

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Identifying Causal Relationships Between Nonstationary Stochastic Processes: An Examination of Alternative Approaches in Small Samples

Hector O. Zapata, Michael A. Hudson, and Philip Garcia

A Monte Carlo investigation is used to examine the performance of two commonly used tests for Granger causality for univariate and bivariate nonstationary ARMA(p,q)processes. Tests are applied to raw data, first differences of the raw data, and detrended versions of the series. The results indicate that for independent series the tests are robust regardless of sample size. With bivariate series and nonstationarity, the test results are sensitive to the ARMA specification, whether the data are filtered and the type of filter used, and the sample size.

Key words: causal relationships, Granger causality, lead/lag relationships, Monte Carlo, nonstationarity.

The concept of Granger testing has received considerable attention in recent years. Economists have found the approach particularly useful in analyzing temporal relationships between a variety of price series (e.g., Bessler and Brandt). Commonly, this approach has been used to identify lead/lag relationships between economic time series. Despite the widespread application of the technique, several questions continue regarding the method. Two primary issues have been raised with regard to the procedure: (a) what is the correct empirical approach, and (b) whether the tests are capable of correctly identifying causal relationships.

Various Monte Carlo studies have addressed these two issues. The general conclusions indicate the direct Granger method of testing, suggested by Sargent, outperforms the alternatives. This conclusion, however, is largely based on applications of the testing procedures to causally related stationary series which are primarily autoregressive in nature. It is important to examine the effectiveness of these tests with nonstationary data that follow more general autoregressive and moving-average ARMA(p,q), which are more common in economic time series. With nonstationary data, the application of the Granger test calls for tranformation of the data series to achieve stationarity. There is little empirical evidence regarding the performance of the Granger tests when nonstationary data series are used and stationarity inducing transformations employed prior to testing for causal relationships.

The purpose of this paper is to examine the performance of two tests of Granger causality for nonstationary ARMA(p,q) processes. Univariate and bivariate data series are constructed for alternative values of p and q. Different levels of covariance between the series are permitted, and various time trends which are typical of economic time series are added to induce nonstationarity. Two tests of Granger causality are then applied to the raw data, first differences of the raw data, and detrended versions of the series. Results suggest that for independent series the tests are robust. With bi-

The authors are, respectively, an assistant professor in the Department of Agricultural Economics and Agribusiness at Louisiana State University, and an assistant professor and an associate professor, both in the Department of Agricultural Economics at the University of Illinois.

variate series and nonstationarity, the test Thresults are influenced by the *ARMA* specification, the differences in nonstationarity, and or

the sample size. The paper is organized as follows. Section two provides a brief summary of previous work. Experimental methods, including data generation procedures and application of the causality tests, are discussed in the third section. The fourth section of the paper presents the results of the inquiry. Last, the main implications and limitations of the study are summarized.

Background and Previous Work

The performance of various forms of the Granger test has been widely investigated. Monte Carlo studies by Nelson and Schwert; Geweke, Meese, and Dent; and Guilkey and Salemi are representative. In these studies, causally related stationary time series were constructed and a variety of tests applied. The general conclusions suggest the Granger tests are capable of identifying lead/lag relationships and that the direct Granger method yields the most consistent results. This method has also been widely used in applied studies between economic time series.

While these results verify the usefulness of these tests, the debate regarding the appropriate procedures for identifying causal relationships with nonstationary data continues. Lutkepohl concludes that "differencing nonstationary univariate component series of a multiple time series to induce stationarity prior to building an AR model for the multivariate generation process is in general inadequate" (p. 238). More recently, Bailey and Brorsen note, "there is no real agreement in the literature regarding the use or nonuse of a difference operator (prefilter) to obtain a stationary time series before causality tests are performed" (p. 128). Nerlove, Grether, and Carvalho, on the other hand, dismiss this issue, suggesting "letting the nonstationarity in one series explain the nonstationarity in the other" (p. 252).

Two recent empirical investigations are worthy of note with regard to the impacts of nonstationary series on the outcome of causality tests. Zeimer and Collins examined relationships between five agricultural price series and three theoretically unrelated series. The authors demonstrated that the Granger tests can identify relationships counter to theory when data possess nonstationary components. Bessler and Kling provide further evidence of the impact of nonstationary series in their investigation of sunspots (a stationary series) and gross national product (a nonstationary series). Using post-sample tests the authors demonstrate Granger tests give anomalous results when one series is stationary and the other nonstationary.

The results of these previous efforts suggest that the Granger approach is useful in identifying the lead/lag independence of stationary autoregessive time series but offer little insight into the effects of alternative generating processes on the performance of the tests. In particular, the effects of moving average components and nonstationary behavior which may be present in many economic series, deserve further attention and are considered below.

Experimental Methods

A Monte Carlo study was designed to examine the performance of two commonly used tests of Granger causality (the direct Granger and modified Sims) for ARMA(p,q) processes.¹ Table 1 summarizes the ARMA(p,q) data series used in the study, which were generated as stationary and nonstationary univariate and bivariate processes.² The univariate models were used as a benchmark for evaluation because they do not allow contemporaneous covariance between the error terms and have no constructed causal behavior ($C_{21} = 0$). The bi-

¹ In response to a reviewer's suggestion, nonstationary *ARIMA* (p,l,q) processes were constructed for a supplemental investigation with 20 replications, using values of p and q between 0 and 2. These series provided an alternative form of nonstationarity for comparison with the time trends added to the *ARMA*(p,q) processes. The results of these models were not appreciably different from those presented below for the *ARMA*(p,q) models with non-stationarity in the form of time trends.

² Stationarity of process X_{i_0} implies that the characteristic polynomial (*CP*) $|Ie^{p-1} - A_1e^{p-1} - \ldots - A_\rho\epsilon| \neq 0$ for $|\epsilon| \geq 1$. Alternatively, a *p*-dimensional difference equation with the *CP* equal to zero for which $|\epsilon's| < 1$ provides stationary processes for all elements of A_{i_0} $k = 1, 2, \ldots, p$. It can be shown that the coefficients in table 1 generate stationary processes by solving the *CP* for the difference equation of each model. For instance, for model *M*2 the solution to $|Ie^2 - .5e - .25| = 0$ results in characteristic values $(\epsilon_i = .81, \epsilon_2 = -.31)$ whose absolute value is less than one. For the model *BM*2, the solution to $|Ie^2 - A_ie - A_2| = 0$, where $A_1 = [(.5.0)'(.0.25)']$ and $A_2 = [(.6.0)'(.0.15)']$ has characteristic values $(\epsilon_i = .81, \epsilon_2 = .79, \epsilon_3 = -.31)$ and $\epsilon_4 = -.19)$, which are also less than one in absolute value.

		AR Co	efficient			MA Co	efficient	
Modela	A_{11}	A_{12}	A ₂₁	A ₂₂	<i>B</i> ₁₁	<i>B</i> ₁₂	B ₂₁	B ₂₂
<i>M</i> 1	.50	.00	.60	.00	.00	.00	.00	.00
M2	.50	.25	.60	.15	.00	.00	.00	.00
М3	.00	.00	.00	.00	.25	.00	.66	.00
M4	.00	.00	.00	.00	.25	.14	.66	.33
M5	.50	.00	.60	.00	.25	.00	.66	.00
M6	.50	.25	.60	.15	.25	.00	.66	.00
M7	.50	.25	.60	.15	.25	.14	.66	.33

Table 1.	ARMA(p,q)	Processes	Used to	Generate	Experimental	Data
----------	-----------	-----------	---------	----------	--------------	------

Note: To induce nonstationary behavior, time-trend components were added to each of the above models. The following trend structures were imposed for the (X, Y) series: (0, 0), (.035, .035), and (.075, .035). Covariance between X and Y was analyzed at the .0, .1, .5, and .09, the causality parameter C_{21} equals .59. When referring to the corresponding bivariate model these acronyms are preceded by a B. ^a The general form of the model is

 $\begin{aligned} X(t) &= A_{11}X(t-1) + A_{12}X(t-2) + B_{11}e(t-1) + B_{12}e(t-2) + C_{21}v(t-1) + e(t) \\ Y(t) &= A_{21}Y(t-1) + A_{22}Y(t-2) + B_{21}v(t-1) + B_{22}v(t-2) + v(t). \end{aligned}$

variate processes were constructed under varying degrees (.1, .5, .9) of contemporaneous covariance between the terms e(t) and v(t) so as to analyze the impact on the causality tests. All the series (univariate and bivariate) were constructed with the following time trends for the (X, Y) pair: (.0, .0), (.035, .035), and (.075, .035).³ Versions of each series were generated to examine the impacts of two sample sizes, 75 and 200 observations, on test performance.⁴

The stochastic components e(t) and v(t) were generated as independent normal (0, 1) variates and used directly to generate the univariate processes. The square root method (Rubinstein) was used to generate bivariate normal errors. For all series, the first fifty observations were deleted to minimize the effect of the starting values in the data generation process. Univariate and multivariate Lagrange multiplier tests (Jarque and Bera) were used to analyze the robustness of the methods in generating observations from the desired distribution. One hundred replications for the smallest sample size were run and the results indicated that at the .05 level of significance, we could be about 96% confident that e(t) and v(t) followed the specified distributions. The true model parameters could also be recovered with about the same level of significance.

The direct Granger and modified Sims tests as shown in table 2 were applied to each of the data series. Following applied procedures (e.g., Hsiao), univariate and multivariate versions of the Akaike's final prediction error (*FPE*) were used to determine the lag length for the series. A maximum lag length of six satisfied the criteria for most processes and was used throughout the evaluation. Both testing procedures were evaluated at the .05 level of significance.

Ashley; Ashley, Granger, and Schmalensee; Bessler and Kling; and others have recently demonstrated the benefits of using post-sample testing to verify causal relationships identified by Granger-type procedures. The primary motivation for post-sample testing is to verify that the causal relationships identified within the sample are not spurious. In cases where the true causal relationships are unknown, post-sample testing thus provides a means of verification of the identified causal relationships beyond the initial estimation period. Since the series being used in this investigation are generated by known processes, additional observations will follow a known process. Thus, post-sample tests would not be expected to alter the conclusions as the true

³ As noted by an anonymous reviewer, these time trends reflect a fairly restrictive form of nonstationary behavior. However, many economic time series possess time trends. Although such behavior is clearly deterministic, conducting Granger causality tests on trended data can provide misleading results (Gamber and Hudson). The initial investigation reported in footnote 1 verifies tests performance for series constructed with other forms of nonstationary behavior.

⁴ The entire simulation was performed on RATS. The simulation was very time consuming; it took approximately 18 hours to perform a complete analysis of one model, one sample size, 200 replications on an IBM-AT microcomputer with a math coprocessor. With 200 replications and a .05 level of significance, the results of the study will be accurate within a plus or minus 7.5% interval. In a power study, such as this, the error bands are derived from the variance of binominal distribution. Approximately 1,000 replications would be needed to obtain a plus or minus 4% interval. Computation time prohibited the use of a larger number of replications.

relationships are known a priori.⁵ Nonetheless, in cases where the true model structures are unknown, such approaches are clearly useful and recommended to verify the results of Granger casusality tests.

Results

Causality test results for 75 and 200 observations are presented in tables 3 to 6. The three versions of each data series, raw, differenced, and detrended, are presented across the top of the table. Under each version of the data series, the direct Granger and modified Sims tests from table 2 are identified by G2, G3, S1, S2, and S3, respectively. Univariate models are represented by M1 to M7, and bivariate models by BM1 to BM7. The covariance level for the BM models is .5.⁶ The three different time trends are represented by T1, T2, and T3 for (.0, .0), (.035, .035), and (.075, .035), respectively: a letter X or Y is added at the end of these time indices to define the dependent variable in the model of interest. Tables 3 and 4 contain the results for the univariate models. The values in the tables represent the proportion of rejections of the null hypothesis specified in table 2. If the tests are robust, the values should be close to zero with an error .05.

The results in table 3 indicate that both the direct Granger and modified Sims tests are robust in detecting lack of simultaneity and causal relationships when they did not exist. Except for a few cases, the percentage of rejections of the null hypothesis is very low. Increasing the model complexity from a purely autoregressive model of order one (M1) to an ARMA(2,2) (M7) does not affect the test results at the .05 level of significance. In general, for univariate models, first differencing or detrending (using

Table 2. Test Specifications and Hypotheses

	Direct Granger Procedure
Model: G2: G3:	$x_{t} = \sum_{j=1}^{\rho} \theta_{1j} X_{t-j} + \sum_{i=0}^{q} \beta_{1i} Y_{t-i} + \epsilon_{t}$ $H_{0}: \beta_{10} = 0, H_{a}: \beta_{10} \neq 0$ $H_{0}: \beta_{11} = \dots = \beta_{19} = 0, H_{a}: \text{ Not all } = 0$
	Modified Sims Procedure
	$X_t = \sum_{j=1}^p heta_{2j} X_{t-j} + \sum_{k=1}^r \phi_{2k} Y_{t+k}$
Model:	$+\sum_{i=0}^{q}\beta_{2i}Y_{t-i}+\nu_{t}$
S1: S2: S3:	$H_{0}: \phi_{21} = \dots \phi_{2k} = 0, H_{a}: \text{ Not all } = 0$ $H_{0}: \beta_{20} = 0, H_{a}: \beta_{20} \neq 0$ $H_{0}: \beta_{21} = \dots = \beta_{2a} = 0, H_{a}: \text{ Not all } = 0$

a linear time trend) does not have a major impact on the results.

For the large sample size (200 observations, table 4) the introduction of time trend nonstationarity is of consequence, especially for the direct Granger (G3) test on raw data. However, the test performs well when first differencing or detrending are used to filter the data. This implies that either differencing or detrending are adequate filters when there is little or no contemporaneous covariance between the series.

Tables 5 and 6 provide results for bivariate models with causality constructed from Y and X and having .5 level of contemporaneous covariance. One would expect that if the test procedures are robust in detecting the true causal flows, the direct Granger (G3) and modified Sims (S3) tests should have values close to one when X is the dependent variable, and values close to zero when Y is the dependent variable. Similarly, test S1 should have values close to zero where X is the dependent variable and values close to zero when Y is the dependent variable. Because contemporaneous causation is tested by G2 and S2, their values should be close to one if the tests are robust.

For bivariate models, test results are influenced by nonstationarity, sample size and the ARMA specification. The testing procedures for detecting simultaneous relationships produce somewhat mixed results. The direct Granger test (G2) provides very consistent results regardless of the model structure under consideration. Its accuracy increases with sample size and is invariant to the filtering pro-

⁵ As noted by the editor and an anonymous reviewer, postsample tests could be implemented in the context of the current study. For example, the forecasting performance of the estimated models could be compared with an alternative set of models generated using an alternative information criterion. Such an approach would provide verification of the ability of the tests to identify the true causal relationships between the data series. In light of the results presented below, which suggest the tests are indeed powerful in identifying the correct relationships, and the additional computational costs associated with these tests, no post-sample evaluation was performed.

⁶ Preliminary results on 20 replications of the experiment indicated that for .1 level of covariance the results did not differ appreciably from those of univariate models, and that at high levels of covariance (.9) the results were not significantly different from those at .5 covariance.

I able 3. Mullic Callo Incourts for C	VIIIVIAL	Cally IN	OT COTOC			- 6										
				Raw Data				First	First Differences	ces .			L	Detrended		
Model		62	63	S1	S2	S3	62	ß	SI	S2	S3	G_2	C3	S1	S2	S3
IW	TLXa	.040 ^b	.025	.070	.055	.055	070.	.055	.055	.045	.040	.075	.040	.075	.055	.055
	I I X	.040	csu.	.000	.040	.040	0/0.	CZU.	040	000	220.	240	050	020	245	070
	72X 72Y	.050	.155	.125 .095	.035 .065	.060 .020	.050 .050	.030 .030	.075 .075	.050	.030 030	.045 .045	040.	0/0.	.055	.015
	T3X	.080	060.	.070	090.	.065	.075	.070	.050	.095	.055	.065	.070	.055	.070	.065
	T3Y	.080	.150	.070	.075	.025	.075	.015	.045	.055	.020	.065	.020	.045	.070	.015
M2	T1X	.040	.045	.060	090.	.045	.065	.055	.055	.055	.040	.075	.070	080	090.	.060
	T1Y	.040	.035	.045	.035	.035	C 90.	020.	.040	ccn.	070.	c/n.	.040	C+0.	.040	070.
. 1	T2X	.050	060.	.095	.035	.065	.050	.045	.075	060.	.045	.045	.050	.075	.040	.045
	T2Y	.050	.045	.075	.050	.015	.050	.025	.065	.050	.025	.045	.040	C0U.	ccn.	c10.
	T3X	.085	.070	.075	.050	.055	090.	.075	.060	060.	.055	.060	.080	.060	090	.060
	T3Y	.085	.065	.070	.080	.025	090.	.020	.055	.075	.020	.060	.025	.050	.085	.015
<i>M</i> 3	T1X	.050	.040	.065	090.	.055	.070	.065	.065	.035	.045	.075	090.	.065	.055	.050
	T1Y	.050	.025	.050	.035	.030	.070	.030	.040	.035	.030	.075	.025	000.	.040	050.
	T2X	090.	.175	.150	.055	.105	.050	.055	.075	.065	.060	.050	.045	.070	.055	.030
	T2Y	.060	.210	060.	.055	.035	.050	.025	.075	.040	.030	060.	050.	.000	000.	c10.
	T3X	.070	.100	060.	.085	060.	090.	.070	.065	.100	.070	.060	.070	.040	.075	.060
	T3Y	.070	.305	.065	.085	.025	.060	.025	.045	.050	.015	.090	.020	000.	c/0.	070.
M4	$T^{1}X$.050	.030	.055	.065	.055	.065	.055	090.	.045	.055	.075	090.	090.	.070	.070
	T1Y	.050	.030	.050	.040	.025	.065	c20.	.040	060.	050.	c/n	ccn.	ccn.		C20.
	T2X	.060	.140	.135	.045	.085	.060	.065	010.	.070	.055	.045	.055	.070	.050	.040
	T2Y	.060	.160	.095	.070	.030	.060	.020	c/.0.	.040	050.	C40.	CCU.	C00.	con.	C10.
	T3X	.080	060.	.075	.070	.075	.070	.070	.060	.100	.060	.060	.070	.045	.075	.015
	T3Y	.080	.265	.065	.075	.025	.070	.015	.045	.050	.020	.090	.015	.050	.080	c10.

Table 3. Monte Carlo Results for Univariate Models, 75 Observations, 200 Replications

	н
-	ł
Ð.	ł
ned	I
	I
	I
Ξ	1
5	Į
5	I
	I
	I
	1
m	I
ð	
÷.	ł
9	ı

Table 3.	Fable 3. Continued	ned														
				Raw Data				Firs	First Differences	ces			П	Detrended		
Model		<i>G</i> 2	63	SI	S2	S3	62	63	S1	S2	S3	62	C3	SI	S2	S3
M5	$T_{1 V}$.045	.040	090.	.035	.050	.065	060.0130	.060 040	.035	.045	.070 .070	.075	.065 .040	.045 .020	.050 .030
	T2X	.050	.095	.115	.050	.045	.045	.055	.065	.045	.035	.045	.050	080	.050	.040
	T2Y	.050	.055	.095	.055	.015	.045	.030	.065	.060	.030	.045	.040	C 90.	C 90.	c10.
	T3X	.080	.085	.075	.075	090.	.065	090.	.050	090.	.060	.065	.065	.045	.065	.060
	13Y	080.	C60.	.000	.080	070.	con.	070-	ccu.	060.	C2U.		CIU.	000		010.
M6		.045 045	.060	.070 050	.040	.050	.075	.055 .020	.060 .040	.045 .060	.045 .025	.065 .065	.080 .035	.090 .045	.050 .020	.060 .025
	TTX	040	050	080	045	.065	045	.055	.070	.045	.025	.045	.055	.080	.040	.055
	T2Y	.040	.035	.065	.050	.020	.045	.035	.060	.045	.030	.045	.040	.060	.070	.010
	T3X	.070	.075	.070	.075	.050	090.	.090	.050	.045	.055	.060	.075	.050	.070	.065
	T3Y	070.	090.	.075	.075	.025	.060	.020	.060	.075	.020	.060	.025	.055	.070	.015
MT	T1X	.050	.055	.055	.055	.055	090.	090.	.060	.070	.055	.065	.070	.085	.055	.055
	T1Y	.050	.035	.055	.040	.035	090.	.025	.040	.055	.025	.065	.040	.050	.030	.025
	T2X	.035	.055	.085	.040	.055	.045	.060	.060	.045	.045	.045	.055	.080	.040	.055
	T2Y	.035	.040	.075	.060	.015	.045	.035	.060	.050	.015	.045	.040	.060	.060	.015
	T3X	.075	.055	.055	090.	.065	.060	.080	.035	090	.065	.065	.070	.045	.065	.070
	T3Y	.075	.045	.070	.075	.020	.060	.020	.055	.075	.025	.065	.020	.065	.065	.015
^a The models	and tests a	The models and tests are identified in tables 1 and	in tables 1		ctively. T1.	2. respectively. 71. 72. and 73 indicate the time trends used in constructing the data identified in table 1. The suffix immediately following the	3 indicate th	e time tren	ds used in c	onstructing	the data id	lentified in t	able 1. The	suffix imm	ediately fol	lowing the

* The models and tests are identified in tables 1 and 2, respectively. 11, 12, and 13 indicate the time trends used in con-time trend indicator identifies the dependent variable. ^b The numbers are the proportion of rejections of the null hypothesis for the tests identified in table 2 at the .05 level.

														-		
				Raw Data				Firs	First Differences	ces				Detrended		
Model		G2	63	SI	S2	S3	G_2	63	SI	S2	S3	62	C	SI	S2	23
μ	T_1X	.040	.015	.040	.045	.020	.030	.020	.050	.040	.015	.040	.020	.040	.045	.025
1	T_1Y	.040	000	.055	.060	.005	.030	.015	.070	.035	.005	.040	000	.050	.055	.005
	T2X	.085	.360	.190	.045	060.	.070	.020	.045	.060	040	.055	.015	.045	.060	.025
	T2Y	.085	.485	.125	.045	.065	.070	.005	.075	.055	.015	.055	.010	.070	.025	.010
	T3X	060.	.035	.085	.050	.020	.050	.005	.045	.040	000	.065	.005	.030	.050	.005
	T3Y	060.	.890	.075	.055	.035	.050	.005	.070	.055	.005	.065	000.	0/0.		000.
M2	T1X	.040	.020	.045	.040	.015	.040	.015	.040	.040	.020	.035	.025	.045	.040	.020
	T_1Y	.040	.005	090.	.045	000.	.040	.005	.055	.040	.005	.035	.010	.055	.045	000.
	T2X	.075	.185	.105	.055	.055	.050	.025	.050	.055	.040	.050	.015	.050	.060	.015
	T2Y	.075	.230	.085	.040	.030	.050	.010	.080	.005	.010	.050	.010	.065	.030	.015
	T3X	.065	.025	.065	.050	000.	.050	000.	.040	.040	000.	.050	.005	.030	.050	.010
	T3Y	.065	.545	090.	.040	.015	.050	000.	.075	.045	000	.050	000.	.070	.050	.005
5M	T X	040	.015	.040	.045	.015	.035	.010	090.	.035	.010	.040	.020	.045	.055	.015
011	TIY	.040	.005	.055	.050	000.	.035	.015	.070	.030	.005	.040	.005	.060	.050	.005
	T2X	.145	.400	.235	.065	.180	.075	.010	.045	090.	.030	.060	.020	.045	.075	.020
	T2Y	.145	.790	.165	.065	.200	.075	.015	.070	.065	.025	.060	.010	.065	.045	.010
	T3X	060.	.040	.100	.045	.025	.055	.010	.045	.045	.010	.060	000	.040	.050	.005
	T3Y	060.	066.	.100	.065	.075	.055	.005	.065	.070	000.	.060	000.	.060	.065	000.
M4	T_{1X}	.040	.015	.045	.045	.020	.030	.010	.055	.040	.010	.040	.020	.035	.055	.020
	T1Y	.040	000	.055	.045	000.	.030	.010	.070	.040	.005	.040	000.	.055	.040	000
	XCL	.125	.320	.220	.060	.145	.075	.025	.045	.065	.030	.060	.020	.040	.065	.015
	T2Y	.125	.755	.145	.070	.160	.075	.005	.075	.070	.025	.060	.010	.070	.045	.010
	XEL	085	.040	060.	.040	.020	.050	.005	.050	.050	000.	.065	000.	.030	.045	.005
	T3Y	.085	980.	.080	.050	.065	.050	.005	.070	.075	000.	.065	000	.060	.070	000.

208 December 1988

Table 4. Continued

				Raw Data				Firs	First Differences	xes			Г	Detrended		
Model	1	62	ß	SI	S2	S3	62	63	SI	S2	S3	G2	C3	SI	S2	<i>S</i> 3
RMI	$T_1 X$	980	690	.050	.945	.315	.935	.695	.065	.955	.905	.975	.675	.075	.935	.320
	TIY	980.	.025	.950	.335	.040	.975	.020	.940	1.000	.150	.975	.030	.945	.040	.035
	$T \gamma Y$	995	845	080	.960	.250	.950	.685	080.	.945	.905	980.	.695	060.	.960	.235
	72Y	995	010	.945	.395	.025	066.	.020	.910	1.000	.140	.980	.015	.920	.400	.025
	TaY	1 000	745	060	.930	.385	.945	.740	.045	.945	.920	.980	.750	.060	.930	.345
	T3Y	1.000	.100	.940	.320	.100	.985	.010	.935	.985	.150	.980	.010	.940	.370	.070
C/Va	T Y	080	700	050	935	480	.945	.675	.060	.965	.920	.975	.680	.070	.935	.410
71		980	040	.945	405	.340	970	.025	.940	1.000	.085	.975	.025	.940	.495	.170
	77 V	580	800	020	945	395	.965	.675	.065	.950	.935	.985	.695	.075	.955	.330
	72 Y	985	010	.930	.430	.330	066.	.020	.910	1.000	.060	.985	.015	.910	.495	.180
	$T_{2}Y$	985	765	065	930	.520	.955	.740	.040	.955	.935	.980	.780	.045	.945	.435
	T3Y	.985	.060	.940	.385	.370	.980	.015	.935	<u>.995</u>	.080	.980	.010	.945	.418	.215
RMA	$T^{-1}X$	980	755	045	006	.195	.935	.760	.075	.890	.785	980	.745	.065	.915	.220
01	TIY	980	.025	980	.640	.020	.975	.020	.960	066.	.290	.980	.025	.980	.695	.005
	TOY	1 000	885	085	.960	.140	.950	.800	.065	.920	.785	.980	.810	.080	.925	.165
	72Y	1.000	.025	.965	.750	000.	066.	.015	.955	1.000	.255	.980	.015	.955	.700	000.
	T X	995	823	105	895	.205	.945	.820	.040	.935	.800	.980	.825	.060	.915	.185
	T3Y	.995	.200	.960	.575	.030	.985	.005	.955	066.	.230	.980	.005	.955	.660	.020
BMA	$T^1 Y$	980	750	090	915	.360	.940	.750	.070	.955	.880	.975	.725	.080	.915	.340
1	$T_1 Y$	086	.020	.975	.725	.025	.965	.025	.955	066.	.260	.975	.030	.975	.765	.030
	T A	1 000	855	085	970	.365	.965	.790	.070	096.	900	.980	.785	.080	.945	.350
	72Y	1.000	.040	.970	790	.005	066.	.015	.955	1.000	.215	.980	.010	.955	.750	.005
	T^{X}	1.000	.830	060.	890	.485	.950	.815	.045	.945	.875	.980	.820	.055	.905	.425
	T3Y	1.000	.185	960	.600	.085	.975	.010	.960	.995	.190	.980	.010	.955	.710	.035

Table 5. Monte Carlo Results for Bivariate Models, 75 Observations, 200 Replications

			H	Raw Data				Firs	First Differences	Ses			Γ	Detrended		
Model	ı	62	C3	SI	S2	S3	G2	63	SI	S2	S3	G2	63	SI	S2	S3
BM5	TIX	980	.770	.040	.645	400	.955	.745	.065	.910	.385	.975	.760	.060	.655	.315
	TIY	980	.040	.980	.070	.050	.980	.010	.955	.950	.100	.975	.050	.980	.095	.045
	T2X	.995	.845	.070	.675	.345	.965	.805	.080	.935	.360	.980	.830	.075	695.	.300
	T2Y	.995	.040	.960	.055	.025	066.	.020	.950	.935	.085	980.	.015	.955	.075	.025
	T3X	395	.810	.055	.685	.645	.955	.815	.050	.925	.345	.980	.820	.055	695.	.375
	T3Y	.995	.065	.955	.100	.120	980.	.005	.955	.915	.080	.980	.010	.965	.145	.060
BM6	T1X	.980	.076	.045	.660	009.	.960	.740	.070	.945	.390	.975	.765	.055	.670	.475
	T1Y	.980	.040	.980	.130	.300	980.	.020	.955	.975	.040	.975	.030	.980	.150	.175
	T2X	<u>.995</u>	.850	090.	.700	.630	.970	.810	.070	.950	.390	.985	.825	060.	.720	.495
1	T2Y	<u> 995</u>	.015	.965	.105	.175	066.	.015	.950	.975	.015	.985	.010	060.	.155	.145
	T3X	066.	.805	.055	.715	.785	.955	.805	090.	.935	.415	.980	.830	.050	.735	.530
	T3Y	066.	.030	.960	.155	.345	.975	.005	.955	960.	.040	.980	.010	.965	.215	.225
BM7	T1X	.985	.760	.055	.665	.760	.930	.730	.075	.950	.525	.975	.745	.070	.700	.695
	T1Y	.985	.035	980	.150	.435	.980	.020	096.	.975	.030	.975	.040	.985	.170	.320
	T2X	<u>.995</u>	.810	.065	.745	.790	.935	.780	.085	.970	.620	.980	.795	.075	.770	.705
	T2Y	.995	.015	970.	.140	.305	.985	.010	.950	.980	.005	.980	.010	.965	.190	.270
	T3X	.985	.805	.055	.735	.875	.925	.810	.055	.955	.580	.980	.835	.055	.765	.765
	T3Y	.985	.030	.955	.190	.470	.975	.015	.960	.970	.035	.980	.020	.960	.230	.305
							-									

Note: See table 3 for a description of the table.

T TITLE A.	TITATAT	INTERNAL OF THE ANTINATION				2 2 - 6		6								
-				Raw Data				Firs	First Differences	ses			L	Detrended		
- Model		62	3	SI	S2	S3	62	63	SI	S2	S3	G_2	C3	S1	S2	S3
BMI		1.000	1.000	.045	1.000	.900 280	1.000	1.000	.040 1.000	1.000 1.000	1.000 .670	1.000 1.000	1.000 .015	.050 1.000	1.000 .825	.885 .270
	72X XCL	1.000	1.000	.075	1.000	.855	1.000	1.000	.055	1.000 1.000	1.000 .665	1.000 1.000	1.000	.055 1.000	1.000 .830	.865 .215
	73Y 73Y	1.000	.995 .785	.120	1.000	.905 .535	1.000	1.000	.045 1.000	1.000	1.000 .690	1.000 1.000	.995 .015	.020 1.000	1.000.880	.800 .220
BM2		1.000	1.000	.035	1.000	.940 .985	1.000 1.000	1.000 .020	.050 1.000	1.000 1.000	1.000 .300	1.000 1.000	1.000 .020	.055 1.000	1.000 .885	.785 .965
	72X 77Y	1.000	1.000	.060	1.000	.985 .955	1.000	1.000	.055 1.000	1.000 1.000	1.000 .370	1.000 1.000	1.000 .010	.045 1.000	1.000 .895	.980 .915
	73Y 73Y	1.000	1.000	.080	1.000 .910	.985 .985	1.000	1.000 .005	.040 1.000	1.000 1.000	1.000	1.000 1.000	.995 .010	.020 1.000	1.000 .915	.940 .905
BM3		1.000	1.000	040	1.000 .990	.510 .015	1.000 1.000	1.000	.065 1.000	1.000 1.000	1.000 .950	1.000 1.000	1.000 .015	.045 1.000	1.000 .995	.495
	72X 72Y	1.000	1.000	.125 1.000	1.000 .990	.575 .020	1.000	1.000 .025	.060	1.000 1.000	1.000 .905	1.000 1.000	1.000 .015	.060 1.000	1.000 .990	.590 .020
	73X 73Y	1.000	1.000 .960	.140 1.000	1.000 .990	065. 090	1.000	1.000	.055 1.000	1.000	1.000 .915	1.000	1.000	.030 1.000	1.000 .995	.495 .015
BM4	$T_1 X$	1.000 1.000	1.000 .010	.035 1.000	1.000 1.000	.950 .100	1.000 1.000	1.000 .010	.045 1.000	1.000 1.000	1.000 .885	1.000 1.000	1.000 .010	.040 1.000	1.000 1.000	.950 .085
	T2X T2Y	1.000 1.000	1.000.1.75	.160 1.000	1.000 1.000	.945 .065	1.000 1.000	1.000 .020	.055 1.000	1.000 1.000	1.000 .825	1.000	1.000	.050 1.000	1.000 1.000	.945 .075
	T3X $T3Y$	1.000 1.000	1.000 .950	.115 1.000	1.000 .990	.965 .370	1.000 1.000	1.000	.045 1.000	1.000 1.000	1.000 .840	1.000 1.000	1.000	.020 1.000	1.000 .995	.730 .065

Table 6. Monte Carlo Results for Bivariate Models, 200 Observations, 200 Replications

Model First Differences $Model$ G_2 G_3 $S1$ $S2$ $S3$ $S1$ $S2$ $Model$ G_2 G_3 $S1$ S_2 $S3$ G_2 G_3 $S1$ $S2$ MS $T1X$ 1.000 010 1.00								
del G_2 G_3 S_1 S_2 S_3 G_2 G_3 S_1 $T1Y$ 1.000 1.000 0.00	Fü	rst Differences			Ď	Detrended		
TIX 1.000 1.000 1.000 1.000 1.000 0.010 0.000 0.015 1.000 0.015 1.000 0.015 1.000 0.015 1.000 0.015 1.000 0.015 1.000 0.015 1.000 0.015 1.000 0.015 1.000 0.016 0.005 0.055 1.000 0.010 1.000 0.010 1.000 0.010 1.000 0.010 1.000 0.010 1.000 0.010 0.005 0.055 0.010 0.010 0.000 0.055 0.010 0.000 0.055 0.000 0.010 0.000 0.055 0.000 0.010 0.000 0.055 0.000 0.010 0.000 0.055 0.000 0.010 0.000 0.055 0.000 0.010 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055 0.000 0.055			S3	62	ß	SI	S2	S3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					000	050	000	000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.000			1.000	1.000	000.	066.	006.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000			1.000	c10.	1.000	C81.	.240
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 000			1.000	1.000	.065	.980	.940
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000			1.000	.015	1.000	.175	.225
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 000			1.000	1.000	.025	066.	.955
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 000			1.000	.010	1.000	.225	.210
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000.1			000	0001	055	200	1 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.000			1.000	1.000	ccu.	C 6 6 6 .	1.000
TZX 1.000 1.000 0.010 0.070 985 995 1.000 1.000 0.055 TZY 1.000 0.040 1.000 0.040 1.000 0.10 0.010 1.000 0.055 T3Y 1.000 1.000 0.010 1.000 0.010 0.010 1.000 0.035 T3Y 1.000 1.000 0.700 .990 1.000 1.000 0.035 T1X 1.000 1.000 0.560 .995 1.000 1.000 0.560 T1Y 1.000 1.000 .075 .995 1.000 .050 T2X 1.000 1.000 .075 .995 1.000 .050 T2Y 1.000 .0100 .075 .966 1.000 .010 .050 T2Y 1.000 .000 .000 .000 .000 .000 .000 .000 T2Y 1.000 .000 .000 .000 .000 .000	1.000			1.000	.010	1.000	<i>сссс</i> .	C76.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000			1.000	1.000	.055	.985	.995
T3X 1.000 .000 .070 .990 1.000 1.000 .035 T3Y 1.000 1.000 .070 .995 1.000 1.000 .035 T1X 1.000 1.000 .050 .995 1.000 1.000 .050 T1Y 1.000 1.000 .051 .995 1.000 .050 .995 1.000 .050 T1Y 1.000 .015 1.000 .335 .990 1.000 .050 .055 T2X 1.000 1.000 .075 .995 1.000 .050 .056 T2Y 1.000 .000 .000 .000 .010 .000 .050 T2Y 1.000 .000 .000 .000 .000 .000 .050 T2Y 1.000 .000 .000 .000 .000 .000 .000 T2Y 1.000 .000 .000 .000 .000 .000 .000	1.000			1.000	.015	1.000	.355	.870
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 000			1.000	1.000	.030	.995	.985
TX 1.000 1.000 1.000 1.000 0.050 995 1.000 1.000 0.050 0.95 1.000 1.000 0.050 0.95 1.000 1.000 0.050 <th0.050< th=""> <th0.050< th=""> <th0.050< td="" th<=""><td>1.000</td><td>_</td><td>090.</td><td>1.000</td><td>.020</td><td>1.000</td><td>.345</td><td>.860</td></th0.050<></th0.050<></th0.050<>	1.000	_	090.	1.000	.020	1.000	.345	.860
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 000			1 000	1 000	055	995	1.000
1.000 .010 1.000 .075 .995 1.000 1.000 .020 .000 1.000 1.000 .075 .995 1.000 1.000 .0100 .050 1.000 1.000 .0100 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1	1.000			1.000	.020	1.000	400	.985
1.000 1.000073	1 000			1 000	1.000	.040	.995	1.000
	1 000			1.000	.010	1.000	.415	.955
	1.000			000	1 000	030	005	1 000
0001 0001 0001 0001 066° CON 0001 001	1.000	_		1.000	1.000	000	200	020
1.000 .395 1.000 .390 1.000 1.000 0.015 1.000	1.000	-		1.000	.010	1.000	.430	22.

cedure used. In contrast, the modified Sims approach (S2) for detecting simultaneity does not perform well. While its accuracy improves with sample size, its performance is influenced by model specification, nonstationarity, and the method of filtering. Generally, its accuracy improves when the nonstationarity is removed with the first difference filter.

For the lead/lag relationships, again the results are mixed. The modified Sims test for examining lags (S3) is heavily influenced by model specification, type of nonstationarity, and filtering procedure. Its accuracy does not improve with sample size nor with any particular filtering procedure. In fact, filtering often influences this test in an unpredictable manner, calling into question its use in applied work. The results are somewhat different for the direct Granger test for lags (G3) and the modified Sims test for leads (S1). In the raw data form, the results of the G3 test are influenced rather dramatically by the type of nonstationarity-its accuracy declining as the nonstationarity takes different forms (i.e., different time trends). Filtering the data by either first differences or detrending improves the accuracy of the test. In large, filtered samples, the G3 test provides the most accurate identification of lead/lag relationships. The S1 test is very accurate in small and large samples. It is least affected by nonstationarity, method of filtering and sample size. For smaller samples, it provides the most accurate procedure for identifying lead/lag relationships. Its accuracy declines marginally with large samples in the raw data form, but filtering improves its performance to an acceptable level.

Summary, Implications, and Limitations

The results of the Monte Carlo analysis into the performance of the Granger and modified Sims tests on the presence of nonstationarity have important implications for agricultural economists interested in identifying lead/lag relationships between economic time series. Economic data possess nonstationary components and model identification is not always clearly specified by theory. The findings of the current study provide insight into the usefulness of procedures often applied.

For univariate ARMA processes, the direct Granger and modified Sims tests are robust in detecting lack of simultaneity and unidirectional causal relationships. Differencing or detrending improves the test performance for nonstationary series. Hence, when the degree of contemporaneous covariance between two stochastic processes is very low, the tests provide reliable results.

For bivariate processes, on balance, the results suggest that simultaneous relationships can be best identified by the Granger test (G2). Lead/lag relationships in the raw data form are most accurately identified using the modified Sims (S1) procedure. When nonstationarity is removed by filtering the data, G3 performs best in large samples while S1 is the most accurate with smaller samples. Hence, for smaller series generated by bivariate processes, perhaps the situation which most closely approximates many analyses of economic time series, the S1 test should be used to complement the more widely used G3 test to establish lead/lag relationships.

In general, the results of the simulation indicate that the effects of nonstationarity are most pronounced in larger samples which possess dissimilar trends, and for tests examining lagged variables. On the whole, except for the case of the modified Sims test (S3), first differencing of the bivariate processes does not significantly disturb the bivariate nature of the processes and permits identification of the correct lead/lag relationships.

There are several limitations which should be noted. While a rather wide range of models and trends was selected for analysis for the study, the conclusions of the research are strictly applicable only to the models and forms of nonstationarity tested. The results, therefore, cannot be generalized to series which possess other forms of deterministic behavior, such as seasonal or cyclic components. Also, the study considered only first difference transformations and detrending procedures to induce stationarity and therefore says nothing about the performance when other transformations (e.g., ARIMA filters) are performed. In addition, the sensitivity of the results to alternative selection criteria was not examined. Nevertheless, the FPE did seem to provide model structures which permitted consistent identification of the underlying causal structures.

Despite these limitations, the results should prove useful for researchers interested in examining lead/lag relationships between economic time series. They corroborate previous findings that Granger tests and selected mod-

Zapata, Hudson, and Garcia

ified Sims tests can be used with confidence in applied work in identifying various bivariate relationships. While nonstationarity complicates their application, judicious filtering or selection of appropriate tests can remedy some of these concerns. Further work needs to be done to identify how tests perform when other deterministic behavior exists in the data and the series generated by more complicated model structures.

[Received March 1986; final revision received June 1988.]

References

- Ashley, R. "Inflation and the Distribution of Price Changes Across Markets: A Causal Analysis." *Econ. Inquiry* 19(1981):650-60.
- Ashley, R., C. W. J. Granger, and R. Schmalensee. "Advertising and Consumption: An Analysis of Causality." *Econometrica* 48(1980):1149–68.
- Bailey, D., and B. W. Brorsen. "Dynamics of Regional Fed Cattle Prices." West. J. Agr. Econ. 10(1984): 126-33.
- Bessler, D. A., and J. A. Brandt. "Causality Tests in Livestock Markets." Amer. J. Agr. Econ. 64(1982):140– 44.
- Bessler, D. A., and J. L. Kling. "A Note on Tests of Granger Causality." Appl. Econ. 16(1984):335-42.
- Gamber, E. N., and M. A. Hudson. "Causality Testing with Messy Data: Some Preliminary Experimental Evidence." Selected paper, presented at AAEA meeting, Ithaca, NY, Aug. 1984. (Abstract in Amer. J. Agr. Econ. 66(1984):900.)

- Geweke, J., R. Meese, and W. T. Dent. "Comparing Alternative Tests of Causality in Temporal Systems: Analytic Results and Experimental Evidence." J. Econometrics 21(1983):161-94.
- Granger, C. W. J. "Investigating Causal Relations by Econometric Models and Cross Spectral Methods." *Econometrica* 37(1969):424–38.
- Guilkey, D. K., and M. K. Salemi. "Small Sample Properties of Three Tests for Granger Causal Ordering in a Bivariate Stochastic System." *Rev. Econ. and Statist.* 64(1982):668–80.
- Hsiao, C. "Autoregressive Modeling of Canadian Money and Income Data." J. Amer. Statist. Assoc. 74(1979): 554-60.
- Jarque, C. M., and A. K. Bera. "Efficient Tests for Normality, Homoskedasticity, and Serial Independence of Regression Residuals." *Econ. Letters* 6(1980):255– 59.
- Lutkepohl, H. "Differencing Multiple Time Series: Another Look at Canadian Money and Income Data." J. Time Ser. Anal. 3(1982):235-43.
- Nelson, C. R., and G. W. Schwert. "Tests for Predictive Relationships between Time-Series Variables: A Monte Carlo Investigation." J. Amer. Statist. Assoc. 37(1982):11-18.
- Nerlove, M., D. M. Grether, and J. L. Carvalho. Analysis of Economic Time Series. New York: Academic Press, 1979.
- Rubinstein, R. Y. Simulation and the Monte Carlo Method. New York: John Wiley & Sons, 1981.
- Sargent, T. J. "A Classical Macroeconomic Model for the United States." J. Polit. Econ. 84(1976):207–38.
- Zeimer, R. F., and G. S. Collins. "Granger Causality and U.S. Crop and Livestock Prices." S. J. Agr. Econ. 16(1984):115–19.