast performance of the means of the
stochastic process and, indeed, there is no rea-
son to believe that they should. But GARCH
models will provide more information about
the precision of these forecasts. That is, there

5 For a GARCH(1, 1) model, the fourth-order moment exists if
3a2 + 2aoi + 32 < 1. Likewise, the necessary and sufficient con-
dition for existence of a finite fourth-order moment for the
GARCH(1, 2) model is

a
2

+ 3a2 + 3a
2
+ /2 + 2al/,1 - 3a3 + 3aa2o2

+ 6aoia2 l + a2,
2

< 1.

See Bollerslev (1986) for further details.

will be a tendency for large and small forecast
errors to cluster together as indicated by the
significant Q2(10) statistics in column 2 of ta-
ble 2.

To illustrate, confidence intervals (99%) for
the one-period-ahead within-sample forecasts
for each of the retail price series were com-
puted.6 The 99% confidence intervals for beef,
along with the actual price series, are shown
in figure 1. Similar plots for pork and chicken
prices are illustrated in figures 2 and 3, re-
spectively. As indicated previously, retail beef
prices were volatile during the mid-1970s, as
reflected by the wider confidence intervals as-
sociated with the GARCH forecasts during this
period. By comparison, the 1960s and early
1970s were characterized by relatively stable
real retail beef prices. The results in figure 1
show that the confidence intervals associated
with the one-step-ahead forecasts during this
period are much smaller relative to those for

6 Following Engle and Bollerslev (p. 7), the one-step-ahead fore-
casts of the conditional mean and conditional variance of y,+i,
evaluated at time t, can be expressed as

E,(y,+,) = "iy,-i,
i=o

V,(y,,) = h,+, = a + a,+,[y,, - E,_,(yt_,)]2
i=0

P-1

+ j+lh, t-j.
j=o
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Figure 1. 99% confidence intervals for one-step-ahead forecasts of real retail beef price

the mid- 1970s. Traditional time-series models
do not give such intuitively appealing results
because the width of the confidence interval
(i.e., conditional forecast variance) remains
constant. Similar results were obtained for the
one-step-ahead forecasts of real pork and
chicken prices. As with beef, the forecast in-
tervals for pork were widest during the 1970s
and were relatively stable during the 1960s and
1980s. That is, there is a tendency for large
and small forecast errors to cluster together,
which is indicative of the GARCH process.
Alternatively, while the confidence intervals

for chicken price forecasts, presented in figure
3, do fluctuate, they tend to be more stable
relative to the forecast intervals for beef and
pork. This, in part, might reflect the relatively
constant growth of the poultry industry during
the period of analysis.

Although the estimated GARCH models re-
sult in confidence intervals that are more in-
tuitively appealing than those of the AR
models, this is no guarantee that the GARCH
process is a statistically valid improvement
over the AR process. In other words, it is de-
sirable to have a formal test of the GARCH

Table 4. Results of Likelihood Ratio Tests

LR TestValue of Log Likelihood Function L R Test
Statistic

AR GARCH (x2) Test Result

Price of Beef (PB,) -272.39 -265.71 13.36a Reject AR
Price of Pork (PP,) -279.13 -267.48 23.30a Reject AR
Price of Chicken (PC,) -106.98 -84.81 44.34b Reject AR

Note: The value of the log likelihood function is unique up to an additive constant.
a The value of the x2 distribution at 2 degrees of freedom and at the 5% (1%) level of significance is 5.99 (9.21).
b The value of the x2 distribution at 3 degrees of freedom and at the 5% (1%) level of significance is 7.82 (11.34).
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Figure 2. 99% confidence intervals for one-step-ahead forecasts of real retail pork price

hypothesis that conditional forecast variances
are nonconstant. This can be accomplished by
performing a standard likelihood ratio test in
which, under the null hypothesis, the param-
eters A(L) and B(L) are constrained to zero
(the standard AR representation). The alter-
native hypothesis is that the model follows a
GARCH form. The appropriate statistic is
twice the difference of the maximized values
of the log likelihood functions for the uncon-
strained and constrained models, respectively,
which will have a chi-square distribution with
p + q degrees of freedom under the null hy-
pothesis. The results of the likelihood ratio
tests are presented in table 4. Importantly, the
null hypothesis that the conditional forecast
variances are constant could be rejected at all
usual levels of significance for all three models.
The results in table 4 are encouraging and lend
support to our contention that the conditional
forecast variances of retail meat prices have
been nonstationary during the past twenty
years.

Concluding Remarks

Traditional time-series models assume a con-
stant one-period-ahead forecast variance. In
recent years, the implausibility of this as-
sumption has been recognized, and several new
classes of stochastic processes have been pos-
tulated. These include the ARCH process (En-
gle) and GARCH process (Bollerslev 1986).
These are mean zero, serially uncorrelated pro-
cesses with nonconstant variances, which are
conditioned on past information. The GARCH
and ARCH processes represent an important
advance in time-series modeling because much
of the forecasting accuracy associated with tra-
ditional time-series models derives from their
optimal use of past information. These same
optimality conditions can now be used to gen-
erate time-varying predictions of the condi-
tional forecast variance.

In this article, GARCH processes were ap-
plied to retail meat prices. The estimated
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Figure 3. 99% confidence intervals for one-step-ahead forecasts of real retail chicken price

models replicated historical movements in
these price series adequately, and confidence
intervals, derived from the conditional fore-
cast variances, changed substantially over the
sample period. This highlights the potential
importance of the GARCH process. A formal
test of the joint significance of the A(L) and
B(L) parameters in the conditional variance
equations in the GARCH models revealed that
the constant variance assumption associated
with the estimated AR models could be re-
jected.

The results of this study indicate that recent
advances in the econometrics literature may
be fruitfully applied to agricultural data. There
are many instances where additional knowl-
edge pertaining to forecast variances derived
from a GARCH process could be beneficial.
In addition, the normality assumption asso-
ciated with the conditional distribution does
not present a limitation; other distributions
could be used as well (Bollerslev 1987). The
empirical examples presented here should en-

courage a wider acceptance of GARCH models
in applied time-series modeling.

[Received March 1988; final revision
received September 1988.]
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