|

7/ “““\\\ A ECO" SEARCH

% // RESEARCH IN AGRICULTURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.


https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

Identifying Causal Relationships
Between Nonstationary Stochastic
Processes: An Examination of
Alternative Approaches in

Small Samples

Hector O. Zapata, Michael A. Hudson, and Philip Garcia

A Monte Carlo investigation is used to examine the performance of two commonly
used tests for Granger causality for univariate and bivariate nonstationary ARMA(p,q)
processes. Tests are applied to raw data, first differences of the raw data, and
detrended versions of the series. The results indicate that for independent series the
tests are robust regardless of sample size. With bivariate series and nonstationarity,
the test results are sensitive to the ARMA specification, whether the data are filtered

and the type of filter used, and the sample size.

Key words: causal relationships, Granger causality, lead/lag relationships, Monte

Carlo, nonstationarity.

The concept of Granger testing has received
considerable attention in recent years. Econ-
omists have found the approach particularly
useful in analyzing temporal relationships be-
tween a variety of price series (e.g., Bessler and
Brandt). Commonly, this approach has been
used to identify lead/lag relationships between
economic time series. Despite the widespread
application of the technique, several questions
continue regarding the method. Two primary
issues have been raised with regard to the pro-
cedure: (q¢) what is the correct empirical ap-
proach, and (b) whether the tests are capable
of correctly identifying causal relationships.
Various Monte Carlo studies have ad-
dressed these two issues. The general conclu-
sions indicate the direct Granger method of
testing, suggested by Sargent, outperforms the
alternatives. This conclusion, however, is
largely based on applications of the testing pro-
cedures to causally related stationary series

The authors are, respectively, an assistant professor in the De-
partment of Agricultural Economics and Agribusiness at Louisiana
State University, and an assistant professor and an associate pro-
fessor, both in the Department of Agricultural Economics at the
University of llinois. ’

which are primarily autoregressive in nature.
It is important to examine the effectiveness of
these tests with nonstationary data that follow
more general autoregressive and moving-av-
erage ARMA(p,q), which are more common
in economic time series. With nonstationary
data, the application of the Granger test calls
for tranformation of the data series to achieve
stationarity. There is little empirical evidence
regarding the performance of the Granger tests
when nonstationary data series are used and
stationarity inducing transformations em-
ployed prior to testing for causal relationships.

The purpose of this paper is to examine the
performance of two tests of Granger causality
for nonstationary ARMA( p,q) processes. Uni-
variate and bivariate data series are construct-
ed for alternative values of p and g. Different
levels of covariance between the series are per-
mitted, and various time trends which are typ-
ical of economic time series are added to in-
duce nonstationarity. Two tests of Granger
causality are then applied to the raw data, first
differences of the raw data, and detrended ver-
sions of the series. Results suggest that for in-
dependent series the tests are robust. With bi-
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variate series and nonstationarity, the test
results are influenced by the ARMA specifi-
cation, the differences in nonstationarity, and
the sample size.

The paper is organized as follows. Section
two provides a brief summary of previous
work. Experimental methods, including data
generation procedures and application of the
causality tests, are discussed in the third sec-
tion. The fourth section of the paper presents
the results of the inquiry. Last, the main im-
plications and limitations of the study are sum-
marized.

Background and Previous Work

The performance of various forms of the
Granger test has been widely investigated.
Monte Carlo studies by Nelson and Schwert;
Geweke, Meese, and Dent; and Guilkey and
Salemi are representative. In these studies,
causally related stationary time series were
constructed and a variety of tests applied. The
general conclusions suggest the Granger tests
are capable of identifying lead/lag relation-
ships and that the direct Granger method yields
the most consistent results. This method has
also been widely used in applied studies be-
tween economic time series.

While these results verify the usefulness
of these tests, the debate regarding the appro-
priate procedures for identifying causal rela-
tionships with nonstationary data continues.
Lutkepohl concludes that “differencing non-
stationary univariate component series of a
multiple time series to induce stationarity prior
to building an AR model for the multivariate
generation process is in general inadequate”
(p. 238). More recently, Bailey and Brorsen
note, “there is no real agreement in the liter-
ature regarding the use or nonuse of a differ-
ence operator (prefilter) to obtain a stationary
time series before causality tests are per-
formed” (p. 128). Nerlove, Grether, and Car-
valho, on the other hand, dismiss this issue,
suggesting “letting the nonstationarity in one
series explain the nonstationarity in the other”
(p. 252).

Two recent empirical investigations are
worthy of note with regard to the impacts of
nonstationary series on the outcome of cau-
sality tests. Zeimer and Collins examined re-
lationships between five agricultural price se-
ries and three theoretically unrelated series.
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The authors demonstrated that the Granger
tests can identify relationships counter to the-
ory when data possess nonstationary compo-
nents. Bessler and Kling provide further evi-
dence of the impact of nonstationary series in
their investigation of sunspots (a stationary se-
ries) and gross national product (a nonstation-
ary series). Using post-sample tests the authors
demonstrate Granger tests give anomalous re-
sults when one series is stationary and the oth-
er nonstationary.

The results of these previous efforts suggest
that the Granger approach is useful in iden-
tifying the lead/lag independence of stationary
autoregessive time serics but offer little insight
into the effects of alternative generating pro-
cesses on the performance of the tests. In par-
ticular, the effects of moving average compo-
nents and nonstationary behavior which may
be present in many economic series, deserve
further attention and are considered below.

Experimental Methods

A Monte Carlo study was designed to examine
the performance of two commonly used tests
of Granger causality (the direct Granger and
modified Sims) for ARMA( p,q) processes.! Ta-
ble 1 summarizes the ARMA(p,q) data series
used in the study, which were generated as
stationary and nonstationary univariate and
bivariate processes.? The univariate models
were used as a benchmark for evaluation be-
cause they do not allow contemporaneous co-
variance between the error terms and have no
constructed causal behavior (C,, = 0). The bi-

! In response to a reviewer’s suggestion, nonstationary ARIMA
(p,1,g) processes were constructed for a supplemental investigation
with 20 replications, using values of p and g between 0 and 2.
These series provided an alternative form of nonstationarity for
comparison with the time trends added to the ARMA(p,q) pro-
cesses. The results of these models were not appreciably different
from those presented below for the ARMA(p,q) models with non-
stationarity in the form of time trends.

> Stationarity of process X,, implies that the characteristic poly-
nomial (CP) |Ie~' — A — ... — A,e| #= 0 for |¢|] = 1. Alter-
natively, a p-dimensional difference equation with the CP equal
to zero for which |e's| < 1 provides stationary processes for all
elementsof 4, k=1,2,...,p. It can be shown that the coefficients
in table 1 generate stationary processes by solving the CP for the
difference equation of each model. For instance, for model A/2 the
solution to |fe& — .5¢ — .25| = 0 results in characteristic values
(e, = .81, ¢, = —.31) whose absolute value is less than one. For the
model BM2, the solution to [I& — A — A,| = 0, where 4, =
[(.5.0y (.0.25)}and A, = [(.6 .0)' (.0 .15)'] has characteristic values
(e, = .81, ¢ =.79, ¢, = —.31, and ¢ = —.19), which are also less
than one in absolute value.
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Table 1. ARMA(p,q) Processes Used to Generate Experimental Data

N

AR Coeflicient MA Coefficient
MOdela All Al2 AZI A22 BH BIZ BZI BZZ
Ml .50 .00 .60 .00 .00 .00 .00 .00
M2 .50 25 .60 .15 .00 .00 .00 .00
M3 .00 .00 .00 .00 .25 .00 .66 .00
M4 .00 .00 .00 .00 .25 .14 .66 33
M5 .50 .00 .60 .00 .25 .00 .66 .00
M6 .50 25 .60 15 .25 .00 .66 .00
M7 .50 .25 .60 .15 .25 .14 .66 .33

Note: To induce nonstationary behavior, time-trend components were added to each of the above models. The following trend structures
were imposed for the (X, Y) series: (0, 0), (.035, .035), and (.075, .035). Covariance between X and Y was analyzed at the .0, .1, .5, and
.09, the causality parameter C,, equals .59. When referring to the corresponding bivariate model these acronyms are preceded by a B.

2 The general form of the model is

X(O) = A, X¢ — 1) + A X(t — 2) + Byet — 1) + Bpe(t — 2) + Cv(t — 1) + e?)

Y(t) = A, Yt — 1) + A Y(t — 2) + Byt — 1) + Byt — 2) + W)

variate processes were constructed under vary-
ing degrees (.1, .5, .9) of contemporaneous co-
variance between the terms e(f) and v(¢) so as
to analyze the impact on the causality tests.
All the series (univariate and bivariate) were
constructed with the following time trends for
the (X, Y) pair: (.0, .0), (.035, .035), and (.075,
.035).3 Versions of each series were generated
to examine the impacts of two sample sizes,
75 and 200 observations, on test perfor-
mance.*

The stochastic components e(?) and v(¢) were
generated as independent normal (0, 1) vari-
ates and used directly to generate the univar-
iate processes. The square root method (Ru-
binstein) was used to generate bivariate normal
errors. For all series, the first fifty observations
were deleted to minimize the effect of the start-
ing values in the data generation process. Uni-
variate and multivariate Lagrange multiplier
tests (Jarque and Bera) were used to analyze

3 As noted by an anonymous reviewer, these time trends reflect
a fairly restrictive form of nonstationary behavior. However, many
economic time series possess time trends. Although such behavior
is clearly deterministic, conducting Granger causality tests on
trended data can provide misleading results (Gamber and Hud-
son). The initial investigation reported in footnote 1 verifies tests
performance for series constructed with other forms of nonsta-
tionary behavior.

4 The entire simulation was performed on RATS. The simulation
was very time consuming; it took approximately 18 hours to per-
form a complete analysis of one model, one sample size, 200
replications on an IBM-AT microcomputer with a math copro-
cessor. With 200 replications and a .05 level of significance, the
results of the study will be accurate within a plus or minus 7.5%
interval. In a power study, such as this, the error bands are derived
from the variance of binominal distribution. Approximately 1,000
replications would be needed to obtain a plus or minus 4% interval.
Computation time prohibited the use of a larger number of rep-
lications. :

the robustness of the methods in generating
observations from the desired distribution. One
hundred replications for the smallest sample
size were run and the results indicated that at
the .05 level of significance, we could be about
96% confident that e(z) and v(¢) followed the
specified distributions. The true model param-
eters could also be recovered with about the
same level of significance.

The direct Granger and modified Sims tests
as shown in table 2 were applied to each of the
data series. Following applied procedures (e.g.,
Hsiao), univariate and multivariate versions
of the Akaike’s final prediction error (FPE)
were used to determine the lag length for the
series. A maximum lag length of six satisfied
the criteria for most processes and was used
throughout the evaluation. Both testing pro-
cedures were evaluated at the .05 level of sig-
nificance.

Ashley; Ashley, Granger, and Schmalensee;
Bessler and Kling; and others have recently
demonstrated the benefits of using post-sam-
ple testing to verify causal relationships iden-
tified by Granger-type procedures. The pri-
mary motivation for post-sample testing is to
verify that the causal relationships identified
within the sample are not spurious. In cases
where the true causal relationships are un-
known, post-sample testing thus provides a
means of verification of the identified causal
relationships beyond the initial estimation pe-
riod. Since the series being used in this inves-
tigation are generated by known processes, ad-
ditional observations will follow a known
process. Thus, post-sample tests would not be
expected to alter the conclusions as the true
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relationships are known a priori.’ Nonetheless,
in cases where the true model structures are
unknown, such approaches are clearly useful
and recommended to verify the results of
Granger casusality tests.

Results

Causality test results for 75 and 200 obser-
vations are presented in tables 3 to 6. The three
versions of each data series, raw, differenced,
and detrended, are presented across the top of
the table. Under each version of the data series,
the direct Granger and modified Sims tests
from table 2 are identified by G2, G3, S1, 52,
and S3, respectively. Univariate models are
represented by M1 to M7, and bivariate models
by BM1 to BM1. The covariance level for the
BM models is .5.5 The three different time
trends are represented by T'1, T2, and 773 for
(.0, .0), (.035, .035), and (.075, .035), respec-
tively; a letter X or Y is added at the end of
these time indices to define the dependent
variable in the model of interest. Tables 3 and
4 contain the results for the univariate models.
The values in the tables represent the propor-
tion of rejections of the null hypothesis spec-
ified in table 2. If the tests are robust, the values
should be close to zero with an error .05.
The results in table 3 indicate that both the
direct Granger and modified Sims tests are ro-
bust in detecting lack of simultaneity and causal
relationships when they did not exist. Except
for a few cases, the percentage of rejections of
the null hypothesis is very low. Increasing the
model complexity from a purely autoregres-
sive model of order one (M1) to an ARMA(2,2)
(M) does not affect the test results at the .05
level of significance. In general, for univariate
models, first differencing or detrending (using

5 As noted by the editor and an anonymous reviewer, post-
sample tests could be implemented in the context of the current
study. For example, the forecasting performance of the estimated
models could be compared with an alternative set of models gen-
erated using an alternative information criterion. Such an approach
would provide verification of the ability of the tests to identify the
true causal relationships between the data series. In light of the
results presented below, which suggest the tests are indeed powerful
in identifying the correct relationships, and the additional com-
putational costs associated with these tests, no post-sample eval-
uation was performed.

¢ Preliminary results on 20 replications of the experiment in-
dicated that for .1 level of covariance the results did not differ
appreciably from those of univariate models, and that at high levels
of covariance (.9) the results were not significantly different from
those at .5 covariance. :
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Table 2. Test Specifications and Hypotheses

Direct Granger Procedure

» "
X, = 2 01j Xz—j + E BuY i te
J=1 i=0

Model:
G2: Hy B8,,=0,H;: 8,+0
G3: Hy: B,=...=8,=0,H; Notall=0
Modified Sims Procedure
» ,
X, = 2 021 th + E O Yok
J=1 k=1
q
Model: + 2 Bu Y ;i +w
i=0
S1: Hy ¢, =...¢,=0,H;: Notall =0
S2: Hy B,,=0,H;: 8,,#0
S3: Hy B, =...=8,=0,H;: Notall=0

a linear time trend) does not have a major
impact on the results.

For the large sample size (200 observations,
table 4) the introduction of time trend non-
stationarity is of consequence, especially for
the direct Granger (G3) test on raw data. How-
ever, the test performs well when first differ-
encing or detrending are used to filter the data.
This implies that either differencing or de-
trending are adequate filters when there is little
OF no contemporaneous covariance between
the series.

Tables 5 and 6 provide results for bivariate
models with causality constructed from Y and
X and having .5 level of contemporaneous co-
variance. One would expect that if the test pro-
cedures are robust in detecting the true causal
flows, the direct Granger (G3) and modified
Sims (S3) tests should have values close to one
when X is the dependent variable, and values
close to zero when Y is the dependent variable,
Similarly, test S1 should have values close to
zero where X is the dependent variable and
values close to zero when Y is the dependent
variable. Because contemporaneous causation
is tested by G2 and S2, their values should be
close to one if the tests are robust.

For bivariate models, test results are influ-
enced by nonstationarity, sample size and the
ARMA specification. The testing procedures
for detecting simultaneous relationships pro-
duce somewhat mixed results. The direct
Granger test (G2) provides very consistent re-
sults regardless of the model structure under
consideration. Its accuracy increases with sam-
ple size and is invariant to the filtering pro-
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cedure used. In contrast, the modified Sims
approach (S2) for detecting simultaneity does
not perform well. While its accuracy improves
with sample size, its performance is influenced
by model specification, nonstationarity, and
the method of filtering. Generally, its accuracy
improves when the nonstationarity is removed
with the first difference filter.

For the lead/lag relationships, again the re-
sults are mixed. The modified Sims test for
examining lags (S3) is heavily influenced by
model specification, type of nonstationarity,
and filtering procedure. Its accuracy does not
improve with sample size nor with any par-
ticular filtering procedure. In fact, filtering often
influences this test in an unpredictable man-
ner, calling into question its use in applied
work. The results are somewhat different for
the direct Granger test for lags (G3) and the
modified Sims test for leads (S1). In the raw
data form, the results of the G3 test are influ-
enced rather dramatically by the type of non-
stationarity —its accuracy declining as the non-
stationarity takes different forms (i.e., different
time trends). Filtering the data by either first
differences or detrending improves the accu-
racy of the test. In large, filtered samples, the
G3 test provides the most accurate identifi-
cation of lead/lag relationships. The S1 test is
very accurate in small and large samples. It is
least affected by nonstationarity, method of
filtering and sample size. For smaller samples,
it provides the most accurate procedure for
identifying lead/lag relationships. Its accuracy
declines marginally with large samples in the
raw data form, but filtering improves its per-
formance to an acceptable level.

Summary, Implications, and Limitations

The results of the Monte Carlo analysis into
the performance of the Granger and modified
Sims tests on the presence of nonstationarity
have important implications for agricultural
economists interested in identifying lead/lag
relationships between economic time series.
Economic data possess nonstationary com-
ponents and model identification is not always
clearly specified by theory. The findings of the
current study provide insight into the useful-
ness of procedures often applied.

For univariate ARMA processes, the direct
Granger and modified Sims tests are robust in
detecting lack of simultaneity and unidirec-

Western Journal of Agricultural Economics

tional causal relationships. Differencing or de-
trending improves the test performance for
nonstationary series. Hence, when the degree
of contemporaneous covariance between two
stochastic processes is very low, the tests pro-
vide reliable results.

For bivariate processes, on balance, the re-
sults suggest that simultaneous relationships
can be best identified by the Granger test (G2).
Lead/lag relationships in the raw data form are
most accurately identified using the modified
Sims (S1) procedure. When nonstationarity is
removed by filtering the data, G3 performs
best in large samples while S1 is the most ac- -
curate with smaller samples. Hence, for small-
er series generated by bivariate processes, per-
haps the situation which most closely
approximates many analyses of economic time
series, the S1 test should be used to comple-
ment the more widely used G3 test to establish
lead/lag relationships.

In general, the results of the simulation in-
dicate that the effects of nonstationarity are
most pronounced in larger samples which pos-
sess dissimilar trends, and for tests examining
lagged variables. On the whole, except for the
case of the modified Sims test (S3), first dif-
ferencing of the bivariate processes does not
significantly disturb the bivariate nature of the
processes and permits identification of the cor-
rect lead/lag relationships.

There are several limitations which should
be noted. While a rather wide range of models
and trends was selected for analysis for the
study, the conclusions of the research are
strictly applicable only to the models and forms
of nonstationarity tested. The results, there-
fore, cannot be generalized to series which pos-
sess other forms of deterministic behavior, such
as seasonal or cyclic components. Also, the
study considered only first difference transfor-
mations and detrending procedures to induce
stationarity and therefore says nothing about
the performance when other transformations
(e.g., ARIMA filters) are performed. In addi-
tion, the sensitivity of the results to alternative
selection criteria was not examined. Never-
theless, the FPE did seem to provide model
structures which permitted consistent identi-
fication of the underlying causal structures.

Despite these limitations, the results should
prove useful for researchers interested in ex-
amining lead/lag relationships between eco-
nomic time series. They corroborate previous
findings that Granger tests and selected mod-
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ified Sims tests can be used with confidence in
applied work in identifying various bivariate
relationships. While nonstationarity compli-
cates their application, judicious filtering or
selection of appropriate tests can remedy some
of these concerns. Further work needs to be
done to identify how tests perform when other
deterministic behavior exists in the data and
the series generated by more complicated
model structures.

[Received March 1986; final revision
received June 1988.]
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